Accelerated Algebra and Calculus Assignment 2 – Solution

(*a*) **Claim:** Two non-zero complex numbers $re^{i\theta}$ and $se^{i\phi}$ are equal if and only if r = s and $\phi = \theta + 2k\pi$ for some $k \in \mathbb{Z}$.

Proof. The question really means that $re^{i\theta}$ and $se^{i\phi}$ are in **polar form**, so that we have r, s > 0.

We now prove the two parts of the statement separately.

 $\Rightarrow Given that <math>r = s \text{ and } \phi = \theta + 2k\pi \text{ for } some \ k \in \mathbb{Z}, we have$

$$se^{i\phi} = re^{i(\theta + 2k\pi)}$$

= $r(\cos(\theta + 2k\pi) + i\sin(\theta + 2k\pi))$
= $r(\cos\theta + i\sin\theta)$
= $re^{i\theta}$.

$$|re^{i\theta}| = |se^{i\phi}|$$
$$|r| = |s|,$$

but since r, s > 0 this means r = s. So $re^{i\theta} = se^{i\phi}$ implies

$$e^{i\theta}=e^{i\phi}$$

 $\cos\theta + i\sin\theta = \cos\phi + i\sin\phi.$

Comparing real and imaginary parts, this means

$$\cos \theta = \cos \phi$$
 and $\sin \theta = \sin \phi$,

and, due to the periods of the sine and cosine functions, this means we must have $\phi = \theta + 2k\pi$. (*b*) **Claim:** For $z, w \in \mathbb{C}$ we have $e^z = e^w$ if and only if $w = z + 2k\pi i$ for some $k \in \mathbb{Z}$.

Proof. Suppose z = a + ib and w = x + iy. Using the definition of the complex exponential,

$$e^z = e^w \iff e^a e^{ib} = e^x e^{iy}.$$

Putting $r = e^a$, $\theta = b$, $s = e^x$ and $\phi = y$ in the result proved in (*a*), we get that this is equivalent to

$$e^a = e^x$$
 and $y = b + 2k\pi$ for some $k \in \mathbb{Z}$.

Since $e^a = e^x$ if and only if a = x, this is equivalent to

$$w = x + iy = a + i(b + 2k\pi) = z + 2k\pi i.$$

(*c*) To show that

 $\exp : \{z \in \mathbb{C} \mid \mathcal{I}m \, z \in (\pi, \pi]\} \to \{z \in \mathbb{C} \mid z \neq 0\}$

is a bijection, we show that it is **injective** and **surjective**.

• To see that exp is injective, suppose we have $\exp z = \exp w$; we aim to show that z = w. Now, by (*b*), we have have $w = z + 2k\pi i$ for some $k \in \mathbb{Z}$. Since *z* and *w* are in the domain of exp, we know $\mathcal{I}mz, \mathcal{I}mw \in (-\pi, \pi]$, so the only way to have

$$\mathcal{I}m w = \mathcal{I}m z + 2k\pi i$$

is to have k = 0, i.e. z = w. So exp is injective.

To see that it is surjective, let *re^{iθ}* be an aribtrary element of the codomain. We suppose it is written in polar form with *θ* ∈ (−*π*, *π*]. Then

$$\exp(\ln r + i\theta) = e^{\ln r} e^{i\theta} = r e^{i\theta};$$

thus $\ln r + i\theta$ is an element of the domain that is mapped to re^{θ} .

(*d*) Suppose $z = re^{i\theta} \neq 0$, with $\theta \in (-\pi, \pi]$. Then

$$z = re^{i\theta} = e^{\ln r}e^{i\theta} = e^{\ln r + i\theta},$$

so $\operatorname{Log} z = \ln r + i\theta$.

(*e*) We say that $c \in \mathbb{C}$ is a **logarithm of** z if $e^c = z$.

Claim: If *c* is a logarithm of *z* then $c = \text{Log } z + 2k\pi i$ for some $k \in \mathbb{Z}$.

Proof. Given that $e^c = z$, note that $z = e^{\log z}$, so $e^c = e^{\log z}$. Applying (*b*), we have

$$c = \log z + 2k\pi i$$

- for some $k \in \mathbb{Z}$.
- (f) $\text{Log}(i) = \text{Log}(e^{i\frac{\pi}{2}})$, so applying (*d*),

$$Log(i) = ln 1 + i\frac{\pi}{2} = i\frac{\pi}{2}.$$

Using the result of (e), the set of all logarithms of *i* is

$$\left\{i\frac{\pi}{2}+2k\pi i\,|\,k\in\mathbb{Z}\right\}.$$

(g) From the definition, the principal value of i^i is

$$e^{i\log i} = e^{i\times i\frac{\pi}{2}} = e^{-\frac{\pi}{2}}.$$

The set of all values of i^i is

$$\left\{ e^{ic} \mid c \text{ is a logarithm of } i \right\}$$
$$= \left\{ e^{ic} \mid c = (2k\pi + \frac{\pi}{2})i, k \in \mathbb{Z} \right\}$$
$$= \left\{ e^{-(2k\pi + \frac{\pi}{2})} \mid k \in \mathbb{Z} \right\}.$$

(*h*) The set of values of $z^{1/2}$ is

$$\left\{ e^{\frac{1}{2}c} \mid c \text{ is a logarithm of } z \right\}$$
$$= \left\{ e^{\frac{1}{2}(\log z + 2k\pi i)} \mid k \in \mathbb{Z} \right\}$$
$$= \left\{ e^{\frac{1}{2}\log z} e^{k\pi i} \mid k \in \mathbb{Z} \right\},$$

and since $e^{k\pi i} = \pm 1$, this is simply

 $\left\{e^{\frac{1}{2}\log z}, -e^{\frac{1}{2}\log z}\right\}.$

Similarly, the values of z^2 are

$$\left\{ e^{2(\log z + 2k\pi i)} \mid k \in \mathbb{Z} \right\}$$
$$= \left\{ e^{\frac{1}{2}\log z} e^{4k\pi i} \mid k \in \mathbb{Z} \right\}$$
$$= \left\{ e^{\frac{1}{2}\log z} \right\}.$$