Accelerated Algebra and Calculus

Assignment 2 - Solution

(a) Claim: Two non-zero complex numbers $r e^{i \theta}$ and $s e^{i \phi}$ are equal if and only if $r=s$ and $\phi=\theta+2 k \pi$ for some $k \in \mathbb{Z}$.

Proof. The question really means that $r e^{i \theta}$ and $s e^{i \phi}$ are in polar form, so that we have $r, s>0$.

We now prove the two parts of the statement separately.
\Rightarrow Given that $r=s$ and $\phi=\theta+2 k \pi$ for some $k \in \mathbb{Z}$, we have

$$
\begin{aligned}
s e^{i \phi} & =r e^{i(\theta+2 k \pi)} \\
& =r(\cos (\theta+2 k \pi)+i \sin (\theta+2 k \pi)) \\
& =r(\cos \theta+i \sin \theta) \\
& =r e^{i \theta} .
\end{aligned}
$$

\Leftarrow Now if $r e^{i \theta}=s e^{i \phi}$, we can take absolute values to find

$$
\begin{aligned}
\left|r e^{i \theta}\right| & =\left|s e^{i \phi}\right| \\
|r| & =|s|,
\end{aligned}
$$

but since $r, s>0$ this means $r=s$. So $r e^{i \theta}=s e^{i \phi}$ implies

$$
\begin{aligned}
e^{i \theta} & =e^{i \phi} \\
\cos \theta+i \sin \theta & =\cos \phi+i \sin \phi .
\end{aligned}
$$

Comparing real and imaginary parts, this means

$$
\cos \theta=\cos \phi \quad \text { and } \quad \sin \theta=\sin \phi,
$$

and, due to the periods of the sine and cosine functions, this means we must have $\phi=\theta+2 k \pi$.
(b) Claim: For $z, w \in \mathbb{C}$ we have $e^{z}=e^{w}$ if and only if $w=z+2 k \pi i$ for some $k \in \mathbb{Z}$.

Proof. Suppose $z=a+i b$ and $w=x+i y$. Using the definition of the complex exponential,

$$
e^{z}=e^{w} \Longleftrightarrow e^{a} e^{i b}=e^{x} e^{i y} .
$$

Putting $r=e^{a}, \theta=b, s=e^{x}$ and $\phi=y$ in the result proved in (a), we get that this is equivalent to

$$
e^{a}=e^{x} \quad \text { and } \quad y=b+2 k \pi \text { for some } k \in \mathbb{Z}
$$

Since $e^{a}=e^{x}$ if and only if $a=x$, this is equivalent to

$$
w=x+i y=a+i(b+2 k \pi)=z+2 k \pi i .
$$

(c) To show that
$\exp :\{z \in \mathbb{C} \mid \operatorname{Im} z \in(\pi, \pi]\} \rightarrow\{z \in \mathbb{C} \mid z \neq 0\}$
is a bijection, we show that it is injective and surjective.

- To see that exp is injective, suppose we have $\exp z=\exp w$; we aim to show that $z=w$. Now, by (b), we have have $w=z+2 k \pi i$ for some $k \in \mathbb{Z}$. Since z and w are in the domain of exp, we know $\mathcal{I} m z, \mathcal{I} m w \in(-\pi, \pi]$, so the only way to have

$$
\mathcal{I} m w=\mathcal{I} m z+2 k \pi i
$$

is to have $k=0$, i.e. $z=w$. So \exp is injective.

- To see that it is surjective, let $r e^{i \theta}$ be an aribtrary element of the codomain. We suppose it is written in polar form with $\theta \in(-\pi, \pi]$. Then

$$
\exp (\ln r+i \theta)=e^{\ln r} e^{i \theta}=r e^{i \theta} ;
$$

thus $\ln r+i \theta$ is an element of the domain that is mapped to $r e^{\theta}$.
(d) Suppose $z=r e^{i \theta} \neq 0$, with $\theta \in(-\pi, \pi]$. Then

$$
z=r e^{i \theta}=e^{\ln r} e^{i \theta}=e^{\ln r+i \theta},
$$

so $\log z=\ln r+i \theta$.
(e) We say that $c \in \mathbb{C}$ is a logarithm of z if $e^{c}=z$.

Claim: If c is a logarithm of z then $c=$ $\log z+2 k \pi i$ for some $k \in \mathbb{Z}$.

Proof. Given that $e^{c}=z$, note that $z=e^{\log z}$, so $e^{c}=e^{\log z}$. Applying (b), we have

$$
c=\log z+2 k \pi i
$$

for some $k \in \mathbb{Z}$.
(f) $\log (i)=\log \left(e^{i \frac{\pi}{2}}\right)$, so applying (d),

$$
\log (i)=\ln 1+i \frac{\pi}{2}=i \frac{\pi}{2}
$$

Using the result of (e), the set of all logarithms of i is

$$
\left\{\left.i \frac{\pi}{2}+2 k \pi i \right\rvert\, k \in \mathbb{Z}\right\} .
$$

(g) From the definition, the principal value of i^{i} is

$$
e^{i \log i}=e^{i \times i \frac{\pi}{2}}=e^{-\frac{\pi}{2}}
$$

The set of all values of i^{i} is

$$
\begin{aligned}
& \left\{e^{i c} \mid c \text { is a logarithm of } i\right\} \\
= & \left\{e^{i c} \left\lvert\, c=\left(2 k \pi+\frac{\pi}{2}\right) i\right., k \in \mathbb{Z}\right\} \\
= & \left\{\left.e^{-\left(2 k \pi+\frac{\pi}{2}\right)} \right\rvert\, k \in \mathbb{Z}\right\} .
\end{aligned}
$$

(h) The set of values of $z^{1 / 2}$ is

$$
\begin{aligned}
& \left\{\left.e^{\frac{1}{2} c} \right\rvert\, c \text { is a logarithm of } z\right\} \\
= & \left\{\left.e^{\frac{1}{2}(\log z+2 k \pi i)} \right\rvert\, k \in \mathbb{Z}\right\} \\
= & \left\{\left.e^{\frac{1}{2} \log z} e^{k \pi i} \right\rvert\, k \in \mathbb{Z}\right\},
\end{aligned}
$$

and since $e^{k \pi i}= \pm 1$, this is simply

$$
\left\{e^{\frac{1}{2} \log z},-e^{\frac{1}{2} \log z}\right\} .
$$

Similarly, the values of z^{2} are

$$
\begin{aligned}
& \left\{e^{2(\log z+2 k \pi i)} \mid k \in \mathbb{Z}\right\} \\
= & \left\{\left.e^{\frac{1}{2} \log z} e^{4 k \pi i} \right\rvert\, k \in \mathbb{Z}\right\} \\
= & \left\{e^{\frac{1}{2} \log z}\right\} .
\end{aligned}
$$

