
ACCELERATED ALGEBRA AND CALCULUS

Assignment 3 – Solution

Exercise 11.2

The complex number z = reiθ is a fourth root of −1 if

z4 = r4e4iθ = −1.

Writing −1 in polar form as eiπ, this means

r4e4iθ = eiπ,

so r = 1. Now since e2πi = 1, we have

e4iθ = eiπ = e3iπ = e5iπ = e7iπ

hence the four complex roots are
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Note that the first and last are complex conjugates, as are the middle two.

Since these are roots of x4 + 1 = 0, we have that (x− z) is a factor of x4 + 1,
with z replaced by any of the above roots. So
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Note: in general, if z and z are conjugates we have

(x− z)(x− z) = x2 − (z + z)x + zz.

As a quick exercise, you can show that z + z and zz are both real numbers.
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Problem 12.5

Claim:

P ∈ R[x], P(a) = 0, P′(a) = 0 =⇒ P(x) = (x− a)2Q(x) for some Q ∈ R[x].

Proof. Since P(a) = 0 we know

P(x) = (x− a)R(x)

for some R ∈ R[x] (by Theorem 10.1.10).

Then, using the product rule to differentiate,

P′(x) = R(x) + (x− a)R′(x).

Since P′(a) = 0, this implies R(a) + (a− a)R′(a) = 0, i.e. R(a) = 0. So

R(x) = (x− a)Q(x)

for some Q ∈ R[x] (again by Theorem 10.1.10).

Putting this together, we have

P(x) = (x− a)R(x)
= (x− a)(x− a)Q(x)

= (x− a)2Q(x),

where Q ∈ R[x].
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