Accelerated Algebra and Calculus

Assignment 3 - Solution

Exercise 11.2

The complex number $z=r e^{i \theta}$ is a fourth root of -1 if

$$
z^{4}=r^{4} e^{4 i \theta}=-1
$$

Writing -1 in polar form as $e^{i \pi}$, this means

$$
r^{4} e^{4 i \theta}=e^{i \pi}
$$

so $r=1$. Now since $e^{2 \pi i}=1$, we have

$$
e^{4 i \theta}=e^{i \pi}=e^{3 i \pi}=e^{5 i \pi}=e^{7 i \pi}
$$

hence the four complex roots are

$$
\begin{aligned}
e^{i \frac{\pi}{4}} & =\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}} \\
e^{i \frac{3 \pi}{4}} & =-\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}} \\
e^{i \frac{5 \pi}{4}} & =-\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}} \\
e^{i \frac{7 \pi}{4}} & =\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}} .
\end{aligned}
$$

Note that the first and last are complex conjugates, as are the middle two.
Since these are roots of $x^{4}+1=0$, we have that $(x-z)$ is a factor of $x^{4}+1$, with z replaced by any of the above roots. So

$$
\begin{aligned}
x^{4}+1 & =\left(x-\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)\right)\left(x-\left(\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)\right)\left(x-\left(-\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)\right)\left(x-\left(-\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)\right) \\
& =(x-\sqrt{2} x+1)(x+\sqrt{2} x+1) .
\end{aligned}
$$

Note: in general, if z and \bar{z} are conjugates we have

$$
(x-z)(x-\bar{z})=x^{2}-(z+\bar{z}) x+z \bar{z} .
$$

As a quick exercise, you can show that $z+\bar{z}$ and $z \bar{z}$ are both real numbers.

Problem 12.5

Claim:

$P \in \mathbb{R}[x], P(a)=0, P^{\prime}(a)=0 \Longrightarrow P(x)=(x-a)^{2} Q(x)$ for some $Q \in \mathbb{R}[x]$.

Proof. Since $P(a)=0$ we know

$$
P(x)=(x-a) R(x)
$$

for some $R \in \mathbb{R}[x]$ (by Theorem 10.1.10).
Then, using the product rule to differentiate,

$$
P^{\prime}(x)=R(x)+(x-a) R^{\prime}(x)
$$

Since $P^{\prime}(a)=0$, this implies $R(a)+(a-a) R^{\prime}(a)=0$, i.e. $R(a)=0$. So

$$
R(x)=(x-a) Q(x)
$$

for some $Q \in \mathbb{R}[x]$ (again by Theorem 10.1.10).
Putting this together, we have

$$
\begin{aligned}
P(x) & =(x-a) R(x) \\
& =(x-a)(x-a) Q(x) \\
& =(x-a)^{2} Q(x)
\end{aligned}
$$

where $Q \in \mathbb{R}[x]$.

