Solution to Week 5 Assignment

5.4. Let $a_n := \frac{1}{n^3}$ for all $n \in \mathbb{N}$. We claim that the limit of the sequence $(a_n)_{n \in \mathbb{N}}$ is zero. Let $\varepsilon > 0$, and choose $N \in \mathbb{N}$ such that $N > \frac{1}{\varepsilon}$. Then for all $n \ge N$

$$|a_n-0|=\frac{1}{n^3}\leq \frac{1}{n}\leq \frac{1}{N}<\varepsilon,$$

which proves that the limit is 0.

5.6. Let $r \in \mathbb{R}$ and define $a_n := r^n$ for all $n \in \mathbb{N}$. We claim that $(a_n)_{n \in \mathbb{N}}$ has a limit when $1 < r \le 1$. To prove this, we split into cases:

(a) When r = 1, we claim that the limit is 1. Let $\varepsilon > 0$, and choose N = 1. Then for all $n \ge N$

$$|a_n - 1| = |1^n - 1| = 0 < \varepsilon$$
,

which proves that the limit is 1.

(b) When r = 0, we claim that the limit is 0. Let $\varepsilon > 0$, and choose N = 1. Then for all $n \ge N$

$$|a_n-0|=|0^n-0|=0<\varepsilon,$$

which proves that the limit is 0.

(c) When -1 < r < 1 with $r \neq 0$, we claim that the limit is 0. Let $\varepsilon > 0$, and choose $N > \frac{\ln \varepsilon}{\ln |r|}$. Note that

$$|a_n - 0| < \varepsilon \iff |r|^n < \varepsilon \iff n \ln |r| < \ln \varepsilon \iff n > \frac{\ln \varepsilon}{\ln |r|}.$$
(1)

Hence, by (1), for all $n \ge N$ we have

$$|a_n-0|<\varepsilon$$
,

which proves that the limit is 0.

m.wemyss@ed.ac.uk