Solution to Week 6 Assignment

Let $k \in \mathbb{R}$ and consider $f(x):=(1+x)^{k}$. Then

$$
\begin{array}{lll}
f^{\prime}(x)=k(1+x)^{k-1} & \text { so } \quad f^{\prime}(0)=k \\
f^{(2)}(x)=k(k-1)(1+x)^{k-2} & \text { so } \quad f^{(2)}(0)=k(k-1) \\
f^{(3)}(x)=k(k-1)(k-2)(1+x)^{k-3} & \text { so } \quad f^{(3)}(0)=k(k-1)(k-2)
\end{array}
$$

Case 1: $k \in \mathbb{N}$. Then $f^{(i)}(0)=k(k-1) \ldots(k-i+1)$ for all $0 \leq i \leq k$ and $f^{(i)}(0)=0$ for all $i>k$. Hence in this case the Maclaurin series is

$$
\sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^{i}=1+\sum_{i=1}^{k} \frac{k(k-1) \ldots(k-i+1)}{i!} x^{i}
$$

In particular this is a polynomial (i.e. the sum is finite). We claim that this converges for all x. Indeed, considering the partial sums

$$
s_{j}:=\sum_{i=0}^{j} \frac{f^{(i)}(0)}{i!} x^{i}
$$

we see that $s_{k}=s_{k+1}=s_{k+2}=\ldots$ and so (for all x) the limit of $\left(s_{n}\right)_{n \in \mathbb{N}}$ is just s_{k}. Since $\left(s_{n}\right)_{n \in \mathbb{N}}$ has limit s_{k} for all x, by definition this means that the Maclaurin series converges to s_{k} for all x. Since $k \in \mathbb{N}$ we know (from the binomial theorem) that $(1+x)^{k}=s_{k}$, hence the Maclaurin series converges to $(1+x)^{k}$ for all x.

Case 2: $k \notin \mathbb{N}$. Then $f^{(i)}(0)=k(k-1) \ldots(k-i+1)$ for all $i \geq 0$. Hence in this case the Maclaurin series is

$$
\sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^{i}=1+\sum_{i=1}^{\infty} \frac{k(k-1) \ldots(k-i+1)}{i!} x^{i}
$$

We claim first that this converges if $|x|<1$. Let $a_{i}:=\frac{f^{(i)}(0)}{i!} x^{i}$, then

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{\frac{k(k-1) \ldots(k-n)}{(n+1)!} x^{n+1}}{\frac{k(k-1) \ldots(k-n+1)}{n!} x^{n}}\right|=\frac{|k-n|}{n+1}|x|=\frac{\left|1-\frac{k}{n}\right|}{1+\frac{1}{n}}|x| \rightarrow|x| \text { as } n \rightarrow \infty .
$$

Hence by the ratio test the Maclaurin series converges for all $|x|<1$.
(From here is quite difficult, and was not part of the assessment) We claim that for all $|x|<1$, the Maclaurin series converges to $f(x)=(1+x)^{k}$. Set

$$
g(x):=1+\sum_{i=1}^{\infty} \frac{k(k-1) \ldots(k-i+1)}{i!} x^{i}
$$

By the above we know that $g(x)$ converges for all $x \in(-1,1)$, hence in this range we can differentiate term by term to obtain

$$
g^{\prime}(x)=\sum_{i=1}^{\infty} \frac{k(k-1) \ldots(k-i+1)}{(i-1)!} x^{i-1}=\sum_{i=0}^{\infty} \frac{k(k-1) \ldots(k-i)}{i!} x^{i}
$$

for all $x \in(-1,1)$. Adding term by term (which we can do since $g(x)$ converges on the interval $(-1,1))$ we see that

$$
\begin{equation*}
(1+x) g^{\prime}(x)=k g(x) \tag{1}
\end{equation*}
$$

for all $x \in(-1,1)$. Now let $h(x):=\frac{g(x)}{(1+x)^{k}}$, then by the product rule

$$
h^{\prime}(x)=\frac{(1+x)^{k-1}\left((1+x) g^{\prime}(x)-k g(x)\right)}{(1+x)^{2 k}} \stackrel{(1)}{=} 0
$$

This shows that $h(x)=c$ for some constant c, but since we know that $h(0)=1$, it follows that $h(x)=1$. From this, we deduce that $g(x)=(1+x)^{k}$ for all $x \in(-1,1)$, as required.

