Solution to Week 7 Assignment

Q4(i), (ii)

We use the Euclidean algorithm to compute $\operatorname{gcd}(51,36)$:

$$
\begin{aligned}
51 & =1 \cdot 36+15 \\
36 & =2 \cdot 15+6 \\
15 & =2 \cdot 6+3 \\
6 & =2 \cdot 3+0 .
\end{aligned}
$$

This shows that $\operatorname{gcd}(51,36)=3$. Now using these equations,

$$
\begin{aligned}
3 & =15-2 \cdot 6 \\
& =(51-36)-2(36-2 \cdot 15) \\
& =51-36-2 \cdot 36+4(51-36) \\
& =5 \cdot 51-7 \cdot 36
\end{aligned}
$$

so we have $51 x+36 y=3$ with $x=5, y=-7$.
Multiplying this equation by 2 gives $6=51 \cdot 10+36 \cdot(-14)$, so we have $51 m-36 n=6$ with $m=10, n=14$.

Lemma 3.2.1

Let A, B be finite sets with n, N elements respectively. There exists an injective map $f: A \rightarrow B$ if and only if $n \leq N$.

Proof. Let us write $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{N}\right\}$.

- If $n \leq N$ then define $f: A \rightarrow B$ by $f\left(a_{i}\right)=b_{i}$ for each $i=1, \ldots, n$. Since b_{1}, \ldots, b_{n} are all different, it follows that if $f\left(x_{1}\right)=f\left(x_{2}\right)$ they must both equal the same b_{i}, hence $x_{1}=x_{2}=a_{i}$.
- Suppose $f: A \rightarrow B$ is injective. This means that $f\left(a_{i}\right) \neq f\left(a_{j}\right)$ when $i \neq j$, so the set $\left\{f\left(a_{i}\right) \mid i=1, \ldots, n\right\}$ is a subset of B with n distinct elements. Hence $n \leq N$.

