Solution to Week 8 Assignment

Q35. By the Euclidean algorithm,

$$
\begin{aligned}
87 & =39.2+9 \\
39 & =9.4+3 \\
9 & =3.3
\end{aligned}
$$

Hence we deduce that $\operatorname{gcd}(87,39)=3$. Working backwards,

$$
\begin{aligned}
3 & =39-9.4 \\
& =39-(87-39.2) .4 \\
& =9.39-4.87,
\end{aligned}
$$

hence $x=9, y=-4$ is one solution.
Now let (a, b) be another solution, then

$$
39 a+87 b=3=9.39-4.87
$$

and so

$$
39(9-a)=87(b+4) .
$$

Dividing by 3 we see that

$$
\begin{equation*}
13(9-a)=29(b+4) . \tag{1}
\end{equation*}
$$

Since 13 divides the left hand side, it also divides the right hand side. But 13 and 29 are coprime, hence 13 divides $b+4$. Consquently

$$
b=13 k-4
$$

for some $k \in \mathbb{Z}$. Substituting this into (1) gives

$$
13(9-a)=29.13 k
$$

and so $9-a=29 k$, i.e. $a=9-29 k$. This shows that the general solution is

$$
\{(9-29 k, 13 k-4) \mid k \in \mathbb{Z}\} .
$$

Taking $k=1$ gives solution $x=-20, y=9$.

Q14.5. Consider two elements $\left(\begin{array}{rr}a_{1} & -b_{1} \\ b_{1} & a_{1}\end{array}\right)$ and $\left(\begin{array}{rr}a_{2} & -b_{2} \\ b_{2} & a_{2}\end{array}\right)$ of C. Then

$$
\left(\begin{array}{rr}
a_{1} & -b_{1} \\
b_{1} & a_{1}
\end{array}\right)+\left(\begin{array}{rr}
a_{2} & -b_{2} \\
b_{2} & a_{2}
\end{array}\right)=\left(\begin{array}{rr}
a_{1}+a_{2} & -\left(b_{1}+b_{2}\right) \\
b_{1}+b_{2} & a_{1}+a_{2}
\end{array}\right)
$$

which is clearly an element of C. Hence C is closed under addition. Further

$$
\left(\begin{array}{rr}
a_{1} & -b_{1} \\
b_{1} & a_{1}
\end{array}\right)\left(\begin{array}{rr}
a_{2} & -b_{2} \\
b_{2} & a_{2}
\end{array}\right)=\left(\begin{array}{rr}
a_{1} a_{2}-b_{1} b_{2} & -\left(a_{1} b_{2}+a_{2} b_{1}\right) \\
a_{1} b_{2}+a_{2} b_{1} & a_{1} a_{2}-b_{1} b_{2}
\end{array}\right)
$$

which is also an element of C. Hence C is closed under multiplication.

Now if we let $I:=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$, then

$$
I^{2}=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)=-\mathbb{I} .
$$

Note that if $\left(\begin{array}{rr}a & -b \\ b & a\end{array}\right)$ is an element of C, we can write

$$
\left(\begin{array}{rr}
a & -b \\
b & a
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)+\left(\begin{array}{rr}
0 & -b \\
b & 0
\end{array}\right)=a \mathbb{I}+b /,
$$

which shows that every element of C can be written as $a \mathbb{I}+b /$ for some $a, b \in \mathbb{R}$. Lastly,

$$
\begin{aligned}
\left(\begin{array}{rr}
2 & 3 \\
-3 & 2
\end{array}\right)\left(\begin{array}{rr}
-1 & 6 \\
-6 & -1
\end{array}\right) & =(2 \mathbb{I}-3 I)(-\mathbb{I}-6 I) \\
& =-2 \mathbb{I}-12 I+3 I+18 I^{2} \\
& =-20 \mathbb{I}-9 I \\
& =\left(\begin{array}{rr}
-20 & 9 \\
-9 & -20
\end{array}\right)
\end{aligned}
$$

Q14.6. In the previous question, a complex number $z=x+i y$ corresponds to the matrix

$$
\left(\begin{array}{rr}
x & -y \\
y & x
\end{array}\right):=A
$$

Hence the complex conjugate $\bar{z}=x-i y$ corresponds to

$$
\left(\begin{array}{rr}
x & y \\
-y & x
\end{array}\right)
$$

which is the transpose of A. The modulus of z, namely $\sqrt{x^{2}+y^{2}}$, corresponds to the square root of the determinant of A. Finally, the reciprocal of z, namely $\frac{1}{z}$, is equal to $\frac{\bar{z}}{z \bar{z}}=\frac{1}{|z|^{2}} \bar{z}$. By the previous parts, this corresponds to

$$
\frac{1}{\operatorname{det} A}\left(\begin{array}{rr}
x & y \\
-y & x
\end{array}\right)
$$

which is the inverse of A.

