Solution to Week 9 Assignment

Hence we deduce that

$$A^{-1} = \left(\begin{array}{rrr} 1 & 1 & 1 \\ \frac{2}{3} & 1 & \frac{4}{3} \\ \frac{4}{3} & 1 & \frac{5}{3} \end{array}\right)$$

Check:

$$\begin{pmatrix} 1 & -2 & 1 \\ 2 & 1 & -2 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ \frac{2}{3} & 1 & \frac{4}{3} \\ \frac{4}{3} & 1 & \frac{5}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ \frac{2}{3} & 1 & \frac{4}{3} \\ \frac{4}{3} & 1 & \frac{5}{3} \end{pmatrix} \begin{pmatrix} 1 & -2 & 1 \\ 2 & 1 & -2 \\ -2 & 1 & 1 \end{pmatrix}$$

Q18.2. First, we investigate even *n*. When n = 2 we have

$$\begin{vmatrix} 0 & a_1 \\ a_2 & 0 \end{vmatrix} = - \begin{vmatrix} a_2 & 0 \\ 0 & a_1 \end{vmatrix} = (-1)a_1a_2$$

since there is precisely one row swap. When n = 4 we see

$$\begin{vmatrix} 0 & 0 & 0 & a_1 \\ 0 & 0 & a_2 & 0 \\ 0 & a_3 & 0 & 0 \\ a_4 & 0 & 0 & 0 \end{vmatrix} = - \begin{vmatrix} a_4 & 0 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & a_3 & 0 & 0 \\ 0 & 0 & 0 & a_1 \end{vmatrix} = (-1)^2 \begin{vmatrix} a_4 & 0 & 0 & 0 \\ 0 & a_3 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_1 \end{vmatrix} = (-1)^2 a_1 a_2 a_3 a_4$$

Continuing in this way, if *n* is even, we see that we require $\frac{n}{2}$ row swaps to bring the matrix into diagonal form. Hence, when *n* is even, the determinant is $(-1)^{\frac{n}{2}}a_1a_2...a_n$.

We now investigate the case when n is odd. When n = 3 we have

					0	0	a ₁			a ₃	0	0						
					0	a ₂	0	=	-	0	a ₂	0	$ = (-1)a_1$	a2a3				
					a ₃	0	0			0	0	a_1						
Wł	When $n = 5$ we have																	
	0	0	0	0	a_1		a	5	0	0	0	0		a_5	0	0	0	0
	0	0	0	a ₂	0			0	0	0	a ₂	0		0	a4	0	0	0
	0	0	a ₃	0	0	= -		0	0	a ₃	0	0	$= (-1)^2$	0	0	a ₃	0	0
	0	a4	0	0	0			0	a4	0	0	0		0	0	0	a ₂	0
a	95	0	0	0	0			0	0	0	0	a_1		0	0	0	0	a_1

Continuing in this way, if *n* is odd, we see that we require $\frac{n-1}{2}$ row swaps to bring the matrix into diagonal form. Hence, when *n* is odd, the determinant is $(-1)^{\frac{n-1}{2}}a_1a_2...a_n$. m.wemyss@ed.ac.uk