Solution to Week 9 Assignment

Q2(a). To compute A^{-1}, we use Gaussian ellimination on $(A \mid \mathbb{I})$:

$$
\begin{aligned}
& \left(\begin{array}{rrr|rrr}
1 & -2 & 1 & 1 & 0 & 0 \\
2 & 1 & -2 & 0 & 1 & 0 \\
-2 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow[R_{2} \mapsto R_{2}+R_{3}]{\sim}\left(\begin{array}{rrr|rrr}
1 & -2 & 1 & 1 & 0 & 0 \\
0 & 2 & -1 & 0 & 1 & 1 \\
-2 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \stackrel{R_{3} \mapsto R_{3}+2 R_{1}}{\sim}\left(\begin{array}{rrr|rrr}
1 & -2 & 1 & 1 & 0 & 0 \\
0 & 2 & -1 & 0 & 1 & 1 \\
0 & -3 & 3 & 2 & 0 & 1
\end{array}\right) \\
& \stackrel{R_{1} \mapsto R_{1}+R_{2}}{\sim}\left(\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 2 & -1 & 0 & 1 & 1 \\
0 & -3 & 3 & 2 & 0 & 1
\end{array}\right) \\
& \underset{\sim}{R_{3} \mapsto \frac{1}{3} R_{3}}\left(\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 2 & -1 & 0 & 1 & 1 \\
0 & -1 & 1 & \frac{2}{3} & 0 & \frac{1}{3}
\end{array}\right) \\
& \underset{2}{ } \underset{\sim}{\curvearrowleft} \not R_{2}+R_{3}\left(\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & \frac{2}{3} & 1 & \frac{4}{3} \\
0 & -1 & 1 & \frac{2}{3} & 0 & \frac{1}{3}
\end{array}\right) \\
& \underset{\sim}{R_{3} \mapsto R_{3}+R_{2}}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & \frac{2}{3} & 1 & \frac{4}{3} \\
0 & 0 & 1 & \frac{4}{3} & 1 & \frac{5}{3}
\end{array}\right)
\end{aligned}
$$

Hence we deduce that

$$
A^{-1}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\frac{2}{3} & 1 & \frac{4}{3} \\
\frac{4}{3} & 1 & \frac{5}{3}
\end{array}\right) .
$$

Check:

$$
\left(\begin{array}{rrr}
1 & -2 & 1 \\
2 & 1 & -2 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
\frac{2}{3} & 1 & \frac{4}{3} \\
\frac{4}{3} & 1 & \frac{5}{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
\frac{2}{3} & 1 & \frac{4}{3} \\
\frac{4}{3} & 1 & \frac{5}{3}
\end{array}\right)\left(\begin{array}{rrr}
1 & -2 & 1 \\
2 & 1 & -2 \\
-2 & 1 & 1
\end{array}\right)
$$

Q18.2. First, we investigate even n. When $n=2$ we have

$$
\begin{array}{rr}
0 & a_{1} \\
a_{2} & 0
\end{array}\left|=-\left|\begin{array}{rr}
a_{2} & 0 \\
0 & a_{1}
\end{array}\right|=(-1) a_{1} a_{2}\right.
$$

since there is precisely one row swap. When $n=4$ we see

$$
\left|\begin{array}{rrrr}
0 & 0 & 0 & a_{1} \\
0 & 0 & a_{2} & 0 \\
0 & a_{3} & 0 & 0 \\
a_{4} & 0 & 0 & 0
\end{array}\right|=-\left|\begin{array}{rrrr}
a_{4} & 0 & 0 & 0 \\
0 & 0 & a_{2} & 0 \\
0 & a_{3} & 0 & 0 \\
0 & 0 & 0 & a_{1}
\end{array}\right|=(-1)^{2}\left|\begin{array}{rrrr}
a_{4} & 0 & 0 & 0 \\
0 & a_{3} & 0 & 0 \\
0 & 0 & a_{2} & 0 \\
0 & 0 & 0 & a_{1}
\end{array}\right|=(-1)^{2} a_{1} a_{2} a_{3} a_{4}
$$

Continuing in this way, if n is even, we see that we require $\frac{n}{2}$ row swaps to bring the matrix into diagonal form. Hence, when n is even, the determinant is $(-1)^{\frac{n}{2}} a_{1} a_{2} \ldots a_{n}$.

We now investigate the case when n is odd. When $n=3$ we have

$$
\left|\begin{array}{rrr}
0 & 0 & a_{1} \\
0 & a_{2} & 0 \\
a_{3} & 0 & 0
\end{array}\right|=-\left|\begin{array}{rrr}
a_{3} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{1}
\end{array}\right|=(-1) a_{1} a_{2} a_{3}
$$

When $n=5$ we have

$$
\left|\begin{array}{rrrrr}
0 & 0 & 0 & 0 & a_{1} \\
0 & 0 & 0 & a_{2} & 0 \\
0 & 0 & a_{3} & 0 & 0 \\
0 & a_{4} & 0 & 0 & 0 \\
a_{5} & 0 & 0 & 0 & 0
\end{array}\right|=-\left|\begin{array}{rrrrr}
a_{5} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a_{2} & 0 \\
0 & 0 & a_{3} & 0 & 0 \\
0 & a_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a_{1}
\end{array}\right|=(-1)^{2}\left|\begin{array}{rrrrr}
a_{5} & 0 & 0 & 0 & 0 \\
0 & a_{4} & 0 & 0 & 0 \\
0 & 0 & a_{3} & 0 & 0 \\
0 & 0 & 0 & a_{2} & 0 \\
0 & 0 & 0 & 0 & a_{1}
\end{array}\right|
$$

Continuing in this way, if n is odd, we see that we require $\frac{n-1}{2}$ row swaps to bring the matrix into diagonal form. Hence, when n is odd, the determinant is $(-1)^{\frac{n-1}{2}} a_{1} a_{2} \ldots a_{n}$. m.wemyss@ed.ac.uk

