
Solution to Week 9 Assignment

Q2(a). To compute A
−1, we use Gaussian ellimination on (A | I):
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R3 7→R3+R2∼
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Hence we deduce that
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Check:
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Q18.2. First, we investigate even n. When n = 2 we have
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since there is precisely one row swap. When n = 4 we see
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Continuing in this way, if n is even, we see that we require n

2
row swaps to bring the

matrix into diagonal form. Hence, when n is even, the determinant is (−1)
n

2 a1a2 ... an.
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We now investigate the case when n is odd. When n = 3 we have
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When n = 5 we have
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Continuing in this way, if n is odd, we see that we require n−1

2
row swaps to bring the

matrix into diagonal form. Hence, when n is odd, the determinant is (−1)
n−1

2 a1a2 ... an.
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