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Abstract

Variable Selection and Other Extensions
of the

Mixture Model Clustering Framework

Nema Dean

Chair of the Supervisory Committee:
Professor Adrian Raftery
Department of Statistics

Mixture model clustering has recently come to the forefront of techniques used in un-
supervised learning. Its advantages include an intuitive model set-up (one cluster =
one density), a statistical framework allowing model selection techniques to be utilized
which can answer questions such as choosing the number of clusters believed to be
present in the data and identifying (and modeling) outliers, and efficient algorithms
for fitting models to data. In continuous data cases usually the normal distribution
is assumed for the clusters, which has come to be called “model-based clustering”.
In discrete data cases, the multinomial or Bernoulli distributions are assumed for
individual variables in clusters, with the additional assumption of conditional inde-
pendence of variables given cluster membership giving a multivariate model which
remains reasonably parsimonious, known as “latent class analysis”.

Although the mixture model clustering framework is applicable in a wide range
of situations, new demands due to the increasing complexity of data available require
extensions of the framework in order for it to remain useful. In the past, datasets usu-
ally were expensive to assemble and so the variables recorded were few and carefully

chosen. Now datasets can often have as many variables as observations, if not more,






not all of which are relevant. A principled method of selecting variables important
to clustering is necessary since having more variables generally restricts the range
of models possible to fit to the data and inclusion of noise variables can degrade the
quality of clustering found and lead to the incorrect number of clusters being selected.
In this thesis we present a stepwise model-based approach to variable selection partic-
ularly tailored to mixture model clustering in the context of model-based clustering
and latent class analysis. We also look at somewhat the reverse problem of identifying
differentially expressed genes (observations instead of variables) in cDNA microarray

datasets using a mixture model approach with appropriate normalizations.






TABLE OF CONTENTS

List of Figures . . . . . . . . . .
List of Tables . . . . . . . . ..

Chapter 1:  General Overview . . . . . . . .. .. ... ... ... ....
1.1 Mixture Models and Clustering . . . . .. ... ... ... ......
1.2 Variable Selection . . . . . . . . . ...
1.3 ¢DNA Microarray Gene Expression Data . . . . . .. ... ... ...
1.4 Differential Expression Detection . . . . . .. ... ... ... ... ..
1.5 Contributions . . . . . . . . ... ...

Chapter 2:  Variable Selection for Model-Based Clustering . . . . . . . . ..
2.1 Introduction . . . . . . . . . ...
2.2 Methodology . . . . . . . ..

2.2.1 Mixture Model Clustering . . . . ... ... .. ... .....
2.2.2  Models for Variable Selection . . . . ... ... ... .....
2.2.3  Greedy Search Algorithm for Clustering Variable Selection . .
2.2.4  Variable Selection for Model-Based Clustering . . . . . . . ..
2.3 Simulation Examples . . . . . . ...
2.3.1 Two Groups with Independent Irrelevant Variables . . . . ..

2.3.2  Two Groups with Irrelevant Variables Correlated with Cluster-
ing Variables . . . .. . ... oL

2.4 Real Data Examples . . . . .. .. ... o
2.4.1 Leptograpsus Crabs Data . . . . . ... ... ... ......
242 IrisData . . ... .. o
2.4.3 Texture Dataset . . . . . . . .. .. ... L.

2.5 DIsScussion . . . . .o

il

v

S T NN =

co 0 N

10
14
15
17
17



Chapter 3:  Latent Class Analysis Variable Selection . . . . . ... ... .. 41

3.1 Introduction . . . . . . . .. 41
3.2 Methodology . . . . . . .. . 42
3.2.1 Latent Class Analysis . . . . . . ... .. ... ... ...... 42
3.2.2  Variable Selection Model . . . . . . . ... ... ... 46
3.2.3 Headlong Search Algorithm . . .. ... ... ... ...... 50
3.3 Simulated Data Results. . . . . .. ... ... ... ... .. ..... 52
3.3.1 Binary dataexample . . . . . ... ... 52
3.3.2 Non binary data example . . . . .. ... ... ... ..... 57
3.4 Real Data Examples . . . . .. .. .. ... 0L 60
34.1 ICUData . . ... ... 60
3.4.2 Hungarian Heart Disease Data . . . . . . .. .. .. ... ... 64
3.5 Discussion . . . . ..o 65

Chapter 4: Normal Uniform mixture Differential Gene Expression Detection

for cDNA Microarrays . . . . . . . . . . .. v 7

4.1 Introduction . . . . . . . . ... 7
4.2 Methods . . . . . . . . .. 79
4.2.1 Model for Detecting Differential Expression . . . ... . ... 79

4.2.2 Normalizations . . . . . . ... .. ... ... 81

4.2.3 Summary of model and normalizations for different experiments 85

4.2.4 Methods for comparison with NUDGE . . . .. ... ... .. 85

4.3 Real Data Examples . . . . . ... .. ... ... .. ... ... ... 88
4.3.1 HIVdataset . . . . . .. .. ... ... 88

4.3.2 Like-Like dataset . . . . . .. ... .. ... ... .. .. ... 94

4.3.3 Apo Aldataset . . . . . . ... .. ... ... 98

4.4 Conclusions . . . . . . . . . .. 101
Chapter 5:  Future Work . . . . . . ... .. .. ... . 113
5.1 Variable Selection . . . . . . .. .. oo 113
5.2 Differential Gene Expression Detection . . . . . . . .. .. ... ... 113
Bibliography . . . . . . . 115

i



LIST OF FIGURES

Figure Number

2.1

2.2
2.3

3.1

4.1
4.2

4.3
4.4

4.5
4.6

4.7

4.8

4.9

4.10

4.11

Graphical Representation of Models M; and M, for Clustering Variable
Selection . . . . . . .

First Simulation Example: Pairs plot of thedata . . . . . . . . .. ..

Second Simulation Example: Pairs plot of 8 of the 15 variables.

Graphical Representation of Models M; and M for Latent Class Vari-
able Selection . . . . . . . ...

Different Normalizations of HIV Data . . . . . . . . . . . . . . . ...

Overlay of the model’s fitted density on the normalized log ratios for
the HIV.data . . . . .. .. .. .

Different Normalizations of Like-like Data . . . . . . . . . . . . . ..

Absolute mean normalized log ratio versus log total intensity for Like-
like Data . . . . . . . .
Different Normalizations of Apo Data . . . . . . ... ... ... ...
Normal Quantile-Quantile plots for unnormalized and normalized like-
likedata . . . . . . . ..
t-distributed Quantile-Quantile plots (1 & 2 degrees of freedom) for
normalized like-like data . . . . . . . .. ... ...
t-distributed Quantile-Quantile plots (3 & 4 degrees of freedom) for
normalized like-like data . . . . . . . . ... ... ... ... ... ..
t-distributed Quantile-Quantile plots (5 & 6 degrees of freedom) for
normalized like-like data . . . . . . . .. ... ...
t-distributed Quantile-Quantile plots (7 & 8 degrees of freedom) for
normalized like-like data . . . . . . . . .. ... ... ... ...

t-distributed Quantile-Quantile plots (9 & 10 degrees of freedom) for
normalized like-like data . . . . . . . .. ... ..o

1ii

Page

12
18
22

48
90

93
95

96
99

105

106

107

108

109



LIST OF TABLES

Table Number

2.1
2.2

2.3
24

2.5
2.6
2.7
2.8
2.9

3.1
3.2

3.3

3.4

3.5
3.6

3.7

3.8

3.9

Parameterizations of the Covariance Matrix in the mclust Software .

Progress of the Greedy Search Algorithm for the First Simulation Ex-
ample . ..o

Classification Results for the First Simulation Example . . . . . . ..

Progress of the Greedy Search Algorithm for the Second Simulation
Example . . . . . . oo

Classification results for the Second Simulation Example . . . . . ..
Classification Results for the Crabs Data . . . . . . .. .. ... ...
Classification Results for the Iris Data . . . . .. ... ... .. ...
Classification Results for the Texture Data . . . . . . . ... ... ..

Texture Data: Confusion matrix for the clustering based on the selected
variables. . . . . ..

True model parameters for binary data example . . . . . . ... ...

Estimated parameters for the model involving all variables for the bi-
nary data example . . . . . ... .

Results for each step of the variable selection procedure for the binary
data example . . . . . . . ...

Estimated parameters for the model involving only the selected vari-
ables for the binary data example . . . . . . . ... ... .. .. ...

Misclassification Summary for the binary data example . . . . . . . .

True clustering parameters for the model with data from variables with
different numbers of categories . . . . . . .. ..o

True non-clustering parameters for the model with data from variables
with different numbers of categories . . . . . . . ... ... ...

Results for each step of the variable selection procedure for the data
from variables with different numbers of categories . . . . . . . . . ..

Estimated parameters for the model involving only the selected vari-
ables for the data from variables with different numbers of categories

v

Page
16

19
20

23
23
25
29
30

31
23

o4

95

56
26

o7
29
60

61



3.10 Misclassification Summary for the data from variables with different

numbers of categories . . . . . . . ... 62
3.11 Estimated parameters for the model involving all variables for Hungar-

ian Heart Disease Data . . . . . . . . .. .. .. ... ... ... ... 66
4.1 Summary of Normalization Methods for Different Set-ups . . . . . . . 86
4.2 Summary of Results for HIV data for control genes . . . . . . . . .. 91

4.3 Number of agreements and disagreements between the differentially
expressed genes found in the two sets of two replicates for the HIV data 92

4.4 Number of genes declared to be differentially expressed by each method

for the HIV data using 2 and 4 replicates . . . . . . .. .. ... ... 92
4.5 Results for the Like-like data . . . . . . . . .. ... ... ... .... 97
4.6 NUDGE’s Top 16 Genes from the Apodata . . . ... ... .. ... 100
4.7 Results for the Apodata . . . .. ... .. ... ... ... ..., 102
4.8 Results for Maximum Likelihood Estimation of the Mixture Models for

the like-like data . . . . . . . .. ... .. 111
4.9 Results for Maximum Likelihood Estimation of the Mixture Models for

the HIVdata . . . . . . .. . . . . . . .. .. 112



ACKNOWLEDGMENTS

I would like to thank Professor Adrian Raftery for helping to guide and teach me so
much. I cannot imagine having completed graduate school without his help. I would
also like to gratefully acknowledge the financial support of grant RO1 EB002137-02.
The members of my committee, Werner Stuetzle and Matthew Stephens, have been
very supportive and generous with their time and advice for which I am extremely
grateful. The Model-Based Clustering Working Group has also been of great assis-
tance, particularly Chris Fraley. My thanks (I think) also go to Dr. Brendan Murphy
for putting me on the path of Statistics and towards the UW. Finally, an acknowledg-
ment must be made of the tremendous debt I owe to: my parents John and Noéleen
Dean, my sister Tanya Dean, my grandparents Catherine Hamill, John and Mary
Dean and all my friends both Irish, American and Canadian, who have carried me to

this point. Thank you.

vi



Chapter 1
GENERAL OVERVIEW

1.1 Mixture Models and Clustering

Mixture models are a natural idea for extending single densities to a more complex
and flexible form of modeling of data, the idea of which has been around for over 100
years ([60]).The basic concept is treating a population as being made up of several sub-
populations and modeling each sub-population with its own density and the overall
population as a weighted sum of these densities.

However this methodology was not truly feasible in practical terms until the advent
of the EM algorithm, making finding maximum likelihood estimates viable ([20]).
In the last 20 years mixture modelling has found an increasingly large number of
applications. One of the most useful and interesting of which has been in clustering
where the object of interest is the underlying (unknown) group structure.

Clustering, which is the discovery of unknown group structure in data, had been of
interest prior to the introduction of the mixture model based approach and many algo-
rithms and heuristic methodologies exist for this problem. However these approaches
lack the statistical modeling framework which allows many important questions to
be answered in a statistically principled way. Questions such as, the true number of
mixture components needed, whether or not outliers are present in the data or not
and what form the components should take, are examples of the questions answerable
via the mixture model approach, part of the advantages inherent in this approach,
not present in many of the previous heuristic approaches. These questions and their

solutions are reviewed in the subsequent chapters. An excellent review of mixture



models in general is given by [53].
1.2 Variable Selection

Traditionally, datasets for clustering tended to be expensive to assemble with a limited
number of observations and variables. So variables tended to be carefully chosen
in advance to best display the heterogeneity in the data. Nowadays of course, the
opposite is true, so much information can be and is collected that it is important
to ensure that the information of interest in the relevant variables/features is not
swamped beneath noise from the other variables.

Enough variables included with no information about the group structure can de-
grade the performance of most estimating techniques in supervised and unsupervised
learning. While much work has been done to address the problem of variable/feature
selection in supervised learning, less work has been done in the unsupervised learning
context.

Although the degradation of estimated group structures found in the presence of
too many noise variables is of course important, equally important is the re-occurring
problem of choice of number of components, since this can also be affected by the
inclusion of noise variables.

Another issue is the limiting effect of large numbers of variables on the range and
type of clustering models available to fit to the data and to choose from. If we have
more variables than observations, hardly any models with group structure can be fit
to the data. Even if the number of observations is larger than variables, sparsity of the
data can still mean only models with a small number of components are identifiable.

In chapter 2 of this thesis we introduce the idea of mixture modeling and its
application to clustering in the continuous data setting, called model-based cluster-
ing and present two models for evaluating a variable’s clustering contribution along
with a greedy search method used to explore the model space. The models give

two alternative ways of splitting the density of all variables (conditional on the clus-



ter membership variable) into conditional densities involving three sets of variables :
those already selected for clustering, the variable under consideration and all other
variables (a possibly high-dimensional set). The model assuming the variable under
consideration is not useful for clustering, given the clustering variables already se-
lected, allows this variable to be conditionally independent of the cluster membership
variable given the clustering variables. The clustering variables are always dependent
on the cluster membership variable. In the other model this conditional independence
is not allowed and both clustering variables and the variable under consideration are
dependent on the cluster membership variable. Comparing the fit of these two mod-
els to the data allows us to make a decision of whether to include the variable under
consideration in the set of clustering variables or not.

In chapter 3 we introduce another specific form of mixture model clustering, this
time for discrete data, called latent class analysis. In this form of mixture model
clustering, variables are assumed to be conditionally independent given the clus-
ter membership variable and individual variables are modeled with multinomial or
Bernoulli densities. Again we present two alternative models for checking a variable’s
clustering contribution along with a different search method for exploring the model
space (based on the headlong search [4]). This time the model assuming the variable
under consideration is not useful for clustering, given the clustering variables already
selected, allows this variable to be fully independent of the clustering variables as
well as of the cluster membership variable. The clustering variables are always de-
pendent on the cluster membership variable. In the other model this independence
is not allowed and both clustering variables and the variable under consideration are
dependent on the cluster membership variable (but are still conditionally independent
of one another as in the model assumption for latent class models). Comparing the
fit of these two models to the data allows us to make a decision of whether to include

the variable under consideration in the set of clustering variables or not.



1.3 c¢DNA Microarray Gene Expression Data

One of the prime examples of data that requires methodology beyond that currently
implemented in traditional supervised and unsupervised learning techniques is gene
expression data. This microarray technology allows for the simultaneous recording
of expression levels of thousands of genes/gene segments under numerous different
conditions ([63]. One glitch in the analysis of data resulting from this technology is
the lamentable lack of replication in most datasets and the large quantity of noise
that is therefore difficult to filter out (often making strong distributional assumptions
necessary). Another more fundamental issue is the fact that n, the number of obser-
vations/experiments/conditions is typically much, much smaller than p, the number
of variables/genes. This is the ezact reverse of the traditional data structure where
n>>p.

In the typical technical replication type of experiment, cDNA from each condition
is labeled with either a red or green dye and both are hybridized to a slide with cDNA
of genes or gene sections of interest on it and the expression levels for the genes in
each condition are extracted from the slide. Although the labeling scheme may some-
times change from slide to slide or experiment set-up to experiment set-up, e.g. in
one set-up, control condition labeled red and treatment labeled green, and in another,
control condition labeled green and treatment labeled red, each condition has its own
dye for each slide. In the set-up for biological replication types of experiment, cDNA
from each condition is labeled with the same dye and compared to a reference sample
labeled with the other dye. For example, control and treatment cDNA may both be
labeled with green dye while the reference sample is labeled with red dye and each
experiment consists of a hybridization of the reference sample and one of either the

control or treatment samples to a slide.



1.4 Differential Expression Detection

Another way in which mixture model methodology can be useful for answering scien-
tific questions is looking at the issue of differential expression detection in microarrays.
One of the more interesting biological questions for gene expression data of either type
of experimental set-up is are the expression levels for a particular gene (or set of genes)
different under different conditions. For example it may be of interest to know which
set of genes have higher levels of expression in cancer tissues samples, say than in
healthy tissue samples, as this information may be useful for diagnosis, prognosis or
treatment of patients in the future. Genes that have higher levels of expression in
treatment samples than in control samples are often called over-expressed and genes
that have lower levels of expression in treatment samples than in control samples are
often called under-expressed. Under- and over-expressed genes are the two types of
differentially expressed genes.

An obvious test for each gene individually (if we have replicates/repeated mea-
surements of expression levels) is a t-test of the (average of the) logged control versus
treatment expression ratios for the null hypothesis of true mean of zero versus non-
zero. However, since there are usually thousands of genes to be tested in this way,
multiple testing issues come into play. Another issue, in addition to the problem
of multiple testing, is the small amount of replicates (if any) generally available for
estimating the standard deviation for each t-test. If we can estimate the standard
deviation, the low number of replicates usually present means that estimate is ex-
tremely variable. While it may be possible to borrow strength from other genes in
estimating the standard deviation it is clearly not correct to use both differentially
and non-differentially expressed genes to estimate this.

In chapter 4 of this thesis we present a model for identifying differentially ex-
pressed genes based on the idea of modeling outliers in continuous data by a uniform

distribution in a mixture model (see [5, 67]). We posit that the measurements for



differentially expressed genes represent outliers from the main distribution of non-
differentially expressed genes’ measurements. The (average) log ratios of expression
levels of non-differentially expressed genes are modeled by a normal distribution while
those of differentially expressed genes are modeled with a uniform distribution. Dif-
ferent normalizations prior to fitting the model are presented for different types of

data: single and multiple replicate, and distinct comparison experiment set-up types.

1.5 Contributions

e Proposing a principled method of selecting variables important to clustering
using two different models for the same set of variables, split into different

conditional distributions involving mixtures

e Tailoring the models to mixture model clustering in the context of model-based

clustering

e Tailoring the models to mixture model clustering in the context of latent class

analysis

e Proposing and developing search algorithms for searching the space of models

and variables

e Presenting a simple model of a mixture of uniform (for differentially expressed
genes) and normal (for non-differentially expressed genes) distributions to iden-
tify differentially expressed genes via conditional probability of membership for

each gene being in the uniform mixture model component

e Presenting extensions of the mean normalization in [26] for mean and variance
normalization prior to modeling, which can also improve the performance of
other methods of differential gene expression detection (e.g. the simple rule of

two).



Chapter 2

VARIABLE SELECTION FOR MODEL-BASED
CLUSTERING

2.1 Introduction

In classification, or supervised learning problems, the structure of interest may often
be contained in only a subset of the available variables and inclusion of unnecessary
variables in the learning procedure may degrade the results. In these cases some
form of variable selection prior to, or incorporated into the fitting procedure may be
advisable. Similarly, in clustering, or unsupervised learning problems, the structure
of greatest interest to the investigator may be best represented using only a few of the
feature variables. This may give the best clustering model to describe future data, or
fewer variables may give a better partition of the data into clusters closer to the true
underlying group structure. However, in clustering the classification is not observed,
and there is usually little or no a priori knowledge of the structure being looked for
in the analysis, so there is no simple pre-analysis screening technique available to use.
In this case it makes sense to consider including the variable selection procedure as
part of the clustering algorithm.

In this chapter, we introduce a method for variable or feature selection for model-
based clustering. The basic idea is to recast the variable selection problem as one
of comparing competing models for all the variables initially considered. Comparing
two nested subsets is equivalent to comparing two models, in one of which all the
variables in the bigger subset carry information about cluster membership, while in
the other model the variables considered for exclusion are conditionally independent

of cluster membership given the variables included in both models. This comparison is



made using approximate Bayes factors. This model comparison criterion is combined
with a greedy search algorithm to give an overall method for variable selection. The
resulting method selects the clustering variables, the number of clusters, and the
clustering model simultaneously.

The variable selection procedure suggested in this chapter is tailored specifically for
model-based clustering and, as such, incorporates the advantages of this paradigm rel-
ative to some of the more heuristic clustering algorithms. They include an automatic
method for choosing the number of clusters, only one user-defined input necessary
(the maximum number of clusters to be considered) that is easily interpretable, and
a basis in statistical inference.

A brief review of mixture model clustering is given in Section 2.2.1. The statistical
models behind the variable selection method are explained in Section 2.2.2 and the
greedy search algorithm is introduced in Section 2.2.3. In Section 2.2.4, the specific
example of clustering with Gaussian components (model-based clustering) and allow-
ing different covariance formulations is discussed. Results comparing the performance
of model-based clustering with and without variable selection are given in Section 2.3
for simulated data and in Section 2.4 for some real data examples. The advantages
and limitations of the method are discussed in Section 2.5, which also mentions some
other work on the problem. Finally, the greedy search clustering variable selection

procedure steps are discussed in greater detail in the appendix.

2.2 DMethodology

2.2.1 Mixture Model Clustering

Mixture model clustering is based on the idea that the observed data come from a
population with several subpopulations. The general idea is to model each of the
subpopulations separately and the overall population as a mixture of these subpopu-

lations, using finite mixture models. Mixture model clustering goes back at least to



[71] and reviews of the area are given by [53] and [30].

The general form of a finite mixture model with G subpopulations or groups is

f(x) = Z_:lﬂgfg(X),

where 7, is the proportion of the population in the gth group, and f,(-) is the prob-
ability density function for the gth group. The subpopulations are often modeled
by members of the same parametric density family, in which case the finite mixture

model can be written
G
f(X) = Z ng(x|¢g>u
g=1

where ¢, is the parameter vector for the gth group.

The mixture model can be used to partition the data into clusters using the
optimal or Bayes rule for classification. This classifies observation x to cluster g
if the posterior probability that it belongs to group ¢ is greater than the posterior
probabilities that it belongs to any other group, i.e. if 7,(x) > 7(x), h =1,...,G,
where 7,,(x) = 1 fn(x)/ Zg’;l 7y f4(x) is the posterior probability that it belongs to
the hth group. Since the denominator is the same in all posterior probabilities, it
is possible to simply define the Bayes rule as follows: classify x into cluster g if
g = argmaxy, 7, fr(x). We can approximate the Bayes rule by replacing the unknown
parameters by their estimated values. This is called the plug-in rule. In our examples,
we compare the partition given by the finite mixture model defined on the subset of
selected variables to a known underlying classification, in order to assess how much
improvement the variable selection procedure gives in clustering.

A difficulty of some of the more heuristic clustering algorithms is the lack of a
statistically principled method for determining the number of clusters. Since it is
an inferentially based procedure, mixture model clustering can use model selection
methods to make this decision. Bayes factors [41] are used to compare the models.

This permits comparison of the non-nested models that arise in this context.
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The Bayes factor for a model M; against a competing model Ms is equal to the
posterior odds for M; against Ms; when their prior model probabilities are equal. It is
computed as the ratio of the integrated likelihoods for the two models. This ratio can
be hard to compute, and we use the easily calculated Bayesian information criterion

(BIC) as the basis for an approximation. This is defined by

BIC = 2 x log(maximized likelihood)

— (no. of parameters) x log(n), (2.1)

where n is the number of observations. Twice the logarithm of the Bayes factor is
approximately equal to the difference between BIC values for the two models being
compared. We choose the number of groups and the parametric model by recogniz-
ing that each different combination of number of groups and parametric constraints
defines a model, which can then be compared to others. [44] showed BIC to be con-
sistent for the choice of the number of clusters in the case of Gaussian mixture with
certain constraints. Differences of less than 2 between BIC values are typically viewed
as barely worth mentioning, while differences greater than 10 are often regarded as

constituting strong evidence [41].

2.2.2  Models for Variable Selection

To address the variable selection problem, we recast it as a model selection problem.
We have a data set Y, and at any stage in our variable selection algorithm, it is

partitioned into three sets of variables, Y0 V() and V(o) namely:

o Y(cust): the set of already selected clustering variables,

e Y(): the variable(s) being considered for inclusion into or exclusion from the

set of clustering variables, and

o Y(©her): the remaining variables.
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The decision for inclusion or exclusion of Y(?) from the set of clustering variables is

then recast as one of comparing the following two models for the full data set:

Y clust other

My:p(Ylz) = p )|z

I
=

Y clust other

M, :p(Y|z) =

=

( )

(Y (other) ‘Y clust )p(Y ‘Y (clust) ) (Y(clust)‘z) (22)
( '|z)

— p(Y (other) |Y clust )p(Y clust |Z)

where z is the (unobserved) set of cluster memberships. Model M; specifies that,
given Y@ Y(?) is conditionally independent of the cluster memberships (defined
by the unobserved variables z), that is, Y*) gives no additional information about
the clustering. Model M, implies that Y(*) does provide additional information about

(clust) has been observed.

clustering membership, after Y

An important aspect of the model formulation is that it does not require that
irrelevant variables be independent of the clustering variables. If instead the indepen-
dence assumption p(Y |y (€ust)) = p(Y (")) were used in model M;, we would be quite
likely to include redundant variables that were related to the clustering variables but

not to the clustering itself. We assume that the remaining variables Y (¢ther)

are con-
ditionally independent of the clustering given Y (st and Y(*) and belong to the same
parametric family in both models. The difference between the assumptions under-

lying the two models is illustrated in Figure 3.1, where arrows indicate dependency.

Models M; and Ms are compared via an approximation to the Bayes factor which
allows the high-dimensional p(Y (ther)|y () Y (cus)) o cancel from the ratio. The

Bayes factor, Bis, for M, against My based on the data Y is given by
Bia = p(Y[My)/p(Y|Ma),
where p(Y|M}) is the integrated likelihood of model M (k = 1,2), namely

POV M) = [ DY 105, Mi)p(86] My ) A0 (2.3)



J &

Figure 2.1: Graphical Representation of Models M; and M, for Clustering Variable
Selection. In model M, the candidate set of additional clustering variables, Y?), is
conditionally independent of the cluster memberships, z, given the variables Y (¢iust)
already in the model. In model Ms, this is not the case. In both models, the set of
other variables considered, Y (*"¢") is conditionally independent of cluster member-
ship given Y@t and YY) but may be associated with Y (st and Y ().
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In (2.3), 6; is the vector-valued parameter of model My, and p(6|M}) is its prior
distribution [41].
Let us now consider the integrated likelihood of model M,

p(Y|My) = p(Y(clust) "y () "y (ether)| Nr ). From (2.2), the model M; is specified by three
probability distributions: the finite mixture model that specifies p(Y (590, M), and
the conditional distributions p(Y ()Y (“ust) 9, M) and p(Y Cther) |y () Y (cust) g9, M),
We denote the parameter vectors that specify these three probability distributions by
011, 612, and 63, and we assume that their prior distributions are independent. It

follows that the integrated likelihood itself factors:
p(Y|M1) _ p(Y(Other)ly(?), Y(ClUSt)7 Ml) p(Y(?) |Y(clust)7 Ml) p(Y(clust) |M1), (24)

where
p(Y (ether) [y (1) yletust) Np )y — [ p(y @hen) |y () y(etust) g M) (6| My )d6ys, and sim-
ilarly for p(Y |y (“ust) Ap) and p(Y s |M;). Similarly, we obtain

p(Y|My) = p(y Cther) |y @)y (elust) ppy p(y () y (ust) | pp,)) (2.5)

where p(Y ("), Y (“ust)| M,) is the integrated likelihood for the mixture model clustering
for (Y ),y (cust)) jointly.

The prior distribution of the parameter, 3, is assumed to be the same under M;
as under Ms. It follows that
p(Yethen) |y (0 [y (ehust) £y ) = p(Y ether) [y () 'y (eush) Af ). We thus have

p(Y DYt My )p(Y (D | M)

Byy =
- p(Y O, Y (ush] M) ’

(2.6)

which has been greatly simplified by the cancellation of the factors involving the
potentially high-dimensional Y (°*"") The integrated likelihoods in (2.6) are hard to
evaluate analytically, and so we approximate them using the BIC approximation of

(2.1).



14

2.2.3  Greedy Search Algorithm for Clustering Variable Selection

Here we propose a greedy search algorithm. At each stage it searches for the variable
to add that most improves the clustering as measured by BIC, and then assesses
whether one of the current clustering variables can be dropped. At each stage, the
best combination of number of groups and clustering model is chosen. The algorithm
stops when no local improvement is possible.

Here is a summary of the algorithm:

1. Select the first clustering variable to be the one which has the most evidence of

univariate clustering.

2. Select the second clustering variable to be the one which shows most evidence

of bivariate clustering including the first variable selected.

3. Propose the next clustering variable to be the one that shows the most evidence
of multivariate clustering including the previous variables selected. Accept this
variable as a clustering variable if the evidence favors this over its not being a

clustering variable.

4. Propose the variable for removal from the current set of selected clustering
variables to be the one for which the evidence of multivariate clustering including
all variables selected versus multivariate clustering only on the other variables
selected and not on the proposed variable is weakest. Remove this variable from
the set of clustering variables if the evidence for clustering is weaker than that

for not clustering.

5. Iterate steps 3 and 4 until two consecutive steps have been rejected, then stop.

A more detailed description of this algorithm is given in the appendix to this

chapter.
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2.2.4 Variable Selection for Model-Based Clustering

We now consider in more detail the case where the mixture components have multi-
variate normal distributions, that is f(-|¢,) = MV N(-|pg,3,). This specific form of
mixture model clustering is known as model-based clustering For variable selection
in this setting, we consider only the case where Y(*) contains just one variable, in
which case p(Y )|y (st M) represents a normal linear regression model with an
intercept and main effects only. This follows from the standard result for conditional

multivariate normal means. The BIC approximation to this term in (2.6) is

21og p(Y Oy ush M)~ BIC,q
= —nlog(2m) — nlog(RSS/n) (2.7)

—n — (dim (YY) + 2) log(n),

where RSS is the residual sum of squares in the regression of Y(*) on the variables
in Y(©ust) and dim(Y (¢#5%)) is the number of variables in the set of currently selected
clustering variables.

One practical issue with multivariate normal modeling of the components is that, if
the model is unconstrained, the number of parameters grows rapidly with the dimen-
sion and with the number of clusters, leading to possible overfitting and degradation
of performance. For instance, our first example in Section 2.4 below is fairly small,
with 4 groups and 5 variables, but the full multivariate normal mixture model still
has 83 parameters.

One way of alleviating this is to impose restrictions on the covariance matrices.

The covariance matrix can be decomposed, as in [5] and [11], as follows:
Yy = AgDygAg Dy,

where )\, is the largest eigenvalue of X, and controls the volume of the g cluster, D, is

the matrix of eigenvectors of ¥,, which control the orientation of that cluster, and A,



16

is a diagonal matrix with the scaled eigenvalues as entries, which control the shape of
that cluster. By imposing constraints on the various elements of this decomposition, a
large range of models is available, ranging from the simple spherical models which have
fixed shape, to the least parsimonious model where all elements of the decomposition
are allowed to vary across all clusters. A list of the models available in the mclust
software [31], which allows this type of eigenvalue decomposition Gaussian clustering,
is given in Table 2.1. We can choose the parametric model by recognizing that each
different combination of number of groups and parametric constraints defines a model,

which can then be compared to others using BIC.

Table 2.1: Parameterizations of the Covariance Matrix ¥, Currently Available in the
mclust Software. When the data are of dimension 1, only two models are available:
equal variances (E), and unequal variances (V).

Name Model Distribution | Volume  Shape Orientation

EIT A Spherical equal equal NA

VII Al Spherical | variable  equal NA

EEI AA Diagonal equal equal  coordinate axes
VEI AGA Diagonal | variable equal coordinate axes
EVI A, Diagonal equal  variable coordinate axes
VVI AgAg Diagonal | variable variable coordinate axes
EEE | ADADT Ellipsoidal | equal equal equal
VVV )\ngAgDZ Ellipsoidal | variable variable variable
EEV | AD,AD] | Ellipsoidal | equal equal variable
VEV | \;D,AD] | Ellipsoidal | variable — equal variable

Different choices of subsets of clustering variables also require different covariance
structures for the subpopulations. In our examples, we used the mclust software,

but the method could also be implemented using other mixture modeling software.
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Hierarchical agglomerative model-based clustering was used to give the starting values

needed in the EM algorithm used to estimate model parameters.
2.3 Simulation Examples

We now present results for two simulation examples. Here we use the term “groups”
to refer to the true unknown partition, and we use the term “clusters” to refer to the

partition estimated by the clustering algorithm.

2.3.1 Two Groups with Independent Irrelevant Variables

In this simulation there are 150 data points on 7 variables. The data are simulated
from a mixture of two multivariate normal distributions with unconstrained (VVV)
covariance matrices, so that there are two groups in the data. Only the first two
variables contain clustering information. The remaining 5 variables are irrelevant
variables independent of the clustering variables, so that the distribution of these
variables is multivariate normal independent of group membership. The pairs plot of
all the variables is given in Figure 2.2, where X1 and X2 are the clustering variables
and X3 to X7 are the independent irrelevant variables.

When forced to cluster on all 7 variables, a five-cluster diagonal EEI model yields
the highest BIC value. The model yielding the next highest BIC value is a 4-cluster
EEI model. The two-cluster model with the highest BIC value is the two-cluster
EEE model but there is a substantial difference of 20 points between this and the
model with the highest BIC. This would lead to the (incorrect) choice of a five group
structure for this data.

The step by step progress of the greedy search selection procedure is shown in
Table 2.2. Two variables are chosen, X1 and X2; these are the correct clustering
variables. The two-cluster VVV model has the highest BIC for clustering on these
variables by a decisive margin; this gives both the correct number of groups and the

correct clustering model (two VVV clusters).
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First Simulation Example: Pairs plot of the data

Figure 2.2
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Table 2.2: Progress of the Greedy Search Algorithm for the First Simulation Example.
The BIC difference is the difference between the BIC for clustering and the BIC for
not clustering for the best variable proposed, as given in (3.14) in the Appendix.

Step | Best variable | Proposed BIC Model Number of Result
no. proposed for difference | chosen clusters chosen
1 X2 inclusion 15 \% 2 Included
2 X1 inclusion 136 VVV 2 Included
3 X6 inclusion -13 VVV 2 Not included
4 X1 exclusion 136 VVV 2 Not excluded

Since the data are simulated, we know the underlying group memberships of the
observations, and we can check the quality of the clustering in this way. The partition
arising from clustering on the selected two variables gives 100% correct classification.

The confusion matrix for the clustering on all variables is as follows:

Groupl Group?2

Clusterl 53 0
Cluster?2 4 30
Cluster3 34 0
Clusterd 1 13
Clusterb 0 15

The error rate is 44.7%. This is calculated by taking the best matches of clusters
with the groups (i.e. Group 1 < Cluster 1 and Group 2 < Cluster 2), which gives
us the minimum error rate over all matches between clusters and groups. If we were
to correctly amalgamate clusters 1 and 3 and identify them as one cluster, and to
amalgamate clusters 2, 4 and 5 and identify them as another cluster, we would get

an error rate of 3.3%. However, this assumes knowledge that the investigator would
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not typically have in practice.

Finally we pretend (as do many heuristic clustering algorithms) that we know the
number of groups (2) correctly in advance, and cluster on all the variables allowing
only two-cluster models. The two-cluster model with the highest BIC is the EEE
model, and this has an error rate of 3.3%.

In this example, variable selection led to a clustering method that gave the correct
number of groups and a 0% error rate. Using all variables led to a considerable
overestimation of the number of groups, and a large error rate. Even when the five
clusters found in this way were optimally combined into two clusters (with their own
mixtures), or when the correct number of groups was assumed known, clustering using

all the variables led to a nonzero error rate, with 5 errors.

Table 2.3: Classification Results for the First Simulation Example. The correct num-
ber of groups was 2. (c) indicates that the solution was constrained to this number
of clusters.

Variable Selection Number Number Error
Procedure of variables of clusters rate (%)
None-All variables 7 5 44.7
None-All variables 7 2(c) 3.3
Greedy search 2 2 0

2.3.2  Two Groups with Irrelevant Variables Correlated with Clustering Variables

Again we have 150 points from two clustering variables, with two (VVV) groups. To
make the problem more difficult we allow different types of irrelevant variables. There
are three independent normal irrelevant variables, seven irrelevant variables which

are allowed to be dependent on other irrelevant variables (multivariate normal), and
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three irrelevant variables which have a linear relationship with either or both of the

clustering variables. This gives a total of 15 irrelevant variables.

The pairs plot of a selection of the variables is given in Figure 2.3. Variables
X1 and X2 are the clustering variables, X3 is an independent irrelevant variable, X6
and X7 are irrelevant variables that are correlated with one another, X13 is linearly
dependent on the clustering variable X1, X14 is linearly dependent on the clustering

variable X2, and X15 is linearly dependent on both clustering variables, X1 and X2.

When forced to cluster on all 15 variables, a two-cluster diagonal EEI model yields
the highest BIC. The model yielding the next highest BIC value is a three-cluster
diagonal EEI model, with a difference of 10 points between the two. In this case the
investigator would probably decide on the correct number of groups, based on this

evidence. The error rate for classification based on this model is 1.3%.

The results of the steps when the greedy search selection procedure is run are
given in Table 2.4. Two variables are selected, and these are precisely the correct
clustering variables. The model with the highest BIC for clustering on these variables
is a two-cluster VVV model, and the next highest model in terms of BIC is the three-
cluster VVV model. There is a difference of 27 between the two BIC values, which
would typically be regarded as strong evidence.

We compare the clustering memberships with the underlying group memberships
and find that clustering on the selected variables gives a 100% correct classification,
i.e. no errors. In contrast, using all 15 variables gives a nonzero error rate, with two
errors. Variable selection has the added advantage in this example that it makes the

results easy to visualize, as only two variables are involved after variable selection.

2.4 Real Data Examples

We now give the results of applying our variable selection method to three real datasets

in which the “correct” number of groups is known.
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Table 2.4: Progress of the Greedy Search Algorithm for the Second Simulation Exam-
ple. The BIC difference is the difference between the BIC for clustering and the BIC
for not clustering for the best variable proposed, as given in (3.14) in the Appendix.

Step | Best variable | Proposed BIC Model Number of Result
no. proposed for difference | chosen clusters chosen

1 X11 inclusion 17 \% 2 Included

2 X2 inclusion 5 EEE 2 Included

3 X1 inclusion 109 VVV 2 Included

4 X11 exclusion -19 VVV 2 Excluded

D X4 inclusion -9 VVV 2 Not included

6 X2 exclusion 153 VVV 2 Not excluded

Table 2.5: Classification results for the Second Simulation Example

Variable Selection Number Number Error
Procedure of variables of Clusters rate (%)
None-All variables 15 2 1.3
Greedy search 2 2 0
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2.4.1 Leptograpsus Crabs Data

This dataset consists of 200 subjects: 100 of species orange (50 male and 50 female),
and 100 of species blue (50 male and 50 female). This gives a possible 4 group classifi-
cation so we are hoping to find a four-cluster structure. There are five measurements
on each subject: width of frontal lip (FL), rear width (RW), length along the mid-line
of the carapace (CL), maximum width of the carapace (CW) and body depth (BD)
in mm. The dataset was published by [10], and was further analyzed by [61] and
(52, 53].

The variables selected by the variable selection procedure were (in order of selec-
tion) CW, RW, FL and BD. The error rates for the different clusterings are given in
Table 2.6. The error rates for the seven-cluster models were the minimum error rates
over all matchings between clusters and groups, where each group was matched with

a unique cluster.

When no variable selection was done, the number of groups was substantially
overestimated, and the error rate was 42.5%, as can be seen in the confusion matrix

for clustering on all variables:

Groupl Group2 Group3d Group4

Clusterl 32 0 0 0
Cluster2 0 31 0 0
Cluster3 0 0 28 0
Clusterd 0 0 0 24
Clusterb 0 0 0 21
Cluster6 18 19 0 0
Cluster7 0 0 22 5

When our variable selection method was used, the correct number of groups was

selected, and the error rate was much lower (7.5%), as can be seen in the confusion
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Table 2.6: Classification Results for the Crabs Data. The correct number of groups is
4. (c) indicates that the number of clusters was constrained to this value in advance.
The error rates for the 7-cluster models were calculated by optimally matching clusters

to groups.

Original Variables

Variable Selection Number Number Model Error
Procedure of variables  of clusters selected rate (%)
None-All variables 5 7 EEE 42.5
None-All variables 5 4(c) EEE 7.5
Greedy search 4 4 EEV 7.5
Principal Components
Variable Selection Number Number Model Error
Procedure of components of clusters selected rate (%)
None-All components 5 7 EEE 42.5
None-All components 5 4(c) EEV 9.0
Greedy search 3 4 EEV 6.5
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matrix for the clustering on the selected variables:

Groupl Group2 Group3 Groupd

Clusterl 40 0 0 0
Cluster?2 10 50 0 0
Cluster3 0 0 50 5
Cluster4 0 0 0 45

Variable selection reduced the number of classification errors to a striking extent,
especially given that the method selected four of the five variables, so not much
variable selection was actually done in this case. This example suggests that the
presence of only a single noise variable even in a low-dimensional setting can cause
the clustering results to deteriorate.

In clustering, it is common practice to work with principal components of the
data, and to select the first several, as a way of reducing the data dimension. Our
method could be used as a way of choosing the principal components to be used, and
it has the advantage that one does not have to use the principal components that
explain the most variation, but can automatically select the principal components
that are most useful for clustering. To illustrate this, we computed the five principal
components of the data and used these instead of the variables. The variable selection
procedure chose (in order) principal components 3, 2 and 1.

Once again, when all the principal components were used, the number of groups
was overestimated, and the error rate was high, at 42.5%. When variable selection
was carried out, our method selected the correct number of groups without invoking
any prior knowledge of the number of groups, and the error rate was much reduced,
at 6.5%. Even when the number of groups was assumed to be correctly known in
advance, but no variable selection was done, the error rate was higher than with
variable selection, at 9.0%.

[13] showed that the practice of reducing the data to the principal components that

account, for the most variability before clustering is not justified in general. Chang
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showed that the principal components with the largest eigenvalues do not necessarily
contain the most information about the cluster structure, and that taking a subset
of principal components can lead to a major loss of information about the groups in
the data. Chang demonstrated this theoretically, by simulations, and in applications
to real data. Similar results have been found by other researchers, including [37]
for market segmentation, and [72] for clustering gene expression data. Our method
to some extent rescues the principal component dimension reduction approach, as it
allows one to use all or many of the principal components, and then for clustering
select only those that are most useful for clustering, not those that account for the

most variance. This avoids Chang’s criticism.

In this example, the EM algorithm used for estimating the parameters when clus-
tering on all variables was sensitive to starting values and the best starting values
came from randomly generating posterior probabilities rather than hierarchical ag-
glomerative model-based clustering. The variable selection EM clustering was not as
sensitive to the starting values, and hierarchical clustering was used to initialize the

EM algorithm in that case.

2.4.2 Iris Data

The well-known iris data consist of four measurements on 150 samples of either iris
setosa, iris versicolor or iris virginica [1, 29]. The measurements are sepal length, sepal
width, petal length and petal width (cm). When one clusters using all the variables,
the model with the highest BIC is the two-cluster VEV model, with the three-group
VEV model within one BIC point of it. Thus an analyst might conclude that the
these data do not contain enough information to decide whether there are two or
three groups. The two-group clustering puts versicolor and virginica together, and
they are known to be very closely related; their identification as separate species is

based in part on information not in this dataset [2]. If one does select the two-group
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clustering model slightly favored by BIC, the confusion matrix is as follows:

Setosa  Versicolor Virginica
Clusterl 50 0 0
Cluster?2 0 50 50

The setosa group is well picked out but versicolor and virginica have been amalga-
mated. This leads to a minimum error rate of 33.3%.

The confusion matrix from the three-group clustering is as follows:

Setosa Versicolor Virginica

Clusterl 50 0 0
Cluster2 0 45 0
Cluster3 0 5 50

This gives a 3.3% error rate and reasonable separation. However, given the BIC
values, an investigator with no reason to do otherwise might well have erroneously
chosen the two-cluster model.

The variable selection procedure selects three variables (all but sepal length). The
highest BIC model is the three-cluster VEV model, with the next highest model being
the four-cluster VEV model; the BIC difference is 14. The confusion matrix from the

three-cluster clustering on these variables is as follows:

Setosa Versicolor Virginica

Clusterl 50 0 0
Cluster2 0 44 0
Cluster3 0 6 50

which is a 4% error rate. A summary of the results from the different methods is
given in Table 2.7. For these data, clustering on all variables gives an ambiguous
result, while the correct number of groups is decisively chosen when variable selection

is done.
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Table 2.7: Classification Results for the Iris Data. The correct number of groups is
3. (c) indicates that the number of groups was constrained to this value in advance.

Variable Selection | Number Number Error
Procedure of variables of Groups rate (%)
None-All variables 4 2 33.3
None-All variables 4 3(c) 3.3
Greedy search 3 3 4

2.4.3 Texture Dataset

The Texture dataset was produced by the Laboratory of Image Processing and Pattern
Recognition (INPG-LTIRF) in the development of the Esprit project ELENA No.
6891 and the Esprit working group ATHOS No. 6620. The original source was [7].
This dataset consists of 5500 observations with 40 variables, created by characterizing
each pattern using estimation of fourth order modified moments, in four orientations:
0, 45, 90 and 135 degrees; see [38] for details. There are eleven classes of types of
texture: grass lawn, pressed calf leather, handmade paper, raffia looped to a high pile,
cotton canvas, pigskin, beach sand, another type of beach sand, oriental straw cloth,
another type of oriental straw cloth, and oriental grass fiber cloth (labeled groups 1

to 11 respectively). We have 500 observations in each group.

When we clustered on all available variables we found that the model with the
highest BIC value was the one-cluster model (with an error rate of 90.9%). When we
used the greedy search procedure with a maximum number of 15 clusters, allowing
only the unconstrained VVV model since the search space was already so large, we
selected 35 variables (all but variables 1, 11, 15, 31 and 40) which, when clustered
allowing all models, chose (via BIC) the 11-cluster VVV model. The classification

results are shown in Table 2.8.
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The classification matrix for the model based on the selected variables is given
in Table 2.9. The classification from this model is much closer to the true partition
than that from the model based on all the variables, in terms of both the number
of groups being correct and the group memberships. We can see that most groups

except Group 8, Group 1 and Group 6 are picked out well.

Table 2.8: Classification Results for the Texture Data. The correct number of groups
is 11. (c) indicates that the number of clusters was constrained to this value in
advance.

Variable Selection Number Number Error
Procedure of variables of Clusters rate (%)
None-All variables 40 1 90.9
None-All variables 40 11(c) 40.7
Greedy search 35 11 13.6

2.5 Discussion

We have proposed a method for variable or feature selection in model-based clustering.
The method recasts the variable selection problem as one of model choice for the
entire dataset, and addresses it using approximate Bayes factors and a greedy search
algorithm. For several simulated and real data examples, the method gives better
estimates of the number of clusters, lower classification error rates, more parsimonious
clustering models, and hence easier interpretation and visualization than clustering
using all the available variables.

Our method for searching for the best subset of variables is a greedy search algo-
rithm, and of course this will find only a local optimum in the space of models. The
method works well in our experiments, but it may be possible to improve its perfor-

mance by using a different optimization algorithm, such as Markov chain Monte Carlo
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Table 2.9: Texture Data: Confusion matrix for the clustering based on the selected
variables. The largest count in each row is boxed.

Gp4 Gpb Gp9 Gpl0 Gp3 Gpll Gp7 Gp2 Gp8 Gpl Gpb
C18 |[500] 0 0 0 0 0 0 0 0 0 0
Clo | 0 0 0 0 0 0 0 0 0 0
Cl10| 0 0 0 0 0 0 0 0 0 0
Cl11| 0 0 0 500 0 1 0 0 0 0 0
Cl6 | 0 0 0 0 499 0 0 0 0 0 0
Cl4 | 0 0 0 0 0 497 0 0 0 0 0
Cl2 | 0 0 0 0 0 0 474] 0 0 200 0
Cl3 | 0 0 0 0 0 0 0 [439] o 0 0
Cl5 | 0 0 0 0 0 0 0 0 [383] 0 @ 341
Cl1| 0 0 0 0 1 0 0 61 0 [300] O
Cl7 | 0 0 0 0 0 2 26 0 117 0 [159
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or simulated annealing. Our method is analogous to stepwise regression, and this has
been found to be often unstable, as noted by [55], for example. This was not a prob-
lem for the analyses conducted in this paper however, but it remains an issue to be
aware of. Also when the number of variables is vast, for example in microarray data
analysis when thousands of genes may be the variables being used, the method is too
slow to be practical as it stands. Combining our basic approach with pre-screening
(where subsets of variables are selected prior to using the variable selection clustering
procedure) and alternative model search methods such as [4]’s headlong procedure
(a variant of which is discussed in Section 3.2.3) could yield a method that would be

feasible for such cases.

The method is feasible for quite large datasets. For example, when the method
was run on a simulated dataset with two clusters, 10,000 observations and 10 variables
(of which 8 were clustering variables), using hierarchical clustering on a subset of 1000
observations, a maximum allowed number of 9 clusters and the VVV model only, the
CPU time on a laptop with 512 MB of memory and a 1.5 GHz processor was just

under 11 hours.

Less work has been done on variable selection for clustering than for classifica-
tion (or discrimination or supervised learning), reflecting the fact that it is a harder
problem. In particular, variable selection and dimension reduction in the context of
model-based cluster- ing have not received much attention. One approach that is
similar in principle to ours is that given by Dy and Brodley [27] where the feature
subset selection is wrapped around EM clustering with order identification. However,
they do not consider an eigenvalue de- composition formulation, or both forward and
backward steps in their search pattern and there is no explicit model for comparing
different feature sets. In a model-based clustering setting Law, Jain, and Figueiredo
[45] looked at a wrapper method of feature selection incorporated into the mixture-
model formulation. In the first approach each variable is al- lowed to be independent

of the others given the cluster membership (diagonal model in the Gaussian setting)
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and irrelevant variables are assumed to have the same distribution regard- less of
cluster membership. The missing data structure of the EM algorithm is used both to
estimate the cluster parameters and to select variables.

Vaithyanathan and Dom [69] put forward an approach which determines both
the relevant variables and the number of clusters by using an objective function that
incorpo- rates both. The functions used in their paper were integrated likelihood
and cross-validated likelihood. The example given was a multinomial model and no
extension for continuous or ordinal data was suggested.

Liu, Zhang, Palumbo, and Lawrence [49] proposed a Bayesian approach using
MCMUC, in which a principal components analysis or correspondence analysis is car-
ried out first and a number of components to be examined are selected. Then the
components important for clustering are selected from this subset and clustering is
performed simultaneously. The pro- cedure can also automatically select an appropri-
ate Box-Cox transformation to improve the normality of the groups. This approach
requires that principal components be used where, in certain cases, investigators may
be as interested in the variables important for clustering as in the clustering itself and
this information is not easily available in this approach. Also the approach assumes
the number of clusters/groups to be known.

An entirely different approach is taken by Lazzeroni and Owen [47], where a two-
sided (both variables and samples) cluster analysis is performed which has variable
selection as an implicit part of the procedure. Variables are allowed to belong to more
than one cluster or to no cluster, and similarly with samples. This was motivated by
the analysis of gene expression data. Along a similar line, Getz, Levine, and Domany
[34] proposed a method that clusters both variables and samples so that clustering
on the subsets found in one will produce stable, sensible clusters in the other. The
procedure is iterative but no details on the stopping criterion were given.

McLachlan, Bean, and Peel [54] proposed a dimension reduction method where

a mixture of factor analyzers is used to reduce the extremely high dimensionality
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of a gene expression problem. Pre-specification of the number of factor analyzers
to be used is required. Other examples of dimension reduction include work by
Ding, He, Zha, and Simon [24] where cluster membership is used as a bridge between
reduced dimensional clusters and the full dimensional clusters and reduces dimensions
to one less than the number of clusters. It is an iterative process, swapping between
reduced dimensions and the original space. This work focuses mainly on the simplest
model, spherical Gaussian clustering. Another dimension reduction technique is given
by Chakrabarti and Mehrotra [12], which uses local rather than global correlations.
There are a number of parameters, such as the maximum dimension allowed in a
cluster, that must be specified, for which the optimal values are not all obvious from

the data.

A different approach taken in Mitra, Murthy, and Pal [56], is more similar to a
filter selection technique than the wrapper techniques more usually looked at. Since
it is a one- step pre-clustering process with no search involved it is very fast, but it
takes no account of any clustering structure when selecting the variables. In a similar
vein Talavera [66] uses a filter method of subset selection but has no explicit method

of deciding how many variables should be used.

Several approaches to variable selection for heuristic clustering methods have been
pro- posed. One of the methods of feature selection for the more heuristic distance-
based clus- tering algorithms is given by McCallum, Nigam, and Ungar [51] which
involves switching between cheap and expensive metrics. A method for k-means
clustering variable se- lection is given by Brusco and Cradit [9] which is based on
the adjusted RAND index in order to measure similarity of clusterings produced by
different variables. However this requires prior specification of number of clusters and
there are problems when the variables are highly correlated and there are outliers
present in the data. Other methods for variable selection for heuristic clustering
include that of Devaney and Ram [23], who consider a stepwise selection search run

with the COBWEB hierarchical clustering algorithm.
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Friedman and Meulman [32] approach the problem in terms of maximizing an
appro- priate function in terms of weights of variables and different clusterings. Dif-
ferent weights are selected depending on the scale of the data for that variable. Since
the variables are weighted, rather than selected or removed, there is no actual di-
mension reduction although it does allow emphasis on different variables for different
clusters. The number of groups must be specified by user. Work in a similar vein
was done by Gnanadesikan, Kettenring, and Tsao [35]. A similar idea in terms of
weighting variables but with a different function to be optimized is suggested by De-
sarbo, Carroll, Clarck, and Green [21], where the sum of weighted squared distances
between data points in groups of variables and a distance based on linear regression
on cluster membership is used as the function.

The examples in this chapter have involved continuous data modeled by mixtures
of normal distributions. However, the same basic ideas can be applied to variable
selection in other clustering contexts, such as clustering multivariate discrete data
using latent class models [18, 6] as discussed in chapter 3, or more generally, Bayesian
graphical models with a hidden categorical node [15]. When the present approach is
adapted to these other clustering problems, it should retain the aspects that make it
flexible, especially its ability to simultaneously estimate the number of clusters and

group structure, as well as selecting the clustering variables.
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Appendix: Greedy Search Variable Selection for Model-Based Clustering
Algorithm

Here we give a more complete description of the greedy search variable selection
and clustering algorithm for the case of continuous data modeled by multivariate
normal groups. This version allows for choosing the number of clusters and the
model parameterizations as well, if required, otherwise one can simply alter the steps

below slightly to choose only the number of clusters.

e Choose G4z, the maximum number of clusters to be considered for the data.

e First step : The first clustering variable is chosen to be the one which gives the
greatest difference between the BIC of clustering on it (maximized over number
of clusters from 2 up to G4, and different parameterizations) and BIC of no
clustering (single group structure maximized over different parameterizations)
on it, where each variable is looked at separately. We do not require that the
greatest difference be positive at this point because in certain cases there is no
evidence of univariate clustering in data where multivariate clustering may be

present and in order to find this clustering we need a starting variable.

Specifically, we split Y(©*¢") = YV into its variables y',...,y"'. For all j in
1,..., Dy we compute the approximation to the Bayes factor in (2.6) by

BICdiff(yj) = BICClust(yj) - BICnot Clust(yj)

where BIC st (y’) = manggggmwme{ﬂv}{B]C’Qm(yj)}, with BICq . (y?) be-
ing the BIC given in (2.1) for the model-based clustering model for ¢/ with G
clusters and model m being either the one-dimensional equal-variance (E) or
unequal variance model (V), and BIChet clust(y?) = BIC,oq as given in (2.7) (for

a regression model with constant mean) with dim(Y (¢/ust))=0.
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We choose the best variable, ¢/, such that

j1 = arg max (BICqa(y’))
Jyrey

and create

Y(clust) _ (yjl )

and Y (@ther)  — Y\ gyt

where Y'\y/! denotes the set of variables in Y excluding variable y!.

Second step : Next the set of clustering variables is chosen to be the pair of
variables, including the variable selected in the first step, that gives the greatest
difference between the BIC for clustering on both variables (maximized over
number of clusters from 2 up to G4, and different parameterizations) and the
sum of the BIC for the univariate clustering of the variable chosen in the first
step and the BIC for the linear regression of the new variable on the variable
chosen in the first step. Note that we do not assume that the greatest difference
is positive since the only criterion the first two variables need to satisfy is being

the best initialization variables.

other)

Specifically, we split Y'( into its variables y',...,y"2. Forall jin 1,..., D,

we compute the approximation to the Bayes factor in (2.6) by
B]Cdiff(yj) - BIOclust (y]) - BIOnot clust (y])

where BIC st (¥7) = maxocg<gnmmen { BICG (Y €8 4y} with BICG,,, (Y (“1ust) )
being the BIC given in (2.1) for the model-based clustering model for the dataset
including both the previously selected variable (contained in Y (%)) and the

new variable ¢/ with G clusters and model m in the set of all possible models M,

and BICyot cust (1) = BICyeg + BIC st (Y40 where BIC,eq is given in (2.7)

clust

(the regression model with independent variable Y (s and dependent vari-

able y/) when dim(Y (“s))=1 (the number of variables currently selected) and
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BI C’Clust(Y(Cl“St)) is the BIC for the clustering with only the currently selected

variable in Y (clust)

We choose the best variable, 472, with

jo=arg max (BICua(y’))
j:yjey(other)

and create

Y(clust) _ Y(clust)uy]é

and Yother)  — 7y (other)\ 4 o

where Y(“ust) J y32 denotes the set of variables including those in Y (st and

variable 372

General Step [Inclusion part] : The proposed new clustering variable is
chosen to be the variable which gives the greatest difference between the BIC for
clustering with this variable included in the set of currently selected clustering
variables (maximized over numbers of clusters from 2 up to G4, and different
parameterizations) and the sum of the BIC for the clustering with only the
currently selected clustering variables and the BIC for the linear regression of

the new variable on the currently selected clustering variables.

If this difference is positive the proposed variable is added to the set of selected

clustering variables. If not the set remains the same.

Specifically, at step t we split Y (") into its variables 3!, ..., y"*. For all j in
1,..., Dy we compute the approximation to the Bayes factor in (2.6) by

BICdiﬁ"(yj> = BICclust(yj) - BICnot clust (y]) (28)

where BIC st (y7) = maxo<a<goan merm { BICG.m (Y(elust) i)} with B]C’G,m(Y(Cl““”t), y’)

being the BIC given in (2.1) for the model-based clustering model for the dataset
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including both the previously selected variables (contained in Y (¢#s)) and the
new variable ¢’ with G clusters and model m in the set of all possible models M,

and BICyo clust (7)) = BICeq + BI Copust (Y @5 where BI Cheg 18 given in (2.7)

clust) and dependent vari-

(the regression model with independent variables Y
able 37) when dim(Y (“™s))= (the number of variables currently selected) and
BIC, 6 (Y €9 is the BIC for the clustering with only the currently selected

variables in Y (clust)

We choose the best variable, /¢, with

jt arg jy] glya(‘(})gher) (BIOdlﬁ(y ))

and create

yleush) =y (ehust) gt if BICya(y™) > 0

and Y ©her) =y e\ yie if BICqg(yt) > 0

otherwise Y (clust) = y(clust) ang y (other) — y (other)

General Step [Removal part]| : The proposed variable for removal from the
set of currently selected clustering variables is chosen to be the variable from
this set which gives the smallest difference between the BIC for clustering with
all currently selected clustering variables (maximized over number of clusters
greater than 2 up to G,,., and different parameterizations) and the sum of the
BIC for clustering with all currently selected clustering variables except for the
proposed variable and the BIC for the linear regression of the proposed variable

on the other clustering variables.
If this difference is negative the proposed variable is removed from the set of
selected clustering variables. If not the set remains the same.

In terms of equations for step t+1, we split Y (¢! into its variables y', . .., yP#+1.

For all 5 in 1,..., Dy;; we compute the approximation to the Bayes factor in
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(2.6) by
BICdiff(yj> = B[Cclust - B[Cnot clust (y])

where BICqus = MaXoca<,mmem i BICG (Y )Y with BICq,, (Y (€ust))
being the BIC given in (2.1) for the model-based clustering model for the dataset
including the previously selected variables (contained in Y (@st)) with G clus-
ters and model m in the set of all possible models M, and BIC, Clust(yj ) =
BICyeg + BICust (Y 449\ y7) where BICy is given in (2.7) (the regression
model with independent variables being all of Y (st egcept 37 and dependent
variable y7) when dim(Y (¢#))= (the number of variables currently selected)-
1 and BIC us (Y @59\ 17) is the BIC for the clustering with all the currently

selected variables in Y (@) except for /.

We choose the best variable, y7t+!, with

jey1 =arg  min  (BICq(y’))
]:yjey(clust)

and create

Y(clust) — Y(clust)\yjt+1 if B[C’diff(yjtJrl) < 0

and Y(other) _  y(other) yjt+1 if B[Cdiff(yjt-‘rl) <0
otherwise Y(clust) — Y(clust) and Y(Othe?“) — Y(OtheT).

After the first and second steps the general step is iterated until consecutive
inclusion and removal proposals are rejected. At this point the algorithm stops

as any further proposals will be the same ones already rejected.
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Chapter 3
LATENT CLASS ANALYSIS VARIABLE SELECTION

3.1 Introduction

In situations such as surveys, where there are a large number of categorical variables
and the question of underlying groupings is of interest, latent class analysis is a
parsimonious mixture model method of discovering clusters in a statistically principled
way. Because of the underlying statistical model it is possible to use model choice
techniques to select the number of clusters/classes believed to be present in the data.
However the question of selecting which variables are most important for clustering is
one which is not addressed by the latent class model. This question can be important
to researchers for substantive reasons and also because restrictions on the number of
observations may make it impossible to use all variables to fit a latent class model or
to fit a latent class model beyond a certain limited number of classes.

In this chapter an adapted version of the previous chapter’s iterative procedure
for variable selection using model choice criteria is proposed. This method again uses
two models for examining the usefulness of a single variable for clustering, given the
variables already selected as being useful for clustering. We then present a new earch
algorithm to explore the space of possible models (both in terms of variables selected
and number of classes in the model).

In section 3.2.1 we will discuss the general latent class model for categorical data,
a necessary condition for identifiability of a latent class model, the rephrasing of com-
paring different numbers of clusters as a model comparison problem and the Bayesian
Information Criterion used to approximate the Bayes factor for answering this prob-

lem. In section 3.2.2 we present the two models used to compare the usefulness of a



42

single variable for clustering versus not clustering, given the variables already selected
as useful clustering variables. In section 3.2.3 the headlong search algorithm proposed
for exploring the model space is described. Results from simulated examples are given
in section 3.3 and results from real data are given in section 3.4. Conclusions and
discussion of this approach are given in section 3.5. Finally, the search algorithm from
section 3.2.3 is described in greater detail in appendix A and a version of the search
algorithm incorporating more efficient latent class model starting value generation is

described in appendix B.
3.2 DMethodology

3.2.1 Latent Class Analysis

Latent class analysis was first proposed by [46] and although it came before mixture
model clustering it still is a specific example in the more general context of this clus-
tering framework. As such, we will first review the idea of mixture model clustering
before discussing the particular case of latent class analysis.

We assume that each observation comes from one of a set number of sub-populations
in the overall population. The basis of mixture model clustering ([71]) is the idea of
modeling each group/sub-population/class with its own density. The overall popula-
tion is then modeled by a weighted sum of the inidividual sub-populations’ densities.
The weights are called the mixing distribution or mixture proportions and they rep-
resent the proportions of the overall population falling in each sub-population. The
weights can also be thought of as the prior probabilities of an observation coming
from particular sub-populations. Assuming that the density for group g is f, we can

write the general overall density as:
€]
r o~ Zﬂgfg(@ (3.1)
g=1

where G is the number of groups, 0 < m, < 1 and 290:1 Ty = 1.
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Often, in practice, the f, are from the same parametric family (as is the case in

latent class analysis) and we can write the general overall density as:
a
T ngf(x | 05)
g=1

where 0, is the set of parameters for the ' group.

In general, when looking at discrete data sets in the context of unsupervised
learning some simplifying assumptions are usually made in order to avoid over-fitting
or indeed inability to fit models to the given data. Latent class analysis is a type
of such a parsimonious mixture model clustering for discrete data. The assumption
which simplifies the model from the general case of modeling the variables jointly
for each group is that of local independence. By local independence we mean that
conditional on knowing the group an observation came from, the variables are assumed
to be independent. This conditional independence can, of course, not be proven in
practice but the rationalization underlying latent class analysis is finding the model
with the minimum number of classes that will explain the dependence in the data.
Each variable, within each group is then modeled with a multinomial density. The

general density of a single variable x given it is in group ¢ is then:
: Ha=j}
wlg~Ilry™ (3.2)
=1

where 1{z = j} is the indicator function equal to 1 if the observation of the variable
takes value j and 0 otherwise, pj, is the probability of the variable taking value j in
group g and d is the number of possible values or categories the variable can take.
Since we are assuming conditional independence, if we have k variables, their joint
group density can be written as a product of their individual group densities. If we

have = = (x1,...,x), we can write the general joint group density as:

kodi .
zlg~]] Hpij{;i:ﬂ (3.3)

i=1j=1
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where 1{z; = j} is the indicator function equal to 1 if the observation of the i
variable takes value j and 0 otherwise, p;;, is the probability of variable 7 taking value
j in group g and d; is the number of possible values or categories the ¥ variable can
take.

The overall density is then a weighted sum of these individual product densities

given as:
kod;

q
z~ Y (my [T T pily=") (3.4)
g=1  i=1j=1
where 0 < 7, < 1 and Z?zl Ty = 1.

The model parameters {p;;,, 7,;¢ = 1,...,k,j =1,...,d;,g = 1,...,G} can be
estimated from the data (for a fixed value of G) using the EM algorithm or Newton
Rhapson algorithm or a hybrid of the two. These algorithms require starting values
which are usually randomly generated. Because the algorithms are not guaranteed to
find a global maximum and are usually fairly dependent on good starting values it
is routine to generate a number of random starting values and use the best solution
given by one of these. In appendix B, an adjusted method useful for the cases where

an inordinately large number of starting values is needed to get good estimates of the

latent class models and G' > 2 is presented.

Identifiability

[36] discussed the issue of checking whether a latent class model with a certain number

of classes was identifiable for a given number of variables. The necessary condition

given for k variables with number of categories d = (dy, ..., d) for G classes is
k k
i=1 i=1

which is basically checking that there are enough pieces of information (or cell counts
or pattern combinations) to estimate the number of parameters in the model. How-

ever, in practice, not all possible pattern combinations are observed (some/many cell
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counts may be zero) and so the actual information available may be lower. A more

sensible check seems to be

k
# of non-zero cell counts > (D d; —k+1) x G (3.6)

i=1

When we speak of selecting the number of latent classes in the data we are only

considering the numbers for which this minimum criterion is satisfied.

Selecting the number of latent classes in the data

Each different value of GG, the total number of latent classes, defines a different model
for the data. A method is needed to select the number of latent classes present in the
data. Since a statistical model for the data is used, model selection techniques can
be applied to this question.

Different numbers of latent classes define different models for the data. In order
to choose the best number of classes for the data we need to choose the best model
(and the related number of classes). Bayes factors ([42]) are used to compare these
models.

The Bayes factor for comparing model M; versus model M; is equal to the ratio
of the posterior odds for M; versus M; to the prior odds for M; versus M;. This
reduces to the ratio of posterior odds when the prior model probabilities are equal.

The general form for the Bayes factor is:

_p(Y | M)
Y p(Y | M) (3.7

where p(Y | M;) is known as the integrated likelihood of model M; (given data Y).
p(Y | M;) is called the integrated likelihood because it is obtained by integrating over
all of the model parameters (in the latent class analysis case, the mixture proportions
and group variable probabilities). Unfortunately the integrated likelihood and thus
the ratio is difficult to compute (it has no closed form) and some form of approximation
is needed for calculating Bayes factors in practice. We use the Bayesian information

criterion (BIC) in our approximation which is very simple to compute.
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Bayesian Information Criterion

The Bayesian information criterion (BIC) is defined by

BIC = 2 x log(maximized likelihood)

— (no. of parameters) x log(n), (3.8)

where n is the number of observations.

Twice the logarithm of the Bayes factor is approximately equal to the difference
between BIC values for the two models being compared. We choose the number of
latent classes as discussed before by recognizing that each different number of classes
defines a model, which can then be compared to others using BIC. [44] showed BIC
to be consistent for the choice of the number of clusters in the context of a restricted
form of model-based clustering for normal clusters (where all variables are relevant
to the clustering). A rule of thumb for differences in BIC values is a difference of
less than 2 is looked at as not really worth mentioning in general, while a difference

greater than 10 is seen as constituting strong evidence ([42]).

3.2.2 Variable Selection Model

At any stage in the procedure we can partition the collection of variables into three

sets: Y(cust) Yy (Dandy (other) where:
o Y(cust) is the set of variables already selected as useful for clustering,
e Y is the variable(s) being considered for inclusion into/exclusion from Y st

o Y(©ther) ig the set of all other variables.

Given this partition and the (unknown) clustering memberships z we can recast the

question of Y(")’s usefulness for clustering as a model selection question using two



47

different models; M; which assumes Y?) is not useful for clustering and My which

assumes Y (") is useful for clustering.

Ml p(Y|Z) = p Y clust other |

VA

Y other)|Y clust )p Y ) (Y(clust)| ) (39)

Il
3

My :p(Y|z) =

S

= p Y other)|Y clust >p Y clust)lz)7

( )
( (
(Y clust other |Z)
( (
( (

= p Y (other) ‘Y clust )p Y ‘ ) ( clust)’z)’

where z is the (unobserved) set of cluster memberships. Model M; specifies that, given
y(clust) "y(*) is independent of the cluster memberships (defined by the unobserved
variables z), that is, Y(*) gives no information about the clustering. Model M implies
that Y*) does provide information about clustering membership, beyond than given
just by Yt This follows the approach used in the previous chapter for model-
based clustering with continuous data and normal clusters with the difference that
conditional independence of the variables was not assumed there and instead of p(Y ("))
in model M; we had p(Y'") | Y/(<#st)) which assumed conditional independence instead
of full independence, i.e. the assumption in model M; previously was that given the

clust) 'y (?) had no additional clustering information. The difference

information in Y
between the assumptions underlying the two models is illustrated in Figure 7?7, where
arrows indicate dependency.

We assume that the remaining variables Y °**¢") are conditionally independent of
the clustering given Y% and Y(*) and belong to the same parametric family in
both models.

Models M; and M, are compared via an approximation to the Bayes factor which

allows the high-dimensional p(Y (°ther)|y (clust) 'y () to cancel from the ratio. The

Bayes factor, By, for M, against My based on the data Y is given by

Bia = p(Y[M1)/p(Y[Ms,),



Ml M2

Figure 3.1: Graphical Representation of Models M; and M, for Latent Class Variable
Selection. In model M;, the candidate set of additional clustering variables, Y?), is
independent of the cluster memberships, z, given the variables Y (¢“sY) already in the
model. In model Ms, this is not the case. In both models, the set of other variables
considered, Y (°"¢") is conditionally independent of cluster membership given Y (¢iust)
and Y*), but may be associated with Y (st and Y.
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where p(Y|My) is the integrated likelihood of model M, (k = 1,2), namely

p(Y[My) = [ p(Y |65, Mi)p(86] My )0 (3.10)

In (3.10), 6 is the vector-valued parameter of model My, and p(0;|My) is its prior
distribution ([42]).
Let us now consider the integrated likelihood of model

My, p(Y|My) = p(Y(cust) 'y () 'y ether) | Vf ). From (3.9), the model M, is specified by
three probability distributions: the latent class model that specifies p(Y (5|9, M),
and the distributions p(Y(]6;, M) and p(Y 0ther) |y () y(elust) 9, M), We denote
the parameter vectors that specify these three probability distributions by 61, 612,
and #;3, and we assume that their prior distributions are independent. It follows that

the integrated likelihood itself factors:
p(Y[My) = p(Y |y ® v etwst) Ay p(y Oy p(v =D My), (3.11)

where
p(Y(Other)W(?), y (clust), M) = fp(Y(OthW”Y(?)y y(eust) g, M;) p(6:3| My)db:3, and sim-
ilarly for p(Y()|M;) and p(Y“s|M;). Similarly, we obtain

p(Y|M2) _ p(Y(othe'r’) |Y'(7)7 Y(clust)7 M2> p(Y(?), Y(clust) |M2), (312)

where p(Y()) Y{usD| M) is the integrated likelihood for the latent class model for
(YD), y (elust)y

The prior distribution of the parameter, 3, is assumed to be the same under M;
as under Ms. It follows that
p(Yethen) |y (0 y(ehust) £y ) = p(Y ether) [y () [y (eush) Af ). We thus have

YO My )p(Y D] M)
p<Y'(7)7 Y(clust)|M2) ’

which has been greatly simplified by the cancellation of the factors involving the

By =X

(3.13)

potentially high-dimensional Y (°*"¢") The integrated likelihoods in (3.13) are hard to
evaluate analytically, and so we approximate them using the BIC approximation of

(3.8).
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3.2.8 Headlong Search Algorithm

Given these models we need to find a method for creating partitions at each step.
Initially we need enough variables to start Y (“s) so that a latent class model for
G > 1 can be identified. If a latent class model on the set of all variables is identifiable
for G > 1 then we choose the best latent class model that can be identified and we
can rank the variables according to the sum of the variability of their categories’
probabilities across the groups, with the assumption that greater variability implies
greater separation of the classes on these variables implying greater importance for
these variables in the clustering. Given this ranking we choose the top minimum
number of variables that allow a latent class model with G > 1 to be identified. This

(clust) ]

is our starting Y The other variables can be left in their ordering based on

variability for future order of introduction in the stepwise algorithm.

In the case where the above strategy is not possible, a number of alternatives can
be used. The minimum number of variables needed for identification of a latent class
model with G > 1 can be calculated and a selection of random subsets of this number
of variables can be chosen and the variable set which gives the greatest overall average
variability of categories’ probabilities across the groups (given the best latent class
model identified) is chosen for the initial Y(¢“*). In small cases it may be possible to

enumerate all possible subsets to choose the best initial Y (st

Once we have an initial set of clustering variables Y (¢! we can proceed with the

general inclusion and exclusion steps of the headlong algorithm.

First we must define constants upper and lower, where upper is the quantity
above which the difference in BIC for models M, and M; will result in a variable
being included in Y (") and below which the difference in BIC for models M, and
M, will result in a variable being excluded from Y (Y and lower is the quantity
below which the difference in BIC for models Ms and M; will result in a variable being

removed from consideration for the rest of the procedure. A natural value for upper
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is 0, by which we mean that any positive difference in BIC for models Ms and M; is
taken as evidence of a variable’s usefulness for clustering and any negative difference
is taken as evidence of a variable’s lack of usefulness, whereas a difference of lower is
taken to indicate that a variable is unlikely to ever be useful as a clustering variable
and is no longer even checked. In general a large negative number such as -100 (which
by our rule of thumb would constitute strong evidence against) makes a sensible value

for lower.

e Inclusion Step: Propose each variable in Y (") singly in turn for Y*). Calcu-
late the difference in BIC for models My and M, given the current y (clust),
If the variable’s BIC difference is:

(clust

— not above upper but above lower, do not include in Y ) and return

variable to the end of the list of variables in Y (¢ther)

(clust

— below upper and lower, do not include in Y ) and remove variable from

Y(other)

— above upper, include variable in Y (?“sY) and stop inclusion step

If we reach the end of the list of variables in Y (°**¢") the inclusion step is stopped

e Exclusion Step: Propose each variable in Y (?“s*) singly in turn for Y'*) (with the

(clust)

remaining variables in Y not including current Y *) now defined as Y (cf#st)

in M; and M;).Calculate the difference in BIC for models My and M;.
If the variable’s BIC difference is:

— below upper but above lower, exclude the variable from (the original)
Y (@ust) and return variable to the end of the list of variables in Y (°**¢") and
stop exclusion step

— below upper and lower, exclude the variable from (the original) Y (cust)

and from Y (©*"¢") and stop exclusion step
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— above upper, do not exclude the variable from (the original) Y (cfust)

If we reach the end of the list of variables in Y (¢“sY) the exclusion step is stopped

If Y(cust) remains the same after consecutive inclusion and exclusion steps the
headlong algorithm algorithm is stopped (since the set will not change again).
This search algorithm is different from the greedy search algorithm described in

section 2.2.3 in two ways:

1. The best variable (in terms of the BIC difference) is not necessarily selected in

each inclusion and exclusion step in the headlong search.

2. It is possible that some variables are not looked at in any step after a certain

point in the headlong algorithm (after being removed from consideration).
3.3 Simulated Data Results

3.3.1 Binary data example

Five hundred points are simulated from a two class model satisfying the local inde-
pendence assumption. There are four variables that separate the classes (variables
1-4) and nine variables that are noise variables, i.e. have the same probabilities in
each class (variables 5-13). The true model parameters are reported in Table 3.1.
When we estimate the latent class model based on all thirteen variables BIC selects
a 2 class model as being the best fit for the data. Since we have simulated the data
and know the true membership of each point we can compare the partition given
by the true classification with that produced by the model estimated using all the
variables. The number of observations incorrectly classified by this model was 123.
The number of observations that would be incorrectly classified by using the model
with the true parameters is 110. The estimated parameters from the model with all

variables are given in Table 3.2.



Table 3.1: True model parameters for binary data example

Mixture proportions
Class 1 Class 2
0.6 0.4
Variable | Prob. of | Prob. of
success in | success in
class 1 class 2
1 0.6 0.2
2 0.8 0.5
3 0.7 0.4
4 0.6 0.9
5 0.5 0.5
6 0.4 0.4
7 0.3 0.3
8 0.2 0.2
9 0.9 0.9
10 0.6 0.6
11 0.7 0.7
12 0.8 0.8
13 0.1 0.1

23
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Table 3.2: Estimated parameters for the model involving all variables for the binary

data example

Mixture proportions

Class 1 Class 2
0.56 0.44
Variable | Prob. of | Prob. of
success in | success in
class 1 class 2
1 0.60 0.19
2 0.85 0.56
3 0.71 0.35
4 0.61 0.86
D 0.57 0.44
6 0.37 0.45
7 0.35 0.21
8 0.16 0.19
9 0.89 0.93
10 0.59 0.62
11 0.82 0.64
12 0.80 0.80
13 0.06 0.13
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The variables ordered according the variability of their estimated probabilities (in
decreasing order) are: 1, 3, 2, 4, 11, 7, 5, 6, 13, 9, 8, 10, 12. As expected the first
four variables are our clustering variables. We note that the difference between the
true probabilities across groups is 0.4 for variable 1 and 0.3 for variables 2 to 4. Since
variable 1 therefore gives better separation of the classes, we would expect it to be first
in the list. The number of variables needed in order to estimate a latent class model
with at least 2 classes is 3. So the set of variables suggested for starting clustering
variables is {1, 3, 2}. The individual step results for the variable selection procedure

starting with this set are given in Table 3.3.

Table 3.3: Results for each step of the variable selection procedure for the binary data
example

Variable(s) Step Clustering | # of | Independence | Difference | Accepted?
Proposed Type BIC Classes BIC

1,3, 2 Inclusion | -1976.35 2 -1981.25 4.90 Accepted

4 Inclusion | -2565.37 -2573.62 8.25 Accepted

11 Inclusion | -3148.76 2 -3146.72 -2.04 Rejected

4 Exclusion | -2565.37 2 -2573.62 8.25 Rejected

When clustering on the four selected variables only, BIC again chooses 2 classes

as the best fitting model. Comparing the partition gotten by classifying observations
based on the estimates from this model and the true partition we find that 110
observations have been misclassified which seems to be optimal given that this is the
error also gotten from classifying based on the true model parameters. The estimated

parameters from the model using only selected variables are given in Table 3.4.

The misclassification results are summarized in Table 3.5.
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Table 3.4: Estimated parameters for the model involving only the selected variables

for the binary data example

Mixture proportions
Class 1 Class 2
0.64 0.36
Variable | Prob. of | Prob. of
success in | success in
class 1 class 2
1 0.56 0.17
2 0.83 0.52
3 0.72 0.26
4 0.63 0.89

Table 3.5: Misclassification Summary for the binary data example. Recall that the
number of misclassifications for the model based on the true parameters was 110

Variables | No. of obs.
Included | misclassified
All 123
1,2,3,4 110
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3.3.2  Non binary data example

One thousand points are simulated from a three class model satisfying the local in-
dependence assumption. There are four variables that separate the classes (variables
1-4) and six variables that are noise variables, i.e. which have the same probabilities
in each class (variables 5-10). The true model parameters are reported in Table 3.6

and Table 3.7.

Table 3.6: True clustering parameters for the model with data from variables with
different numbers of categories

Mixture proportions
Class 1 Class 2 Class 3
0.3 0.4 0.3
Variable | Category | Prob. of Prob. of Prob. of
category in | category in | category in
class 1 class 2 class 3
Var. 1 Cat. 1 0.1 0.3 0.6
Cat. 2 0.1 0.5 0.2
Cat. 3 0.8 0.2 0.2
Var. 2 Cat. 1 0.5 0.1 0.7
Cat. 2 0.5 0.9 0.3
Var. 3 Cat. 1 0.2 0.7 0.2
Cat. 2 0.2 0.1 0.6
Cat. 3 0.3 0.1 0.1
Cat. 4 0.3 0.1 0.1
Var. 4 Cat .1 0.1 0.6 0.4
Cat. 2 0.5 0.1 0.4
Cat. 3 0.4 0.3 0.2
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When we estimate the latent class model based on all ten variables BIC selects a
2 (instead of 3) class model as being the best fit for the data. The difference between
BIC values for a 2 class and a 3 class model based on all variables is 68. Again, since we
have simulated the data and know the true membership of each point we can compare
the partition given by the true classification with that produced by the 2-class model
estimated using all the variables. A cross-tabulation of the true memberships versus

the estimated memberships from the 2 class model with all variables is given below

Estimated classes

1 2
True classes 1 293 25
2 85 324
3 245 28

The misclassification rate from using the model with the true parameters is 19.9%.
If we match each true class to the best estimated class in the 2 class model with all
variables we get a misclassification rate of 38.3%. If we assume that we knew the
number of classes in advance to be 3 then the misclassification rate for the 3 class
model with all variables is reduced to 25.7%. However this is knowledge that is not
typically available in practice.

The variables ordered according the variability of their estimated probabilities in
the 2 class model (in decreasing order) are: 2, 3, 1, 4, 6, 9, 7, 10, 8, 5. The first
four variables are our clustering variables. The number of variables needed in order
to estimate a latent class model with at least 2 classes is 3. So the set of variables
suggested for starting clustering variables is {2, 3, 1}. The individual step results for
the variable selection procedure starting with this set are given in Table 3.8

When clustering on the four selected variables only, BIC this time chooses 3 classes
as the best fitting model. Comparing the partition from classifying observations based

on the estimates from this model and the true partition we find that the misclassifi-
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Table 3.7: True non-clustering parameters for the model with data from variables
with different numbers of categories

Mixture proportions

Class 1 Class 2 Class 3
0.3 0.4 0.3

Variable | Category | Prob. of Prob. of Prob. of

category in | category in | category in

class 1 class 2 class 3
Var. 5 Cat. 1 0.4 0.4 0.4
Cat. 2 0.5 0.5 0.5
Cat. 3 0.1 0.1 0.1
Var. 6 Cat. 1 0.2 0.2 0.2
Cat. 2 0.4 0.4 0.4
Cat. 3 0.1 0.1 0.1
Cat. 4 0.3 0.3 0.3
Var. 7 Cat. 1 0.2 0.2 0.2
Cat. 2 0.3 0.3 0.3
Cat. 3 0.3 0.3 0.3
Cat. 4 0.1 0.1 0.1
Cat. 5 0.1 0.1 0.1
Var. 8 Cat. 1 0.2 0.2 0.2
Cat. 2 0.8 0.8 0.8
Var. 9 Cat. 1 0.7 0.7 0.7
Cat. 2 0.1 0.1 0.1
Cat. 3 0.2 0.2 0.2
Var. 10 | Cat. 1 0.1 0.1 0.1
Cat. 2 0.2 0.2 0.2
Cat. 3 0.1 0.1 0.1
Cat. 4 0.6 0.6 0.6
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Table 3.8: Results for each step of the variable selection procedure for the data from
variables with different numbers of categories

Variable(s) Step Clustering | # of | Independence | Difference | Accepted?
Proposed Type BIC Classes BIC

2,3, 1 Inclusion | -6122.65 2 -6193.37 70.72 Accepted

4 Inclusion | -8235.05 3 -8330.71 95.66 Accepted

8 Inclusion | -9261.46 3 -9248.28 -13.18 Rejected

2 Exclusion | -8235.05 3 -8322.40 87.36 Rejected

cation rate is 23.8%. The estimated parameters from the model using only selected

variables are given in Table 3.9.

The misclassification results are summarized in Table 3.10.

3.4 Real Data Examples

3.4.1 ICU Data

The ICU dataset comes from Appendix 2 of “Applied Logistic Regression ([40], [48]).

The dataset consists of observations on 200 different subjects who formed a subset of

a larger study on survival rates of adult patients admitted to an intensive care unit

at Baystate Medical Center in Springfield, Massachusetts. There were two classes

of patients, those (40) who died and those (160) who survived. It is hoped that

latent class analysis on the other 16 variables will pick up this underlying structure

reasonably well and that the variables found to be important to the clustering can

tell us which measures/tests could be more important for prognosis in ICU cases.

Information is available about the patient’s gender (male/female) [Gender], race

(white/black/other) [Race], service at admission (medical/surgical) [Servad], if cancer
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Table 3.9: Estimated parameters for the model involving only the selected variables
for the data from variables with different numbers of categories

Mixture proportions
Class 1 Class 2 Class 3
0.40 0.43 0.16
Variable | Category | Prob. of Prob. of Prob. of
category in | category in | category in
class 1 class 2 class 3
Var. 1 Cat. 1 0.10 0.34 0.85
Cat. 2 0.1 0.49 0.13
Cat. 3 0.80 0.17 0.02
Var. 2 Cat. 1 0.49 0.12 0.82
Cat. 2 0.51 0.88 0.18
Var. 3 Cat. 1 0.21 0.64 0.17
Cat. 2 0.27 0.14 0.63
Cat. 3 25 0.13 0.08
Cat. 4 0.27 0.09 0.12
Var. 4 Cat .1 0.14 0.53 0.39
Cat. 2 0.47 0.10 0.47
Cat. 3 0.39 0.37 0.14
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Table 3.10: Misclassification Summary for the data from variables with different
numbers of categories. (c) indicates that the number of classes was constrained to
this value in advance. Recall that the minimum misclassification rate from the model
based on the true parameters is 19.9%.

Variables No. of Misclassification
Included | Classes selected Rate
All 2 38.3%
All 3(c) 25.7%
1,2,34 3 23.8%

were part of the problem (yes/no) [Cancer]|, if there was a history of chronic renal
problems (yes/no) [CRN], probable infection (yes/no) [Infect|, whether CPR had been
performed prior to admission (yes/no) [CPR|, whether the patient had been previ-
ously admitted to the ICU (yes/no) [Previcu], type of admission (elective/emergency)
[Admit], whether there was a fracture (yes/no) [Fract], PO2 level in initial bloodwork
(> 60/< 60) [PO2]|, PH level in initial bloodwork (7.25/< 7.25) [PH], PCO2 level
in initial bloodwork (45/> 45) [PCO2], bicarbonate in initial bloodwork (18/< 18)
[Bicarb], creatinine in initial bloodwork (2/> 2) [Creat] and unconsiousness at ICU

(none/stupor/coma) [Consc].

When BIC is used to select the number of classes in a latent class model with all
of the variables, it decisively selects 2 (with a difference of at least 30 points between
2 classes and any other identifiable number of classes). When the variables are put in
decreasing order of variance of estimated probabilities between classes the ordering is
the following: Servad, Admit, Infect, Bicarb, Cancer, PO2, CPR, PH, PCO2, CRN,

Gender, Consc, Creat, Fract, Previcu and Race.

Observations were classified into whichever group their estimated membership

probability was greatest for. The partition estimated by this method is compared
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with the true partition below:

Lived Died
Class 1 92 11
Class 2 68 29

If class 1 is matched with the lived class and class 2 with the died class there is a
misclassification rate of 39.5%.

The variable selection method chooses 11 variables, all except Fract, Gender,
Previcu, Consc and Race. This does not mean these 5 variables are not useful for
classifying observations in general but that they do not add any extra class information
over the 11 variables selected. BIC again selected 2 classes for the latent class model
on the selected variables. Again the estimated partition from this model is compared

to the true partition.

Lived Died
Class 1 93 12
Class 2 67 28

The misclassification rate is again 39.5%. Now the partition from the model in-

volving all variables is compared to that of the model only using the selected variables:

Sel. Var. Class 1 Sel. Var. Class 2
All Var. Class 1 103 0
All Var. Class 2 2 95

Clearly the only difference between the partitions is that two observations classified
as class 2 in the model with all variables are classified as class 1 in the model with
only the selected variables. One error is made in each instance. Apart from these
two observations, the largest difference in estimated group membership probabilities
between the two latent class models is 0.1. This is unsurprising as the estimated
model parameters in the variables common to both latent class models and the mixing

proportions differ between models by at most 0.03.
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3.4.2 Hungarian Heart Disease Data

This dataset consists of five categorical variables from a larger dataset (with 10 other
continuous variables) collected from the Hungarian Institute of Cardiology. Budapest
by Andras Janosi, M.D ([22], [33]). The outcome of interest is diagnosis of heart dis-
ease into two categories: < 50% diameter narrowing and > 50% diameter narrowing,.
Originally there was information about 294 subjects but 10 subjects had to be removed
due to missing data. The five variables given are: gender (male//female) [sex], chest
pain type (typical angina/atypical angina/non-anginal pain/asymptomatic) [cp], fast-
ing blood sugar > 120 mg/dl (true/false) [fbs], resting electrocardiographic results
(normal/having ST-T wave abnormality /showing probable or definite left ventricular
hypertrophy by Estes’ criteria) [restecg] and exercise induced angina (yes/no) [exang].

When BIC is used to select the number of classes in a latent class model with all
of the variables, it decisively selects 2 (with a difference of at least 38 points between
2 classes and any other identifiable number of classes). When the variables are put in
decreasing order of variance of estimated probabilities between classes the ordering is
the following: cp, exang, sex, restecg and fbs.

Observations were classified into whichever group their estimated membership
probability was greatest for. The partition estimated by this method is compared

with the true partition below:

<50% narrowing >50% narrowing
Class 1 134 13
Class 2 47 90

If class 1 is match with the <50% class and class 2 with the >50% class there is
a misclassification rate of 21.2%.

The variable selection method chooses 3 variables: cp, exang and sex. BIC selects
2 classes for the latent class model on these variables. The partition given by this

model is exactly the same as the one given by the model with all variables. The largest
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difference in estimated group membership probabilities between the two latent class
models is 0.1. The estimated model parameters in the variables common to both
latent class models and the mixing proportions differ between models by at most
0.003.

The estimated parameters for the latent class model with all variables included is

given in Table 3.11.
3.5 Discussion

As demonstrated by the simulated examples in the previous sections, the variable
selection procedure selects the correct variables and using only selected variables in
latent class models can help improve both the misclassification rate and the selection
of the correct number of underlying classes in the data. The medical examples given
show that a smaller subset of measurements can be used to classify the subjects
which could help improve the speed of diagnosis/prognosis without degrading the
classification performance.

In general it appears to be a better idea to perform some kind of variable selection
prior to attempting to estimate the final clustering model either in the discrete data
case or the continuous data case. We have seen that inclusion of noise variables can
have degrading effects on two important aspects of clustering: model estimation and
choice of number of clusters.

In terms of estimation of the model, including variables with no cluster structure
can either smear out separated clusters/classes or introduce spurious classes. It is
difficult without any extra knowledge to know what can happen in advance. From
looking at the simulations and data sets presented here as well as others, it would
appear that these problems only occur when separation between the classes is poor
in general.

Although [44] showed that BIC was consistent for choice of number of classes in

the case of restricted (multivariate) normal and poisson mixture models, this work was
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Table 3.11: Estimated parameters for the model involving all variables for Hungarian

Heart Disease Data

Mixture proportions

Class 1 Class 2
0.49 0.51
Variable Category Prob. of Prob. of
category in | category in
class 1 class 2
Chest Typical angina 0.07 0.00
Pain Atypical angina 0.64 0.08
Type Non-anginal pain 0.29 0.08
Asymptomatic 0.00 0.83
Exercise Induced No 0.98 0.42
Angina Yes 0.02 0.58
Gender Female 0.38 0.16
Male 0.62 0.84
Resting Normal 0.82 0.80
Electrocardiographic Having ST-T 0.15 0.20
Results wave abnormality
Showing probable 0.03 0.01
or definite left ventricular
hypertrophy by
Estes’ criteria
Fasting blood sugar False 0.94 0.92
> 120 mg/dl True 0.06 0.08
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done assuming that all variables were relevant to the clustering. Empirical evidence
seems to suggest that when noise/irrelevant variables are present the result no longer
holds true. The general correctness of the BIC approximation in a specific case of
binary variables with two classes in a naive bayesian network (which is equivalent
to a 2-class latent class model with the local independence assumption satisfied) was
looked at in [62]. The authors found that although the traditional BIC penalty term
of # of parameters x log(# of observations) (or half this depending on the definition)
was correct for regular points in the data space, it was not correct for singularity
points (with two different types of singularity points requiring two adjusted versions
of the penalty term). Similarly in the case of redundant or irrelevant variables being
included (which is closely related to the two singularity point types) they found that
the two adjusted penalty terms were correct.

These issues with clustering with noise make it imperative for some form of variable

selection to be done in order for appropriate models to be found.
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Appendix A: Headlong Search Variable Selection for Latent Class Clus-
tering Algorithm

Here we give a more complete description of the headlong search variable selection
and clustering algorithm for the case of discrete data modeled by conditionally in-
dependent multinomially distributed groups. This version allows for choosing the
number of clusters and the model parameterizations as well, if required, otherwise
one can simply alter the steps below slightly to choose only the number of clusters.
Note that for each latent class model fitted in this algorithm one must run a number
of random starts to find the best estimate of the model (in terms of BIC). We recom-
mend at least 5 for small to medium problems but for bigger problems hundreds may
be needed to get a decent model estimate. The issue of getting good starting values

without multiple generation of random starts is dealt with in appendix B.

e Choose Gaz, the maximum number of clusters/classes to be considered for the
data. Make sure that this number is identifiable for your data! Define constants
upper (default 0) and lower (default -100), where upper is the quantity above
which the difference in BIC for models M, and M; will result in a variable
being included in Y (@) and below which the difference in BIC for models M,

clust) “and lower is the

and M; will result in a variable being excluded from Y
quantity below which the difference in BIC for models My and M; will result in

a variable being removed from consideration for the rest of the procedure.

e First step : One way of choosing the initial clustering variable set is by es-
timating a latent class model with at least 2 classes for all variables (if more
classes are identifiable, estimate all identifiable class numbers and choose the
model with the best number of classes via BIC). Order the variables in terms of
variability of their estimated probabilities across classes. Choose the minimum
top variables that allow at least a 2-class model to be identified. This is the
initial YY) We do not require that the BIC difference between clustering
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clust

and a model with a single component for our Y (¢“sY) to be positive at this point
because we need a set of starting variables for the algorithm. These can be

removed later if there are not truly clustering variables.

Specifically we estimate the {p;;,,i = 1,...,k,7 = 1,...,d;,9 = 1,...,G}
where k is the number of variables, d; is the number of categories for the 7
variables and G is the number of classes. For each variable ¢ we calculate
V(i) = Z;-lizl Var(pijg). We order the variables in decreasing order of V(i):
yW y@ . y® and find m the minimum number of top variables that will

identify a latent class model with G > 2.

Y(clust) — {y(l)’ y(Q)’ o ’y(m)}

Y(other) _ {y(m—l-l)’ o 7y(k)}

If the previous method is not possible (data cannot identify latent class model
for G > 1) then split the variables randomly into subsets with enough variables
to identify a latent class model for at least 2 classes, estimate the latent models
for each subset and calculate the BICs, estimate the single component models
for each subset and calculate the 1 class BICs and choose the subset with the
highest difference between latent class model and 1 component model BICs as

the initial Y (clust),

Specifically look at the list of categories d = (dy,...,d;) and work out the
minimum number of variables m that allows a latent class model for G > 2 to
be identified. Split the variables into S subsets of at least m variables in each.

For each set Y,,s =1,...,5 estimate:
BIOdiff(ifs) - B]Cclust(ys) - B]Onot clust(Y;>

where BIC st (Ys) = maxocg<i,an A BICa(Ys)}, with BICs(Ys) being the BIC
given in 3.8 for the latent class model for Y, with G classes and G4, being the
maximum number of identifiable classes for Ys, and BICot ciust(Ys) = BIC, (Y5).
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We choose the best variable subset, Y;1, such that
1 — .
s = arg max (BICuz(Y;))
and create

Y(clust) _ Ysl

and Yt — y\y,

where Y\ Y1 denotes the set of variables Y excluding the subset Y.

(other)

Second step : Next we look at each variable in Y singly in order as the

(clust)  For each variable

new variable under consideration for inclusion into Y
we look at the difference between the BIC for clustering on the set of variables
including the variables selected in the first set and the new variable (maximized
over number of clusters from 2 up to G,,4,) and the sum of the BIC for the
clustering of the variables chosen in the first step and the BIC for the single
class latent class model for the new variable. If this difference is less than lower
the variable is removed from consideration for the rest of the procedure and we
continue checking the next variable. Once the difference is greater than upper
we stop and this variable is included in the set of clustering variables. Note that
if no variable has difference greater than upper we include the variable with the

largest difference in the set of clustering variables. We force a variable to be

selected at this stage to give one final extra starting variable.

other) into its variables y', ..., y"2. Foreach jin1,..., Dy

Specifically, we split Y
until BICust(y?) > upper, we compute the approximation to the Bayes factor
in (3.13) by

BICdiH(yj> = B[Cclust(yj) - B[Cnot clust (yj)

where BIC 6 (y7) = maXQSGSGmm{B]Cg(Y(Cl“St), y)} with BICq (Y (€ust) yi)
being the BIC given in (3.8) for the latent class clustering model for the dataset
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including both the previously selected variables (contained in Y (¢#s)) and the
new variable y/ with G classes, and BIC,ot clust(4”) = BICreg+ BICopyst (Y 1450)
where BIC\eq is BIC(y’) and BI Copust (Y51 is the BIC for the latent class

clustering model with only the currently selected variables in Y (cfst)
We choose the best variable, y/2, with

jo = arg  max (BIOdiff(yj))

j:yjey(othe'r)
and create
Y(clust) _ Y(clust) U ng

and Y(Other) — Y(other)\ng

where Y (“ust) (472 denotes the set of variables including those in Y (?™“s*) and

variable /2.

General Step [Inclusion part] : Each variable in Y ©*") is proposed singly
(in order), until the difference between the BIC for clustering with this variable
included in the set of currently selected clustering variables (maximized over
numbers of clusters from 2 up to G4 ) and the sum of the BIC for the clustering
with only the currently selected clustering variables and the BIC for the single

class latent class model of the new variable, is greater than upper.

The variable with BIC difference greater than upper is then included in the set
of clustering variables and we stop the step. Any variable whose BIC difference
is less than lower is removed from consiferation for the rest of the procedure. If
no variable has BIC difference greater than upper no new variable is included

in the set of clustering variables

Specifically, at step t we split Y (%" into its variables y',...,y"*. For j in
1,..., D, we compute the approximation to the Bayes factor in (3.13) by

BICdiff(yj) = B[Oclust (y]) - BICnot clust (y]) (3 14)
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where BICpust (1) = MaXo<G<Gpnan; {BICq(Y s 49)}, with BICq (Y (“1ust) q7)
being the BIC given in (3.8) for the latent class clustering model for the dataset

including both the previously selected variables (contained in Y (<)) and the

new variable y/ with G clusters, and BIChet clust(y?) = BICyeq+BICoyst (Y (clust))

where BIC, is the single class latent class model for variable v and BI Cclust(Y(Cl““))

is the BIC for the clustering with only the currently selected variables in Y (¢?st),

We check if BICyg(y’) > upper,

if so we stop and set

yletust) - —y (st it if BICqig(y™) > 0

and Y(©ther)  — ylether)\ it if BIC () > 0

if not we increment j and re-calculate BICyg(y’) If BICqg(y’) < lower we

remove it from both Y (¢ust) and Y (other)

If no j has BICgqg(y?) > upper leave Y (clust) = y (clust) apnd y (other) — y (other),

General Step [Removal part] : Each variable in Y (¢“5*) is proposed singly
(in order), until the difference between the BIC for clustering with this variable
included in the set of currently selected clustering variables (maximized over
numbers of clusters from 2 up to G4, ) and the sum of the BIC for the clustering
with only the other currently selected clustering variables (and not the variable
under consideration) and the BIC for the single class latent class model of the

variable under consideration, is less than upper.

The variable with BIC difference less than upper is then removed from the set of

clustering variables and we stop the step. If the difference is greater than lower

other

we include the variable at the end of the list of variables in Y( ). If not we

remove it entirely from consideration for the rest of the procedure.If no variable
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has BIC difference less than upper no variable is excluded from the current set

of clustering variables

In terms of equations for step t+1, we split Y (@) into its variables ", ..., yP#1.
For each 5 in 1,..., D;;1 we compute the approximation to the Bayes factor in
(3.13) by

B[Cdiff(yj) = B[Cclust - BICnot clust (yj)

where BIC. s = maxsocg<a,,., 1 BICa(Y D)} with BICq,, (Y (D) being
the BIC given in (3.8) for the model-based clustering model for the dataset
including the previously selected variables (contained in Y (¢“s*)) with G clusters,
and BIChyet clust (¥7) = BICheg + BICeust (Y €49\ y7) where BIC,q is the single
class latent class model for variable 3/ and BIC, (Y @*9\y7) is the BIC for

clust)

the clustering with all the currently selected variables in Y except for 1.

We check if BICyg(y?) < upper,
if so we stop and set
y (clust) - — Y(CZUSt)\yjt if BICyua(y™) < upper

and Y(0ther)  — y(other) Yt if lower < BICqg(y™) < upper

if not we increment j and re-calculate BICyg(y’) If BICyg(y?) < lower we

remove it from both Y (clust) qnd Y (other)
If no j has BICqg(y’) < upper leave Y (clust) = Yy (clust) apd y (other) — y (other)
After the first and second steps the general step is iterated until consecutive

inclusion and removal proposals are rejected. At this point the algorithm stops

as any further proposals will be the same ones already rejected.
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Appendix B: Headlong Search Variable Selection for Latent Class Clus-
tering Algorithm with Smart Starting Values

In the previous appendix we discussed the details of the headlong algorithm for latent
class variable selection. In each step multiple latent class models for different set of
data/variables and classes are estimated. Previously we have only mentioned that
starting values are generated randomly for each model several times and the best (in
terms of BIC/likelihood) of the resulting estimated models is chosen as the single es-
timate for a particular latent class model. This means that for each different dataset
and each different number of classes we are required to generate random starting val-
ues and estimate the model via EM numerous times. For datasets with reasonable
numbers of variables this is not too computationally expensive but for more complex
datasets it is burdensome. Also with increasing numbers of observations and/or vari-
ables and /or classes more random starts are needed to have any confidence in finding
the global maximum likelihood for the model as the likelihood surface becomes more

complex, with increasing numbers of local maxima.

Because of the stepwise nature of the algorithm we can use models estimated
before to give good starting values for new models. By starting values here we mean
the matrix z of conditional probabilities of membership in the different components

for each observation.

At the end of each step (either inclusion or exclusion) we have a set of currently
selected clustering variables. At some point in the step we have estimated the latent
class model for this set over a range of classes (or sometimes just one, 2 classes) and
chosen the model with the number of classes that gives us the highest BIC. We can
call this model LC' A, yrrent and the number of classes in this best model for the current
set of clustering variables G rent- We can also save the z matrix for this model and
call it Zeyrrent-

clust)

In our next step we will be either looking at models for Y with a new ad-
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(clust) Jeaving out one of the current

ditional variable (inclusion step) or models for Y
clustering variables. It seems obvious that a reasonable starting z matrix for models
involving the new dataset (which is either a sub- or super-set of the old one) and num-
ber of classes Geyrrent Wwould be zeyrrent, because the dataset will only have changed by
one variable. So instead of randomly generating multiple z matrixes (or other starting
parameters) to try to get the global maximum likelihood for our latent class model,
we merely use what we believe to be a good set starting z matrix (which hopefully
will be reasonably close to the global maximum in the new likelihood space).

However, we may still wish to have good starting values for the new dataset with
different numbers of classes, Goyrrent £¢. But our zeyrrent Will be an n X G oyprent matrix
(where n is the number of observations) and we need n X (Geyprent = ¢ matrices. How
can we sensibly create a new matrix with ¢ more/less columns given our Zeyrrent?

We will look at the case for +1 and —1 separately (the analogue for general +c
and —c should be obvious). It will be rare in practice to need more than £1 at each
step as the number of identifiable classes will only generally increase with the number
of variables selected.

For —1 we want to reduce the number of columns of our z.,.rent by 1. A sensible
way to do this is to collapse the two closest classes (in terms of Euclidean distance
in the parameter space). We calculate the distances between the classes’ estimated
parameters/probabilities from LC A.yrrent and select the closest two. We then simply
remove the two columns corresponding to those classes from z.,..ens and replace them
with one column equal to the sum (across rows) of the removed columns. This is our
new starting z matrix for the model with G.yrrent — 1 classes. In terms of a single
observation with probability p; of being in the first chosen class and probability py of
being the second chosen class we are saying the observation has probability p; + ps of
being in the new class created from the amalgamation of the two i.e. the observation
will be in the new class if he is in either of the old classes. Note that if we wish to,

we can weight the distances with the mixing proportions, making it more likely that
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we would join smaller close classes.

For —c we can use the resulting matrix from the process described in the previous
paragraph to estimate the model for Gyprent — 1 classes and then reduce the resulting
estimated z from this model by one column in the same fashion, continuing on in the
same way until we have removed ¢ columns.

For +1 we want to increase the number of columns of our z.yrent by 1. An obvious
way to do this is by splitting a class in two. We choose the largest class (in terms of
mixing proportions). We then remove the column corresponding to that class from
Zewrrent and call this w and estimate a two class latent class model using the data
points weighted by w. Obviously we have returned to problem of needing starting
values for estimating our 2-class model. However usually a small number of randomly
generated starts, say 5, for this number of classes will result in an estimated model
achieving the global maximum likelihood and this is usually not too computationally
expensive. Once we have our 2-class model estimate of the z matrix, called 2, we
can multiply this by w and add the resulting two columns to the original zeuqren: (less
the removed column), giving us a starting z matrix for estimating the Geyrrent + 1
class model. We can think of w as being the conditional probability of an observation
being in the old selected class and then the new 2z, matrix as being the probability
for an observation being in either of the two new sub-classes given it was in the old
class.

Again for +c we can use the resulting matrix from the process described in the
previous paragraph to estimate the model for Gyrene +1 classes and then increase the
resulting estimated z from this model by one column in the same fashion, continuing

on in the same way until we have added ¢ columns.
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Chapter 4

NORMAL UNIFORM MIXTURE DIFFERENTIAL GENE
EXPRESSION DETECTION FOR CDNA MICROARRAYS

4.1 Introduction

Differentially expressed genes between two or more samples may be of interest to
researchers for different reasons, for example, looking at causes of or treatments for
diseases such as cancer. Given appropriately processed data, the researcher needs a
methodology for assessing the genes in order to separate out ones of interest, i.e. genes
with “significantly” different levels of expression in different samples. Widely used
methods for single slide data include examining the ratio of expression levels for the
gene in each of the two samples/channels (or the log ratio), which was the quantity
examined in one of the first statistical analyses for differential expression in cDNA
microarrays [14]. One of the earliest uses of this quantity for determining differential
expression was the “rule of two”, where if the gene’s ratio of expression levels in the
two channels/samples is greater than two or less than half, it is considered to be
differentially expressed [64].

Methods for data with replicate slides include the standard t test, which requires
adjustment for the multiple comparisons being made. Modifications of this approach
to account for multiple comparisons include the approach of Dudoit, Yang, Callow
and Speed [26], which used a permutation analysis on Welsh’s ¢-statistics, and the
Significance Analysis of Microarrays (SAM) method, which modifies the t-statistic
by adding a constant to the denominator [68]. A good summary of multiple testing
adjustments is given by [25].

The idea of modeling the data as two groups of genes, one differentially expressed
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and one not, seems to be a natural and intuitive approach. This approach has been
used in the context of a Bayesian analysis [58], EBarrays, assuming that the ob-
served ratios had a gamma distribution the reciprocal of whose scale parameter itself
had a gamma distribution, or, as an alternative assumption, that the observed log
ratios were normally distributed and the prior for the mean was normal also. A
two-component mixture model was used to model the two groups and the posterior
probabilities were used to make inference about differential expression. This follows
from work done for single slide data with a Gamma-Gamma hierarchical model [57].
Another approach using mixture models is given by Pan, Lin and Le [59].

This chapter presents a very simple methodology based on mixture models called
Normal Uniform Differential Gene Expression (NUDGE) detection. It is applicable
to both single slide and replicated cDNA microarray datasets, produced by two of the
more widely used experimental setups. After standardizing, the log ratio (or averaged
across replicates log ratio) observations are modeled with a two-component mixture
model; a normal component for those genes that are not differentially expressed and
a uniform component for those that are. The mixture gives posterior probabilities of
differential expression which do not need to be adjusted for multiple testing. This
methodology is applied to three different experiments. The experiments include single
replicate data (Like-Like), multiple replicate data (HIV and Apo Al), experiments
with different samples being labeled with their own dyes (HIV) and experiments with
all samples being labeled with one dye and compared to a reference sample (Apo
A1). The results given by NUDGE are compared with those given by some other
methodologies for these types of cDNA microarray experiments (different comparison

methods used for different types of experiments).
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4.2 Methods

4.2.1 Model for Detecting Differential Expression

Our methods are applied to normalized average log ratios; we discuss the specification
of these quantities in different experimental settings in the section on normalizations
below. In this section we will refer to them simply as observed log ratios. We use
logarithms to base 2.

Our model is a normal-uniform mixture model [5, 67]. We begin by modeling the
genes as two different groups: differentially expressed and non-differentially expressed.
Each group is modeled by its own density, and so the data as a whole are modeled
by a weighted mixture of these densities, where the weights correspond to the prior
probabilities of being in each of the two groups. This results in a mixture model with
two components. Since genes that are not differentially expressed have a true log ratio
of zero with some measurement /other error, we model the observed log ratios for these
genes, after an appropriate transformation, as a group with a Gaussian density. The
differentially expressed genes have log ratios that are, for the most part, in some
sense “far” from the other group. So these genes can be viewed as outliers from the
main distribution of non-differentially expressed genes. These genes are modeled as
uniformly distributed over an appropriately wide range.

The model is
2 AN (@il %) + (1= m)Uiy (), i=1,..., N, (4.1)

where x; is the observed log ratio for gene i, 7 is the prior probability that a gene is
not differentially expressed, N(z|u,o?) denotes a Gaussian distribution with mean p
and variance 02, U,y (x) denotes a uniform distribution on the interval [a, b], and N
is the number of genes.

We estimate the model by maximum likelihood using the EM algorithm [20]. We

define the unknown labels, z;, ¢ = 1,..., N, where z; is 0 if gene 7 is not differentially



30

expressed and 1 if it is. There are two steps in the algorithm: the Expectation, or E
step, where the labels are estimated given the current parameter estimates, and the
Maximization, or M step, where the model parameters, 7, p and o2, are estimated
given the current estimates of the labels. The maximum likelihood estimates of a
and b are ¢ = min{z; : i = 1,...,N}, and b = max{z; : i = 1,..., N}; these do not
change during the algorithm. The steps in the algorithm are as follows:

Iteration k

Expectation Step

(k) _ (1-a*=D)U, 5 (20)
. T AN (2] k=D (D)) + (-2 kD) U g (24)

i=1,...,N.

Maximization Step

N -z
[ ] 7A]'(k) = 721.:1(]\1[ a )

)

SN (1-2®)xa;

nk) —
e [ Zf‘vzl(l_éz(k)) )

N 7"(’“) (k)2
5(k)\2 — D iy (1= x (@i =)

The likelihood for the model given parameter estimates at iteration k is
N

L(x; 7%, a9 (69)%) = iHl{fr(’“’Mxi; a0, (6 M)?) + (1 =70, ()} (4.2)

The above steps are iterated until convergence. Convergence can be checked by
calculating the parameter estimates, the labels, and the logarithm of the likelihood
at each step, given the current estimates of the parameters. Once the change in
these quantities between steps gets small enough, the algorithm is deemed to have
converged. The increasing property of the EM algorithm guarantees that a local
maximum is reached, but a global maximum cannot be guaranteed. This depends on
the starting values. For the analyses in this chapter, the starting value for the label z;

was 1 if gene ¢’s observed log ratio, minus the mean value for all genes and divided by
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the standard deviation of the values across all genes, was greater than 2 in absolute
value, and 0 otherwise. This appeared to give good results.

The final label estimate for gene i, Z;, is the posterior probability that it is differ-
entially expressed, given the parameter estimates. The posterior probabilities do not

need to be adjusted for multiple comparisons.

4.2.2  Normalizations

There are two different types of experimental setup for which we will discuss nor-
malization. The first is where the two different samples, say control and treatment,
have each been labeled with a different color dye, say treatment with red (Cy5, R)
and control with green (Cy3, G). In the second experimental setup, the treatment
and control samples have replicates, with both control and treatment replicates being
labeled with the same dye, say red (Cy5, R), and these are compared to a reference
sample labeled with the other dye.

Two of the data sets analyzed in this chapter, the HIV and the Like-like datasets,
are of the first type of setup. The other data set analyzed in this chapter is the
Apo Al mouse data [26] which is of the second type of setup, with pooled control
mRNA used as its reference sample. Since there are slightly different normalizations
and quantities of interest used for analysis in these two cases, we will discuss them
separately below, referring to the first experiment type as the log ratio experiment
(since the log ratios are the quantities of interest), and to the second as the log
ratio difference experiment (since the differences of log ratios between control and

treatment samples are the quantities of interest).

Normalizations for the log ratio cDNA FExperiment

The main problem in applying the Normal-Uniform mixture model is that the data
need to be normalized in order for this model to be appropriate. In the basic type

of cDNA experiment, the log ratio of expressions in the two samples is the quantity
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of interest. There are dye and other effects that add a bias, making the mean of
the non-differentially expressed log ratios non-zero (see the Like-like example in the
Results section). Also, the variance of the log ratios depends on the log of the total
intensity, where the total intensity is defined as the product of the red and green
intensities. We also need to ensure that any normalization does not “pull in” the

differentially expressed genes.

Single slide normalizations

The normalization of single slide log ratios is a two-step process. In the first step,
the observed log ratios are regressed nonparametrically on the log total intensities,
using the lowess regression smoother [16], and the fitted value is subtracted from the
observed log ratios. In our implementation, a modification, the loess smoother [17],

is used in place of lowess. Specifically,

log, (2) — log @) — ¢(log(RQ)), (4.3)

where R and G are the intensities in the red and green channels, and ¢(log(RG)) is
the fitted value from loess regression of log(R/G) on log(RG), a situation we denote
by c(log(RG)) = loess(log (%) ~ log(RG)). We got good results with a loess span
in the range 60% to 80%. This generally did a good job of normalizing the mean but
not the spread.

The spread depends on the log intensity, log( RG), and we estimate a running mean
absolute deviation by loess regression of the absolute mean-normalized log ratio on
the log total intensity. We then divide the mean-normalized log ratio by the loess-
estimated mean absolute deviation in order to get our final estimate,

R\ 108u0m (£)
108,,0rmv (G) = CU(T(RS))’ (4.4)

where ¢,(log(RG)) = loess(|10g,,0rm (g) | ~ log(RG)). We got good results with a

span between 10% and 20%. As can be seen from the figures in the Results section,
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this does a good job of making the log ratios for non-differentially expressed genes

approximately normal and homoscedastic.

Multiple slide normalizations with dye swap

In dye swap experiments, there is an even number of replicates and they are divided
into two groups with equal numbers of replicates. In the second group of replicates,
the assignment of dyes to samples is the reverse of that in the first group. Log ratios
in this case are taken with the different samples set as the numerator and denominator
(since the assigned dyes will be different for the two groups and averaging must be
done over the same ratio of samples not the same ratio of dyes). In that case, mean
normalization is unnecessary, although normalization of the variance is still required.
This is because we take the average of the log ratios across replicates, ensuring that

the dye effect cancels out.

Multiple slide normalizations without dye swap

Here we take the average of log ratios and log total intensities across replicates for
each of the genes and apply the mean lowess normalization, given by equation 4.3,
with average log ratios and total intensities in place of the single replicate log ratios
and total intensities.

The variance normalization is not the same for multiple replicate slides as for a
single slide. Because the average log ratios are not robust to outliers, even after mean
normalization, we carry out a normalization based on variation across replicates rather
than on variation depending on intensities, to downweight the influence of outlying
observations. If the empirical standard deviation of the log ratios across replicates
is greater than the absolute mean-normalized average log ratio for a gene, we divide
its mean-normalized average log ratio by its standard deviation. If the empirical
standard deviation of the log ratios across replicates is small, defined as smaller than

the absolute mean-normalized average log ratio, we divide instead by a constant.
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The constant is chosen to be a high percentile (we use the 99th) of the distribution
of the standard deviations of genes for which the absolute mean-normalized average
log ratio is greater than the standard deviation. This avoids a gene being declared
differentially expressed just because its empirical across-replicate standard deviation
is small, as can easily happen by chance when there are few replicates.

Thus the mean- and variance-normalized log ratio for a given gene is:

OT-p— (g) = glnaks} + %1[@25]7 (4.5)
where g is the mean-normalized average log ratio, s is the standard deviation of log
ratios across replicates, and k is the chosen percentile of the distribution of standard
deviations of genes whose absolute mean-normalized average log ratio is greater than

their standard deviation.

Normalizations for the log ratio difference cDNA Experiment

Here the quantity of interest is the difference in average log ratios between control

and treatment replicates.

We define
1 Nireatment 1 Ncontrol
M = Z Qtreatment,i — Gcontrol,j, (46)
Ntreatment i=1 Ncontrol j=1

Ncontrol

1 Ntreatment
A== ( Z Qtreatment,i + Z qcomml’j) , (47)

n i—1 j=1
where Ny earment 18 the number of treatment replicates, Neoniror is the number of control
replicates, n = Nreatment + Neontrol, Qireatment,i 15 the log ratio of treatment replicate ¢
and Geontrorj 1s the log ratio of control replicate j. With these definitions we give the
multiple-replicates normalizations, defined analogously to those in the log ratio type

experiment.
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Multiple slide normalizations
We again use loess to allow dependence of the mean normalization of M on A in

the following way:

Myormn = M — ¢(A) (4.8)

where ¢(A) = loess(M ~ A), with the recommended span for the loess smoother
being between 60% and 80%.

For the variance normalization we again use the information about the variance
contained in the replicates to get a robust estimator of the overall variance. We
calculate the variance of log ratios across the n.,nio Teplicates in the control dataset
and call this Vo0 Similarly we calculate the variance of log ratios across the
Nyreatment TePlicates in the treatment dataset and call this Vi catment. Our estimate for
the standard deviation s, in M for each gene is given by

‘/treatment ‘/;ontrol
s = +

Nireatment Necontrol

(4.9)

We then develop the variance normalization similarly to the previous log ratio type

experiment case. The variance normalization is given by

M o Mnorm Mnorm
normuv

1[‘Mn07‘m|<s] _I_ k 1[|Mnorm‘25]' (410)

4.2.8  Summary of model and normalizations for different experiments

A summary of the quantities of interest (used in the normalizations and normal uni-
form mixture model) and the normalizations is given in Table 4.2.3.

4.2.4  Methods for comparison with NUDGE

We now give brief descriptions of the methods for finding differentially expressed
genes that will be used for comparison with NUDGE in the datasets examined in the

Results section.
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Rule of Two

This simple but popular method, mentioned in [64], involves examining the ratios or
average ratios of the two channels for each gene, and calling those genes with a ratio
or average ratio greater than two or less than half, differentially expressed. It requires

some initial normalization and its performance can depend on the normalization.

t test and adjusted t test

One of the most obvious first approaches to try for this problem is the classical ¢ test,
as used, for example, in [3]. A simple normalization consisting of centering the mean
of the log ratios within each replicate is often used in this case. One needs to be able
to estimate the standard deviations as well.

Because of the large number of tests being run (thousands in the usual cDNA
experiment setup), the standard ¢ test needs to be modified to account for the mul-
tiple testing. Traditionally the most popular adjustment has been the Bonferroni
correction, as mentioned in [50]. For the Bonferroni correction with N genes/tests
and significance level «, we instead call each test significant only if it is significant at

the £ level, controlling for the probability of one or more false positives.

EBarrays

This follows a hierarchical Bayes approach for modeling the gene expression levels
as detailed in [43]. As in our approach, the data are assumed to be generated by
a two-component mixture model, one component for differentially expressed and the
other for non-differentially expressed genes, each with their own distribution. The
parameters specifying these distributions are estimated from the data, whence the
name Empirical Bayes.

Results in this framework are given for two different parametric models in [43]. In

the first model, the observed intensities for the replicates in each channel are assumed
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to be independently generated from a gamma distribution with a channel-specific scale
parameter. The scale parameters are, in turn, assumed to have an inverse gamma
distribution, whose parameters are estimated from the whole dataset. In the second
model, the log ratios are assumed to be normally distributed, with gene-specific means
that are themselves normally distributed. To normalize, the authors divided the log
ratio for a given gene and replicate by the average log ratio across genes for that

replicate.

Significance Analysis of Microarrays (SAM) [68].

The statistic used to test for differential expression is a regularized ¢ statistic, i.e. the
mean value divided by the sum of the standard deviation and a constant. SAM
controls the False Discovery Rate (FDR), i.e. the proportion of genes declared to
be differentially expressed that are not in truth differentially expressed. A rejection
region is fixed and SAM uses a permutation analysis to estimate the FDR. The user

then decides on an acceptable rejection region based on their preferences for FDR.

4.3 Real Data Examples

4.3.1 HIV dataset

The HIV dataset that we analyze consists of four replicate experiments comparing
cDNA from CD4+ T cell lines at 1 hour after infection with HIV-1BRU with non-
infected cell lines on each slide; see [70] for details. There were four slides in total
with the same RNA preparations hybridized to each. This dataset is useful in testing
the specificity and sensitivity of methods for identifying differentially expressed genes,
since there are 13 genes known to be differentially expressed (spots containing PCR
products from segments of the HIV-1 genome which the cDNA of the infected cells
should hybridize to and the non-infected should not) called positive controls, and 29

genes known not to be (non-human genes which neither infected nor non-infected
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cDNA samples should hybridize to) called negative controls.

There are 4608 gene expression levels recorded in each replicate. The four repli-
cates have balanced dye swaps, so no mean normalization of the (averaged across
replicates) log ratios was necessary provided we always used one sample (say the in-
fected sample) in the numerator of the log ratio and the other (non-infected sample)
in the denominator regardless of which dye was used to label which sample in each
array /slide.

NUDGE took a few seconds to run. All 13 positive controls, no negative con-
trols and three other genes were found to be differentially expressed (with posterior
probability greater than 0.5).

It is clear from Figure 4.1 that the rule of two under any normalization gave
less than optimal results. In all cases the rule of two correctly found the positive
control genes to be differentially expressed. However, in the unnormalized case it also
incorrectly found 3 of the 29 negative controls to be differentially expressed, as well
as b8 other genes (including the three found by NUDGE). In the variance-normalized
case, it incorrectly found one of the 29 negative controls to be differentially expressed,
as well as 27 other genes (including the three found by NUDGE). Even though the
rule of two is suboptimal, its performance can be improved through the use of the
normalization methods suggested here.

Table 4.2 shows the results of different methods for the control genes. NUDGE
had a perfect result for these genes, with no false positives and no false negatives.
The Bonferroni-corrected ¢ test was the only method considered that recorded any
false negatives. The rule of two (normalized or unnormalized), SAM and the EBarrays
Lognormal-Normal model all had false positives. Only the EBarrays Gamma-Gamma
model equaled NUDGE’s performance on these control genes.

In order to assess the stability of the different methods, the four replicates were
split into two different subsets of two replicates each (still with balanced dye swaps),

and the agreements and disagreements between the genes found to be differentially
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Table 4.2: Summary of Results for HIV data for control genes

t test

Method Number of | Number of
False False
Negatives | Positives
Rule of Two 0 3
(on unnormalized data)
Rule of Two 0 1
(on variance normalized data)

NUDGE 0 0
SAM 0 2
EBarrays (GG) 0 0
EBarrays (LNN) 0 1
t test 0 1
Bonferroni corrected 1 0

91
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expressed in each of the two datasets was calculated for each of the methods.

A

summary of the results is given in Table 4.3. The number of genes found to be

differentially expressed in each of the datasets by each method is given in Table 4.4.

Table 4.3: Number of agreements and disagreements between the differentially ex-

pressed genes found in the two sets of two replicates for the HIV data

NUDGE | SAM | EBarrays | EBarrays | t test | Bonferroni
GG LNN t test
Agreements 14 19 13 13 34 15
Disagreements 27 153 16 32 531 217

Table 4.4: Number of genes declared to be differentially expressed by each method
for the HIV data using 2 and 4 replicates

NUDGE | SAM | EBarrays | EBarrays | t test | Bonferroni
GG LNN t test
All 4 replicates 16 42 24 19 26 12
Replicates 1&3 30 49 23 27 193 83
Replicates 2&4 25 142 19 31 406 164

Comparison of results depends on how one weights agreement (roughly indicating

true positives) against disagreement (roughly indicating false positives). NUDGE had

more agreement and less disagreement than EBarrays-LNN, and thus dominated it

on both these criteria. The t test, both raw and corrected, and SAM, had more agree-

ment, but at the cost of a much higher level of disagreement than NUDGE. NUDGE

had more agreement, but also significantly more disagreement, than EBarrays with a

Gamma-Gamma model.
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Finally in order to check the empirical fit of the model to this data (where we
know we have both differentially and non-differentially expressed genes) we plot the

model’s fitted density over a histogram of the normalized log ratios in Figure 4.2. The

model seems to fit the normalized data fairly well.
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Figure 4.2: Plot (a) shows a histogram of the normalized average log ratios for the
HIV data along with a dashed line showing the model-fitted density. Plot (b) shows a

close-up of the right-hand tail of the histogram (where the positive controls lie) with
a dashed line showing the model-fitted density.
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4.3.2  Like-Like dataset

This dataset is from a microarray experiment where the same samples (with different
dyes) were hybridized to an array with 7680 genes. The expression levels in the red
and green dyes were extracted from the image using customized software written at
the University of Washington (Spot-On Image, developed by R. E. Bumgarner and
Erick Hammersmark). The genes should be equally highly expressed, as each sample

is the same, so ideally we should find few differentially expressed genes.

Figure 4.3 (a) shows the log ratios plotted against the log total intensities. Here
we see evidence of the dye effect, since if it were not present the data would fall with
some variation about a zero-intercept horizontal line. Figure 4.3 (b) is a plot of the
mean-normalized log ratio against the log total intensity. In Figure 4.4 we plot the
absolute mean-normalized log ratio as a function of log total intensity. We use a loess
smoother of this as a robust estimate of how spread depends on log total intensity.
This is used to get the loess variance-normalized log ratios, which are plotted against
the log total intensities in Figure 4.3 (¢). The data now look much more normal
and homoscedastic. The NUDGE method took less than 5 seconds to run with 10

iterations of the EM algorithm.

The results are summarized in Table 4.5. NUDGE found 28 differentially expressed
genes (with posterior probability greater than 0.5). This is a false positive rate of
0.4%. With no normalization, the rule of two declared 3233 genes to be differentially
expressed, 42.1% of the total; clearly this is not appropriate. After the data had been
mean-normalized, the rule of two found 281 differentially expressed genes, a false
positive rate of 3.7%. When the data have been mean- and variance-normalized, the
rule of two finds 105 genes, a false positive rate of 1.4%, still higher than NUDGE.
Since there is only one replicate in this case, neither ¢ tests, SAM nor EBarrays can

be used to test for differential expression.
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© -
— loess smoother

Absolute normalized log ratio

log Intensity

Figure 4.4: Absolute mean normalized log ratio versus log total intensity for Like-like
Data. The loess line in this plot represents the estimate of the gene-specific Mean
Absolute Deviation (MAD), a robust estimator of spread.
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Table 4.5: Results for the Like-like data - SAM, EBarrays and t tests are not applicable

to single slide data.

(on mean and variance loess

normalised data)

Method Estimated False
Positive Rate
Rule of Two 42.1%
(on unnormalized data)

Rule of Two 3. 7%

(on mean loess

normalised data)
Rule of Two 1.4%

NUDGE

0.4%




98

4.3.3 Apo Al dataset

This dataset was analyzed in [26] and 8 genes were suggested to be differentially
expressed. The data was obtained from 8 mice with the Apo Al gene knocked out
and 8 normal mice. However the replicates were not created simply by comparing
samples from control labeled with one dye versus knock-out mice labeled with the
other. Instead, cDNA was created from samples from each of the 16 mice (both
control and knock-out) and labeled with a red dye. The green dye was used in all

cases on cDNA created by pooling all 8 control mice. The statistic used in [26] was

average of knock-out log ratios - average of control log ratios

(4.11)
\/ 1 (Variation of knock-out log ratios + Variation of control log ratios)

We used the numerator of this statistic, which is the same as M defined in equa-
tion 4.6, in place of ordinary average log ratios, as detailed in the Methods section.
Again the method took only a few seconds to run. Figure 4.5 shows the data at differ-
ent stages of normalization along with the genes found to be differentially expressed
in [26]. Table 4.6 shows the gene position numbers of those genes whose posterior
probability of being differentially expressed was in the top sixteen found by NUDGE.
All eight of the genes found by [26] to be differentially expressed were also found to
be differentially expressed with high probability by our method. The lines in Figure
4.5 indicating the rule of two cut-off appear either to miss genes that are differen-
tially expressed (in the unnormalized and mean-normalized cases), or to give a large
number of possible false positives (in the mean- and variance-normalized case).

For application of SAM, the data were normalized in the standard way, by center-
ing the log ratios across genes within a replicate about zero. Two different levels of
the SAM control parameter delta gave reasonable answers when using SAM on this
data set. The first level (0.61) found 15 genes to be differentially expressed, including
the eight genes found in [26] and by NUDGE, and the False Discovery Rate was es-
timated to be 5.3%. If we assume that only these eight genes are correct, this would

actually correspond to a False Positive Rate of 46.7%. The second level (3.53) found
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Table 4.6: NUDGE’s Top 16 Genes from the Apo data

Top 16 genes in terms of NUDGE
posterior probability of differential expression
Row numbers | Probability of Found by
in data matrix | differential | Dudoit et al [26]7
expression
540 1.000 Yes
2149 1.000 Yes
5356 1.000 Yes
1739 0.999 Yes
4139 0.999 Yes
2537 0.998 Yes
4941 0.993 Yes
1496 0.829 Yes
5986 0.330 No
541 0.263 No
716 0.099 No
2538 0.087 No
1224 0.066 No
799 0.060 No
1204 0.057 No
3729 0.050 No




101

six genes to be differentially expressed, a subset of the eight genes found by [26], and
the False Discovery Rate was estimated to be 13.3%. Assuming that only those eight
genes are correct, this corresponds to a False Positive Rate of 0% but a False Negative
Rate of 25%. These were the best results we obtained using SAM.

For similarly normalized data, both the ¢ test and the Bonferroni adjusted ¢ test
found the 8 genes identified by [26] to be differentially expressed. However, the ¢ test
found an additional 852 genes to be differentially expressed at the 5% significance
level (13.5% of all genes), and the Bonferroni adjusted t test found an additional two
genes to be differentially expressed. A summary of the results for the Apo data is

given in Table 4.7.
4.4 Conclusions

We have proposed a simple method for detecting differentially expressed genes that is
fast and can be applied to single-slide and multiple-replicate experiments, as well as
to log ratio difference experiments. It accounts for the multiple comparisons involved,
and produces a posterior probability of differential expression for each gene, rather
than just a yes/no testing result. The posterior probabilities can be used either to
declare which genes are differentially expressed, or to produce a ranked list of genes
for further analysis. The method worked well for the three datasets that we analyzed.
In terms of known false positives and false negatives, the method outperforms all
multiple-replicate methods except for the Gamma-Gamma EBarrays method to which
it offers comparable results with the added advantages of greater simplicity, speed,
fewer assumptions and applicability to the single replicate case.

Our method can be seen as a parametric alternative to adjustment of tests for
multiple comparisons using false discovery rate ideas [65], or empirical Bayes formu-
lations [28]. A similar idea was proposed in [19] for large numbers of tests, in which
the distribution of the test statistic was modeled as a mixture of two normals, one

corresponding to the null hypothesis being true, and the other to its being false. This
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Table 4.7: Results for the Apo data

Method Number of 8 Number of
Dudoit et al [26] | other genes
genes found to be | found to be
differentially differentially
expressed expressed
Rule of Two 3 0
(on unnormalized data)
Rule of Two 7 0
(on mean normalized data)
Rule of Two 8 134
(on mean and
variance normalized data)
NUDGE 8 0
SAM (delta=0.61) 8 7
SAM (delta=3.53) 6 0
t test 8 852
Bonferroni corrected 8 2

t test
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differs from our approach in that we use a uniform distribution for the mixture compo-
nent that corresponds to departures from the null, rather than a mean-shifted normal.
Because of this, a method such as [19] could not find both over- and underexpressed
genes.

A similar idea with different distributional assumptions, using only normally dis-
tributed components is given in [59]. Instead of the average log ratios used in the
method presented in this chapter, [59] use a t-type statistic using the difference of
average gene intensities. A more complex approach given by [8] involves modeling
each level of differential expression with its own normal component.

In our approach the important aspect of the mixture is the cutoff points where the
weighted normal density falls below the height of the weighted uniform density. Points
beyond the cutoff are declared to be differentially expressed (under a 0.5 posterior
probability rule). These cut-off points are relatively unaffected by outliers which
affect the range of the data and thus the range and height of the uniform component,
because the normal density falls off very rapidly towards the tails, and also because
the estimated mixture weights change accordingly.

An important part of the method is normalization in terms of variance as well
as mean. This extends the original lowess normalization in [26]. As a preprocessing
step, it improves the performance not only of NUDGE, but also of other methods,
including the simplest of all, the rule of two. Thus, this normalization method may
be useful as a preprocessing tool for analysis of differential gene expression, regardless

of which method is used to draw final inferences.
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Appendix: Different Distributions for non-differentially expressed genes

One of the more useful aspects of the like-like data is that given we know there should
be no differentially expressed genes present, i.e. all the data, once normalized, should
be distributed normally; we can check the validity of this assumption. If we look at
theoretical versus sample quantile plots to examine the normality of the like-like data
we see from Figure 4.6 that while the normalizations improve the normality of the

data some non-normal aspects remain.

The most obvious distribution to examine after the normal is the Student’s t
distribution for varying numbers of degrees of freedom. We look at these in Figures
4.7, 4.8, 4.9, 4.10 and 4.11. It would appear from these plots that a t distribution
with 6 to 10 degress of freedom does a better job of modeling the normalized log

ratios than the normal distribution.

We maximize the log-likelihood of the normalized log ratios for the like-like data
with respect to the location, scale and degrees of freedom parameters of the general-
ized t distribution. The maximum is achieved at location -0.02 (which makes sense
given the normalization), scale 0.31 and degrees of freedom 7.81. The maximized log
likelihood is -2983 (which is 21 points higher than the maximised log likelihood for

the normal-uniform mixture).

The data is then modeled using a (generalized) t-uniform mixture and the max-
imum likelihood parameters are found. The estimated parameters, as well as those
for the normal-uniform mixture are given in Table 4.8. The larger degrees of freedom
found for the t makes sense, as the uniform is taking account of some of the extreme
observations. The number of false positives (genes incorrectly identified as differen-
tially expressed) for the t-uniform mixture is 7 which is a reduction of 22 from the
normal-uniform model. The maximum log-likelihood is also higher for the t-uniform

than for the normal-uniform.

Given that we know that this model reduces the number of false positives, we
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(a) Student’s t Q—-Q Plot (b) Student’s t Q—Q Plot

Figure 4.7: t-distributed Quantile-Quantile plots (1 & 2 degrees of freedom) for nor-
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(a) Student’s t Q—Q Plot (b) Student’'s t Q—Q Plot
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Figure 4.8: t-distributed Quantile-Quantile plots (3 & 4 degrees of freedom) for nor-
malized like-like data. (a) 3 degrees of freedom, (b) 4 degrees of freedom
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(a) Student’s t Q—-Q Plot (b) Student’s t Q—Q Plot

Figure 4.9: t-distributed Quantile-Quantile plots (5 & 6 degrees of freedom) for nor-
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(a) Student’s t Q—Q Plot (b) Student’'s t Q—Q Plot
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Figure 4.10: t-distributed Quantile-Quantile plots (7 & 8 degrees of freedom) for
normalized like-like data. (a) 7 degrees of freedom, (b) 8 degrees of freedom
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(a) Student’s t Q—-Q Plot (b) Student’s t Q—Q Plot

Figure 4.11: t-distributed Quantile-Quantile plots (9 & 10 degrees of freedom) for
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Table 4.8: Results for Maximum Likelihood Estimation of the Mixture Models for
the like-like data

Model Location | Scale | Degrees of Mixing Max. Log | # of False

Freedom | Proportion | Likelihood | Positives

Student’s-t- -0.02 0.32 10.61 0.9978 -2970 7
Uniform
Normal- -0.00 0.35 - 0.9937 -3004 29
Uniform

need to ensure that it reduces (or does not increase) the number of false negatives.
To check this we look at the HIV dataset. We first fit the model allowing the degrees
of freedom to be unconstrained and then constrain the degrees of freedom to be the
same of those found fitting a single t distribution to the like-like data (7.81). The
estimated parameters are given in Table 4.9.

We can see that, unlike the like-like data, when the degrees of freedom for the t in
the t-uniform mixture is allowed to be unconstrained it is estimated to be an extremely
large number with the resulting model being almost identical to the normal-uniform
model. When we constrain the degrees of freedom to be the same as that estimated
for the single t distribution fit to the like-like data, the scale parameter becomes
somewhat smaller as does the log likelihood and there is an additional false negative

that was not present in the other two models.
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Chapter 5
FUTURE WORK

5.1 Variable Selection

An obvious extension of overall variable selection for clustering (looking for variables
which separate any /all of the clusters in some way) is to look at the idea of each cluster
having a set of variables that separates it from the other clusters. This has been looked
at in the context of heuristic clustering ([47]) and has been referred to as biclustering,
following the idea that the variables are clustered into different (possibly overlapping)
sets for separating clusters of observations and the observations are clustered (on the
variables). We would like to look at idea of biclustering from a model-based point of
view.

Clearly, different models than the ones proposed in chapters 2 and 3 can be used to
test for variables’ clustering capabilities. The one variable case of Y () is simpler and
requires less assumptions but we could also have Y(*) being more than one variable.
Clearly this will be easy in the latent class set-up since we are modeling with indepen-
dence between Y ) and YY) for M;. However, more assumptions will be needed
in the context of model-based clustering. One possibility is to allow each variable in
Y®) to be regressed on both the variables in Y (?“sY) gnd the other variables in Y(").

This will allow greater flexibility in the kind of search algorithms which can be used.
5.2 Differential Gene Expression Detection

Although we have presented a model that could be applicable to any type of mi-
croarray chip technology (Aguilent/Affymetrix/cDNA chips) the normalizations are

specific to cDNA arrays. Currently Affymetrix chips are falling in price and becoming
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increasingly popular. To make this method applicable to Affymetrix chips we need
to adjust normalization procedures for Affymetrix technology.

Alternatively we could remove the normalization stage (except for normalizing
in the sense of ensuring comparability of different slides) and use different modeling
assumptions to model the non-normalized log ratios directly e.g. using a mixture
of normals to model the non-differentially expressed genes group and a uniform or
some other type of noise component to model differentially expressed genes. Or we
could model both the log ratios and the log total intensities using a mixture with the
principal curves technology ([39]) for the non-differentially expressed genes and the

uniform or other distributions to model the differentially expressed genes.
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