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Abstract. In educational research, a fundamental goakistifying which skills stu-
dents have mastered, which skills they have not, and whidls skey are in the
process of mastering. As the number of examinees, itemsskilisl increases, the
estimation of even simple cognitive diagnosis models besodificult. We adopt a
faster, simpler approach: clustecapability matrixestimating each student’s individ-
ual skill knowledge to generate skill set profile clustersiofdents. We complement
this approach with the introduction of an automatic subepdastering method that
first identifies skills on which students are well-separgigdr to clustering smaller
subspaces. This method also allows teachers to dictatézéharsd separation of the
clusters, if need be, for practical reasons. We demondtratéeasibility and scalabil-
ity of our method on several simulated datasets and illtesttze dificulties inherent
in real data using a subset of online mathematics tutor data.

1 Introduction

One of the most important classroom objectives in educati@search is identifying stu-
dents’ current stage of skill mastery (compjptatiajnone). A variety of cognitive diag-
nosis models address this problem using information frotudest response matrix and
an expert-elicited assignment matrix of the skills requiiier each item [9, 12]. However,
even simple models become mordidult to estimate as the numbers of skills, items, and
students grow [9]. Faster methods that scale well with ldafasets and provide immedi-
ate feedback in the classroom are needed. In addition, thed®ds also need to be able
to incorporate practical information from and be interpceby classroom teachers.

In previous work [1], we introduced @apability matrixshowing for each skill the propor-
tion correct on all items tried by each student involving tiall (extending the sum-score
work of [3,7]) and applied two standard clustering methaddéntify students with similar

skill set profiles. This approach gives faster, comparatsalts to common cognitive diag-
nosis models, scales well to large datasets, and adds figxibiskill mastery assignment

(allowing for partial mastery). However, the use of clustgralgorithms usually requires
assumptions about the number, size, and shape of the slusbtéch may be unknown.

Moreover, standard techniques do not allow for easy ingatpmn of user-specified sepa-
ration and size thresholds.

In this paper, we complement our previous work by proposimglternative approach, an
automatic conditional subspace clustering algorithmtidets advantage of obvious group
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separation in one or more dimensions (skills). Users do aetino specify a number of
clusters nor a particular cluster shape. The method onlyiresja separation threshold (i.e.
how far apart groups of students should be before they waittbhsidered dierent) and a
size threshold (i.e. what size would warrant the implem@naf an additional strategy).

After describing the use of the capability matrix (Sectignvie introduce an algorithm in
Section 3 that identifies skills with clearly separated gaf students (if any) and corre-
spondingly partitions the feature space. In Sections 4,e5d@monstrate the approach on
simulated data from a common cognitive diagnosis model dsaselata from the Assist-
ment Project [6], an ongoing IES funded online mathematitsrtdevelopment research
project. Finally we conclude with comments on current antdrieiwork in Section 6.

2 Skill Set Profile Clustering

After estimating the students’ skill knowledge via the daipgy matrix (or other appro-
priate estimate), we use clustering methods to partitienstbdents into similar skill set
profiles. In recent cognitive diagnosis clustering worlerarchical clustering, k-means,
and model-based clustering have all been utilized. We ddletziil the methods here (see
e.g.[4,5]) but instead briefly define and highlight streggtleaknesses. Also, this paper’s
focus is the description of an automatic conditional subséustering algorithm; detailed
comparisons of estimates’ and algorithms’ performancegsewhere [submitted].

2.1 The Capability Matrix

The capability matrix is constructed using an item-skilpeiedency matrixQ and a student
response matri¥Y. The Q-matrix, also referred to as a transfer model or skill codihg
12], is aJ x K matrix whereqy, = 1 if item j requires skillk and O if it does not,J is
the total number of items, arfd is the total number of skills. Th@-matrix is usually an
expert-elicited assignment matrix. This paper assumegitlesm Q-matrix is known and
correct. Student responses are assembledNirxal response matri¥ wherey;; indicates
both if student attempted itenj and whether or not they answered it correctly &hid the
total number of students. If studerdid not answer itenj, theny;; = NA(i.e. Iy, .na = 0).
If studenti attempted itenj (ly,.na = 1), theny;; = 1 if they answered correctly (O if not).

In [1], we define arN x K capability matrix B whereBj is the proportion of correctly
answered items involving skik that student attempted,

J
Zj:l |yij¢NA “Yij - ik
Bik =

Zf:l Iyij;&NA' Qjk

wherey;; andqj are the corresponding entries from the response méterd Q-matrix.
The vectorB; estimates studems skill set knowledge and then maps studemtto a K-
dimensional hypercube. For each dimension, zero indicadeskill mastery, one is com-
plete mastery, and values in between are less certain. "Thgg&rcube corners correspond
to the true skill set profile€; = {Ci1, Ciz, ..., Cik }, Cik € {0,1}. This skill knowledge esti-
mate accounts for the number of items in which the skill appaa well as for missing data.

2



If Bix = NA, we impute an uninformative value (e.g., 0.5, mean, medigrploring this
choice is ongoing. Here we assume the data are completerectgrimputed. Similarly
to [3,7], we find groups of students with similar skill set fies by clustering thd;.

2.2 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering (HC) “links up” gis in order of closeness to form
a tree structure (dendrogram) from which a cluster solutiamm be extracted. The user-
defined distance measure is most commonly Euclidean destaBreefly, all observations
begin as their own group. The distances between all pairsafpg are found (initially
just the distance between all pairs of observations). Tosest two groups are merged; the
inter-group distances are then updated. We alternate thgimgeand updating operations
until we have one group containing all observations. Thaltesire represented in a tree
structure where two groups are linked at the height equéildio inter-group distance. The
algorithm requires priori how to define the distance between two groups. Here we use
the common complete linkage method. Complete linkage defireedistance between two
groups as the largest distance between a pair of obsersatiole from each group, i.e.
d(Ck, C)) = maXc, jec, I(X — 1(1.)||2. It tends to partition the data into spherical shapes.

Once constructed, we extraGt clusters by cutting the tree at the height corresponding
to G branches; any cluster solution with = 1,2, ..., N is possible. In [3], extraction of

G = 2K clusters is suggested. This choice may not always be wisst, Finot all skill set
profiles are present in the population, we may split some Iprofusters incorrectly into
two or more clusters. Moreover, M < 2X (a reasonable scenario for many end-of-year
assessment exams), we will be unable to extract the desiratler of skill set profiles.

2.3 K-means

K-means is a popular iterative descent algorithm for data {x;,X,,....x} € R It
uses squared Euclidean distance as a dissimilarity measdré&ies to minimize within-
cluster distance and maximize between-cluster distanoe.afgiven number of clusters
G, k-means searches for cluster centegsand assignment& that minimize the criterion
mina Zgzle(i)zg X — Xg||2. The algorithm alternates between optimizing the cluster ce
ters for the current assignment (by the current cluster s)eamd optimizing the cluster
assignment for a given set of cluster centers (by assigoitigetclosest current center) un-
til convergence (i.e. cluster assignments do not chang&ndis to find compact, spherical
clusters and requires the number of clus@m@nd a starting set of cluster centers.

A common method for initializing k-means is to choose a randet ofG observations as
the starting set of centers. In our hyper-cube, anotheraladat of starting cluster centers
could be the ? skill set profiles at the corners. If students mapped closetieir profile
corners, k-means should easily locate the nearby groupsEnXg = 2 has been suggested
[3]. However, again if we are missing representatives from or more skill set profiles in
our population, forcing ¥ clusters may split some clusters into sub-clusters unsaciés

In [1], this issue was addressed by allowing k-means to henyeclusters.



2.4 Model-Based Clustering

Model-based clustering (MBC) [4, 10] is a parametric staté approach that assumes:
the dataX = {x;, X,, ..., X,}, X, € R are an independently and identically distributed sample
from an unknown population densityx); each population groug is represented by a
(often Gaussian) densify(X); andp(x) is a weighted mixture of these density components,
ie. p(x) = Zgzl Ty - Pg(X;0g) Whereyng = 1, 0 < 1y < 1forg = 1,2,...,G, and

0y = (ug, Xg) for Gaussian components. The method chooses the numbemgfonents

G by maximizing the Bayesian Information Criterion (BIC) aestimates the means and
variancesgg, Xq) via maximum likelihood. While it may assume Gaussian congmts, its
flexibility on their shape, volume, and orientation allovisdent groups of varying shapes
and sizes. MBC also often fits overlapping components inféortdo improve fit; users
are not able to specify cluster separation information aedatso required to give a range
of possible numbers of clusters. If multiple students maghéosame hypercube location,
MBC may overfit the data by using spikes with near singulaacawice in these locations.
To alleviate this concern (and improve visualization), itefj theB; a small amount (0.01).
The dfect on our results is minimal.

In all three cases, the algorithm returns a set of clustetecemnd an assignment vector
mapping eachs; to a cluster. A cluster center represents the skill set jerédil that subset
of students. Note that cluster centers are not restrictdueton the neighborhood of a
hypercube corner (although they could be assigned to omt)iring cluster centers rather
than their closest corners gives more conservative estgdtskill mastery (vs./Q).

As a small illustrative example, we use a subset of 26 itergairag three skills from
the Assistment System online mathematics tutor [6]. Qh@atrix is unbalanced; Skill 1
(Evaluating Functions) appears in eight items (six single, triple), Skill 2 (Multiplica-
tion) in 20 items (18 single, two triple), and Skill 3 (Unit &gersion) in two items (both
triple). Overall, 551 students answered at least one iteguré 1 shows the corresponding
3-D cube, each corner one of eight true skill set profilesc&ldnit Conversion appears in

only two items,Bjyc € {0, % 1}; students are mapped to three well-separated planes.

o T $ 555585 55 $ 555585 55

B gt o B
Gﬁ% i H 3
01 111“’ i 7 ' aly

55 5 5 ’ 222 2 ’ e 1313

Figure 1:Cluster Assignments: a) HC, Complé®e-8; b) K-mean<$=8; c) MBC G=14



Figures l1a-c) show the clusters found by HC (complete), kimagand MBC respectively.
We setG=2X=8 for both HC and k-means; MBC searched oerl to 25, choosing 14.
Only MBC separated the students in the three Unit Convergianes Bjyc=0:1-4, 6, 9-
14; Bijyc=0.5: 5; Biyc=1: 7, 8). Both HC and k-means combined students with (arguabl
very) different Unit Conversion capability across planes into chgstén contrast, MBC
assigns one cluster to the students vBih-=0.5 and two clusters to those wiByc=1.0
(the corner cluster contains multiple students). In akéhsolutions, th&;,c=0 students
are split among several clusters defined by tlBeig and By, capabilities. In the HC and
k-means results, these clusters include one to three staéh By,c=0.5.

Updating the clusters with new items, skills, etc requirésimal computational time; for
example, MBC required 21 seconds. Classroom teachers can quickly see the changes i
the students’ skill knowledge over time. However, none &f tiwree solutions seems the
obvious winner. In addition, the user was only able to deethe number of clusters (and
somewhat restrict shape); no guarantees were made abogdparation and size.

3 Conditional Subspace Clustering or “Valley-Hunting”

In general, final clusters are chosen according to a critefaneasure of closeness. Often
the user has to define the number of clusters in advance wbidH be useful to a teacher
with fixed resources. For example /bige might ask for three groups of students clustered
on their skill knowledge. However, three clusters may nptesent the class well. There
may be more or fewer unique skill set profiles. Moreover, thred clusters might be very
similar or very diferent sizes (which both may be impractical). A more useftihd@n

of a cluster might be a well-separated group of studentetdlgn some size threshold.

While any skill's marginal distribution will always have anfie number of unique values,
the marginal distribution of some skills may show very wsdbarated groups of students.
We can take advantage of these skills by partitioning theehgybe along their marginal
separations. This subsetting alone may be enough to ditudests into appropriate clus-
ters. However, it may be the case that there is multivariatger structure not detectable
by examining the marginal distributions. As such, we adt®caing this algorithm either
alone or as a dimension reduction tool for other clusterieghods. That is, we could first
use the marginal distributions to select skills with obwa@uoup structure and then cluster
(if needed) the resulting subspaces. Reducing the dimealip prior to clustering can
greatly improve #iciency angor results [10]. While the Figure 1 hyperplane separation
is clear, it could be very dicult to identify obvious separations in a higher dimensiona
hypercube with noisier marginal distributions. A methodatdomatically find candidate
skills for partitioning (and alert teachers to skills theparate the class) is more desirable.

Akin to the nonparametric clustering notion that a densityode corresponds to a group
in the population [5] and the discretization of continuoasables, we condition on a skill
if its marginal distribution contains one or more “signifitaalleys”, a non-trivial area of
low density between two high density areas. This decisiamasle by investigating the
marginal distribution’s contours. Scanning from zero te ae low density area must be



preceded by a descent and followed by an ascent, both ofegtadrger than a specified
depth threshold (cluster size), and must be wider than afsggewidth threshold (cluster
separation). There are at least two ways in which low dersiéas might occur. A skill
only occurs in a few items and so has few possiglevalues, or theB might be centered
around only a few values. If one or more significant valleys faund, we partition the
hypercube at the minimum density point of each significafieya (Other choices could
be made, e.g. the halfway point between the two peaks.) lctipea we initially search
for significant valleys in all skills’ marginal distributies to select skills for partitioning (if
any). The resulting subspaces consisting of dimensioiitsjskithout obvious separations
are then clustered if desired; the results can be combinedire final clustering solution.

Let 74, 7w be the respective depth and width separation thresholés-gpecified). These
thresholds can be constant offdr over skills ¢4k, Twk). FOr computational ease, we use
histograms to represent each skill's marginal distributid’he user may also choose a
histogram bin width. The automatic subspace partitionlggrithm is as follows:

For each skilk:
Calculate the probability histogram for the given bin widtlet A; = height of Bini.
Define the gradieng;;,; as the diference in the percent of students in hinis+ 1.
Letyn = 4; — 4 be the total descent gradient from a peak (Bito a valley (Binj).
Letyp = A — 4 be the total ascent gradient from a valley (Bjo a peak (Binj).
Let L, be the location of the mode preceding the current valleyn(scdartpoint).
Let L, be the location of the lowest height of the current valley.
Initialize L, = L, = Bin 1.

1) Scany; .1 until i1 < 0.
If no such gradient exists, there are no remaining valleys.
2) Else, scany; 1 until y;i;; > 0 (end of valley) or out of bins; compuig,.
If |yn] > 74, have found a “significant” descent. Sgt= Bin i + 1.
3) Scany; ;1 until y; i1 < 0 (end of peak) or out of bins; compugg.
If |yp| > 74, we have found a “significant” ascent. Find valley wiekh
If w> 7, significant valley; store mode locations. Else, do notestor
In either case, sét,, = L, = Bini + 1. Scan for next vallefreturn to 1).
Else, have not found significant ascent.
Scany;j,1 until y;;,1 > 0 (end of next valley) or out of bins.
If 2.1 < A, current valley is lower than valley &t,.
SetL, = Bini + 1. (return to 3)
Else, current valley is higher than valleylat have “hiccup mode”.
(return to 3)
Else, have not found a significant descent.
Scany; .1 until yi;,1 < 0 (end of next peak) or out of bins.
If 4,1 > A, current peak is higher than peakiat
SetL, = Bini + 1. Scan for next vallefreturn to 1).
Else, current peak is lower than peakl gt have “hiccup mode”(return to 2)
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Figure 2:Marginal Skill Distributions: Illustrative Example, TheeAssistment Skills

The spirit of our algorithm is similar to mode-hunting [e.§1] excepting that we only
want to identify modes that are separated by a valley of anlisi depth and width. In a
sense, we are “valley-hunting”. For example, if while searg for a descent of substantial
depth we find a “hiccup mode” where the marginal distribusbghtly increases and then
continues to decrease, the algorithm does not view thatl @&y to be important. (A
“hiccup mode” might similarly be found when searching fouastantial ascent.) Figure 2a
contains an example marginal distribution of Skill a histogram with bin width= 0.10.
For example, say a teacher will only adapt classroom siegegr groups of students
who are at least 10% of the class and whose capability valieeseparated by at least
20%. Givenry = 0.1, 7, = 0.2, we start at Bin 1 and immediately find a descent of 0.14
(1.5-0.10- 0.1-0.10). We know that there is at least one bin in the precedingamdgth

at least 10% of the students (our depth threshold). We asatgtanning to find a total
ascent of 0.135 (45- 0.10- 0.1 - 0.10) at Bin 4, evidence that the next mode also has at
least 10% of the students. As both gradients exage@ve check that the valley is wide
enough by measuring the distance between the two mode$(8)0Since B > 0.2 = 1y,
both modes are separated by at least 20% capability, and weeidentified a “significant
valley”. Continuing to scan, we find another descent anceyadit Bin 6. In this case,
the descent is not large enough yet to indicate a well-segghgroup (Bin 7 is a “hiccup
mode”). A large enough descent is eventually found betwae@Bind Bin 8, followed by
a significant ascent. The next significant valley is then f&im4 to Bin 10. We patrtition
the skill at Bin 2 (0.15) and Bin 8 (0.75) to create three goapstudents of size at least
10% of the class separated by at least 20% capability on Kkilf our thresholds were
74 = .045 1, = 0.10, four groups would have been found (cutpoints: 0.15,,M55).

Figure 2 also includes the three Assistment skill margimstridhutions. While Unit Con-
version (Figure 2d) has three well-separated peaks, geasonable deptbize thresholds,
our algorithm would not partition this skill since two noefp bin counts are very small
(i.e. modes of trivial mass). We also would likely not paotit the skewed Multiplication
distribution. Givenry=0.1, 7,=0.2, we do partition Evaluate Functions at 0.15, 0.75 for
three groups of students and cluster the three subsequeliteensional subspaces. Fig-
ure 3 shows the methods’ respective results. There is less-@ane clustering in both HC
and k-means without partitioning on Unit Conversion (FegiBa,b). MBC again chose 14
with similar results; however, the subspace clusteringiting both finding the partitions
and clustering the subspaces) teoB seconds (vs. 21) for computational savings of 71%.
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Figure 3:Cluster Assignments: a) HC, Complé®e-3 - 22; b) K-meansG=3- 2%; ¢) MBC G=14

4 Recovering the True Skill Set Profiles

In this section, we simulate data from the DINA model, a comraducational research
model, to compare the methods’ ability to recover the sttgl@rue skill set profiles. The
deterministic inputs, noisy “and” gate model (DINA) is a gqamctive cognitive diagno-

sis model used to estimate student skill knowledge [9]. TH¢ADmodel item response
formis P(y; = 117, 85, 9)= (1 - 8;)"g; ™ whereai = I Stydent has skilly 07 =

e, a/;'(jk indicates if studenthas all skills needed for item s;= P(y;;=0| n;;=1) is the slip
parameter; and;= P(y;;=1| 1;;=0) is the guess parameter. If studem missing any of

the required skills for iten), P(y;; = 1) decreases due to the conjunctive assumption. Prior
to simulating they;;, we fix the skills to be of equal mediumfficulty with an inter-skill
correlation of either 0 or 0.25 and generate true skill sefiles C; for each student. In our
work thus far, only a perfect inter-skill correlation hasanmegligible &ect on the results.
These parameter choices evenly spread students amony tia¢@al skill set profiles. We
randomly draw our slip and guess parametsys-(Unif(0,0.30),g; ~ Unif(0,0.15)). Given

the true skill set profiles and sfiguess parameters, we generate the student response matrix
Y. Then, using a fixe) matrix, we calculate and cluster the corresponddngatrix.

For both HC and k-means, we u& = 2%; in MBC, we search from 1 t&>2X; in
conditional subspace clustering, we initially use-0.1, 7,=0.2. To gauge performance,
we calculate their agreement to the true profiles using theskeld Rand Index (ARI), a
common measure of agreement between two partitions [5].elJrahdom partitioning,
E[ARI] = 0, and the maximum value is one. Larger values indicate agteement.

We present selected simulations fr= 3, 7, 10 for varyingJ, N. Table 1 shows the ARIs
comparing the clustering results to the true profiles. InGbad (MBC) column, the first
ARI corresponds to the partitioning alone, the second tccthstering of the partitioned
subspaces (with MBC). We also vary the Q-matrix design ttushe only single skill items,
only multiple skill items, or both. In addition, the Q-matrvas balanced (bal) or unbal-
anced (unbal). If balanced, all single skill and skill comdtion items occur the same
number of times. Unbalanced refers to uneven representatior missing skills (miss).



Table 1:Comparing Clustering Methods with the True Generatingl Siat Profiles

Selected
K J N Q Matrix Design HAC | K-means| MBC | Cond (MBC) | Skills
3 | 30 | 250 Single 1.000| 1.000 | 0.970 1.000 3
3 | 30 | 250 Both, bal 0.792| 0.615 | 0.939| 0.531(0.402) 2
3 | 30 | 250 Both, unbal, uneven | 0.541| 0.625 | 0.703| 0.241 (0.641) 1
3 | 30 | 250 Both, unbal, miss | 0.582| 0.578 | 0.707| 0.249 (0.713) 2
3 | 30 | 250 Multiple, bal 0.414| 0.419 | 0.416| 0.222 (0.495) 1
3 | 30 | 250 | Multiple, unbal, uneverj 0.350| 0.504 | 0.515 — 0
3 | 30 | 250 | Multiple, unbal, miss | 0.235| 0.242 | 0.194 — 0
7 | 40 | 300 Single 0.746| 0.553 | 0.987 0.982 7
7 | 40 | 300 Both, unbal, miss | 0.333| 0.308 | 0.386 0.290 3
10| 100 | 2500 Single 0.876| 0.786 | 0.062 0.958 10

Excepting the multiple unbalanced design, the subspaaeiddm selected one or more
skills for partitioning (in most cases, all skills were aetly selected). In almost all sim-
ulations, MBC was comparable to or better than HC and k-mé&arisue skill set profile
recovery. The partitioning method coupled with using MBCtbe reduced subspaces
gave comparable or better results in all cases exceptingalamced single and multiple
skill design. In addition, subspace partitioniflBC was always faster than MBC alone.

Table 2:Comparison of Depth, Width Thresholds
T4 7w | Cond (MBC) | Selected Skills
0.1 | 0.2] 0.249 (0.713) 1

0.1 | 0.1|0.249 (0.713)
0.05 | 0.2 | 0.569 (0.510)
0.05 | 0.1 | 0.569 (0.510)
0.025] 0.1 | 0.629 (0.694)

WNN PP

In addition, for the fourtliK=3, J=30 Q matrix design, we vary the depth and width thresh-
olds. Smaller values afy, 7, will find narrower, shallower separations; in addition, #ara
isolated clusters will be found. In this particular exampie found that as we decreased
the depth threshold, more skills were (correctly) seleced the performance of the parti-
tioning by itself improved. While the parameters are destjto be user-specified, we are
currently exploring their behavior in order to make goodaaéifsuggestions.

5 Thirteen Skill Assistment Example

Finally, we briefly look at a higher dimensional Assistmerample withK=13 skills,
N=344 students, and=135 items. This data set included multiple skill items andrgé
amount of missing response data. HC and k-means are notpjgteochoices; finding
213=8192 clusters is unreasonable (without, say, allowing fiopty clusters as in []); MBC
will largely depend on choosing an appropriate search rafigee conditional subspace
clustering algorithm however searches the space for ob\deparation and partitions 9 of
the 13 skills for a total of 221 subspaces (1 sec). All subsp@ontained 13 students
and so could likely be used alone or as subspaces for furiingtedng if needed.



6 Conclusions

We presented a conditional subspace clustering algoribhnmsie with the capability matrix
or an alternative skill knowledge estimate. The methodcselekills that separate students
well and reduces dimensionality for subsequent clusteri@gr work so far shows that
for most Q-matrix designs, the recovery of true skill setfie is comparable or better
than other clustering methods while also including skilesgon. Since the true profiles
in the Assistment examples are unknown, we cannot judgerdvery. However, visual
inspection indicates that the partitions seem sensiblereMer, skills showing large stu-
dent separation can be identified. Ongoing work includegdex) a weighted capability
matrix to better account for multiple skill items. To our kmiedge, most work in this area
has not adequately addressed the need for analyzing higérdional Q-matrices. The
approach presented, while allowing for real time estimatibstudent skill set profiles, can
handle large numbers of skills as well as incorporate praktiser specifications.
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