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Abstract. While students’ skill set profiles can be estimated with formal cognitive
diagnosis models [8], their computational complexity makes simpler proxy skill es-
timates attractive [1, 4, 6]. These estimates can be clustered to generate groups of
similar students. Often hierarchical agglomerative clustering or k-means clustering
is utilized, requiring, forK skills, the specification of ¥ clusters. The number of

skill set profilegclusters can quickly become computationally intractable. Moreover,
not all profiles may be present in the population. We present a flexible version of k-
means that allows for empty clusters. We also specify a method to deterfhiaiens
starting centers based on t@ematrix. Combining the two substantially improves the
clustering results and allows for analysis of data sets previously thought impossible.

1 Introduction

A common objective in educational research is the identification of students’ current skill
set profiles. That is, which skills do they have? Which skills do they not have? Which skills
are they in the process of learning? A variety of cognitive diagnosis models (e.g. DINA,
NIDA, RUM) estimate these latent profiles using information from a student item response
matrix and an expert-elicited assignment matrix of the skills required for each item [8, 10].
However, even simple models becoméidult to estimate and computationally infeasible
as the number of skills, items, and students grow [8].

Recent work has proposed using computationally simpler skill set estimates, e.g. capabil-
ity scores and sum scores, as proxies for the cognitive diagnosis model estimates [1, 2, 4,
6]. These estimates are then clustered using common methods such as k-means and hier-
archical linkage clustering to generate groups of students with similar skill set profiles. A
common assumption is that all possible (combinations of compkteskill mastery) pro-

files exist in the population, a restriction that prevents us from being able to work with small
samples or large numbers of skills. In addition, both capability scores and sum scores suf-
fer from a strong dependency on a conjunctive assumption, namely that to answer an item
correctly, the student must have completely mastered all necessary skills. This assump-
tion effectively (and possibly erroneously) attenuates the individual skill set estimates in
the presence of multiple skill items and relies heavily on the presence of large numbers of
single skill items for reasonable estimates (which in our view is in most cases impractical).
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In this paper, we propose a flexible version of k-means tharesimore appropriate start-

ing centers given the conjunctive assumption (conditioning on the items themselves) and
allows for empty clusters, removing the restriction that each possible skill set profile will
have a corresponding cluster. In our work thus far, this version outperforms both traditional
k-means and hierarchical clustering in almost all situations. In Section 2, we review two
skill mastery estimates and hierarchical agglomerative and k-means clustering. Details of
our more flexible version of k-means are provided in Section 3; selection of sensible start-
ing values and an illustrative example follow in Section 4. Further simulation results are in
Section 5. In Section 6, we finish with concluding remarks and other possible applications.

2 Skill Set Profile Clustering

In general, the goal of cognitive diagnosis models (CDMS) is to estimate the true skill set
profile for each student. Givel skills, the true skill set profile for studenis denoted

a; Whereay € {0,1} for k = 1,2,..., K. A student that has mastered skills 1, 3 but not
skill 2 would have the profile; = {1,0,1}. There are ? possible skill set profiles foK

skills; this collection of profiles is the set of corners oKadimensional unit hyper-cube.

For example, iK = 2, the four possible profiles ar, 0}, {1, 0}, {0, 1}, {1, 1}.

Estimation of they; is done using a student response matrand an item-skill dependency
matrix Q. Student responses are assembled M>aJ matrix Y wherey;; indicates both

if studenti attempted itenj and whether or not they answered it correctiis the total
number of students), the number of items. If studentlid not answer iten), theny;; = NA
(i.e. the indicatoty, .na = 0). If student attempted iten] (Iy,.na = 1), theny;; = 1 if they
answered correctly (O if not). Th@-matrix, also referred to as a skill coding or transfer
model [3, 11], is & x K matrix whereqgy = 1 if item j requires skilk and 0 if not. TheQ-
matrix is usually an expert-elicited assignment matrix (here assumed to be koorect).

2.1 Skill Mastery Estimates

Here we briefly describe two proxy estimates for the CDM estimatesum scores and
the capability matrix. Both estimates are easily derived from the response Mainikthe
transfer modeQQ and have been shown to give comparable results to CDMs [2].

First, we present theum scoranethod of [4, 6]. Herd&\; is defined as the vector of sum
scores where, fdk=1,2,...,K,

J

Wi = Z Yij k-

=1
The Wy are simply the number of items studergnswered correctly for each ski) as-
suming that all students answered all items. When an item requires more than one skill,
i.e., amultiple skill item, it contributes to more than oWg. TheW, map the students into
a K-dimensional hyper-rectangle where the range ofkthedimension is [0J] and Ji is
the total number of items that require skl
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In [1, 2], we define arN x K capability matrix B, whereBy, is the proportion of correctly
answered items involving skil that student attempted. That is,

J
Zj:l Iyi,-;&NA “Yij - Qjk
B|k = .

J
Zj:l Iyi,-;tNA : q]k

The vectorB; estimates studen® skill set knowledge and maps studennto the same
K-dimensional unit hypercube as defined by the trueFor eachBy, zero indicates no

skill mastery, one is complete mastery, and values in between are less certain. This skill
knowledge estimate accounts for the number of items in which the skill appears as well as
for items not answered. By = NA, we could impute an uninformative value (e.g., 0.5,
mean, median). The examples presented here do not have any missing values.

In this paper, we use the capability matrix as our skill mastery estimate; however, the
presented work could easily incorporate the sum score. (Comments are made where ap-
propriate to indicate any needed changes for the use of sum scores.) In addition, estimates
derived from the CDMs could similarly be analyzed.

Regardless of estimate choice, similarly to [4, 6], we find groups of students with similar
skill set profiles by clustering thB; vectors. The algorithm returns a set of cluster centers
and a cluster assignment vector. The cluster center represents the skill set profile for that
subset of students. Note that cluster centers are not restricted to be in the neighborhood
of a hypercube corner (although they could be assigned to one). Returning cluster centers
rather than their closest corners gives more conservative estimates of skill mastery (rather
than zergcomplete mastery). Briefly we describe two commonly used clustering methods.

2.2 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering (HC) “links up” groups in order of closeness to form

a dendrogram from which a cluster solution can be extracted [5]. The user-defined distance
measure is most commonly Euclidean distance. Briefly, all observations begin as their
own group. The distances between all pairs of groups are found (initially just the distance
between all pairs of observations). The closest two groups are merged; the inter-group
distances are then updated. We alternate the merging and updating operations until we have
one group containing all observations. All merging steps are represented in a tree structure
where two groups are linked at the height equal to their inter-group distance at the time of
merging. The algorithm requirespriori the definition of the distance between two groups
containing multiple observations. Here we use the complete linkage method. Complete
linkage defines the distance between two groups as the largest distance between all pairs
of observations, one per pair from each group, e.g., for Euclidean distdftieC) =

MaXec, jec, I(X — >_<J.)||. It tends to patrtition the data into spherical shapes.

Once constructed, we extraGt clusters by cutting the tree at the height corresponding
to G branches; any cluster solution with = 1,2, ..., N is possible. In [4], extraction of
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G = 2X clusters is suggested. This choice may not always be wise. First, if not all skill set
profiles are present in the population, we may split some profile clusters incorrectly into
two or more clusters. Moreover, M < 2X (a reasonable scenario for many end-of-year
assessment exams), we will be unable to extract the desired number of skill set profiles.
[4] has shown that in the presence of single skill items, hierarchical clustering will find the
correct clusters under some long test theory conditionkl(ds— ). However, this again
relies on the assumption that all possible profiles are present.

2.3 K-means

K-means is a popular iterative algorithm for data= {x;, x,, ..., x,} € R [9]. It uses
squared Euclidean distance as a dissimilarity measure and tries to minimize within-cluster
distance and maximize between-cluster distance. For a given number of clasters
means searches for cluster centggsaind assignment that minimize the criteriohVC =

Zéil > ai)=g |I% — Mgll>. Thealgorithm alternates between optimizing the cluster centers for
the current assignment (by the current cluster means) and optimizing the cluster assign-
ment for a given set of cluster centers (by assigning to the closest current center) until
convergence (i.e. cluster assignments do not change). It tends to find roughly equal-sized,
spherical clusters and requires the number of clu§iersd a starting set of cluster centers.

A common method for initializing k-means is to choose a random sé& observations

as the starting set of centers. In this application, the suggested number of clusters is 2
the number of possible skill set profiles firskills [4]. However, similarly to hierarchi-

cal clustering, if we are missing representatives from one or more skill set profiles in our
population, forcing 2 clusters may split some clusters into sub-clusters unnecessarily.

3 Empty K-Means

A traditional problem in k-means is the choice®f A common approach is to create an
“elbow graph” that plots th&/C criterion against a range of proposed numbers of clusters.
As increasings almost always corresponds to a decrease in the criterion (depending on the
set of starting centers), we subjectively identify the number of clusters that corresponds to
the end of the large decreases in W€ value as our choice fdb.

However, in this application (and others), we may have a natural number of clusters. While
it may seem that we should just search for thedferent profiles, this number is likely

just an upper bound. All profiles might not be present in the population. Moreover, without
careful prior examination of the data, we will not know which profiles might be missing.
Ideally, we would like a flexible approach that searches fop@ssibleclusters but is not
forced to find them.
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We modify the k-means algorithm to allow for empty clusters (@sent skill set profiles)
in the following way:

1. Setthe 8 starting cluster centers; appropriately in thé&-dim hyper-cube (Sec. 4).
2. Create the cluster assignment ve@idyy assigning eacB; to the closesin,.

3. For allg, if no B; is assigned tan, i.e. X} lap-g = 0, thenmy remains the same.
E|Se,mg = n_::ZA(i)=g Bi.
4. Alternate between 2) and 3) until the cluster assignment véatimes not change.

This algorithm continues to minimize thWg C criterion with each step; the empty clusters
make no contribution to the criterion value. We discuss the choice of appropriate starting
centers in Section 4.

Our k-means variation allows for empty clusters or fewer clusters than originally requested.
This flexibility removes the constraint that there be one cluster per skill set profile. Early
work in this area has relied heavily on small examples Witlx 2, 3,4 skills. With the
advent of online tutoring systems and end-of-year assessment exams, the number of skills
has grown considerably. It is not uncommon to be interestdd i 10, 15, 20, etc. For

K = 10, say, we would have'2 = 1024 dfferent skill set profiles. In practice, it would

be extremely uncommon to see a sample with all 102 dint subgroups. Moreover, the
large number of profiles computationally prohibits clustering of samples wiete2X.

Our k-means variation allows for the identification of the clugperdiles that we do have;

any computational constraints (e.g. memory, storage) are limited and are a characteristic of
the operating systefplatform and not of the algorithm.

4 Choosing Starting Centers

It is well-known than k-means can be dependent on the set of starting centers [9]. Given our
goal of identification of the true skill set profiles in the population, a natural set of starting
centers might be the hypercube corners: {1, aio, ..., @ik } Whereai € {0, 1}. If students

map closely to their profile corners, k-means should locate the grdifigted with the
corners very quickly.

However, even if all profiles are present, the students may not be near their profile corner
due to attenuation of our skill estimates in the presence of multiple skill items. Below are
two possibleQ matrices ford = 24 items. InQ,, items 1-8 only require skill 1, items 9-16

only skill 2, and items 17-24 only skill 3 (all single skill items). @3, the first 12 items are

single skill; the remaining items require multiple skills. If a student’s true skill set profile is

{0, 1, 0}, (s)he should miss items 1-8, 17-24Qn but receive &;, of 1. In Q,, (s)he should

miss items 1-4, 9-24 which correspondingly drdgsfrom i—g to 1i3. Similarly, a student

with profile {1, 0, 1} will have Bj; = Bjz = 1 for Q; but see a drop in capability fro@ to

113 using Q.. (Analogous drops are seen in sum scores.) These attenuated estimates are not

reflective of the true profiles.
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4.1 Generating Response Data

To illustrate, we generate response dataNoe 250 students for bot-matrices from

the deterministic inputs, noisy “and” gate (DINA) model, a common educational research
conjunctive cognitive diagnosis model [8]. The DINA item response form is

P(ylj =1} Mij» Sj,gj) = (1 — Sj)flijg:;-_”ij

whereq; is the true skill set profile ang; = [T, aﬁjk indicates whether studentas all
skills needed for itenj. The slip parametes; is P(y;j = 0| 7;; = 1); the guess parameter

0; is P(yij = 1| m;; = 0). Similar to the capability matrix (and the sum score), if student
I is missing any skills required for item P(y;; = 1) decreases due to the conjunctive
assumption. Prior to simulating thyg, we fix the skills to be of equal mediumfticulty

with an inter-skill correlation of either 0 or 0.25 and generate true skill set praefilés

each student. (In our work thus far, only a perfect inter-skill correlation has a non-negligible
effect on the results.) These choices spread students amon§ theekill set profiles.

We randomly draw our slip and guess parametsrs-(Unif(0, 0.30);g; ~ Unif(0, 0.15)).
Given the true skill set profiles and skuess parameters, we then generate the student
response matri¥ and estimate their corresponding capabilities.

Figure 1a below contains the capabilities estimated fronQthmatrix, numbered by their

true profile (slightly jittered for visualization purposes). The absence of multiple skills
allows the mapping of the students to (near) their profile corners. Figure 1b contains the
capabilities estimated via th@, matrix, also jittered, numbered by the true profile. The
presence of multiple skills has pulled the ndn4, 1} profiles toward the profil¢0, O, 0}.

Using the hypercube corners as the starting centers for empty k-means in the second data
set will make it more dficult to find the true groups. In fact, if there are no students within

a corner’s octant (0.5 as the cujefthat profile will not be found. When multiple skill

items are included, the hypercube corners are no longer representative of the true profiles.
We would expect their locations to be attenuated as well. Given the Q matrix, we map the
true skill set profiles to their corresponding rescaled locations in the hypercube.
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Figure 1:a) B; for Qy; b) B; for Qy; Starting centers indicated with X's

4.2 Rescaling the Starting Centers

Letap be the possible true skill set profiles where 1,2, ..., 2% (e.g.{0, 0}, {1, 0}, {0, 1}, {1, 1}
for K = 2). LetAy; = [1i; agt. ThenA,; indicates whether or not a student with true skill
set profilep has all the skills necessary to answer itgnif yes, Ay; = 1, 0 otherwise. Our
starting centeré); are then, fok = 1, 2, ..K,

J
. Zj:l Iqjk:l ) AP]
=
P Zf:l Qjk
The numerator is counting the number of items with dkithat the skill set profilgo could
answer. The denominator is the number of items requiring lsk{iNote thatzf=1 Qjk = k.

If we were using sum scores, we would not sc@;,g by the denominator.) If th® matrix
contains only single skill items, the starting centers return to the hypercube carners

In our example, the starting centers @5 would be, (as indicated by X’s in Figure 1b):
(0,0,0);(4/13,0,0);(0,4/13,0);(0,0,4/13); (7/13,7/13 0); (7/13,0,7/13); (0 7/13,7/13); (1 1, 1).

These values are representative of the true profile locations give@ thatrix if all stu-

dents answered items according to their true profiles. They are derived with respect to the
conjunctive assumption made by the capability matrix (and the sum score). In practice, we
would expect students to slip up or make some lucky guesses; however, setting the starting
centers to these rescaled profile locations will allow the empty k-means (or even traditional
k-means) to easily find the groups. With respect to missing profiles, we still use the full set
of Cj, as our starting centers and allow the algorithm to discard the unnecessary ones.

Note thatA,; is similar in form toz;; in the DINA model. Although they serve a similar
function, our approach is not unique to clustering DINA-generated data. The capability
score (and the sum score) are reasonable estimates for any conjunctive CDM. As we will
see in Section 5, we can similarly rescale the centers for use with other CDMs.
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4.3 Performance

After calculating the correspondirigymatrix, we cluster the students using hierarchical
clustering (complete linkage) and traditional k-means, both asking*fer@clusters. We

then re-cluster with traditional k-means and the empty k-means variation using the rescaled
starting centers. (Note that the symmetry of the rescaled starting centers is a direct result
of the balanced matrix; an unbalance® matrix will give asymmetric starting centers.)

To gauge performance, we calculate percent correct as the correct classification rate based
on the best one-to-one mapping of clusters to true skill set profiles. We also quantify the
clusters’ agreement to the true profiles using the Adjusted Rand Index (ARI), a common
measure of agreement between two partitions [7]. Under random patrtitioning, the expected
ARI value is zero. Larger values indicate better agreement; the maximum value is one.

Table 1:Comparing Clustering Methods with the True Skill Set Profiles via % Correct, ARIs

HC: Complete (?) | k-means (3, random) | k-means (2, rescaled)| k-means £ 2°, rescaled)
% Correct 0.940 0.847 0.973 0.980
ARI 0.952 0.745 0.947 0.971

All methods performed well; the rescaled starting centerdtexsin the highest percents
correct and ARIs. Our k-means variation (correctly) found 8 clusters. In order to assess the
performance when not all possible skill set profiles are present, we then removed the three
smallest profileg(0, 0, 1); (0, 1, 1); (1, 0, 1)} (which is the most favorable situation for the
other methods) and re-clustered.

Table 2:Comparing Clustering Methods with a Subset of the True Skill Set Profiles via % Correct, ARIs

HC: Complete (2) | k-means (2, random) | k-means (2, rescaled)| k-means £ 23, rescaled)
% Correct 0.756 0.732 — 0.984
ARI 0.759 0.678 — 0.940

Again, all methods performed fairly well. Random starting eentfor k-means showed

a decrease in performance when clustering a subset of the profiles. Traditional k-means
returned an error when using the rescaled starting centers since the initial cluster assignment
returned empty clusters (as expected). Our k-means variation, however, found five clusters
and had almost perfect agreement with the true skill set profiles. Even if we knew the
true number of clusters (5), it is not a guarantee of superior performance. The five-cluster
complete linkage solution was 93.5% percent correct with an ARI of 0.937. The traditional
k-means (5 random centers) was 80.5% correct with an ARI of 0.679. Even when using
only the five rescaled starting centers corresponding to the present profiles, the traditional k-
means performance was comparable (97.6%, ARI946) to using our k-means variation
which used the rescaled centers but required only an upper bound on the number of clusters.
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5 Simulations

We explore the performance of our approach using two conjunctive CDMs while varying
N, J, andK. For each simulation, th@-matrix is randomly generated with a parameter
dictating the percentage of single skill questions. We initially cluster all generated students
and then remove a random number of profiles and re-cluster (the notation “—” corresponds
to errors in standard k-means). We first simulate from the DINA model (Section 4.1).

Table 3:Performance with DINA-generated Responses: % Correct (ARIs)

K| N J Q Profiles HC: Complete| k-means k-means k-means
% S%M | Removed (25 (2K, random) | (2X, rescaled)| (< 2¥, rescaled)
31200| 50| 5446 0.980 (0.978)| 0.840 (0.776)| 0.975 (0.981)] 0.975 (0.981)
(4 removed)| 0.640 (0.589)| 0.620 (0.554) — 0.900 (0.933)
31200| 50| 16/84 0.615 (0.416)| 0.660 (0.352)[ 0.800 (0.778)] 0.820 (0.814)
(1 removed)| 0.775 (0.515)| 0.639 (0.443) — 0.835 (0.838)
8 | 500 | 60| 4555 0.410 (0.197)| 0.414(0.166) — 0.764 (0.655)
(6 removed)| 0.393(0.173)| 0.380 (0.129) — 0.236 (0.659)
8 | 500 | 60 5/95 0.332(0.058)| 0.356 (0.074) — 0.482 (0.199)
(8 removed)| 0.328(0.048)| 0.343 (0.057) — 0.468 (0.159)
430 | 40| 8020 0.800 (0.581)| 0.700 (0.390) — 1.000 (1.000)
(2 removed)| 0.741 (0.447)| 0.741 (0.544) — 1.000 (1.000)

In all cases, the k-means variation with attenuated startintece outperforms the other

methods (via ARIs). We also noted in our simulations (not all presented here) that increas-
ing the percentage of multiple skill items decreases the other methods’ performance while
our k-means variation remains fairly steady. Moreover, in “classroom” size data sets, this
variation identified the profiles present while other methods unnecessarily split the clusters.

We also present results using responses generated from the noisy input, deterministic output
“and” gate (NIDA) model, another common conjunctive CDM. The item response form is

K
PO =11 @i, S0 0) = [ [I(2 - s gy ™%
k=1

wheres,, g are slip, guess parameters indexed on skill (rather than item); see [8] for further
details. Responses are similarly generated; the results are comparable.

Table 4:Performance with NIDA-generated Responses: % Correct (ARIS)

K| N J Q Profiles HC: Complete| k-means k-means k-means
% S%M | Removed (25) (2K, random) | (2X, rescaled)| (< 2¥, rescaled)
31200| 50| 3664 0.935(0.941)| 0.705 (0.622)| 0.965 (0.942)| 0.965 (0.942)
(4 removed)| 0.604 (0.432)| 0.549 (0.342) — 0.549 (0.408)
3| 200 50 1882 0.760 (0.552)| 0.830 (0.688)| 0.895 (0.787)| 0.895(0.787)
(3 removed)| 0.838(0.808)| 0.738 (0.649) — 0.900 (0.922)
8 | 500 | 60 6337 0.450 (0.225)| 0.420(0.163) — 0.734 (0.663)
(7 removed)| 0.429(0.212)| 0.404 (0.155) — 0.753 (0.680)
4 | 30 | 40| 54/46 0.700 (0.357)| 0.633(0.321) — 0.867 (0.661)
(2 removed)| 0.615 (0.250)| 0.538 (0.202) — 0.846 (0.600)
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6 Conclusions

The modified k-means algorithm presented here, called “empty k-means”, allows a more
flexible approach to clustering for use in applications such as skill set profile clustering
where the true number of clusters is not known, but may be bounded. It allows the user to
specify a maximum number of possible clusters which removes the need to make a subjec-
tive decision on the number of clusters. We define our attenuated starting cluster centers by
the Q-matrix (giving us the hypercube corners in the case of all single skill items). As seen
in the simulated results, in cases where all natural clusters were present, such starting val-
ues gave superior clustering results (compared with both k-means with random starts and
hierarchical clustering). In cases where some natural clusters were not present, the empty
k-means algorithm with the defined starting values again had superior performance, while
commonly traditional k-means would report an error due to empty clusters. Other appli-
cations might fit this framework as well. For example, compositional data on the simplex
would have natural cluster centers on the corners of hyper-triangle. Empty k-means could
also be used to investigate both the validity of theorized cluster centers and the believed
number of clusters. Further exploration of this approach is ongoing.
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