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Abstract. We give a brief introduction to the geometric and combinatorial group
theory of Artin groups. In particular we introduce the K(π, 1) conjecture for Artin
groups and survey known results. These notes were written as participant pre-
reading for the MFO mini-workshop 2405a Artin groups meet triangulated cate-
gories alongside Edmund Heng’s notes Introduction to stability conditions and its
relation to the K(π, 1) conjecture for Artin groups.

Contents

1. Introduction 1
2. The K(π, 1) conjecture 5
3. Some techniques used in the study of Artin groups 13
References 18

1. Introduction

There are already many excellent survey articles about the geometric group theory
of Artin groups. We start these notes with a non-exhaustive reference list for the
reader:

[Cha] Charney, Problems related to Artin groups.
[GP12a] Godelle and Paris, Basic questions on Artin-Tits groups.
[Par14] Paris, K(π, 1) conjecture for Artin groups

[McC17] McCammond The mysterious geometry of Artin groups

In these notes we will recap some of the salient definitions, results, methods, and
open questions from the existing literature. We claim no originality in the math-
ematical content, aside from Conjecture 2.24. We include exercises and aim these
notes at the non-expert.

Let Γ be a finite labelled simplicial graph with vertex set S, edge set E, and edge
labels mst ≥ 3 or mst = ∞, for {s, t} ∈ E. If there is no edge between vertices s
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and t, let mst = 2. Then the Artin group AΓ is defined by the presentation with the
following braiding relations

AΓ = ⟨S | sts . . .︸ ︷︷ ︸
length mst

= tst . . .︸ ︷︷ ︸
length mst

∀ s ̸= t ∈ S such that mst ̸= ∞⟩.

Note that when mst = 2 (there is no edge between s and t in Γ) then it follows that
s and t commute. The Coxeter group WΓ is given by adding the relations s2 = e for
all s ∈ S.

There is a natural map AΓ → WΓ given by imposing the extra relations s2 = e,
and the kernel of this map is the pure Artin group PAΓ. The three groups therefore
sit in the short exact sequence:

PAΓ ↪→ AΓ → WΓ.

There is also a canonical section to the projection map, WΓ → AΓ, given by
expressing a group element in the Coxeter group in terms of a minimal length word
and viewing this as a word in the Artin group. Note that minimal words differ
only by relations in AΓ, so the section does not depend on the choice of minimal
word. We remark that there are in fact different choices one can make for this
section, corresponding to the notion of linear braids, but only the canonical section
will appear in these notes.

Finite Coxeter groups were classified by Coxeter in 1935 [Cox35], motivated by his
study of symmetry groups of regular polytopes. An Artin group AΓ is called finite
type if the corresponding Coxeter groupWΓ is finite. We recall Coxeter’s classification
here, as it will provide many examples of groups for our exercises.

Theorem 1.1 (Classification of finite Coxeter groups, Coxeter [Cox35]). A Coxeter
group WΓ is finite if and only if Γ is a disjoint union of finitely many of the following
connected graphs.
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Infinite families Exceptional groups

An (n ≥ 1) . . . F4
4

Bn (n ≥ 2) . . .
4 H3

5

Dn (n ≥ 4) . . . H4
5

I2(p) (p ≥ 5)
p

E6

E7

E8

The generic definition of a Coxeter group was introduced by Tits in 1961 [Tit61]
to accommodate infinite reflection groups associated to collections of hyperplanes:
any Coxeter group can be realised as a discrete group generated by reflections on
a finite dimensional vector space with respect to some inner product (the Coxeter
group is finite precisely when this inner product is positive definite). We will define
the hyperplane complements later. Artin groups were introduced by Brieskorn as the
fundamental groups of specific hyperplane arrangements, in relation to questions in
algebraic geometry [Bri71].

Artin groups and Coxeter groups have been well studied due to their rich algebraic
and geometric properties and connections to many fields of mathematics, such as rep-
resentation theory, low dimensional topology, and monodromy theory. In geometric
group theory, the theory of cube complexes lends itself to the study of Right Angled
Artin groups (RAAGs)—groups with only commuting (mst = 2) braiding relations—
see [Wis12] for a survey. In these notes we focus on the non-right-angled case, as the
methods used to study RAAGs are somewhat orthogonal to general methods used
to study Artin groups.
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1.1. Open questions. Alongside the K(π, 1) conjecture, which is the main topic of
these notes, complete answers for some algebraic questions about Artin groups have
remained out of reach with the current tool-kit, although many of them have been
rephrased. The fundamental conjectures are that for general Γ:

(i) AΓ is torsion free,
(ii) if AΓ cannot be written as a product of Artin groups, AΓ has center Z when

AΓ is finite type, and trivial center otherwise,
(iii) AΓ has a solvable word (and conjugacy) problem.

All of these conjectures are known to be true for certain families of Artin groups
(e.g. finite type Artin groups) but in general are unanswered, despite much work and
interest in their direction. An overview can be found in [GP12a], where they prove
that it suffices to prove the conjectures for Γ “free of infinity”, or [McC17].

We note here that a positive answer to the K(π, 1) conjecture implies that Artin
groups are torsion free (we see later that the K(π, 1) conjecture being true exhibits
a finite dimensional model for BAΓ [Sal94]) and also answers the center conjecture
[JS23].

There has been recent work into the isomorphism problem for Artin groups (see,
e.g. [Vas23b; MV23]), which asks when two Artin groups are isomorphic (the cor-
responding question for Coxeter groups is still open). It is also an interesting open
question to classify automorphisms of Artin groups, which has been done in very
few cases e.g. for RAAGs [Dro87], and 2-dimensional Artin groups (defined later in
[Cri05]). Vaskou [Vas23a] classifies automorphisms of large-type free-of-infinity Artin
groups, and Bregman–Charney–Vogtmann have built an Outer space for RAAGs
[BCV23].

Acknowledgements. These notes were written for the Oberwolfach mini-workshop
2405a: Artin groups meet triangulated categories. A companion set of notes can be
found in [Hen24]. The corresponding Oberwolfach Report is [BHO24]. I would like
to thank all participants of the MFO mini-workshop 2405a Artin groups meet trian-
gulated categories for their feedback on these notes. Particular thanks go to Andrea
Bianchi, Edmund Heng, Viktoriya Ozornova, and Ailsa Keating for comments on a
first draft. I would also like to thank my excellent workshop co-organisers, Edmund
Heng and Viktoriya Ozornova. Special thanks to Jon McCammond and Tony Licata
for preparing lecture series for the mini-workshop. The workshop organisers would
like to thank MFO for the opportunity to organise a mini-workshop on this topic.
The MFO and the workshop organisers would like to thank the National Science
Foundation for supporting the participation of junior researchers in the workshop by
the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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2. The K(π, 1) conjecture

In this section we state the K(π, 1) conjecture and introduce some various alter-
native forms.

2.1. Statement of the conjecture.

2.1.1. The canonical representation. For Γ with vertex set S, the Coxeter group WΓ

admits a faithful representation ρ : WΓ → GL(V ) where V is a real vector space of
dimension |S|. We describe this representation.

Let S = {s1, . . . , sn} and let mij = msisj . Let V
∼= Rn with basis {e1, . . . , en}.

Definition 2.1. We define a symmetric bilinear form B on V by

B(ei, ej) =


1 if i = j

− cos(π/mij) if mij finite

−1 if mij infinite.

Using this we construct a map ρ : WΓ → GL(V ) by:

ρ(si) = σi σi : V → V ;σi(v) = v − 2B(ei, v)ei.

Exercise 2.2. Compute B for the rank two Artin group I2(p), and the affine Artin

group Ã2, which corresponds to Γ being a triangle with all edges labelled 3.

Remark 2.3. The map σi is linear, of order 2 and preserves the bilinear form B.
Moreover σi(ei) = −ei and the fixed points of σi are precisely given by the hyperplane
defined by the equation B(ei, v) = 0.

Exercise 2.4. Show that σiσj has order mij = p in the case of the rank two Artin
group I2(p).

In fact one can show that in general σiσj has order mij, the map ρ extends to a
homomorphism ρ : WΓ → GL(V ).

Theorem 2.5 ([Tit61, Theorem 2.4]). The representation ρ is faithful.

The group WΓ can therefore be viewed as a subgroup of GL(V ).

Remark 2.6. This symmetric bilinear form defines a matrix B with Bij = B(ei, ej),
sometimes called the Coxeter matrix [McC17]. Since B is real and symmetric, all
of its eigenvalues are real. Then the spherical (finite) Coxeter groups are those for
which all eigenvalues are positive (B is positive definite), and the Euclidean Coxeter
groups are those for which all eigenvalues are ≥ 0 (B is positive semi-definite). When
the Coxeter matrix has at least one zero eigenvalue, the corresponding symmetric
bilinear form is singular.
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Definition 2.7 (Non-singular Tits cone). The faithful representation ρ : WΓ→GL(V )
is generated by reflections andWΓ acts properly discontinuously on a non-empty open
cone I ⊆ V , called the Tits cone with respect to ρ. When B is non-singular the
hyperplanes Hi bound a closed simplicial cone C, and the Tits cone is defined to be
the orbit

I :=
⋃

w∈WΓ

wC.

In the singular case, the hyperplanes Hi no longer bound a simplicial cone, and
Tits solved this problem by passing to the dual representation ρ∗ : WΓ → GL(V ∗),
where for w ∈ WΓ, ϕ ∈ V ∗, and v ∈ V we have

(ρ∗(w))(ϕ)(v) = ϕ(ρ(w−1)(v)).

An alternative description is as follows. With ϕi ∈ V ∗ denoting the standard dual
basis such that ϕi(ej) = δi,j, we have that ρ∗(w) = (ρ(w)−1)T ∈ GL(V ∗). This
representation is faithful since it is dual to a faithful representation (and in fact it is
easier to prove ρ is faithful via proving that ρ∗ is faithful).

In the dual representation ρ∗ : WΓ→GL(V ∗), the generators are once again acting
by reflections which each fixes a hyperplane

H∗
i := {ϕ ∈ V ∗ |ϕ(ei) = 0}

and in this dual set up, the hyperplanes always bound a simplicial cone C∗ := {ϕ ∈
V ∗ | ϕ(ei) ≥ 0}.

Definition 2.8 (Tits cone; general case). Regardless of whether the matrix B is sin-
gular or non-singular, the hyperplanes H∗

i bound a closed simplicial cone C∗, and the
Tits cone with respect to ρ∗ is defined to be the orbit

I :=
⋃

w∈WΓ

wC∗.

When B is non-singular the two representations ρ and ρ∗ are equivalent and so this
definition is equivalent to that of the non-singular Tits cone. In fact, Charney and
Davis further showed that the choice of WΓ as a linear reflection group is irrelevant in
relation to the homotopy type of the hyperplane complement (to be defined below)
[CD95b, Section 2].

Consider the set of all reflections in WΓ, given by conjugates of the standard
generators:

R = {wsw−1 |w ∈ W, s ∈ S}.
Then each reflection r ∈ R satisfies that ρ∗(r) ∈ GL(V ∗) fixes a hyperplane H∗

r ⊂
I ⊆ V ∗.
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Remark 2.9. Note that the set of reflections in WΓ is not the same as the elements
of order two. Consider Γ = A1 ⨿ A1 so that WΓ

∼= Z /2Z×Z /2Z. This group
is abelian, and so the reflections are just the standard generators themselves. In
particular, the element (1, 1) (which also has order 2) is not a reflection.

Exercise 2.10. Show that under the representation ρ (or ρ∗) as defined before, the
element ρ((1, 1)) ∈ GL(V ) is actually a rotation by π (hence has order 2).

Following [GP12a], we define the complexified hyperplane complement to be

HΓ = I × V ∗ \ ∪r∈R(H
∗
r ×H∗

r ).

We call this the complexified hyperplane complement because in the non singular
case where the (non singular) Tits cone satisfies I ∼= V (this happens when WΓ is
finite), we have that

HΓ ≃ V ⊗ C \ ∪r∈R(Hr ⊗ C).
Note that in [Par14], HΓ is defined to be I×I\∪r∈R(H

∗
r ×H∗

r ), which is homotopy
equivalent to our definition by [CD95b, Lemma 2.1.1].

This hyperplane complement is a connected manifold of (real) dimension 2|S| on
whichWΓ acts freely and properly discontinuously. Van der Lek proved the following.

Theorem 2.11 (Van der Lek [Lek83]). The fundamental group of HΓ/WΓ is isomor-
phic to AΓ.

Recall that for a group G, a space X is a K(G, 1) space if X is a connected CW
complex, π1(X) ∼= G, and πi(X) = 0 for all i ≥ 2. In this case, X is also called a
classifying space for G, denoted BG. Equivalently, a CW complex is a K(G, 1) space
if and only if its universal cover is contractible.

The biggest open conjecture for Artin groups is the following, known as theK(π, 1)
conjecture.

Conjecture 2.12 (Arnol’d, Brieskorn, Pham, Thom). HΓ/WΓ is a classifying space
for AΓ, or K(AΓ, 1) space.

2.2. Alternative restatements of the conjecture. This conjecture has been rephrased
in many ways, which we will now survey.

The subgroup AT generated by a subset T ⊆ S is called a special (or standard
parabolic) subgroup of AΓ. By a theorem of van der Lek [Lek83], AT is isomorphic
to the Artin group associated to the (full) subgraph of Γ spanned by T .

2.2.1. The Salvetti complex. Charney and Davis [CD95a], and independently Salvetti
[Sal94], constructed a finite dimensional CW complex called the Salvetti complex and
denoted by SalΓ. They showed it is homotopy equivalent to HΓ, so proving that this
complex is aspherical also proves the K(π, 1) conjecture.
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To build the Salvetti complex, we follow [Par14] and [Pao17]. We need some
preliminaries on Coxeter group cosets.

Definition 2.13. Let T ⊆ S and consider the special subgroup WT ⊂ WΓ. We say
that w ∈ W is T -minimal if it is the unique minimal length representative in the
coset wWT . Such minimal length representatives always exist for Coxeter groups,
see e.g. [Dav08].

Denote by Sf the set {T ⊆ S |WT is finite}.
Definition 2.14 (Salvetti complex). The Salvetti complex is the geometric realisation
of the poset given by endowing the set W × Sf with the following partial order:

(u, T ) ≤ (v,R) if T ⊆ R, v−1u ∈ WR and v−1u is T -minimal.

Charney and Davis, and independently Salvetti, proved the following.

Theorem 2.15 ([Sal94; CD95a]). SalΓ ≃ HΓ.

The Salvetti complex SalΓ comes with a natural action of the Coxeter group WΓ

by left multiplication and the equivalence SalΓ ≃ HΓ is equivariant with respect to
this action, so SalΓ /WΓ ≃ HΓ/WΓ ([Sal94; CD95a]). The complex SalΓ /WΓ admits
a cell decomposition with one 0-cell, a one cell for each s ∈ S, and a k-cell for each
T ∈ Sf such that |T | = k. See [Par14] and [Pao17] for a precise account of this cell
decomposition and some helpful figures.

As an aside, when T ⊂ S, there is a natural embedding SalT ↪→ SalΓ and Godelle
and Paris prove the following interesting result:

Theorem 2.16 ([GP12b, Theorem 2.2]). The natural embedding SalT ↪→ SalΓ admits
a retraction SalΓ → SalT .

We also provide an equivalent way of building the quotient of the Salvetti complex
SalΓ /WΓ using an Artin group action.

Recall that there is a canonical section WΓ → AΓ (this is not a group homomor-

phism). For WT a finite special subgroup of WΓ, we denote by ŴT the image of WT

under the section. Note that this is a subset of AΓ, not a subgroup.

Definition 2.17 ([Cha]). Consider the geometric realisation Sal′ of the partially or-
dered set

{aŴT | a ∈ AΓ, WT finite}.
Then the Artin group AΓ acts freely and simplicially on Sal′.

Lemma 2.18. Sal′ /AΓ ≃ SalΓ /WΓ.

Note that in some later papers, e.g. Salvetti and Paolini’s proof of the K(π, 1)
conjecture for affine Artin groups, the Salvetti complex is defined to be the quotient
SalΓ /WΓ. In Paris’s notes [Par14] the quotient is denoted SalΓ.
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2.2.2. The Deligne complex. Building on the work of Deligne, Charney and Davis
[CD95b] define a cube complex whose vertices are given by cosets of finite type
special subgroups of AΓ. Charney and Davis call this complex the modified Deligne
complex, and it has since become known as the Deligne complex.

Recall that a cube complex is a space obtained by gluing Euclidean cubes of edge
length 1 ([0, 1]n for some n ≥ 0) along subcubes ([0, 1]k ⊂ [0, 1]n for some n > k ≥ 0).

Definition 2.19 (The Deligne complex). Let AΓ be an Artin group. The Deligne
complex DΓ is the cube complex with vertex set all cosets gAT , such that AT is finite
type (T ∈ Sf ). We partially order the vertices by inclusion of cosets. For any pair
of vertices gAT ⊂ gAT ′ , the interval [gAT , gAT ′ ] spans a cube of dimension |T ′ ∖ T |.

Note that the Deligne complex can also be viewed as a simplicial complex given
by the geometric realisation of the poset {aAT | a ∈ AΓ, T ∈ Sf}. The cube complex
structure is coarser than the simplical one, and allows one to use cubical metrics such
as the standard cubical metric induced from [0, 1]n ⊂ Rn, and the Moussong metric.

Exercise 2.20. Draw the section of the Deligne complex corresponding to cosets with

trivial representative, for the Artin groups of type Ã2, and B3. Give an example of
a vertex with infinite valence in each of these complexes.

The action of AΓ on its cosets by left multiplication induces a cocompact action
by isometries of AΓ on the Deligne complex DΓ. Note, however, that this action is
not proper as the stabilizer of a vertex gAT is the subgroup gATg

−1.
Charney and Davis proved the following:

Theorem 2.21 ([CD95b]). The Deligne complex DΓ is homotopy equivalent to the
universal cover of the Salvetti complex SalΓ.

We note than the analogously defined complex for Coxeter groups is the Davis
complex, but in this case the action of the Coxeter group is proper as wWTw

−1 is a
finite group.

2.2.3. The extended Deligne complex. Godelle and Paris introduced a simplicial com-
plex, that can also be given a cubical structure, which for the purpose of these notes
we call the extended Deligne complex [GP12b]. It extends the definition of Charney
and Davis by replacing the family Sf of finite type subsets of S with a more general
family S of subsets. This family has to satisfy the following properties:

• If T ∈ S and T ′ ⊂ T , then T ′ ∈ S,
• AT satisfies the K(π, 1) conjecture for all T ∈ S
• Sf ⊂ S

A family S of subsets of S satisfying these conditions is called complete and K(π, 1).
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Definition 2.22 (The extended Deligne complex). Let AΓ be an Artin group, and
cS be a complete and K(π, 1) family of subsets of S. The extended Deligne com-
plex DΓ(S) is the geometric realisation of the poset of cosets {aAT | a ∈ AΓ, T ∈ S},
ordered via inclusion.

Godelle and Paris prove the following theorem.

Theorem 2.23 ([GP12b, Theorem 3.1]). Let S be a complete and K(π, 1) family of
subsets of S. Then DΓ(S) is homotopy equivalent to the universal cover of the Salvetti
complex SalΓ.

2.2.4. The classifying space of the Artin monoid. TheArtin monoid A+
Γ is the monoid

given by the positive presentation

A+
Γ = ⟨S | sts . . .︸ ︷︷ ︸

length mst

= tst . . .︸ ︷︷ ︸
length mst

∀s ̸= t ∈ S⟩+.

The group completion of A+
Γ is AΓ, and Paris showed that the inclusion map A+

Γ ↪→
AΓ is injective [Par02].

In 2006 Dobrinskaya proved that the quotient HΓ/WΓ has the same homotopy
type as BA+

Γ , the classifying space of the Artin monoid [Dob06].
Recall the classifying space BG of a discrete group G can be built via the standard

(or bar) resolution [Bro94, Section I.5], which has one vertex, and for p ≥ 0, p-
simplices correspond to tuples [g1|g2| · · · |gp] for gi ∈ G. The first and final face
map are given by forgetting g1 and gp and the intermediate face maps are given
by forgetting a single bar and multiplying the group elements that it separated.
The classifying space BM of a monoid M can likewise be built via the same bar
construction, using monoid elements mi ∈ M . The spaces obtained in this way are
always connected and have the universal group associated with the monoid M as
the fundamental group. However, these spaces typically have non-vanishing higher
homotopy groups. In fact, [McD79] shows that any connected space is – up to a
weak homotopy equivalence – of this form.

The result by Dobrinskaya was later reproven by Ozornova [Ozo17] and Paolini
[Pao17], using discrete Morse theory.

It follows that the K(π, 1) conjecture is true for AΓ, if and only if the natural
map BA+

Γ → BAΓ is a homotopy equivalence. One can view this map concretely on
bar constructions via the injection A+

Γ ↪→ AΓ inducing an injection on tuples.
Interpreting work of Fiedorowicz [Fie84] in the setting of Artin monoids, or alter-

natively considering Quillen’s Theorems A and B for the inclusion map A+
Γ ↪→ AΓ,

one can prove that the K(π, 1) conjecture is equivalent to the following conjecture.

Conjecture 2.24 (Boyd). Tor
ZA+

Γ
∗ (ZAΓ,Z) = 0 for all ∗ ≥ 1.

No current work on the conjecture explicitly states or utilises this rephrasing.



11

2.2.5. Overview. We give a diagrammatic depiction of some of the known K(π, 1)
conjecture equivalences in the diagram below. Here S is any complete and K(π, 1)
family of subsets of the standard generating set S. In particular when S = Sf , DΓ(S)
is the Deligne complex DΓ. Finding a proof which confirms any question mark shown
in the diagram would in turn prove the K(π, 1) conjecture.

DΓ(S) ≃ S̃alΓ
?≃ ∗

��
SalΓ /WΓ

≃ // HΓ/WΓ

K(π,1) conj.

≃?
// BAΓ

BA+
Γ

≃

OO

≃?

55

2.3. Progress on the conjecture. We now give an overview of the families of Artin
groups for which the K(π, 1) conjecture has been solved.

2.3.1. Finite type Artin groups. Recall that an Artin group is finite type, or spherical
type, if the associated Coxeter group is finite. Deligne proved the K(π, 1) conjecture
for finite type Artin groups [Del72], using a complex which would later be modified
by Charney and Davis, and dubbed the Deligne complex. Deligne’s proof utilises the
Garside structure on the Artin monoid that we introduce in the next section, and a
union of chambers argument, which we also will give a general framework for. In his
notes on the K(π, 1) conjecture Paris reproves Deligne’s result, by showing that the
universal cover of the Salvetti complex is contractible. His proof is very accessible
and we recommend it – it also follows a union of chambers argument and utilises
properties of the monoid in the finite type case [Par14].

2.3.2. FC type Artin groups. An Artin group is called FC-type if any subset T ⊆ S
that does not contain s, t with mst = ∞ generates a finite type Artin group, i.e. T ∈
Sf . FC-type Artin groups were originally defined by Charney and Davis in [CD95b].
They are precisely those for which the standard cubical metric on the Deligne complex
is CAT(0).“FC”stands for Flag Complex, which comes from Gromov’s flag condition:
if a cube complex satisfies the condition that the links of all vertices are flag com-
plexes, then it is CAT(0). The Deligne complex satisfies this condition if and only if
AΓ is FC-type, by definition. In addition to proving the K(π, 1) conjecture is true
in this case, the Deligne complex has been used to show that FC-type Artin groups
have solvable word problem, are torsion-free and have finite virtual cohomological
dimension, among other properties [Alt98; CD95b; God07].
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2.3.3. 2-Dimensional and locally reducible Artin groups. An Artin group is said to
be 2-dimensional if all finite type T ⊆ S satisfies that |T | ≤ 2 (type A1 or I2(p)).
In particular this means that the Salvetti complex and the Deligne complex are two
dimensional. For these groups the K(π, 1) conjecture was proved by Charney and
Davis [CD95b], and Charney extended the class to those Artin groups for which
the finite type special subgroups are either those from the two dimensional case, or
the braid group on 4 strands (type A3), [Cha04]. This extended family are called
locally reducible Artin groups. Both of these results were proved by showing that the
Moussong metric on the Deligne complex satisfies non-positive curvature properties
(CAT(0) in the 2-dimensional case, and CAT(1) in the extended case).

2.3.4. Large type Artin groups. An Artin group AΓ is said to be of large type if every
mst appearing in the presentation is ≥ 3, i.e. no two standard generators commute.
Hendriks proved the conjecture for Artin groups of large type [Hen85]. Note that
large type Artin groups are two-dimensional so this result is recovered by the previous
case.

2.3.5. Euclidean Artin groups. The combinatorial structure of Artin groups was first
studied for the braid groups by Garside [Gar69], who found an elegant solution to
the word problem. This was extended to finite type Artin groups by Brieskorn and
Saito [BS72] and the combinatorial consequences have played a major role in the
study of finite type Artin groups, for instance this structure can be used to prove
the K(π, 1) conjecture. The notion of a Garside structure was later introduced and
explored in detail in [DP99] (see also [DDGKM15]) – we will define this later in these
notes.

More recently, a dual Garside structure was defined for affine Artin groups [MS17],
and this was used by Paolini and Salvetti [PS21] to prove the K(π, 1) conjecture for
the class of affine Artin groups. Paolini has an accessible set of notes on their proof
[Pao21] which also outlines the dual approach to the K(π, 1) conjecture in general.

2.3.6. Recent progress. Haettel and Huang also recently proved the conjecture for a
family of Artin groups by showing that AΓ × Z exhibited a Garside structure, and
using this structure to deduce properties of AΓ [HH23]. This family includes, and is
built from, Artin groups of cyclic type. They define an Artin group to be of cyclic
type if its defining graph Γ is a cycle, and any special subgroup is finite type. Their
new examples of Artin groups satisfying the conjecture contains some AΓ for which
WΓ acts on the hyperbolic spaces H3 or H4.

At approximately the same time, Huang released a preprint [Hua23] proving the
K(π, 1) conjecture for AΓ where Γ is a tree satisfying certain properties, or Γ has a
cyclic subgraph and satisfies certain properties. For instance, he proves the conjecture
when Γ is a tree and has a collection of edges E such that the components of Γ\E are
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either spherical, affine or locally reducible (so in particular the conjecture is already
known). Huang proves the conjecture by introducing and studying the homotopy
type of relative Artin complexes and folded Artin complexes.

Definition 2.25. The Artin complex ∆Γ is the simplicial complex with vertex set the
set of cosets {aAT | a ∈ AΓ, T = S \ {s} for s ∈ S}. We say a vertex is of type ŝ if
it is a coset of AS\s. A collection of vertices span a simplex if the associated cosets
have nonempty common intersection.

Under the assumption that S \ {s} satisfies the K(π, 1) conjecture for all s ∈ S,
the Artin complex agrees with extended Deligne complex DΓ(S) with S the family
of proper subsets of S. Huang’s proof strategy starts from the fact that showing the
extended Deligne complex is contractible proves the conjecture. He introduces the
relative Artin complex which we define here for the interested reader.

Definition 2.26 ([Hua23, Definition 2.3]). For AΓ an Artin group, let S ′ ⊂ S. The
relative Artin complex ∆S,S′ is the induced complex of ∆Γ spanned by vertices of
type ŝ for s ∈ S ′.

Huang shows that the following conjecture is equivalent to the K(π, 1) conjecture
[Hua23, Corollary 7.4]. An Artin group AΓ is called almost spherical if Γ is free of
infinity (no mst = ∞), AΓ is not finite type, but AT is finite type for all proper
subsets T ⊂ S.

Conjecture 2.27 ([Hua23, Conjecture 2.4]). Suppose Γ is a complete graph with vertex
set S and T ⊂ S is such that AT is almost spherical. If Γ and the subgraph spanned
by T are both connected and free of infinity, then ∆S,S′ ≃ ∗.

Note that in both of these papers the graph Γ we used to define AΓ is denoted Λ
and Γ is used for a different graph convention.

2.3.7. Conjecturette. The K(π, 1) conjecturette [EW17] states that π2(HΓ/WΓ) = 0.
According to Elias and Williamson, this was proved in [DM14, §6] although it is hard
to extract from this paper, which uses a lot of category theory. A simpler proof has
yet to emerge.

3. Some techniques used in the study of Artin groups

In this section we give an overview of some of the basic theory used to prove
theorems about Artin groups.

3.1. Garside theory. Recall that the combinatorial structure of Artin groups was
first studied for the braid groups by Garside [Gar69] and extended to finite type
Artin groups by Brieskorn and Saito [BS72]. Since the combinatorial consequences
have played a major role in the study of finite type Artin groups, Dehornoy and
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Paris defined a group with such a structure to be a Garside group. This led to the
development of Garside theory which asked the question: What are features of groups
(and more generally monoids or even categories) which allow us to carry over (analogs
of) Garside’s proof? After several different but related notions in the literature, the
one in [DDGKM15] became somewhat standard. We define the structure and list
some consequences below.

Definition 3.1 (Garside monoid [DP99, Definition 2.1]). A Garside monoid is a pair
(M,∆) where M is a monoid and

(i) M is left- and right-cancellative,
(ii) there exists ℓ : M → N satisfying ℓ(ab) ≥ ℓ(a) + ℓ(b), and ℓ(a) = 0 ⇒ a = e,
(iii) any two elements of M have a left- and a right-lcm (lowest common multiple)

and a left- and a right-gcd (greatest common divisor),
(iv) ∆ is a Garside element of M, i.e. the set of left-divisors of ∆ is equal to the set

of right-divisors, and this set is a generating set for M ,
(v) the set of all divisors of ∆ in M is finite.

Given a Garside monoid, one can construct exactly one Garside group, which is
the enveloping group (or group-completion) of the monoid. It is then a property of
the monoid that its group-completion can be constructed by left fractions, and that
the monoid injects into the group-completion.

Definition 3.2 (Garside group [DP99, Definition 2.3]). G is a Garside group if it is
the group completion of a Garside monoid M .
In this case, it follows from M being Garside that:

• M ⊆ G,
• for all g ∈ G, theres exists a, b ∈ M such that g = a−1b.

We say that G is the group of left-fractions of M

A monoid is a quasi-Garside monoid, if it satisfies the properties of a Garside
monoid except the final one: ∆ is allowed to have an infinite number of divisors. In
this case the group of fractions is called a quasi-Garside group.

Let A+
Γ be an Artin monoid with generating set S and let RΓ be the set of relations

determined by the defining graph Γ. Consider the set {S}∗ of words written in the
alphabet S. We often consider these words modulo the relations RΓ. Then this set is
in one-to-one correspondence with the set of elements in the Artin monoid A+

Γ . If w
denotes a word in {S}∗, let w denote its image in {S}∗/RΓ

∼= A+
Γ . We can endow the

set {S}∗ with a partial order ⩽R, where we say two words v and w in {S}∗ satisfy
v ⩽R w if there exists z ∈ {S}∗ such that w = zv i.e. v appears on the right of w.
This partial order can be passed to the Artin monoid: we say two elements v and w
in {S}∗/RΓ satisfy v ⩽R w if there exists z ∈ {S}∗ such that w = zv. The partial
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order ⩽L is defined similarly, where v ⩽L w if there exists z ∈ {S}∗ such that w = vz
i.e. v appears on the left of w. Under the isomorphism {S}∗/RΓ

∼= A+
Γ we can write

a and b in A+
Γ satisfy a ⩽R b if there exists c ∈ A+

Γ such that b = ca. The set of
b ∈ A+

Γ satisfying b ⩽R a are called the right divisors of a ∈ A+
Γ , and similarly for

the set of left-divisors.

Exercise 3.3. Determine the exact definitions for the notions of least common mul-
tiple and greatest common divisor for A+

Γ with the partial order ⩽R or ⩽L.

It was shown by Brieskorn and Saito that finite type Artin monoids have a Garside
structure, which we now introduce. Recall that a finite Coxeter group WΓ has a
unique longest element, and let ∆ be the image of this element in AΓ under the
canonical section. This lies in A+

Γ , since the entire image of WΓ under the canonical
section does. Then the pair (A+

Γ ,∆) is a Garside monoid since:

(i) [BS72, Proposition 2.3] A+
Γ is left and right cancellative, i.e. if ac = bc or ca = cb

in A+
Γ , then we can cancel the cs and conclude that a = b.

(ii) The length function ℓ : A+
Γ → N which maps an element a ∈ A+

Γ to the length
of a word representing a (in the standard generators) is well defined, since all
relations in A+

Γ are the same length on either side. This function satisfies that
ℓ(ab) = ℓ(a) + ℓ(b), and the only monoid element which evaluates to 0 is the
identity element e ∈ A+

Γ .
(iii) [BS72, Proposition 4.2 and Theorems 5.5 and 5.6] In a finite type Artin group,

every set of elements has a least common multiple and greatest common divisor.
(iv) ∆ is a Garside element, and its set of left-divisors equals its set of right-divisors.

This set is exactly the image of the canonical section WΓ → A+
Γ and hence

always contains the standard generating set S, and therefore generates A+
Γ .

In particular, this means for every s ∈ S there exists a, b ∈ A+
Γ such that

∆ = sa = bs.
(v) Since WΓ is finite, the set of divisors of ∆ is therefore finite.

In contrast to item (iii), in a generic Artin group greatest common divisors always
exist and least common multiples exist only when a common multiple exists [BS72,
Proposition 4.1].

We therefore see that in a finite type Artin group AΓ, all group elements g can be
written as g = ab−1 for a, b ∈ A+

Γ . Moreover, for each g there exists an integer k and
element a ∈ A+

Γ such that g = ∆ka.
Moreover, it is an interesting fact that given a finite type Artin monoid A+

Γ with
generating set S and Garside element ∆, there exists a permutation σ : S → S such
that for all s ∈ S, ∆s = σ(s)∆.

Exercise 3.4. For the monoids associated to the finite type Artin groups of type I2(p),
and A3, determine the Garside element ∆, and permutation σ : S → S.
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Given an Artin monoid A+
Γ , with generating set S, we can denote its Garside

element (if it exists) by ∆S. For T ⊆ S, we denote the Garside element for the
submonoid A+

T by ∆T . The following lemma gives rise to a useful normal form for
Artin monoids:

Lemma 3.5. If a ∈ A+
Γ has T ⊆ S as its set of right-divisors of length 1, then A+

T is
a finite type Artin monoid with Garside element ∆T , and there exists b ∈ A+

Γ such
that a = b∆T .

We can use this fact first to write a = b∆T0 , then to write b = c∆T1 where T1 ⊂ S
is the set of right-divisors of b, and so on until we reach the unique normal form:

a = ∆Tk
. . .∆T1∆T0

Here a has been written in a normal form using the alphabet of Garside elements
corresponding to finite type Artin monoids, but A+

Γ does not have to be a finite
type Artin monoid itself. This normal form has been key to many proofs for Artin
monoids, but passing from monoids to groups is still very difficult without a (quasi-)
Garside structure.

Dehornoy has a series of papers [Deh17a; Deh17b; DW17; DHR18] outlining a
program to export the essence of Garside theory to general Artin groups. As we
have seen, for finite type Artin groups, which are Garside groups, one can write
every element as g = a−1b for a and b in the associated monoid. This is not true for
general Artin groups, and Dehornoy and coauthors study rewriting systems on AΓ

arising from writing every element as a multifraction g = a−1
1 b1 . . . a

−1
n bn. Dehornoy

reformulates the word problem for AΓ using multifractions, and formulates several
conjectures. The most basic of these is the following: suppose an element g ∈ AΓ can
be written as g = a−1b with no cancellation, then are a and b unique? Techniques in
the study of Stab(DΓ) have shown promise to solve this basic conjecture, and thus
it is promising that they may be applied to Dehornoy’s program to solve the word
problem for Artin groups.

3.2. Dual Garside structures.

Definition 3.6. A Coxeter element for an Artin group AΓ with finite generating set
S = {s1, . . . , sn} is an element represented by a word given by a permutation of the
letters in S. For example, s1 · · · sn is a Coxeter element for AΓ.

Given an Artin group AΓ and Coxeter element δ one can define a dual Artin
group. When AΓ is finite type, this group is both isomorphic to the Artin group, and
Garside, with Garside element given by the Coxeter element δ. Finite type Artin
groups therefore have two different Garside structures.

In general, it is conjectured that the dual Artin group is isomorphic to the Artin
group. The dual Artin group is infinitely generated and so the best we can hope for
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is a quasi-Garside structure. Both of these questions have been shown to be true for
rank 3 Artin groups [DPS22] and affine Artin groups [Dig06; Dig12; McC15; MS17].

The dual Garside structure for affine Artin groups introduced by McCammond
and Sulway [MS17] was used by Paolini and Salvetti [PS21] to prove the K(π, 1)
conjecture for the class of affine Artin groups.

3.3. Shellability and union of chambers. In [Dav08], Davis used a union of cham-
bers argument to prove that the Davis complex ΣW associated to a Coxeter group is
contractible. He did this by showing that the Davis complex is an example of a so
called basic construction. Hepworth’s high connectivity results relating to homologi-
cal stability for Coxeter groups [Hep16] also used such an argument. In [Par14], Paris
used a union of chambers argument to show that the universal cover of an analogue
of the Salvetti complex for certain Artin monoids is contractible, proving the K(π, 1)
conjecture for finite type Artin groups. Loosely, the argument consists of breaking
the complex up into high dimensional chambers and considering how connectivity
changes as they are glued together to create the complex.

We give an overview of the argument in the case that we have a simplicial complex
C of dimension n that we wish to prove is contractible, or (n − 1)-connected. The
argument works in the setting that C is a union of n dimensional simplices over some
(possibly infinite) indexing set I:

C =
⋃
i∈I

σn
i

and to each simplex there is a canonical way to associate a natural number, i.e. there
exists a map l : I → N, such that only one simplex – σn

i0
– has index which evaluates

to 0. This induces a partial ordering on the σn
i , inherited from ≤ on N. For instance,

if C is the geometric realisation of a poset of group cosets, the indexing set may
be the group, or a set of coset representatives, and there may be some well defined
length function to act as the map to N. Alternatively, C may be the orbit of an
n-dimensional simplex under a group action, again with the group acting as the
indexing set. We filter the top dimensional simplices by the natural numbers as
follows:

Definition 3.7. For k in N we define C(k) as follows:

C(k) =
⋃
i∈I,

l(i)≤k

σn
i .

We remark that C(0) = σn
i0
, and the complex C is given by limk→∞ C(k). The

union of chambers argument relies on the following two steps:
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(A) If l(i) = k + 1 then σn
i ∩ C(k) is a non-empty union of top dimensional faces of

σn
i .

(B) If l(i) = l(j) = k + 1 and i ̸= j ∈ I then σn
i ∩ σn

j ⊆ C(k).

We build up C by increasing k in Cn(k). We start at C(0) = σn
i0
, which is

contractible. At each step we build up from C(k) to C(k + 1) by adding the set of
simplices: ⋃

i∈I,
l(i)=k+1

σn
i .

Then point (A) says that when σn
i is added to C(k), the intersection is a non-empty

union of facets of σn
i . Therefore either the homotopy type doesn’t change upon adding

the simplex (if not all facets are in the intersection), or the homotopy changes and
this change is described by the possible addition of an n sphere (if all facets are in the
intersection). Point (B) then says that adding the entirety of the above union to C(k)
at the same time only changes the homotopy type in the sense that the individual
simplices change it, since each two simplices intersect within C(k). Therefore at each
stage we change the homotopy type by at most the addition of several n spheres and
it follows that C is either contractible, or (n− 1)-connected.

The function l : I → N gives a partial order on the top dimensional simplices of C.
By (B), any linear extension of this partial order to a total order will still satisfy (A).
In this case, the ordering is called a shelling (see [Bjö92]), which we know to be
highly connected: giving an alternative proof to the previous discussion.

This proof can be altered easily if we wish to. For example, we can start with
C(0) being a m-connected complex for some m. We can also have our fundamental
building block be something other than a single simplex. For example, it could be the
fundamental domain for a group or monoid action on a cube or simplicial complex.

References

[Alt98] Joseph A. Altobelli. “The word problem for Artin groups of FC type”.
In: Journal of Pure and Applied Algebra 129.1 (1998), pp. 1–22. issn:
00224049. doi: 10.1016/S0022-4049(97)00047-9.

[BCV23] Corey Bregman, Ruth Charney, and Karen Vogtmann. “Outer space
for RAAGs”. In: Duke Math. J. 172.6 (2023), pp. 1033–1108. issn:
0012-7094,1547-7398. doi: 10.1215/00127094-2023-0007.

[BHO24] Rachael Boyd, Edmund Heng, and Viktoriya Ozornova.Mini-workshop:
Artin groups meet triangulated categories. Reporter: Gabriel Corrigan.
2024. doi: 10.14760/OWR-2024-4.

https://doi.org/10.1016/S0022-4049(97)00047-9
https://doi.org/10.1215/00127094-2023-0007
https://doi.org/10.14760/OWR-2024-4


REFERENCES 19
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bits einer endlichen komplexen Spiegelungsgruppe.” In: Inventiones
Mathematicae 12 (1971), p. 57. doi: 10.1007/BF01389827.

[Bro94] Kenneth S. Brown. Cohomology of groups. Vol. 87. Graduate Texts in
Mathematics. Corrected reprint of the 1982 original. Springer-Verlag,
New York, 1994, pp. x+306. isbn: 0-387-90688-6.

[BS72] E. Brieskorn and K. Saito.“Artin-Gruppen und Coxeter-Gruppen”. In:
Inventiones Mathematicae 17 (1972), pp. 245–271. issn: 0020-9910.
doi: 10.1007/BF01406235.

[CD95a] R. Charney and M. W. Davis. “Finite K(π, 1)s for Artin groups”. In:
Prospects in topology (Princeton, NJ, 1994). Vol. 138. Ann. of Math.
Stud. Princeton Univ. Press, Princeton, NJ, 1995, pp. 110–124.

[CD95b] R. Charney and M. W. Davis. “The K(π, 1)-problem for hyperplane
complements associated to infinite reflection groups”. In: J. Amer.
Math. Soc. 8.3 (1995), pp. 597–627. issn: 0894-0347. doi: 10.2307/2
152924.

[Cha] Ruth Charney. “Problems related to Artin groups”. In: . . . (), pp. 1–
12.

[Cha04] Ruth Charney.“The Deligne complex for the four-strand braid group”.
In: Transactions of the American Mathematical Society 356.10 (2004),
pp. 3881–3897. issn: 0002-9947. doi: 10.1090/S0002-9947-03-0342
5-1.

[Cox35] H. S. M. Coxeter. “The Complete Enumeration of Finite Groups of the
Form R2

i = (RiRj)
kij = 1”. In: Journal of the London Mathematical

Society s1-10.1 (1935), pp. 21–25. doi: 10.1112/jlms/s1-10.37.21.
[Cri05] John Crisp. “Automorphisms and abstract commensurators of 2 di-

mensional Artin groups”. In: Geom. Topol. 9 (2005), pp. 1381–1441.
issn: 1465-3060,1364-0380. doi: 10.2140/gt.2005.9.1381.

[Dav08] M. W. Davis. The geometry and topology of Coxeter groups. Vol. 32.
London Mathematical Society Monographs Series. Princeton Univer-
sity Press, Princeton, NJ, 2008, pp. xvi+584. isbn: 978-0-691-13138-2;
0-691-13138-4.

[DDGKM15] Patrick Dehornoy, François Digne, Eddy Godelle, Daan Krammer, and
Jean Michel. Foundations of Garside theory. Vol. 22. EMS Tracts in
Mathematics. Author name on title page: Daan Kramer. European

https://doi.org/10.1017/CBO9780511662041.008
https://doi.org/10.1017/CBO9780511662041.008
https://doi.org/10.1007/BF01389827
https://doi.org/10.1007/BF01406235
https://doi.org/10.2307/2152924
https://doi.org/10.2307/2152924
https://doi.org/10.1090/S0002-9947-03-03425-1
https://doi.org/10.1090/S0002-9947-03-03425-1
https://doi.org/10.1112/jlms/s1-10.37.21
https://doi.org/10.2140/gt.2005.9.1381


REFERENCES 20

Mathematical Society (EMS), Zürich, 2015, pp. xviii+691. isbn: 978-
3-03719-139-2. doi: 10.4171/139.

[Deh17a] Patrick Dehornoy. “Multifraction reduction I: The 3-Ore case and
Artin-Tits groups of type FC”. In: J. Comb. Algebra 1.2 (2017), pp. 185–
228. issn: 2415-6302. doi: 10.4171/JCA/1-2-3.

[Deh17b] Patrick Dehornoy. “Multifraction reduction II: conjectures for Artin-
Tits groups”. In: J. Comb. Algebra 1.3 (2017), pp. 229–287. issn: 2415-
6302. doi: 10.4171/JCA/1-3-1.

[Del72] P. Deligne. “Les immeubles des groupes de tresses généralisés”. In:
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