COMPLEX MANIFOLDS EXAMPLE SHEET 3

The two questions marked (*) can be handed in to be marked. For this, please leave the work in my DPMMS pigeon hole (labelled "Dervan") by 14:00 on February 25th.

(1) Suppose $\mathcal{U} = \{U_{\alpha}\}$ is an open cover of a topological space X, and that on each U_{α} we have a sheaf \mathcal{F}_{α} . If on each $U_{\alpha} \cap U_{\beta}$ we have an isomorphism of sheaves

$$\varphi_{\alpha\beta}:\mathcal{F}_{\beta}|_{U_{\alpha}\cap U_{\beta}}\to\mathcal{F}_{\alpha}|_{U_{\alpha}\cap U_{\beta}},$$

such that $\varphi_{\alpha\alpha} = Id$ and

$$\varphi_{\alpha\beta}\varphi_{\beta\gamma}\varphi_{\gamma\alpha} = Id$$

where defined, show that there exists a sheaf \mathcal{F} on X with $\mathcal{F}|_{U_{\alpha}} \cong \mathcal{F}_{\alpha}$ for all α .

- (2) Suppose $(U_{\alpha}, \phi_{\alpha})$ is a trivialisation for a vector bundle $\pi : E \to X$ and let $s_{\alpha} : U_{\alpha} \to \pi^{-1}(U_{\alpha})$ be a collection of maps such that $s_{\alpha} = \phi_{\alpha\beta}s_{\beta}$. Show that the s_{α} glue to a global section $s : X \to L$. Conversely show that any global section satisfies this property.
- (3) (For those who know some commutative algebra) Let \mathcal{O}_n denote the local ring of germs of holomorphic functions at $0 \in \mathbb{C}^n$. If w_1, \ldots, w_n are the holomorphic coordinate functions on \mathbb{C}^n , let $\frac{\partial}{\partial w_i}$ denote the map $\mathcal{O}_n \to \mathbb{C}$ given by $f \to \frac{\partial f}{\partial w_i}(0)$. Show that the $\frac{\partial}{\partial w_i}$ are derivations in the sense of ring theory and that they form a basis for the holomorphic vector bundle $(T\mathbb{C}^n)^{(1,0)}$ at 0.
- (4) (*) (i) Let X be a complex manifold with almost complex structure J. Explain how multiplication by i gives and \mathbb{R} -linear map

$$\tilde{J}: T^*X^{(1,0)} \to T^*X^{(1,0)}$$

such that $\tilde{J}^2 = -Id$. Prove that there is a natural identification

$$T^*X \cong (T^*X)^{(1,0)}$$

taking J to \tilde{J} .

(ii) Suppose now that g is a Riemannian metric on X compatible with J and let $g_{\mathbb{C}}$ be the extension to $TX_{\mathbb{C}}$ given by

$$g_{\mathbb{C}}(\lambda v, \mu w) = \lambda \bar{\mu} g(v, w) \quad \lambda, \mu \in \mathbb{C}, v, w \in T_x X.$$

Show that under the isomorphism in part (i) we can identify $g_{\mathbb{C}}$ with $g - i\omega$ (up to a factor of 2) on $T^*X^{(1,0)}$.

(iii) Now suppose we have local coordinates $z_1, \ldots z_n$ on X so that $dz_1, \ldots dz_n$ are a frame for $T^*X^{(1,0)}$. Show that if $h_{ij} = 2g_{\mathbb{C}}(\frac{\partial}{\partial z_i}, \frac{\partial}{\partial z_i})$,

then (h_{ij}) is a hermitian matrix and the associated fundamental form is

$$\omega = \frac{i}{2} \sum_{i,j} h_{ij} dz_i \wedge \bar{d} z_j.$$

- (5) Let $\mathbb{P}^{n-1} \subset \mathbb{P}^n$ be the standard linear inclusion. Show that the restriction of the Fubini-Study metric on \mathbb{P}^n gives the Fubini-Study metric on \mathbb{P}^{n-1} .
- (6) The k^{th} Betti number of a smooth manifold X is $b_k = \dim_{\mathbb{R}} H^k(X, \mathbb{R})$. Show that the odd Betti numbers b_{2k+1} of a compact Kähler manifold are even.
- (7) Show that the Hopf surface from Example Sheet 1 does not admit a Kähler form (this will require some topology). This gives an example of a compact complex manifold which is not Kähler, and hence not projective.
- (8) (*) Let X be a compact complex manifold with Kähler form ω arising from a Riemannian metric g and suppose $\mathcal{H}^{0,1}(X,g) = 0$. Suppose that $\alpha \in \mathcal{A}^{0,1}(X)$ has $\bar{\partial}\alpha = 0$. Show that $\alpha = \bar{\partial}\beta$ for some β (a) directly using the Hodge decomposition and (b) using the identification between harmonic forms and Dolbeault cohomology.
- (9) Show that a Kähler form is harmonic.
- (10) Show how Poincaré duality $H^k(X, \mathbb{C}) \cong H^{2n-k}(X, \mathbb{C})$ can be deduced from Serre duality on a compact Kähler manifold.