COMPLEX MANIFOLDS EXAMPLE SHEET 3

The two questions marked $(*)$ can be handed in to be marked. For this, please leave the work in my DPMMS pigeon hole (labelled "Dervan") by 14:00 on February $25^{\text {th }}$.
(1) Suppose $\mathcal{U}=\left\{U_{\alpha}\right)$ is an open cover of a topological space X, and that on each U_{α} we have a sheaf \mathcal{F}_{α}. If on each $U_{\alpha} \cap U_{\beta}$ we have an isomorphism of sheaves

$$
\varphi_{\alpha \beta}:\left.\left.\mathcal{F}_{\beta}\right|_{U_{\alpha} \cap U_{\beta}} \rightarrow \mathcal{F}_{\alpha}\right|_{U_{\alpha} \cap U_{\beta}},
$$

such that $\varphi_{\alpha \alpha}=I d$ and

$$
\varphi_{\alpha \beta} \varphi_{\beta \gamma} \varphi_{\gamma \alpha}=I d
$$

where defined, show that there exists a sheaf \mathcal{F} on X with $\left.\mathcal{F}\right|_{U_{\alpha}} \cong \mathcal{F}_{\alpha}$ for all α.
(2) Suppose $\left(U_{\alpha}, \phi_{\alpha}\right)$ is a trivialisation for a vector bundle $\pi: E \rightarrow$ X and let $s_{\alpha}: U_{\alpha} \rightarrow \pi^{-1}\left(U_{\alpha}\right)$ be a collection of maps such that $s_{\alpha}=\phi_{\alpha \beta} s_{\beta}$. Show that the s_{α} glue to a global section $s: X \rightarrow L$. Conversely show that any global section satisfies this property.
(3) (For those who know some commutative algebra) Let \mathcal{O}_{n} denote the local ring of germs of holomorphic functions at $0 \in \mathbb{C}^{n}$. If w_{1}, \ldots, w_{n} are the holomorphic coordinate functions on \mathbb{C}^{n}, let $\frac{\partial}{\partial w_{i}}$ denote the map $\mathcal{O}_{n} \rightarrow \mathbb{C}$ given by $f \rightarrow \frac{\partial f}{\partial w_{i}}(0)$. Show that the $\frac{\partial}{\partial w_{i}}$ are derivations in the sense of ring theory and that they form a basis for the holomorphic vector bundle $\left(T \mathbb{C}^{n}\right)^{(1,0)}$ at 0 .
(4) $\left(^{*}\right)$ (i) Let X be a complex manifold with almost complex structure J. Explain how multiplication by i gives and \mathbb{R}-linear map

$$
\tilde{J}: T^{*} X^{(1,0)} \rightarrow T^{*} X^{(1,0)}
$$

such that $\tilde{J}^{2}=-I d$. Prove that there is a natural identification

$$
T^{*} X \cong\left(T^{*} X\right)^{(1,0)}
$$

taking J to \tilde{J}.
(ii) Suppose now that g is a Riemannian metric on X compatible with J and let $g_{\mathbb{C}}$ be the extension to $T X_{\mathbb{C}}$ given by

$$
g_{\mathbb{C}}(\lambda v, \mu w)=\lambda \bar{\mu} g(v, w) \quad \lambda, \mu \in \mathbb{C}, v, w \in T_{x} X .
$$

Show that under the isomorphism in part (i) we can identify $g_{\mathbb{C}}$ with $g-i \omega$ (up to a factor of 2) on $T^{*} X^{(1,0)}$.
(iii) Now suppose we have local coordinates $z_{1}, \ldots z_{n}$ on X so that $d z_{1}, \ldots d z_{n}$ are a frame for $T^{*} X^{(1,0)}$. Show that if $h_{i j}=2 g_{\mathbb{C}}\left(\frac{\partial}{\partial z_{i}}, \frac{\partial}{\partial z_{j}}\right)$,
then $\left(h_{i j}\right)$ is a hermitian matrix and the associated fundamental form is

$$
\omega=\frac{i}{2} \sum_{i, j} h_{i j} d z_{i} \wedge \bar{d} z_{j}
$$

(5) Let $\mathbb{P}^{n-1} \subset \mathbb{P}^{n}$ be the standard linear inclusion. Show that the restriction of the Fubini-Study metric on \mathbb{P}^{n} gives the Fubini-Study metric on \mathbb{P}^{n-1}.
(6) The $k^{t h}$ Betti number of a smooth manifold X is $b_{k}=\operatorname{dim}_{\mathbb{R}} H^{k}(X, \mathbb{R})$. Show that the odd Betti numbers $b_{2 k+1}$ of a compact Kähler manifold are even.
(7) Show that the Hopf surface from Example Sheet 1 does not admit a Kähler form (this will require some topology). This gives an example of a compact complex manifold which is not Kähler, and hence not projective.
(8) $\left(^{*}\right)$ Let X be a compact complex manifold with Kähler form ω arising from a Riemannian metric g and suppose $\mathcal{H}^{0,1}(X, g)=0$. Suppose that $\alpha \in \mathcal{A}^{0,1}(X)$ has $\bar{\partial} \alpha=0$. Show that $\alpha=\bar{\partial} \beta$ for some β (a) directly using the Hodge decomposition and (b) using the identification between harmonic forms and Dolbeault cohomology.
(9) Show that a Kähler form is harmonic.
(10) Show how Poincaré duality $H^{k}(X, \mathbb{C}) \cong H^{2 n-k}(X, \mathbb{C})$ can be deduced from Serre duality on a compact Kähler manifold.

