SIGNS FOR THE HODGE STAR OPERATOR

PART III COMPLEX MANIFOLDS 2019

1. Manifolds

For manifolds we defined the Hodge star operator in such a way that

$$
(\alpha, \beta)_{h} \mathrm{dVol}=\alpha \wedge \star \beta
$$

(The point is that this is slightly different to Huybrechts' definition). We then defined adjoints

$$
\partial^{*}=-\star \partial \star
$$

and

$$
\bar{\partial}^{*}=-\star \bar{\partial} \star .
$$

Then we proved:
Lemma 1.1. ∂^{*} is the L^{2}-adjoint of ∂. That is, for $\alpha \in \mathcal{A}_{\mathbb{C}}^{p, q}(X)$ and $\beta \in$ $\mathcal{A}_{\mathbb{C}}^{p+1, q}(X)$, we have

$$
\langle\partial \alpha, \beta\rangle_{L^{2}}=\left\langle\alpha, \partial^{*} \beta\right\rangle_{L^{2}}
$$

Proof. The L^{2}-inner product is

$$
\begin{aligned}
\langle\partial \alpha, \beta\rangle_{L^{2}} & =\int_{X}(\partial \alpha, \beta)_{h} \mathrm{dVol} \\
& =\int_{X} \partial \alpha \wedge \star \beta
\end{aligned}
$$

By Stokes' Theorem

$$
0=\int_{X} d(\alpha \wedge \star \beta)=\int_{X} \partial(\alpha \wedge \star \beta)
$$

using that $\alpha \wedge \star \beta$ is an $(n-1, n)$-form. Next

$$
\int_{X} \partial(\alpha \wedge \star \beta)=\int_{X}\left(\partial \alpha \wedge \star \beta+(-1)^{p+q} \alpha \wedge \partial \star \beta\right)
$$

Thus

$$
\begin{aligned}
\langle\partial \alpha, \beta\rangle_{L^{2}} & =\int_{X} \partial \alpha \wedge \star \beta \\
& =(-1)^{p+q+1} \int_{X} \alpha \wedge \partial \star \beta \\
& =(-1)^{p+q+1+(p+q)(2 n-(p+q))} \int_{X} \alpha \wedge \star(\star \partial \star \beta) \\
& =\left\langle\alpha, \partial^{*} \beta\right\rangle
\end{aligned}
$$

using

$$
\star \star=(-1)^{(p+q)(2 n-p-q)} .
$$

2. Bundles

Let h be a Hermitian metric on E, viewed as giving a map $h: E \rightarrow E^{*}$. The consistent way to define the Hodge star operator

$$
\star_{E}: \wedge^{p, q} T^{*} X \otimes E \rightarrow \wedge^{p, q} T^{*} X \otimes E^{*}
$$

is to define

$$
\star_{E}(\varphi \otimes s)=(\star \varphi) \otimes h(s)
$$

for $\varphi \in \mathcal{A}_{\mathbb{C}}^{p, q}(U)$ and $s \in C^{\infty}(E)(U)$ and extend linearly. The Hodge star operator then satisfies

$$
(\alpha, \beta) \mathrm{dVol}=\alpha \wedge \star_{E} \beta
$$

using the natural inner product on the left, for $\alpha, \beta \in \mathcal{A}_{\mathbb{C}}^{p, q}(E)(U)$ as in the lectures. Note also that this operator satisfies $\star_{E^{\star} E^{*}}=(-1)^{(p+q)(2 n-p-q)}$ as before, where $\star_{E^{*}}$ is the Hodge star using the dual Hermitian metric h^{*}, which satisfies $h^{*}(h(s))=$ s. Here we remark again that " $\alpha \wedge \star \beta$ " means wedge on the form part and evaluation $E \otimes E^{*} \rightarrow \mathbb{C}$ on the bundle part. One then defines an adjoint

$$
\bar{\partial}_{E}^{*}=-\star_{E^{*}} \bar{\partial}_{E^{*}} \star_{E}
$$

To check this is a reasonable, using the usual L^{2}-inner product we explicitly prove:
Lemma 2.1. $\bar{\partial}^{*}$ is the L^{2}-adjoint of $\bar{\partial}$. That is, for $\alpha \in \mathcal{A}_{\mathbb{C}}^{p, q}(E)$ and $\beta \in$ $\mathcal{A}_{\mathbb{C}}^{p, q+1}(E)$, we have

$$
\langle\bar{\partial} \alpha, \beta\rangle_{L^{2}}=\left\langle\alpha, \bar{\partial}^{*} \beta\right\rangle_{L^{2}}
$$

Proof. The proof is almost verbatim the one given above. The L^{2}-inner product is

$$
\begin{aligned}
\langle\bar{\partial} \alpha, \beta\rangle_{L^{2}} & =\int_{X}(\bar{\partial} \alpha, \beta) \mathrm{dVol} \\
& =\int_{X} \bar{\partial} \alpha \wedge \star_{E} \beta
\end{aligned}
$$

By Stokes' Theorem

$$
0=\int_{X} d\left(\alpha \wedge \star_{E} \beta\right)=\int_{X} \bar{\partial}\left(\alpha \wedge \star_{E} \beta\right)
$$

using that $\alpha \wedge \star_{E} \beta$ is an ($n, n-1$)-form. Next one checks that the definitions of $\bar{\partial}_{E}$ and $\bar{\partial}_{E^{*}}$ provide

$$
\int_{X} \bar{\partial}\left(\alpha \wedge \star_{E} \beta\right)=\int_{X}\left(\bar{\partial}_{E} \alpha \wedge \star_{E} \beta+(-1)^{p+q} \alpha \wedge \bar{\partial}_{E^{*} \star_{E}} \beta\right)
$$

Thus

$$
\begin{aligned}
\langle\bar{\partial} \alpha, \beta\rangle_{L^{2}} & =\int_{X} \bar{\partial}_{E} \alpha \wedge \star_{E} \beta \\
& =(-1)^{p+q+1} \int_{X} \alpha \wedge \bar{\partial}_{E^{*} \star_{E}} \beta \\
& =(-1)^{p+q+1+(p+q)(2 n-(p+q))} \int_{X} \alpha \wedge \star_{E}\left(\star_{E^{*}} \bar{\partial} \star_{E} \beta\right) \\
& =\left\langle\alpha, \bar{\partial}_{E}^{*} \beta\right\rangle_{L^{2}}
\end{aligned}
$$

using

$$
\star_{E^{\star}} E^{*}=(-1)^{(p+q)(2 n-p-q)} .
$$

Lemma 2.2 (Nakano Identity). Defining $\left(D^{1,0}\right)^{*}=-\star_{E^{*}} D_{E^{*}}^{1,0} \star_{E}$, we have

$$
\left[\Lambda, \bar{\partial}_{E}\right]=-i\left(D^{1,0}\right)^{*}
$$

Proof. This now follows from the argument in lectures using the normal frame.

