SIGNS FOR THE HODGE STAR OPERATOR

PART III COMPLEX MANIFOLDS 2019

1. Manifolds

For manifolds we defined the Hodge star operator in such a way that

$$(\alpha, \beta)_h \,\mathrm{dVol} = \alpha \wedge \star \beta.$$

(The point is that this is slightly different to Huybrechts' definition). We then defined adjoints

$$\partial^* = -\star \partial \star$$

and

$$\bar\partial^* = -\star\bar\partial\star.$$

Then we proved:

Lemma 1.1. ∂^* is the L^2 -adjoint of ∂ . That is, for $\alpha \in \mathcal{A}^{p,q}_{\mathbb{C}}(X)$ and $\beta \in \mathcal{A}^{p+1,q}_{\mathbb{C}}(X)$, we have

$$\langle \partial \alpha, \beta \rangle_{L^2} = \langle \alpha, \partial^* \beta \rangle_{L^2}.$$

Proof. The L^2 -inner product is

$$\begin{split} \langle \partial \alpha, \beta \rangle_{L^2} &= \int_X (\partial \alpha, \beta)_h \, \mathrm{dVol}, \\ &= \int_X \partial \alpha \wedge \star \beta. \end{split}$$

By Stokes' Theorem

$$0 = \int_X d(\alpha \wedge \star \beta) = \int_X \partial(\alpha \wedge \star \beta),$$

using that $\alpha\wedge\star\beta$ is an (n-1,n)-form. Next

$$\int_X \partial(\alpha \wedge \star \beta) = \int_X (\partial \alpha \wedge \star \beta + (-1)^{p+q} \alpha \wedge \partial \star \beta).$$

Thus

$$\begin{split} \langle \partial \alpha, \beta \rangle_{L^2} &= \int_X \partial \alpha \wedge \star \beta, \\ &= (-1)^{p+q+1} \int_X \alpha \wedge \partial \star \beta, \\ &= (-1)^{p+q+1+(p+q)(2n-(p+q))} \int_X \alpha \wedge \star (\star \partial \star \beta), \\ &= \langle \alpha, \partial^* \beta \rangle \end{split}$$

using

$$\star \star = (-1)^{(p+q)(2n-p-q)}.$$

2. Bundles

Let h be a Hermitian metric on E, viewed as giving a map $h: E \to E^*$. The consistent way to define the Hodge star operator

$$\star_E : \wedge^{p,q} T^* X \otimes E \to \wedge^{p,q} T^* X \otimes E^*$$

is to define

$$\star_E(\varphi \otimes s) = (\star\varphi) \otimes h(s)$$

for $\varphi \in \mathcal{A}^{p,q}_{\mathbb{C}}(U)$ and $s \in C^{\infty}(E)(U)$ and extend linearly. The Hodge star operator then satisfies

$$(\alpha, \beta) \,\mathrm{dVol} = \alpha \wedge \star_E \beta$$

using the natural inner product on the left, for $\alpha, \beta \in \mathcal{A}^{p,q}_{\mathbb{C}}(E)(U)$ as in the lectures. Note also that this operator satisfies $\star_E \star_{E^*} = (-1)^{(p+q)(2n-p-q)}$ as before, where \star_{E^*} is the Hodge star using the dual Hermitian metric h^* , which satisfies $h^*(h(s)) = s$. Here we remark again that " $\alpha \wedge \star \beta$ " means wedge on the form part and evaluation $E \otimes E^* \to \mathbb{C}$ on the bundle part. One then defines an adjoint

$$\bar{\partial}_E^* = -\star_{E^*} \bar{\partial}_{E^*} \star_E$$

To check this is a reasonable, using the usual L^2 -inner product we explicitly prove: **Lemma 2.1.** $\bar{\partial}^*$ is the L^2 -adjoint of $\bar{\partial}$. That is, for $\alpha \in \mathcal{A}^{p,q}_{\mathbb{C}}(E)$ and $\beta \in \mathcal{A}^{p,q+1}_{\mathbb{C}}(E)$, we have

$$\langle \bar{\partial}\alpha, \beta \rangle_{L^2} = \langle \alpha, \bar{\partial}^*\beta \rangle_{L^2}.$$

Proof. The proof is almost verbatim the one given above. The L^2 -inner product is

$$\langle \bar{\partial}\alpha, \beta \rangle_{L^2} = \int_X (\bar{\partial}\alpha, \beta) \, \mathrm{dVol}_{\mathbb{R}}$$
$$= \int_X \bar{\partial}\alpha \wedge \star_E \beta.$$

By Stokes' Theorem

$$0 = \int_X d(\alpha \wedge \star_E \beta) = \int_X \bar{\partial}(\alpha \wedge \star_E \beta),$$

using that $\alpha \wedge \star_E \beta$ is an (n, n-1)-form. Next one checks that the definitions of $\bar{\partial}_E$ and $\bar{\partial}_{E^*}$ provide

$$\int_X \bar{\partial}(\alpha \wedge \star_E \beta) = \int_X (\bar{\partial}_E \alpha \wedge \star_E \beta + (-1)^{p+q} \alpha \wedge \bar{\partial}_{E^*} \star_E \beta).$$

Thus

$$\begin{split} \langle \bar{\partial}\alpha,\beta\rangle_{L^2} &= \int_X \bar{\partial}_E \alpha \wedge \star_E \beta, \\ &= (-1)^{p+q+1} \int_X \alpha \wedge \bar{\partial}_{E^*} \star_E \beta, \\ &= (-1)^{p+q+1+(p+q)(2n-(p+q))} \int_X \alpha \wedge \star_E (\star_{E^*} \bar{\partial} \star_E \beta), \\ &= \langle \alpha, \bar{\partial}_E^* \beta \rangle_{L^2} \end{split}$$

using

$$\star_E \star_{E^*} = (-1)^{(p+q)(2n-p-q)}.$$

Lemma 2.2 (Nakano Identity). Defining $(D^{1,0})^* = -\star_{E^*} D^{1,0}_{E^*} \star_E$, we have $[\Lambda, \bar{\partial}_E] = -i(D^{1,0})^*$.

Proof. This now follows from the argument in lectures using the normal frame. \Box