J-POINCARE LEMMA

PART III COMPLEX MANIFOLDS 2019

We prove the d-Poincaré Lemma in one variable, correcting a couple of typos in
the lectures, and mostly following Huybrechts’ book.
We begin with the generalised Cauchy integral formula.

Proposition 0.1. Let D = D(a,r) be a disc in C with r < oo, z € D and
f € C>=(D). Then
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Proof. Let D, = D(z,¢€) and denote
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Then dn = 07 since dw A dw = 0 and so
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Stokes’ Theorem gives
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We first show
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Indeed, changing variables by w — z = re* gives
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The latter integral converges to f(z) as z — 0 as f is smooth.

As dw A dw = —2irdr A df we have
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so by absolute integrability of |6—{%| over D we see
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Thus taking the limit as e — 0 gives
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as required.
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Using this we can prove the 0-Poincaré Lemma in one variable.

Theorem 0.2. Let D = D(a,r) be a disc in C withr < oo, 2 € D and g € C*(D).
Then
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is smooth and on D satisfies
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Proof. We first reduce to the case that g has compact support.

Pick zp € D and choose € > 0 such that
D2e = D(Zo,QE) g D.
Using a partition of unity for the cover { D\ D, Da.}, write

9(2) = 91(2) + g2(2)
with g1(2), g2(2) € g € C>(D), such that g; vanishes outside of Do, and g, vanishes
in D..
Define

fa(z) = ! /Dgz(w)dw/\di).
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Then fy € C*°(D,) as g vanishes near z when z € D,.. Differentiating under the
integral sign (permissible as fo is smooth) gives
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as ga(w) is independent of Z.
As g1(z) has compact support, we can write
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We then set
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where the smoothness follows from the last representation of the integral. Again
by smoothness differentiating under the integral sign and using the chain rule in
two variables
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By the generalised Cauchy integral formula we obtain
1 gl(w)dij 1 %w dwANdw  0fi

- 82 (2)7

z)=— —
() 21 Jap w — 2 2mi Jp Ow w—z

since gy vanishes on 9D.
Setting f = f1 + f2, we have f € C*°(D,) and for z € D, we have
0 0
o) =a) = D=
To finish the proof, note that zy was arbitrary and the functions constructed on

D(zp,€) and some other D(Zy, €) agree when the discs overlap.
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