
∂̄-POINCARÉ LEMMA

PART III COMPLEX MANIFOLDS 2019

We prove the ∂̄-Poincaré Lemma in one variable, correcting a couple of typos in
the lectures, and mostly following Huybrechts’ book.

We begin with the generalised Cauchy integral formula.

Proposition 0.1. Let D = D(a, r) be a disc in C with r < ∞, z ∈ D and
f ∈ C∞(D̄). Then

f(z) =
1

2πi

∫
∂D

f(w)

w − z
dw +

1

2πi

∫
D

∂f

∂w̄
(w)

dw ∧ dw̄
w − z

.

Proof. Let Dε = D(z, ε) and denote

η =
1

2πi

f(w)

w − z
dw ∈ A1

C(D\Dε).

Then dη = ∂̄η since dw ∧ dw = 0 and so

dη = − 1

2πi

∂f(w)

∂w̄

dw ∧ dw̄
w − z

.

Stokes’ Theorem gives

1

2πi

∫
∂Dε

f(w)

w − z
dw =

1

2πi

∫
∂D

f(w)

w − z
dw +

1

2πi

∫
D\Dε

∂f

∂w̄
(w)

dw ∧ dw̄
w − z

.

We first show
1

2πi

∫
∂Dε

f(w)

w − z
dw → f(z) as z → 0.

Indeed, changing variables by w − z = reiθ gives

1

2πi

∫
∂Dε

f(w)

w − z
dw =

1

2π

∫ 2π

0

f(z + εeiθ)dθ.

The latter integral converges to f(z) as z → 0 as f is smooth.
As dw ∧ dw̄ = −2irdr ∧ dθ we have

| ∂f
∂w̄

dw ∧ dw̄
w − z

| = 2| ∂f
∂w̄

dr ∧ dθ| ≤ C|dr ∧ dθ|,

so by absolute integrability of | ∂f∂w̄
dw∧dw̄
w−z | over D we see∫

Dε

∂f

∂w̄
(w)

dw ∧ dw̄
w − z

→ 0 as ε→ 0.

Thus taking the limit as ε→ 0 gives

f(z) =
1

2πi

∫
∂D

f(w)

w − z
dw +

1

2πi

∫
D

∂f

∂w̄
(w)

dw ∧ dw̄
w − z

,

as required.
�
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Using this we can prove the ∂̄-Poincaré Lemma in one variable.

Theorem 0.2. Let D = D(a, r) be a disc in C with r <∞, z ∈ D and g ∈ C∞(D̄).
Then

f(z) =
1

2πi

∫
D

g(w)

w − z
dw ∧ dw̄ ∈ C∞(D)

is smooth and on D satisfies
∂f(z)

∂z̄
= g(z).

Proof. We first reduce to the case that g has compact support.
Pick z0 ∈ D and choose ε > 0 such that

D2ε = D(z0, 2ε) ( D.

Using a partition of unity for the cover {D\Dε, D2ε}, write

g(z) = g1(z) + g2(z)

with g1(z), g2(z) ∈ g ∈ C∞(D̄), such that g1 vanishes outside of D2ε and g2 vanishes
in Dε.

Define

f2(z) =
1

2πi

∫
D

g2(w)

w − z
dw ∧ dw̄.

Then f2 ∈ C∞(Dε) as g2 vanishes near z when z ∈ Dε. Differentiating under the
integral sign (permissible as f2 is smooth) gives

∂f2

∂z̄
(z) =

1

πi

∫
D

∂

∂z̄

(
g2(w)

w − z

)
dw ∧ dw̄ = 0

as g2(w) is independent of z̄.
As g1(z) has compact support, we can write

1

2πi

∫
D

g1(w)

w − z
dw ∧ dw̄ =

1

2πi

∫
C

g1(w)

w − z
dw ∧ dw̄,

=
1

2πi

∫
C

g1(u+ z)

u
du ∧ dū,

= − 1

π

∫
C
g1(z + reiθ)e−iθdr ∧ dθ.

We then set

f1(z) =
1

2πi

∫
D

g1(w)

w − z
dw ∧ dw̄ ∈ C∞(D),

where the smoothness follows from the last representation of the integral. Again
by smoothness differentiating under the integral sign and using the chain rule in
two variables

∂f1

∂z̄
(z) = − 1

π

∫
C

∂g1(z + reiθ)

∂z̄
e−iθdr ∧ dθ,

= − 1

π

∫
C

(
∂g1

∂w̄

∂(z̄ + re−iθ)

∂z̄
+
∂g1

∂w

∂(z + re−iθ)

∂z̄

)
e−iθdr ∧ dθ,

= − 1

π

∫
C

∂g1(z + reiθ)

∂w̄
e−iθdr ∧ dθ

=

∫
D

∂g1(w)

∂w̄

dw ∧ dw̄
w − z

.
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By the generalised Cauchy integral formula we obtain

g1(z) =
1

2πi

∫
∂D

g1(w)

w − z
dw +

1

2πi

∫
D

∂g1

∂w̄
(w)

dw ∧ dw̄
w − z

=
∂f1

∂z̄
(z),

since g1 vanishes on ∂D.
Setting f = f1 + f2, we have f ∈ C∞(Dε) and for z ∈ Dε we have

g(z) = g1(z) =
∂f1

∂z̄
(z) =

∂f

∂z̄
(z).

To finish the proof, note that z0 was arbitrary and the functions constructed on
D(z0, ε) and some other D(ẑ0, ε̂) agree when the discs overlap.
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