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Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons
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A neuron in an active cortical circuit is subject to a fluctuating synaptic drive mediated by conductance
changes. It was recently demonstrated that synaptic conductance effeits significantly alter the integra-
tive properties of neurons. These effects are missed in models that approximate the synaptic drive as a
fluctuating current. Here the membrane-potential distribution and firing rate are derived for the integrate-and-
fire neuron withé correlated conductance-based synaptic input using the Fokker-Planck formalism. A number
of different input scenarios are examined, including balanced drive and fluctuation changes at constant con-
ductance, the latter of which corresponds to shifts in synchrony in the presynaptic population. This minimal
model captures many experimentally observed conductance-related effects such as reduced membrane-
potential fluctuations in response to increasing synaptic noise. The solvability of the model allows for a direct
comparison with current-based approaches, providing a basis for assessing the validity of existing approxima-
tion schemes that have dealt with conductance change. In particular, a commonly used heuristic approach,
whereby the passive membrane time constant is replaced by a drive-dependent effective time constant, is
examined. It is demonstrated that this approximation is valid in the same limit that the underlying diffusion
approximation holds, both fof correlated as well as filtered synaptic drive.
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I. INTRODUCTION ments of the interspike intervalSl) distribution, first given
_ _ . analytically in Ref.[5]. A range of alternative models ad-
Each neuron in the cortex receives thousands of inputgressing the technical issue of the inhibitory boundary cross-
from other neurons via synaptic connections. The neurone}}1g were investigated6]. Further work compared the IS
response to this synaptic input is a determining factor inyisributions with experiment7,8], examined the effect of
_action potential emission and can _be accurately_modeled U$he postspike resé¢®] and compared the coefficient of varia-
ing the conductance-based formalism of Hodgkin and Huxyjon in the generated spike trains for different modfl].
ley in which the voltage dependence of the membrane Culhere the membrane-potential distribution in the presence of
rents _|s_accounted for. However, the level of d_etall of thisg threshold for spike generation and the firing rate are ob-
description comes at the expense of mathematical complexained analytically using the Fokker-Planck formalism. These
ity and necessitates a numerical approach. Complementary fgsyts will be used to identify differences in the response of
this is the study of simplified neuronal models that capturgsnqgyctance and current-based models, as well as to evaluate
general features of neurons but also allow for an in-depthy, existing intermediate model. The Fokker-Planck approach
analysis. One such minimal model that has enjoyed a gread sppiicable to the study of the dynamics of both single
deal of popularity is the integrate-and-fit) neuron[1].  neyrons and populations of neurons in recurrent networks
The degree of simplification underlymg the IF model is com- 11]. Hence, though it is the response of a single neuron that
pensated for by the wealth of derivable results: the modely examined here, the methods and results are applicable to
provides a framework against which the complex behavior ofne study of the collective states of populations of neurons

real neurons can be pettgr gxamined. _ with conductance-based synapses.
One of the many simplifying assumptions of the standard

IF neuron is the modeling of synaptic input as fixed charge
injection. Real synapses, however, cause a transitory conduc- [l. DEFINITION OF THE MODEL
tance increase through which a voltage-dependent current ) i )
flows. The conductance changes in neurons subject to the 1he Passive electrical properties of the neuron are mod-
massive synaptic bombardméntvivo have a significant ef- €/€d by a capacitance in parallel with a leak current of
fect on the neuronal response, including a reduced time corfgonductance, (such thatc/g, =7 =20 ms gives the passive
stant[2,3] and suppression of fluctuatiofd]. These proper- Ume constantthat reverses &, =-80 mV (see Ref.[3]).
ties in turn strongly affect spike emission, but are missed inThe time evolution of the potential difference across the
the current-based modghiereafter referred to as ) membraneV obeys
A great deal of analytical work has been performed on e

neuronal models with synaptic reversal potentials since the CV=-gu(V-E) — gV, (1)
1960s. The bulk of this research concentrated on the mo-

Isyr{t) =gM(V-E) +g(O(V-E). (2)

The synaptic currenks{t) is comprised of both excitatory
*Electronic address: Magnus.Richardson@epfl.ch and inhibitory components which reverse&t=0 mV and
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E;=-75 mV with conductanceg(t) and g;(t) respectively. and inhibitory drive are uncorrelated. The resulting stochas-
The excitatory conductanaavith corresponding definitions tic equation for the voltage yields the following Fokker-
for inhibition throughout the following sectioris defined as  Planck(FP) equation

2
ge(t):CaeE5(t—tk). (3) Eziﬂ_ V-E 2+E2 P+iV—EP 6
- T WNZ[( 9"+ Epl &V( ) (6)
wherea, is a dimensionless measure of the strength of thgoy the probability densityP(V,t) of finding a neuron with a
synapse and the s} counts over the Poisson-distributed \q|tagey at a timet. The method for deriving the FP equa-
times of all incoming excitatory pulses arriving at a total ratetjon for this case of multiplicative noise can be found in Ref.
of R.. A single excitatorys pulse is considered as the limit [12]. As was mentioned above in conjunction with the update

to zero width of a short pulse. An application of the usualyyje specified in Eq(4), it is the Stratonovichformulation
conventions of calculus gives the jump of the membrangnat is used here.

voltage fromV to V+AV as The conservation of probability allows the writing of a
AV = (E;-V)(1-€7%), (4) continuity equation

It should be stressed that this update rule is different from a oP__dJ )

choice often made under similar situations: to multiply the at AV

functions by the value of the voltage just before the pulse ) . _

arrival. Under those circumstances, the update rule given i¥heréJ is the probability current. Comparison of Eq$)

Eq. (4) would beAV=(E.-V)a, instead. As it happens there and(7) gives

is little practical difference between these two choices be- 19

causea,<1. Nevertheless, it is the definition in E) -7(V)=——[(V-Eg?+ E%]P+ (V-E)P. (8)

which is used here and will be seen later to lead toStra- YoV

tonovich formulation (see, for example, Ref12]) of the |n this paper it is the steady-state properties that are exam-

Fokker-Planck equation, rather than i@ form. ined, i.e.,R, andR; do not vary over time. The current is
The spike mechanism is implemented in the same way agerefore a piece-wise constant: below the rasgino cur-

other integrate-and-fire models: if the voltage reaches theent flows, between the reset and threshdjg a constant

spike thresholdv,=-55 mV it is immediately reset v, current flows which is equal to the firing rate

=-65 mV and a spike registered. This integrate-and-fire neu-

ron with conductance-based synapses will be referred to as JV)=10(V-Vp), 9

the IF; model. The model appears to have been first defined . . - .
in Ref. [5] (see[6] for alternative modelsand can also be Where ®(x) is the Heaviside or step function. The E¢8)

thought of as the limit of fast synaptic time constants in theand ©) tqggther can be soI.ved' to yield bof(V) andr.
model presented in Ref3]. However it is convenient to first introduce some new param-
eters. The synaptic conductance changes define an input-

In the results section the properties of the, Will be q q . el . f
compared to a reference current-basgdmBdel. This refer- d€Pendent time constant (not entirely a misnomer for

ence model is identical to that defined above except that forieady Poissonian driyand equilibrium potentiak:

Eqg. (4) the voltage dependence is replaced by a fixed refer- - Sy R+ RE 10

ence voltagd/ — Vs such that the IFand IF, have postsyn- Toh efe™ idk, (10

aptic potentials of the same amplitude at the reference volt- . _ _

ageVier. E=nE.7 "+ ReaEe+ RAE). (12)
In all cases Monte Carlo simulations were implemente

. . ~ _ _ 2 _
with & pulse synaptic inpuffollowing the rule in Eq.(4)] dThe shifted amplitud@,=(a.-a;/2) comes from the anoma

and an integration time step of ds. Theses pulse simula- lous <_1r|ft term of theStratonowchform~ulat|on of the FP
equation. If theltdé form were used theldg=a.. As already

tions allow for an assessment of the accuracy of the analyt . e . ;
mentioned above, becauag<1 there is little practical dif-

cal results which are calculated in the diffusion approxima- .
tion. ference between these formulations for the case of the model

under examination in this paper.
Also introduced are two quantities with units of voltage:

A. Method of solution Eq= (ReagEe+ RiaiZEi)Xv (12)
When the amplitudes,, a; are small and the raté8,, R,
large, the diffusion approximation gives an accurate descrip- _ 25 2U2(F _E
tion of the dynamics. Heuristically, this corresponds to re- Ep = (ReagRi&) " (Ee—E)x, (13
placing Eq.(3) by where x=(Ra2+Ra?) L. The final parametey=2y/ 7 is di-
mensionless and in the regime where the diffusion approxi-
Gelt) = Cad Re + \Rekl(t) ] (5) J PP

mation is goody> 1. The mean(V) and variancer? in ab-
where &, is a § correlated Gaussian white-noise processsence of threshold are calculated in terms of these parameters
(EDE())y=68(t-1"). It is assumed here that the excitatory by taking moments of Eq6) yielding
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_ 24 g2 IIl. THE SUBTHRESHOLD RESPONSE
2 (E ES) ED
(VW=E and o2=-— -9 "D (14) . . |
(y-1) First the subthreshold properties of the models with con-

ductance and current-based synapses are contrasted. In Fig. 1
the responses of the synaptically activg #nd IF neurons
to step current injection are displayed. Both neurons receive
an identical synaptic input with postsynaptic potentials that
are of equal amplitude at the initial mean voltage of —-65 mV
(V,e in the definition of the IfFis —65 mV). After the onset
x=(V-E) \/% (15) of the step current at 100 ms the mean voltages of the two
(E-E9*+Ep models exponentially relax to their new values. For thg IF
the response is quick with a time constant of5 ms,
whereas, the |[Fresponds more slowly with the passive time
constant ofr. =20 ms. The statistics of the fluctuations about
the mean voltages can also be contrasted. The standard de-
d viations of the fluctuations about the mean are 1 and 2 mV
—1r7O(X— X,) = d—(azxz— 2apx+Df+xf,  (16)  for the IR, and IR, respectively. The relative suppression of
X fluctuations by a factox'7/ 7, is another consequence of the
where synaptic conductance increase. This suppressed response to
input is also manifested in the shift of the mean voltage due
to the step-current injection. The induced change is only
(17) 1 mV for the IF but is 4 mV for the IF The decreased
response is proportional to the conductance ratio which, writ-
and ©(x) is the Heaviside or step functigithe probability — ten in the terms of the time constants,risr .

The spike mechanism is implemented by imposing
P(V;,) =0 and reinjecting the probability currefequal to the
firing rate flowing acrossVy, into V.. A linear change in
variables:

with %y, and x,, defined correspondingly, simplifies the fol-
lowing analysis. The steady-state FP equation fiogdx
=P(V)dV becomes

1 (Es—E)
a= =, pE————s
\Vy V(Es—- E)*+Ej

current flows only betweer,, andx,,). The quantityg lies This simple example demonstrates that thg tRodel
between-1,1]: for pure excitationfwhenR;=0) 8=1 and comprising § pulse conductance-based synapses captures
for pure inhibition(whenR ,=0) B=-1. many of the response properties to synaptic drive missed by

the IR model, including reduced membrane fluctuations, a
B. The voltage distribution and firing rate i:(r)rg?\?ed time constant and suppressed response to injected
Integration of Eq(16) give the distributiorf(x) and firing

rater: Anomalous effect of presynaptic noise

rre BX An increase in the presynaptic drive causes both a con-

Xth
— B
B (aX—,B)2+1—,32fX dyO(y - xe)e™”,  (18) ductance increase as well as an increase in the synaptic
noise, or fluctuations and can lead to qualitatively new be-
» y _BX)+B(Y) havior for the I model. A scenario is considered in which
1_ f i dxf o dy@)(y_xre)e (19)  excitatory and inhibitory input rates are increased in a bal-
rr Jow < [(ax-PB)?+1-5%] anced way, such that the equilibrium potentialremains
constant. Using Eqg10) and (11) the relation between the
Clearly the integral for the rate is best performed numericallyexcitatory and inhibitory rates can be obtained
by breaking thex integral into a part that factorizes
{~...Xe and a finite part that does ndx...Xy}. The (E-E)/n+(E-EJReA+(E-E)Ry=0, (21
function B(x) is given by

where the condition of positivity requires that

1 -
B0 = >5Inl(ax- B2+ (1~ 7] R (E8)L 22
o Ee—E/@.m
+ B arcta r( axy1- Bz) (20) An increase of botfR . andR; subject to Eq(21) leads to an
a\1 - p? 1-aBx /)’ increase in synaptic noigsee Eq.5)]. However, the con-

comitant increase in the total conductarieedecrease i,
The freedom in offsettingd(x) by a constant has been used see Eq.(10)] acts to suppress voltage fluctuations: the two
to ensure that to leading ordB(x) = a°, thus avoiding pos- effects are in competition. In Fig. 2 the standard deviatign
sible problems in the numerical integration of E49) for  of the membrane potential is plotted against this balanced
small « (large y). The membrane-potential distributi)gq.  increasing drive for different fixe&. At depolarized values
(18)] generalizes the results given in REE3] in which the  increased synaptic rates lead to increased voltage fluctua-
distribution in the absence of threshold was examined. Itions. However, at hyperpolarized potentials the conductance
should also be noted that the firing rate in E#9) is in increase from the inhibitory drive is stronger and the effect
agreement with the first moment of the ISI distribution foundreverses: increased synaptic fluctuations leadigoreased
in Ref.[5] calculated using the first-passage time formalism.voltage fluctuations.
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FIG. 1. Comparison of the [Fand IF models of conductance and current-based synaptic drive. Synaptic input is af,#t6.0 and
R;=9.23 kHz. The If has postsynaptic potentiglBSP$ with voltage-dependent amplitude, whereas those of thark-fixed such that at
the initial equilibrium voltage of —65 mV both models have PSPs with amplitudes of 0.183g®0.0023,=0.013. In panels a and c the
response to a step current of magnitudg,/C=0.2 nA/nF with onset at 100 ms is plotte@:) example time coursegvith identical
spike-train inputsof the voltageV, (-) mean voltage(e) simulations(a) The mean voltage in the Jfshifts by 1 mV, with a time constant
of 7=5 ms.(c) The shift for the IFFis 4 mV with a time constant of, =20 ms. Panelé) and(d): the voltage distributions befo(gray) and
long after(black) the onset of the step current. The standard deviation of thentidlel is 1.0 mV whereas for the I is 2.0 mV.

The two variances, first, wheR;=0 [the equality in Eq. Hodgkin-Huxley mode[15]. With the present choice of pa-
(22)] and secondly in the limit of large ratéd®,, R; — «: rameters it appears that the effect is at too hyperpolarized
potentials to impact significantly on spike emission.

a(E-E
R; = R6<M) : (23
a(E-E) IV. THE FIRING-RATE RESPONSE
can be compared to find at which value(®=E" the effect A. Firing due to depolarizing synaptic drive

of synaptic fluctuations reverses. Noting that for the present ope way in which the firing rate of a neuron can be in-
case aq(E;~E ) <a(E.~E) the point at which noise in- creased is by shifting the equilibrium potenti&lto more

crease and conductance increase balance is depolarized values. This is achievable through eithein-
creasing the excitatory drivéij) a combination of increasing
E =~ Ei(l — A /ae(E'—_EL)> (24)  excitation and decreasing inhibition, @ii) decreasing inhi-
a(Ee—Ep) bition only. In Fig. 3a) these cases are plotted. For the IF

This yields a value near —68 mV for the case in Fig. 2. ThiSmodel under similar circumstances the firing rate would be

. . expected to grow linearly witlk for strong drive. A similar
behawor should be Contr_as_ted with that of the ".FOdel for . response is seen for cagg where a balanced input has been
which t_he Staf?ﬁrd deviation always grows with Synapt'cchosen such that the conductance remains congtéired at
fluctuations as»R%i. . . 6 ms for all E). For case(i) the increasing excitatory rate

The suppressmn.of fluctuanons due to conductance Nfeads to a shortened time constant and a faster increase in the
crease has b(.aen.senmlvwo [4]- !t shoul_d be noteq t.hat the firing rate withE such thatr;(E)/r;(E) < (E.—E)™'. For case
effect s_hown |n_|_:|g_. 21is also F”'”Ofed in the statistics Of. the(iii ), however, the reverse effect is seen due to the decreasing
fluctuating equilibrium potentiak(t) that was analyzed in inhibitory rate and increasing time constant: in this case
Ref. [14]. However, the input-dependent filtering due to ther~~(E)/r--(E)o<(E—E-)‘1 '
effective membrane time constajiiq. (10)] must be taken " ! v
into account to fully quantify the effect on the voltage stan-
dard deviation, as was done here. The decrease in voltage
fluctuations with increasing synaptic noise has been shown An increase of membrane-potential fluctuations will tend

to lead to a decreasing firing rate in simulations of theto increase the firing rate of neurons. Two such scenarios are

B. Firing due to increased voltage fluctuations
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FIG. 2. Response of the conductance-based synapses mgdelbElanced changdsee Eq(21)] in the presynaptic rates: a demon-
stration of the competing effects of synaptic fluctuations and synaptic conductance incgAsealanced step changat 100 m$ in the
incoming rateggiven in kHz the panglwith E held constant at —60 mV. At depolarized potentials an increased synaptic drive leads to an
increase in the standard deviation from 1.35 to 1.77 mV: the fluctuation increase dominates over the conductance (b)cldeese.
membrane voltage distributions befgggay) and long afteblack) the change in synaptic drive. A weak skew in the distributions is visible.

(c) A balanced step change in the incoming ratgisen in the panglwith E held constant at =73 mV. At hyperpolarized potentials the
increasing synaptic drive leads tadacreasen the standard deviation from 0.97 to 0.60 mV: the conductance increase dominates over the
increase in synaptic fluctuationgl) The effect is seen in a sharpening of the distribution from baforay) to after(black) the step change.

In both panelga) and(c) a number of example trajectories have been plotted in gray and the membrane time scales given before and after
the step changde) The standard deviation as a function of increasing fluctuatibatanced synaptic drive parameterized RBy) for

different values of fixedE given in the legend. The initial point in each curve correspondgte0 and the final toR =10 kHz. The time

labels give the values af at these pointsthe inverse of which are related to the total conductaritiee examples given in pangla) and

(c) can be identified on panéd). The effect of increasing synaptic drive reverses at a mean membrane volt&{e: 668 mV [see Eq.

(24)]. In all case$,=0.004 andg;=0.026 giving postsynaptic potentials of siz€).26 mV at —65 mV. Simulational data are denoted by
symbols.
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200 1 P ——— presynaptic populatiogfor a more sophisticated treatment
—~ o o for the IR model see Ref[16]). This mode of firing, in
N | (ii) increasing R and . . . .
< 150 decreasing R, which the variance changes but the mean drive remains con-
g 1| & (i) decreasing R, only stant, is the conductance-based-drive analog to the scenario
% 1007 discussed in Ref[17] in the context of fast signaling. The
5 50' increasing firing rate of the neuron in response to increased
= synchrony is plotted in Fig.(8) against the amplitude of the
04 postsynaptic potentiald®SP3.
60 -39 58 57 56 55 54 53 52 51 -50 These different effects, which are missed in current-based
(a) Equilibrium Potential E (mV) models of synaptic noise, provide the mechanisms for the
neuronal gain modulation seen recently in experinj&gg.
120 -
. 100_
o 0] V. CONCLUSION
Q =
% 60 The results presented above demonstrate that the modeled
g 40 A response of neurons is qualitatively different when conduc-
s3 20 1 tance effects are taken into account. So must all previous
T results derived using the |IFnodel be discarded?
O — T T T T . . .
0 5 10 15 20 0 05 1 One approach to dealing with conductance-based input
(b) EPSP Rate R_ (kHz) () PSP Amplitude (mV) has been to use the current-basegd flamework with an

input-dependent time constardee Ref.[19] for a recent

FIG. 3. (a) Firing rate with increasing equilibrium potentigl ~ treatment This corresponds to taking into account the tonic
The initial values 0fR,=9.17 andR;=3.08 kHz giveE=-60 mV  conductance change and the fluctuations in the current com-
and a time constant of 6 ms. The equilibrium potenBais then ~ ponent of the synaptic input, but ignoring the fluctuations in
increased through three different mechanigse® legend and text  the conductance component of the synaptic drive:
(b) Firing-rate curves for balanced synaptic ingat fixed E given
in the legengl as a function of increasing presynaptic noise param-
etrized byR.. () Firing rate curves at constant conductarioeth 9e(V = Ee) = geo(V = Eo) + Qe siuctV — Ee)
E and 7=5 ms fixed as a function of increasing synaptic noise _ _ _
parameterized by the postsynaptic potentREP size. This sce- =~ GeoV = Bo) * Qe iucl (V) ~ Be) + -+ (26)
nario corresponds to an increase in presynaptic synchrony and is

achieved by keeping the produdtsa, andR;; fixed whiled. and  The approximation is valid because the voltage fluctuations
3, are varied. Here the EPSPs and IPSPs amplitudes are identical 9¥/:V—<V) scale withg, ;¢ and therefore the higher-order

—-65 mV and provide the abscissa of the plot. The range of PSPs f . . . .
which the diffusion approximation is valid is seen in the fit with %UCtuatlonSge””C‘éV in the synaptic drive are of secondary

simulations. In all figures the bold lines are the firing rate E&§) Imr_)r(;]rtanCE;(h hold bability d ity f d in REF9
and the broken lines a current-based approximation accounting for e subthreshold probability density found in RET9)

the tonic conductance increagsee text. For panelsa and (b under such an approximatio_n scheme can be shown to satisfy
%,=0.004 ands,=0.026. e 1. paneis(@) © the Fokker-Planck Eq.16) with «=0. This zero-order solu-

tion in the a expansion of Eq(16) is equivalent to &auss-
considered, the first is equivalent to the balanced input deian approximation In this approximation the diffusion con-
scribed above in Eq21) and Fig. 2. In Fig. ) the linearity  stant of the Fokker-Planck equation becomes voltage-
of the firing rate for this case can be understood because thedependent, reflecting the fact that the fluctuations in the
parametersx and 8 in Eq. (19) saturate with largeRe,R;  effective time constant have been neglected. What is impor-
and because the prefacter' of the rate[Eq. (19)] grows  tant to note is that the smadt, or largey, limit is also the
linearly with R. This should bg contrasted.with the.r.esponsqimit in which the underlying diffusion approximation is
of the I model to the same input for which the firing rate y/jid. Hence one expects this approximation to be accurate
would grow in proportion to/Re,. _ . in the same limit. Though care needs to be taken when the
For the second mode of increasing fluctuations consideregliqi, of the distribution is strongly affected by the threshold
both E and 7 are held constariconstant conductangeThis 54 reset, generally speaking the approximation is excellent.
is achieved by fixing A comparison of the bold(full solution) and broken
(effective-time-constant or Gaussian approximatilimes in
Fig. 3 shows that the approximation is valid in all cases,
except for when the postsynaptic potentials are relatively
~ 1 1 1 large [Fig. 3(c)]. This is as expected because it is here also
Rig = ﬁ(_(Ee_ E) - —(Ee— EL)): (25 that the diffusion approximation begins to break down.
e /AT L These arguments can be extended to the more biologically
and increasingg,,3; whilst decreasingR.,R;. It can be realistic case of synaptic filtering arising from the exponen-
thought of as a crude model of changing synchrony in thdial decay of the synaptic pulse. It has been sh¢@®, 21

L

wa |
eae_(Ee_Ei) T

E-E)+—(E - Eg),
TL
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0.30 E, + g.E.+ 0 nE
E,= 9LEL T Geole * Gio i (30)
i 9Lt et io
0.25 1
i and the fluctuating part given by
0.20 Layer Il 70D
) TaT tds . —
0.15 1 Ug(t) = (eTO)f_w ?ee « S)/Te\’ZTege(s)- (31

0.10 ~ . . . . . .
Written in this form, it is clear that the voltage in E@8) is

a Gaussian random variable. The variance can be calculated
in terms of the small parameters

el o

nd shown to take the particularly simple form

Membrane Voltage Distribution (mVJ)

AAAAA

Te

el

7'0+ Te

OeTo

C

Ti

el

Tot 7

JgiTo

C

2
) (32)
Voltage (mV)

FIG. 4. The subthreshold voltage distribution corresponding to
models of filtered synaptic input to layer l(tircles and layer VI a
(triangleg cortical neurons. The symbols correspond to a Monte
Carlo simulation of a passive membrgaefined by Eq(2)] receiv-
ing excitatory and inhibitory filtered synaptic input of the form
given in Eq. (27). The lines correspond to the Gaussian, or
effective-time-constant approximation defined by the moments
given in Egs.(30) and(33). The passive membrane parameters areT his result differs from that obtained in R¢22] in which an
defined in the textwith C=1 uF/cn?) and parameters of the syn- approach using th&é calculus was presented.
aptic drive for the two models were taken from RE]: the layer The equations for the me&B0) and the varianc€33) can
Il neuron {ge=0.0295¢;p=0.217 g,.=0.00935¢;=0.034 ;7 be calculated more systematically from either an expansion
=7.8,7,=8.8 and the layer VI neurofge=0.03460;p=0.1650,  of the full solution to Eqs(2) and (27):
=0.00866¢;=0.01917,=2.7,5=10.53. The conductances are in
units of mS/cm and the time constants in milliseconds.

(V-Ep?=€(Ey-E)?+ (Eo-E)%. (39

t ds t
— Py . =S ddr/(r)]
for the IF model that neurons subject to temporally corre- vy = f_x C[QLEL+ge(S)Ee+g|(S)EJe 4 , (34)
lated synaptic input have a different high-frequency response
as compared to those subject to white-noise drive. Further-

more, models of conductance-based synaptic drive with temypere Hr)=C/[g,+0«(r) +g;(r)], or by taking moments of

poral correlations exhibit voltage fluctuations with the samey,o corresponding three-variable Fokker-Planck equation:
statistics[2,3] as those seeim vivo. The form of the filtered

synaptic input(using the excitatory drive as an example
given in Ref.[3] is dP 1 ¢
== oloL(V=E) +ge(V-Ee) +ai(V-E)]IP

Te0e = Je0 ~ G + O'e\“'IZTefe(t) ) (27) dt CoV
where 7, is the filtering constantyy, the tonic conductance, é&_2P+ = (Ge—a)P+ ﬂz&_zp
o the standard deviation of the conductance fluctuations and Te ﬁgi Te Qe Ye ™ Geo T (;giZ

& (1) is a & correlated white-noise process of unit variance.
The effective-time-constant approximation in this case corre-

19
: . : +———(g — o) P- (39
sponds to the following equation for the voltage: 7,99

70V = = (V= Eg) = U} (Eg ~ Eo) - u(D(Eo~ E), (28)

where the conductance change has been absorbed into
drive-dependent membrane time constant

C
1 E i —
dL * Jeo T Fio

with the average voltagé/)=E, given by

(29)

Such results agree, to leading order, with the Gaussian or
effective-time-constant approximation. Comparisons of this
approximation for the voltage distribution with simulations
are presented in Fig. 4.

In summary, a number of analytical results were derived
for the integrate-and-fire neuron with bothpulse and fil-
tered conductance-based synapses. These results allowed
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