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A neuron in an active cortical circuit is subject to a fluctuating synaptic drive mediated by conductance
changes. It was recently demonstrated that synaptic conductance effectsin vivo significantly alter the integra-
tive properties of neurons. These effects are missed in models that approximate the synaptic drive as a
fluctuating current. Here the membrane-potential distribution and firing rate are derived for the integrate-and-
fire neuron withd correlated conductance-based synaptic input using the Fokker-Planck formalism. A number
of different input scenarios are examined, including balanced drive and fluctuation changes at constant con-
ductance, the latter of which corresponds to shifts in synchrony in the presynaptic population. This minimal
model captures many experimentally observed conductance-related effects such as reduced membrane-
potential fluctuations in response to increasing synaptic noise. The solvability of the model allows for a direct
comparison with current-based approaches, providing a basis for assessing the validity of existing approxima-
tion schemes that have dealt with conductance change. In particular, a commonly used heuristic approach,
whereby the passive membrane time constant is replaced by a drive-dependent effective time constant, is
examined. It is demonstrated that this approximation is valid in the same limit that the underlying diffusion
approximation holds, both ford correlated as well as filtered synaptic drive.
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I. INTRODUCTION

Each neuron in the cortex receives thousands of inputs
from other neurons via synaptic connections. The neuronal
response to this synaptic input is a determining factor in
action potential emission and can be accurately modeled us-
ing the conductance-based formalism of Hodgkin and Hux-
ley in which the voltage dependence of the membrane cur-
rents is accounted for. However, the level of detail of this
description comes at the expense of mathematical complex-
ity and necessitates a numerical approach. Complementary to
this is the study of simplified neuronal models that capture
general features of neurons but also allow for an in-depth
analysis. One such minimal model that has enjoyed a great
deal of popularity is the integrate-and-fire(IF) neuron[1].
The degree of simplification underlying the IF model is com-
pensated for by the wealth of derivable results: the model
provides a framework against which the complex behavior of
real neurons can be better examined.

One of the many simplifying assumptions of the standard
IF neuron is the modeling of synaptic input as fixed charge
injection. Real synapses, however, cause a transitory conduc-
tance increase through which a voltage-dependent current
flows. The conductance changes in neurons subject to the
massive synaptic bombardmentin vivo have a significant ef-
fect on the neuronal response, including a reduced time con-
stant[2,3] and suppression of fluctuations[4]. These proper-
ties in turn strongly affect spike emission, but are missed in
the current-based model(hereafter referred to as IFI).

A great deal of analytical work has been performed on
neuronal models with synaptic reversal potentials since the
1960s. The bulk of this research concentrated on the mo-

ments of the interspike interval(ISI) distribution, first given
analytically in Ref.[5]. A range of alternative models ad-
dressing the technical issue of the inhibitory boundary cross-
ing were investigated[6]. Further work compared the ISI
distributions with experiment[7,8], examined the effect of
the postspike reset[9] and compared the coefficient of varia-
tion in the generated spike trains for different models[10].
Here the membrane-potential distribution in the presence of
a threshold for spike generation and the firing rate are ob-
tained analytically using the Fokker-Planck formalism. These
results will be used to identify differences in the response of
conductance and current-based models, as well as to evaluate
an existing intermediate model. The Fokker-Planck approach
is applicable to the study of the dynamics of both single
neurons and populations of neurons in recurrent networks
[11]. Hence, though it is the response of a single neuron that
is examined here, the methods and results are applicable to
the study of the collective states of populations of neurons
with conductance-based synapses.

II. DEFINITION OF THE MODEL

The passive electrical properties of the neuron are mod-
eled by a capacitanceC in parallel with a leak current of
conductancegL (such thatC/gL=tL=20 ms gives the passive
time constant) that reverses atEL=−80 mV (see Ref.[3]).
The time evolution of the potential difference across the
membraneV obeys

CV̇= − gLsV − ELd − Isynstd, s1d

Isynstd = gestdsV − Eed + gistdsV − Eid. s2d

The synaptic currentIsynstd is comprised of both excitatory
and inhibitory components which reverse atEe=0 mV and*Electronic address: Magnus.Richardson@epfl.ch
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Ei =−75 mV with conductancesgestd and gistd respectively.
The excitatory conductance(with corresponding definitions
for inhibition throughout the following section) is defined as

gestd = Caeo
k

dst − tkd, s3d

whereae is a dimensionless measure of the strength of the
synapse and the sethtkj counts over the Poisson-distributed
times of all incoming excitatory pulses arriving at a total rate
of Re. A single excitatoryd pulse is considered as the limit
to zero width of a short pulse. An application of the usual
conventions of calculus gives the jump of the membrane
voltage fromV to V+DV as

DV = sEe − Vds1 − e−aed. s4d

It should be stressed that this update rule is different from a
choice often made under similar situations: to multiply thed
functions by the value of the voltage just before the pulse
arrival. Under those circumstances, the update rule given in
Eq. (4) would beDV=sEe−Vdae instead. As it happens there
is little practical difference between these two choices be-
causeae!1. Nevertheless, it is the definition in Eq.(4)
which is used here and will be seen later to lead to theStra-
tonovich formulation (see, for example, Ref.[12]) of the
Fokker-Planck equation, rather than theItô form.

The spike mechanism is implemented in the same way as
other integrate-and-fire models: if the voltage reaches the
spike thresholdVth=−55 mV it is immediately reset toVre
=−65 mV and a spike registered. This integrate-and-fire neu-
ron with conductance-based synapses will be referred to as
the IFg model. The model appears to have been first defined
in Ref. [5] (see[6] for alternative models) and can also be
thought of as the limit of fast synaptic time constants in the
model presented in Ref.[3].

In the results section the properties of the IFg will be
compared to a reference current-based IFI model. This refer-
ence model is identical to that defined above except that for
Eq. (4) the voltage dependence is replaced by a fixed refer-
ence voltageV→Vref such that the IFI and IFg have postsyn-
aptic potentials of the same amplitude at the reference volt-
ageVref.

In all cases Monte Carlo simulations were implemented
with d pulse synaptic input[following the rule in Eq.(4)]
and an integration time step of 1ms. Thesed pulse simula-
tions allow for an assessment of the accuracy of the analyti-
cal results which are calculated in the diffusion approxima-
tion.

A. Method of solution

When the amplitudesae,ai are small and the ratesRe,Ri
large, the diffusion approximation gives an accurate descrip-
tion of the dynamics. Heuristically, this corresponds to re-
placing Eq.(3) by

gestd . CaefRe + ÎRejestd,g s5d

where je is a d correlated Gaussian white-noise process
kjestdjest8dl=dst− t8d. It is assumed here that the excitatory

and inhibitory drive are uncorrelated. The resulting stochas-
tic equation for the voltage yields the following Fokker-
Planck(FP) equation

t
] P

] t
=

1

g

]2

] V2fsV − ESd2 + ED
2 gP +

]

] V
sV − EdP s6d

for the probability densityPsV,td of finding a neuron with a
voltageV at a timet. The method for deriving the FP equa-
tion for this case of multiplicative noise can be found in Ref.
[12]. As was mentioned above in conjunction with the update
rule specified in Eq.(4), it is the Stratonovichformulation
that is used here.

The conservation of probability allows the writing of a
continuity equation

] P

] t
= −

] J

] V
, s7d

whereJ is the probability current. Comparison of Eqs.(6)
and (7) gives

− tJsVd =
1

g

]

] V
fsV − ESd2 + ED

2 gP + sV − EdP. s8d

In this paper it is the steady-state properties that are exam-
ined, i.e.,Re and Ri do not vary over time. The current is
therefore a piece-wise constant: below the resetVre no cur-
rent flows, between the reset and thresholdVth a constant
current flows which is equal to the firing rater:

JsVd = rQsV − Vred, s9d

whereQsxd is the Heaviside or step function. The Eqs.(8)
and (9) together can be solved to yield bothPsVd and r.
However it is convenient to first introduce some new param-
eters. The synaptic conductance changes define an input-
dependent time constantt (not entirely a misnomer for
steady Poissonian drive) and equilibrium potentialE:

t−1 = tL
−1 + Reãe + Riãi , s10d

E = tsELtL
−1 + ReãeEe + RiãiEid. s11d

The shifted amplitudeãe=sae−ae
2/2d comes from the anoma-

lous drift term of theStratonovichformulation of the FP
equation. If theItô form were used thenãe=ae. As already
mentioned above, becauseae!1 there is little practical dif-
ference between these formulations for the case of the model
under examination in this paper.

Also introduced are two quantities with units of voltage:

ES= sReae
2Ee + Riai

2Eidx, s12d

ED = sReae
2Riai

2d1/2sEe − Eidx, s13d

wherex=sReae
2+Riai

2d−1. The final parameterg=2x /t is di-
mensionless and in the regime where the diffusion approxi-
mation is goodg@1. The meankVl and variancesV

2 in ab-
sence of threshold are calculated in terms of these parameters
by taking moments of Eq.(6) yielding
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kVl = E and sV
2 =

sE − ESd2 + ED
2

sg − 1d
. s14d

The spike mechanism is implemented by imposing
PsVthd=0 and reinjecting the probability current(equal to the
firing rate) flowing acrossVth into Vre. A linear change in
variables:

x = sV − EdÎ g

sE − ESd2 + ED
2 s15d

with xth and xre defined correspondingly, simplifies the fol-
lowing analysis. The steady-state FP equation forfsxddx
=PsVddV becomes

− rtQsx − xred =
d

dx
sa2x2 − 2abx + 1df + xf , s16d

where

a =
1
Îg

, b =
sES− Ed

ÎsES− Ed2 + ED
2

s17d

and Qsxd is the Heaviside or step function(the probability
current flows only betweenxre andxth). The quantityb lies
betweenf−1,1g: for pure excitation(whenRi =0) b=1 and
for pure inhibition(whenRe=0) b=−1.

B. The voltage distribution and firing rate

Integration of Eq.(16) give the distributionfsxd and firing
rate r:

f =
rte−Bsxd

sax − bd2 + 1 −b2E
x

xth

dyQsy − xredeBsyd, s18d

1

rt
=E

−`

xth

dxE
x

xth

dy
Qsy − xrede−Bsxd+Bsyd

fsax − bd2 + 1 −b2g
. s19d

Clearly the integral for the rate is best performed numerically
by breaking the x integral into a part that factorizes
h−` . . .xrej and a finite part that does nothxre. . .xthj. The
function Bsxd is given by

Bsxd =
1

2a2lnfsax − bd2 + s1 − b2dg

+
b

a2Î1 − b2
arctanSaxÎ1 − b2

1 − abx
D . s20d

The freedom in offsettingBsxd by a constant has been used
to ensure that to leading orderBsxd~a0, thus avoiding pos-
sible problems in the numerical integration of Eq.(19) for
small a (largeg). The membrane-potential distribution[Eq.
(18)] generalizes the results given in Ref.[13] in which the
distribution in the absence of threshold was examined. It
should also be noted that the firing rate in Eq.(19) is in
agreement with the first moment of the ISI distribution found
in Ref. [5] calculated using the first-passage time formalism.

III. THE SUBTHRESHOLD RESPONSE

First the subthreshold properties of the models with con-
ductance and current-based synapses are contrasted. In Fig. 1
the responses of the synaptically active IFg and IFI neurons
to step current injection are displayed. Both neurons receive
an identical synaptic input with postsynaptic potentials that
are of equal amplitude at the initial mean voltage of −65 mV
(Vref in the definition of the IFI is −65 mV). After the onset
of the step current at 100 ms the mean voltages of the two
models exponentially relax to their new values. For the IFg
the response is quick with a time constant oft=5 ms,
whereas, the IFI responds more slowly with the passive time
constant oftL=20 ms. The statistics of the fluctuations about
the mean voltages can also be contrasted. The standard de-
viations of the fluctuations about the mean are 1 and 2 mV
for the IFg and IFI, respectively. The relative suppression of
fluctuations by a factorÎt /tL is another consequence of the
synaptic conductance increase. This suppressed response to
input is also manifested in the shift of the mean voltage due
to the step-current injection. The induced change is only
1 mV for the IFg but is 4 mV for the IFI The decreased
response is proportional to the conductance ratio which, writ-
ten in the terms of the time constants, ist /tL.

This simple example demonstrates that the IFg model
comprising d pulse conductance-based synapses captures
many of the response properties to synaptic drive missed by
the IFI model, including reduced membrane fluctuations, a
shortened time constant and suppressed response to injected
current.

Anomalous effect of presynaptic noise

An increase in the presynaptic drive causes both a con-
ductance increase as well as an increase in the synaptic
noise, or fluctuations and can lead to qualitatively new be-
havior for the IFg model. A scenario is considered in which
excitatory and inhibitory input rates are increased in a bal-
anced way, such that the equilibrium potentialE remains
constant. Using Eqs.(10) and (11) the relation between the
excitatory and inhibitory rates can be obtained

sE − ELd/tL + sE − EedReãe + sE − EidRiãi = 0, s21d

where the condition of positivity requires that

Re ù SE − EL

Ee − E
D 1

ãetL

. s22d

An increase of bothRe andRi subject to Eq.(21) leads to an
increase in synaptic noise[see Eq.(5)]. However, the con-
comitant increase in the total conductance[a decrease int,
see Eq.(10)] acts to suppress voltage fluctuations: the two
effects are in competition. In Fig. 2 the standard deviationsV
of the membrane potential is plotted against this balanced
increasing drive for different fixedE. At depolarized values
increased synaptic rates lead to increased voltage fluctua-
tions. However, at hyperpolarized potentials the conductance
increase from the inhibitory drive is stronger and the effect
reverses: increased synaptic fluctuations lead todecreased
voltage fluctuations.
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The two variances, first, whenRi =0 [the equality in Eq.
(22)] and secondly in the limit of large ratesRe,Ri →`:

Ri . ReS ãesE − Eed
ãisE − Eid

D , s23d

can be compared to find at which value ofkVl=E* the effect
of synaptic fluctuations reverses. Noting that for the present
case aesEi −ELd!aisEe−ELd the point at which noise in-
crease and conductance increase balance is

E* . EiS1 −ÎaesEi − ELd
aisEe − ELd

D . s24d

This yields a value near −68 mV for the case in Fig. 2. This
behavior should be contrasted with that of the IFI model for
which the standard deviation always grows with synaptic
fluctuations asÎRe,i.

The suppression of fluctuations due to conductance in-
crease has been seenin vivo [4]. It should be noted that the
effect shown in Fig. 2 is also mirrored in the statistics of the
fluctuating equilibrium potentialEstd that was analyzed in
Ref. [14]. However, the input-dependent filtering due to the
effective membrane time constant[Eq. (10)] must be taken
into account to fully quantify the effect on the voltage stan-
dard deviation, as was done here. The decrease in voltage
fluctuations with increasing synaptic noise has been shown
to lead to a decreasing firing rate in simulations of the

Hodgkin-Huxley model[15]. With the present choice of pa-
rameters it appears that the effect is at too hyperpolarized
potentials to impact significantly on spike emission.

IV. THE FIRING-RATE RESPONSE

A. Firing due to depolarizing synaptic drive

One way in which the firing rate of a neuron can be in-
creased is by shifting the equilibrium potentialE to more
depolarized values. This is achievable through either(i) in-
creasing the excitatory drive,(ii ) a combination of increasing
excitation and decreasing inhibition, or(iii ) decreasing inhi-
bition only. In Fig. 3(a) these cases are plotted. For the IFI
model under similar circumstances the firing rate would be
expected to grow linearly withE for strong drive. A similar
response is seen for case(ii ) where a balanced input has been
chosen such that the conductance remains constant(t fixed at
6 ms for all E). For case(i) the increasing excitatory rate
leads to a shortened time constant and a faster increase in the
firing rate withE such thatr isEd / r iisEd~ sEe−Ed−1. For case
(iii ), however, the reverse effect is seen due to the decreasing
inhibitory rate and increasing time constant: in this case
r iii sEd / r iisEd~ sE−Eid−1.

B. Firing due to increased voltage fluctuations

An increase of membrane-potential fluctuations will tend
to increase the firing rate of neurons. Two such scenarios are

FIG. 1. Comparison of the IFg and IFI models of conductance and current-based synaptic drive. Synaptic input is at a rateRe=15.0 and
Ri =9.23 kHz. The IFg has postsynaptic potentials(PSPs) with voltage-dependent amplitude, whereas those of the IFI are fixed such that at
the initial equilibrium voltage of −65 mV both models have PSPs with amplitudes of 0.13 mV(ãe=0.002,ãi =0.013). In panels a and c the
response to a step current of magnitudeIstep/C=0.2 nA/nF with onset at 100 ms is plotted:s−d example time courses(with identical
spike-train inputs) of the voltageV, s−d mean voltage,s+d simulations.(a) The mean voltage in the IFg shifts by 1 mV, with a time constant
of t=5 ms.(c) The shift for the IFI is 4 mV with a time constant oftL=20 ms. Panels(b) and(d): the voltage distributions before(gray) and
long after(black) the onset of the step current. The standard deviation of the IFg model is 1.0 mV whereas for the IFI it is 2.0 mV.
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FIG. 2. Response of the conductance-based synapses model IFg to balanced changes[see Eq.(21)] in the presynaptic rates: a demon-
stration of the competing effects of synaptic fluctuations and synaptic conductance increase.(a) A balanced step change(at 100 ms) in the
incoming rates(given in kHz the panel) with E held constant at −60 mV. At depolarized potentials an increased synaptic drive leads to an
increase in the standard deviation from 1.35 to 1.77 mV: the fluctuation increase dominates over the conductance increase.(b) The
membrane voltage distributions before(gray) and long after(black) the change in synaptic drive. A weak skew in the distributions is visible.
(c) A balanced step change in the incoming rates(given in the panel) with E held constant at −73 mV. At hyperpolarized potentials the
increasing synaptic drive leads to adecreasein the standard deviation from 0.97 to 0.60 mV: the conductance increase dominates over the
increase in synaptic fluctuations.(d) The effect is seen in a sharpening of the distribution from before(gray) to after(black) the step change.
In both panels(a) and(c) a number of example trajectories have been plotted in gray and the membrane time scales given before and after
the step change.(e) The standard deviation as a function of increasing fluctuations(balanced synaptic drive parameterized byRe) for
different values of fixedE given in the legend. The initial point in each curve corresponds toRi =0 and the final toRe=10 kHz. The time
labels give the values oft at these points(the inverse of which are related to the total conductance). The examples given in panels(a) and
(c) can be identified on panel(e). The effect of increasing synaptic drive reverses at a mean membrane voltage ofE* .−68 mV [see Eq.
(24)]. In all casesãe=0.004 andãi =0.026 giving postsynaptic potentials of size.0.26 mV at −65 mV. Simulational data are denoted by
symbols.
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considered, the first is equivalent to the balanced input de-
scribed above in Eq.(21) and Fig. 2. In Fig. 3(b) the linearity
of the firing rate for this case can be understood because the
parametersa and b in Eq. (19) saturate with largeRe,Ri
and because the prefactort−1 of the rate[Eq. (19)] grows
linearly withRe. This should be contrasted with the response
of the IFI model to the same input for which the firing rate
would grow in proportion toÎRe,i.

For the second mode of increasing fluctuations considered
both E andt are held constant(constant conductance). This
is achieved by fixing

Reãe =
1

sEe − Eid
S1

t
sE − Eid +

1

tL
sEi − ELdD ,

Riãi =
1

sEe − Eid
S1

t
sEe − Ed −

1

tL
sEe − ELdD , s25d

and increasingãe,ãi whilst decreasingRe,Ri. It can be
thought of as a crude model of changing synchrony in the

presynaptic population(for a more sophisticated treatment
for the IFI model see Ref.[16]). This mode of firing, in
which the variance changes but the mean drive remains con-
stant, is the conductance-based-drive analog to the scenario
discussed in Ref.[17] in the context of fast signaling. The
increasing firing rate of the neuron in response to increased
synchrony is plotted in Fig. 3(c) against the amplitude of the
postsynaptic potentials(PSPs).

These different effects, which are missed in current-based
models of synaptic noise, provide the mechanisms for the
neuronal gain modulation seen recently in experiment[18].

V. CONCLUSION

The results presented above demonstrate that the modeled
response of neurons is qualitatively different when conduc-
tance effects are taken into account. So must all previous
results derived using the IFI model be discarded?

One approach to dealing with conductance-based input
has been to use the current-based IFI framework with an
input-dependent time constant(see Ref.[19] for a recent
treatment). This corresponds to taking into account the tonic
conductance change and the fluctuations in the current com-
ponent of the synaptic input, but ignoring the fluctuations in
the conductance component of the synaptic drive:

gesV − Eed = ge0sV − Eed + ge,fluctsV − Eed

. ge0sV − Eed + ge,fluctskVl − Eed + ¯ . s26d

The approximation is valid because the voltage fluctuations
dV=V−kVl scale withge,fluct and therefore the higher-order
fluctuationsge,fluctdV in the synaptic drive are of secondary
importance.

The subthreshold probability density found in Ref.[19]
under such an approximation scheme can be shown to satisfy
the Fokker-Planck Eq.(16) with a=0. This zero-order solu-
tion in thea expansion of Eq.(16) is equivalent to aGauss-
ian approximation. In this approximation the diffusion con-
stant of the Fokker-Planck equation becomes voltage-
independent, reflecting the fact that the fluctuations in the
effective time constant have been neglected. What is impor-
tant to note is that the smalla, or largeg, limit is also the
limit in which the underlying diffusion approximation is
valid. Hence one expects this approximation to be accurate
in the same limit. Though care needs to be taken when the
width of the distribution is strongly affected by the threshold
and reset, generally speaking the approximation is excellent.
A comparison of the bold(full solution) and broken
(effective-time-constant or Gaussian approximation) lines in
Fig. 3 shows that the approximation is valid in all cases,
except for when the postsynaptic potentials are relatively
large [Fig. 3(c)]. This is as expected because it is here also
that the diffusion approximation begins to break down.

These arguments can be extended to the more biologically
realistic case of synaptic filtering arising from the exponen-
tial decay of the synaptic pulse. It has been shown[20,21]

FIG. 3. (a) Firing rate with increasing equilibrium potentialE.
The initial values ofRe=9.17 andRi =3.08 kHz giveE=−60 mV
and a time constant of 6 ms. The equilibrium potentialE is then
increased through three different mechanisms(see legend and text).
(b) Firing-rate curves for balanced synaptic input(at fixedE given
in the legend) as a function of increasing presynaptic noise param-
etrized byRe. (c) Firing rate curves at constant conductance(both
E and t=5 ms fixed) as a function of increasing synaptic noise
parameterized by the postsynaptic potential(PSP) size. This sce-
nario corresponds to an increase in presynaptic synchrony and is
achieved by keeping the productsReãe andRiãi fixed while ãe and
ãi are varied. Here the EPSPs and IPSPs amplitudes are identical at
−65 mV and provide the abscissa of the plot. The range of PSPs for
which the diffusion approximation is valid is seen in the fit with
simulations. In all figures the bold lines are the firing rate Eq.(19)
and the broken lines a current-based approximation accounting for
the tonic conductance increase(see text). For panels(a) and (b)
ãe=0.004 andãi =0.026.
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for the IFI model that neurons subject to temporally corre-
lated synaptic input have a different high-frequency response
as compared to those subject to white-noise drive. Further-
more, models of conductance-based synaptic drive with tem-
poral correlations exhibit voltage fluctuations with the same
statistics[2,3] as those seenin vivo. The form of the filtered
synaptic input(using the excitatory drive as an example)
given in Ref.[3] is

teġe = ge0 − ge + se
Î2tejestd, s27d

wherete is the filtering constant,ge0 the tonic conductance,
se the standard deviation of the conductance fluctuations and
jestd is a d correlated white-noise process of unit variance.
The effective-time-constant approximation in this case corre-
sponds to the following equation for the voltage:

t0V̇ = − sV − E0d − uestdsE0 − Eed − uistdsE0 − Eid, s28d

where the conductance change has been absorbed into a
drive-dependent membrane time constant

t0 =
C

gL + ge0 + gi0
s29d

with the average voltagekVl=E0 given by

E0 =
gLEL + ge0Ee + gi0Ei

gL + ge0 + gi0
, s30d

and the fluctuating part given by

uestd = Sset0

C
DE

−`

t ds

te
e−st−sd/teÎ2tejessd. s31d

Written in this form, it is clear that the voltage in Eq.(28) is
a Gaussian random variable. The variance can be calculated
in terms of the small parameters

ee
2 = S te

t0 + te
DSset0

C
D2

, ei
2 = S ti

t0 + ti
DSsit0

C
D2

s32d

and shown to take the particularly simple form

ksV − E0d2l = ee
2sE0 − Eed2 + ei

2sE0 − Eid2. s33d

This result differs from that obtained in Ref.[22] in which an
approach using theItô calculus was presented.

The equations for the mean(30) and the variance(33) can
be calculated more systematically from either an expansion
of the full solution to Eqs.(2) and (27):

Vstd =E
−`

t ds

C
fgLEL + gessdEe + gissdEige−es

t fdr/tsrdg, s34d

where tsrd=C/ fgL+gesrd+gisrdg, or by taking moments of
the corresponding three-variable Fokker-Planck equation:

dP

dt
=

1

C

]

] V
fgLsV − ELd + gesV − Eed + gisV − EidgP

+
se

2

te

]2

] ge
2P +

1

te

]

] ge
sge − ge0dP +

si
2

ti

]2

] gi
2P

+
1

ti

]

] gi
sgi − gi0dP. s35d

Such results agree, to leading order, with the Gaussian or
effective-time-constant approximation. Comparisons of this
approximation for the voltage distribution with simulations
are presented in Fig. 4.

In summary, a number of analytical results were derived
for the integrate-and-fire neuron with bothd pulse and fil-
tered conductance-based synapses. These results allowed

FIG. 4. The subthreshold voltage distribution corresponding to
models of filtered synaptic input to layer III(circles) and layer VI
(triangles) cortical neurons. The symbols correspond to a Monte
Carlo simulation of a passive membrane[defined by Eq.(2)] receiv-
ing excitatory and inhibitory filtered synaptic input of the form
given in Eq. (27). The lines correspond to the Gaussian, or
effective-time-constant approximation defined by the moments
given in Eqs.(30) and (33). The passive membrane parameters are
defined in the text(with C=1 mF/cm2) and parameters of the syn-
aptic drive for the two models were taken from Ref.[3]: the layer
III neuron hge0=0.0295,gi0=0.217,se=0.00935,si =0.034,te

=7.8,ti =8.8j and the layer VI neuronhge0=0.0346,gi0=0.165,se

=0.00866,si =0.0191,te=2.7,ti =10.5j. The conductances are in
units of mS/cm2 and the time constants in milliseconds.
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for a comparison to be made between the mathematical
structures of conductance and current-based models. It was
demonstrated that a current-based model with a drive-
dependent time constant provides a simple and accurate de-
scription of biologically relevant models of neuronal re-
sponse to conductance-based synaptic input.

ACKNOWLEDGMENTS

I thank Wulfram Gerstner for his support for this project.
I would also like to thank Petr Lansky for useful discussions
on the existing analytical work on synaptic drive, as well as
Nicolas Brunel and Vincent Hakim for their constructive
comments on a previous version of this paper.

[1] R. B. Stein, Biophys. J.5, 173 (1965).
[2] A. Destexhe and D. Paré, J. Neurophysiol.81, 1531(1999).
[3] A. Destexhe, M. Rudolph, J.-M. Fellous, and T. J. Sejnowski,

Neuroscience107, 13 (2001).
[4] C. Monier, F. Chavane, P. Baudot, L. J. Graham, and Y. Frég-

nac, Neuron37, 663 (2003).
[5] P. I. M. Johannesma, inNeural Networks, edited by ER Caian-

iello (Springer, New York, 1968), pp. 116–144.
[6] P. Lansky and V. Lanska, Biol. Cybern.56, 19 (1987).
[7] H. C. Tuckwell, J. Theor. Biol.77, 65 (1979).
[8] W. J. Wilbur and J. Rinzel, J. Theor. Biol.105, 345 (1983).
[9] P. Lansky and M. Musila, Biol. Cybern.64, 285 (1991).

[10] M. Musila and P. Lansky, J. Theor. Biol.171, 225 (1994).
[11] N. Brunel and V. Hakim, Neural Comput.11, 1621(1999).
[12] H. Risken,The Fokker-Planck Equation(Springer-Verlag, Ber-

lin, 1996).
[13] V. Lanska, P. Lansky, and C. E. Smith, J. Theor. Biol.166, 393

(1994).
[14] S. Stroeve and S. Gielen, Neural Comput.13, 2005(2001).
[15] P. H.E. Tiesinga, J. V. José, and T. J. Sejnowski, Phys. Rev. E

62, 8413(2000).
[16] R. Moreno, J. de la Rocha, A. Renart, and N. Parga, Phys. Rev.

Lett. 89, 288101(2002).
[17] G. Silberberg, M. Bethge, H. Markram, K. Pawelzik, and M.

Tsodyks, J. Neurophysiol.91, 704 (2004).
[18] F. S. Chance, L. F. Abbott, and A. D. Reyes, Neuron35, 773

(2002).
[19] A. N. Burkitt, Biol. Cybern. 85, 247 (2001).
[20] N. Brunel, F. S. Chance, N. Fourcaud, L. F. Abbott, Phys. Rev.

Lett. 86, 2186(2001).
[21] N. Fourcaud and N. Brunel, Neural Comput.14, 2057(2002).
[22] M. Rudolph and A. Destexhe, Neural Comput.15, 2577

(2003).

MAGNUS J. E. RICHARDSON PHYSICAL REVIEW E69, 051918(2004)

051918-8


