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Preface

As stated in the title, this is a book for people interested in modeling convection
in planets and stars. It begins with the basics of computer modeling and assumes
the reader has no previous computer modeling experience but does have at least a
basic understanding of classical physics, vector calculus, partial differential equa-
tions, and simple computer programming. The book is a compilation of my lecture
notes for teaching students at the University of California Santa Cruz how to write
their own computer programs to simulate time-dependent thermal convection, in-
ternal gravity waves, and magnetoconvection. 1 have taught Part 1 of this book as
a side project in my graduate and undergraduate courses on fluid dynamics and
have included Chapter 11 in my courses on magnetohydrodynamics (MHD). In
this way students gain experience in and appreciation for the art of computer mod-
eling, while gaining 2 much better understanding of the fluid dynamics. In addition,
1 have taught Parts 2 and 3 to all the graduate students I have supervised at UCSsC.
Being able to write and debug their own convection programs has become 2 “rite
of passage” for my graduate students t0 work toward a PhD. The focus of Part 1
and most of Parts 2 and 3 is two-dimensional (2D) models because most numerical
methods can be implemented in either 2D or 3D, because 2D models are simpler
to write, and because 2D models require far fewer computational resources. With
this preparation, some of my students have gone on to write their own, more so-
phisticated, computer programs t0 produce original research for their PhD theses;
others have chosen to study and modify existing computer programs for their thesis
research. By teaching this material over the years 1 have learned the many subtle
issues students typically need to have carefully explained, issues too detailed to be
mentioned in research papers. 1 have made an effort t0 include these explanations
throughout the book.

Part 1, The F undamentals, reviews the concepts and equations of thermal con-
vection and then describes, step by step, how fo design a computer program that
employs basic numerical methods for solving these equations to simulate con-
vection in a 2D cartesian box of fluid heated from below. Internal gravity waves
can be simulated by simply reversing the thermal boundary conditions. By pre-
scribing a stable thermal stratification in part of the fluid domain and an unstable
stratification in another part one can simulate a combination of gravity waves and
convection. Double-diffusive convection is also a combination of gravity waves and
convection; it occurs when buoyancy is due to perturbations in both temperature
and composition with the secondary constituent of the fluid being much less diffu-
sive than temperature. The numerical method presented in this part to simulate these
types of dynamics is spectral in the horizontal direction and finite difference in the
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vertical direction, which introduces the reader to these two very different meth-
ods. The linear stability problem is first addressed, which provides readers a way
to check their time-dependent linear program. Then the nonlinear terms are added
to produce numerical simulations, I have chosen the Galerkin method to calculate

Part 2, Additional Numerical Methods, describes alternative aumerical meth-
ods that improve accuracy and efficiency and provide more realistic geometry.
For example, semi-implicit, instead of explicit, time integration schemes are pre-
sented; fully finite-difference and fully spectral methods are discussed; the spectral-
transform method for calculating nonlinear terms, instead of the Galerkin method,
is described; and a local cartesian geometry is converted into global 2D, 2.5D, and
3D spherical-shell geometries. For efficiency, I include magnetic, density stratifica-
tion, and rotational terms and equations in the discussion of the numerical methods
for 2.5D and 3D spherical-shell convection in Section 10.6 before formally intro-
ducing these physical effects in Chapters 11-13. The reader could simply choose
to ignore these extra terms until they are needed in Part 3 of this book or could read
the introductions to Chapters 11-13 before proceeding through Section 10.6.

Part 3, Additional Physics, reviews the effects of magnetic fields, density strat-
ification, and rotation, Chapter 11 (Magnetic Field) does not require any of the
material in Part 2; therefore readers who are interested in adding magnetic field to

nal section (13.7) I list several more sophisticated computer modeling features of
planetary and stellar convection that are beyond the scope of this book.

This book could be used by anyone with a basic background in physics, mathe-
matics, and computer programming as a self-study guide to learn how to develop
computer programs that simulate convection or other fluid dynamics. Parts of this
book could also be taught as supplemental material in courses on classical fluid dy-
namics, magnetohydrodynamics, stellar structure and dynamics, planetary science,
geodynamics, physical oceanography, and atmospheric science. Alternatively, the
book could be used for a dedicated, one- or two-semester course on computer mod-
eling of convection in any subset of these fields. Part 1 is presented in a very fun-
damental way with many details carefully explained to help readers who have had
1o previous experience in computer modeling. Parts 2 and 3 cover more advanced
material with the assumption that the reader has
Exercises at the end of each chapter ask the reader, for example, to derive various
mathematical results presented in the text, Comp
that require computer programming to produce,
relative to those presented in the text.

I have written the computer programs and have run the simulations for all
the examples described and displayed in this book. Online copies of computer

PREFACE Xt
graphical movies of some of these are available via the book’_s Web page at hth(:i//
press.princeton.edu/titles/10158.html. However, I have fie01ded not to .1nclu_ e
copies of most of the computer programs beca}use the pc?mt of the book is t(l) in-
spire and encourage readers to learn how to design and write programs themse 1:)fe:s.
Ifeel too many scientists today rely on computer programs ‘\‘Nntten bya s,fnall sut s;:t
of their scientific community, and run these programs as “black boxes ‘ with htt;l e
understanding of the approximations that have been made to the equations or the
details and limitations of the numerical methods employ.ed to solve th'e equations.
I have, however, included via the book’s Web page copies of .the basic programs
described in Part 1 for those who may need help debugging their programs. CQples
of the various subroutines printed in the appendixes can also be downloaded via the
Wijltlii)gli:éh I do cite several papers and books that describe computer m(_)delmg
studies of convection in planets and stars, the list is. far frorp complete. This book
is not meant to be a review of such computer modehng studies; many exce‘llent re-
view papers and books have been written on tl?ose topics. I have not descr_1be.d It);:_
rameterized convection such as that employed in M1x1pg I.Jength_ theory (Wlthll:l e
astrophysics and planetary communities), in hydrostatlf: circulation mgdf:ls (within
the atmospheric and ocean communities), or in Mean Fl'eld models (Wlthln' thfa geo;
dynamo and solar dynamo communities). This book 1s‘also not a descnptlon' o
the latest and most sophisticated numerical or programming methods for modeling
convection in planets and stars; more advanced reviews and boF)ks very adeq!Jatfaly
describe such methods. Instead, this book is meant to be a tutorial f01.r those wishing
to learn the basics of writing and using computer models of convection. Hopefully,
all readers will gain an appreciation and excitement for comp.uter modeling and
some will go on to improve existing computer programs or write completely new
Onizs\;vish to thank the three reviewers for their helpful suggestions. I also want tc?
thank my former and current students who havei given me very usefu‘I feedl;lack,
T originally developed these 2D models as teaching tools for thc?m. It is my hope
that several of my students will find this book useful for teaching their students

someday.

Gary A. Glatzmaier
Santa Cruz, California
2012
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Chapter One

A Model of Rayleigh-Bénard Convection

ore are two basic types of fluid flows within planets and stars that are driven
thermally produced buoyancy forces: thermal convection and internal gravity
ves. The type depends on the thermal stratification within the fluid region. The
Lrth’s atmosphere and ocean, for example, are in most places convectively stable,
hich means that they support internal gravity waves, not (usually) convection (but
¢ Chapter 7). On warm afternoons, however, the sun can heat the ground surface,
which changes the vertical temperature gradient in the troposphere and makes the
atmosphere convectively unstable; the appearance of cumulus clouds is an indica-
tion of the resulting convective heat (and moisture) flux. Thermal convection likely
also occurs in the Earth’s liquid outer core, which generates the geomagnetic field,
+nd, on a much longer time scale, in the Earth’s mantle, which drives plate tecton-
ics and, on a much shorter time scale, initiates earthquakes and volcanic eruptions.
Thermal convection is seen on the surface of the sun and likely occurs in the outer
30% of the solar radius, where solar magnetic field is generated. Below this depth
buoyancy likely drives internal gravity waves. Rotation strongly influences the style
of the convection and waves in all of these examples except the mantle, which is
dominated by viscous forces.
Computer simulation studies, over the past few decades, have significantly im-
. proved our understanding of these phenomena. Some studies, like those for the
atmospheres of the Earth and sun, have provided physical explanations and predic-
tions of the observations. Others, like those for the deep interiors of the Earth and
sun, have provided detailed theories and predictions of the dynamics that cannot be
directly observed. As computers continue to improve in speed and memory, com-
puter programs are able to run at greater spatial and temporal resolutions, which
improves the quality of and confidence in the simulations. Numerical and program-
ming methods have also improved and need to continue to improve to take full
advantage of the improvements in computer hardware.

1.1 BASIC THEORY

We begin with a simple description of the fundamental dynamics expected in a
fluid that is convectively stable and in one that is convectively unstable. Then we
review the equations that govern fluid dynamics based on conservation of mass,
momentum, and energy.
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Internal gravity wave in a stable (subadiabatic) atmosphere

(2) ppal' > patm Tpar < Tatm Ppar = Patm

|

Gravity

Tpar = Tatm Ppar = Patm

Density
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(1) Height z (2) (1) Height z (2)

Figure 1.1 A schematic of a test parcel that is raised adiabatically from position (1) to

pos1§on (2) in an atmosphere that has subadiabatic temperature and density
stratifications.

1.1.1 Thermal Convection and Internal Gravity Waves

The: thermal stability of a fluid within a gravitational field is determined by its
honzpn.tal—mean (i.e., ambient) vertical temperature gradient. The classic way of
describing this is to consider a fluid in hydrostatic equilibrium, i.e., the weight
of the fluid above a given height (per cross-sectional area) is supp(’)r[ed by the
pressure at that height. Therefore, the vertical pressure gradient is negative. (As
uspal, “vertical” here and throughout this book refers to the direction of increélsing
height or radius, opposite to that of the gravitational acceleration.) In the interi-
ors of Rlanets and stars the horizontal-mean density and temperature also decrease
with height. The question is how does the vertical temperature gradient of this fluid
(atmosphere) compare with what an adiabatic temperature gradient would be
Consider a small (test) parcel of fluid (Fig. 1.1) that, at its initial position (1.) has
the same pressure, density, and temperature as the surrounding atmosphere at’that
position. Imagine raising the parcel to a new height (2), fast enough so there is no
heat ?ran.sfer between it and the surrounding atmosphere but slowly enough that it
remains in pressure equilibrium with its surroundings; that is, its upward velocity is
ml‘lch less than the local sound speed. Assuming this process is reversible and also
g@abatic since there is no heat transfer, the parcel’s entropy remains constant while
rising; t‘hat is, this is an isentropic process. However, since it remains in pressure
equilibrium with the surroundings, its density and temperature both decrease as it

MODEL OF RAYLEIGH-BENARD CONVECTION

Thermal convection in an unstable (superadiabatic) atmosphere

2 Q Ppar<Patm  Tpar>Tatm  Ppar=Patm

|

Gravity
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P

m Height z 2) (1 Height z 2)

Figure 1.2 A schematic of a test parcel that is raised adiabatically from position (1) to
position (2) in an atmosphere that has superadiabatic temperature and density

stratifications.

rises because the decrease in pressure causes it to expand. If, when reaching its new
higher position (2), its temperature has decreased more than the temperature of the
surrounding atmosphere has decreased over that change in height, its density there
will be greater than the density of the surrounding atmosphere there (assuming a
typical coefficient of thermal expansion). Therefore, the parcel will be antibuoyant
and, when no longer externally supported, will fall. As the parcel falls its tempera-
ture increases faster than the surrounding temperature and when it passes the initial
position its temperature exceeds the temperature of surrounding atmosphere, caus-
ing the now buoyant parcel to eventually stop falling and then to start rising. This
process of accelerating downward when it is above the initial position and accel-
erating upward when below the initial position is called an internal gravity wave
and the surrounding atmosphere is said to be convectively stable. Recall that this
occurs when the surrounding temperature decreases less rapidly with height than an
adiabatic temperature profile would, since the test parcel moves adiabatically. That
is, the surrounding temperature gradient is subadiabatic. The temperature strati-
fication would be extremely stable if the surrounding temperature increased with
height. In reality, thermal and viscous diffusion cause internal gravity waves to
decay with time unless they are continually being excited.

Now consider the case for which the changes in the parcel’s temperature as it
moves up and down are less than that of the surrounding atmosphere (Fig. 1.2). That
is, consider a surrounding atmosphere with a superadiabatic temperature gradient.
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would continue to sink. Typically, a rising parcel will eventually

p mpermea.ble top boundary where it gives up heat by conduction
» and becomes antibuoyant. This causes it to fall until it encounters a hot

by conduction, expands, be-

utionary models of giant gas planets i i
al (1D) tiona predict convection
throughout their liquid/gas interiors, Thermal conduction in stars is by radiative

trans.ferz wl}ich is less efficient at heat transfer in regions where atomic excitati

and ionization occur, i.e., where the opacity is large and the adiabatic gradie to'n
less steep, respectively. Convection typically occurs in these regions bfcaus nth1 X
temperature gradient would need to be steeper than the adiabatic gradient to econe-:

. Computer modeling has made and will continue to make sj
tions to our understanding of the interior dynami
of computer modeling begins with si

gnificant contriby-
cs of planets and stars, Quy study
mple models in this Part 1. In Chapters 1-5 we
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of convection and gravity waves occurs in double-diffusive convection, which we
describe in Chapter 7.

1.1.2 Equations of Motion

The fluid dynamics and thermal dynamics of these processes are governed by the
classical conservation laws for mass, momentum, and energy. However, since we
are considering a continuous fluid, these laws are written in terms of the densities
of mass, momentum, energy, and force.

The mass conservation equation,

(1.1a)

says that the local (Eulerian) time rate of change of mass density (p) is determined
by the convergence (i.e., negative divergence) of mass flux (pv) at that location
and time (¢); v is the fluid velocity. Note that the Lagrangian time derivative of
density (dp/dt), which is the rate at which the density of a fluid parcel changes as
it moves with the flow, is the sum of the Eulerian time derivative (dp/0t) and the
advection of density (v-V)p. (The Lagrangian derivative is also called the material
derivative.) Therefore, Eq. 1.1a can also be written as

dp

p7in pV.v, (1.1b)

Newton’s Second Law of motion applied to a fluid describes momentum con-

servation: mass density times acceleration equals the net force density on a fluid
parcel as it moves. This equation,

dv
2 =" Vp+Vo+tep, (1.2)

is called the Navier-Stokes equation after Claude-Louis Navier and George Gabriel
Stokes.

The first two terms on the right side are the macroscopic representation of the
effects due to molecules (or atoms). The first is the negative pressure gradient, a
force density from high to low pressure, b, which is due to static normal stress. The
second is the divergence of the viscous stress tensor, o or “o;;”, to indicate that it
is a tensor. Unless noted, we assume a Newtonian fluid; that is, viscous stress is
proportional to the rate of strain of the fluid:

Oij = 2p1) (e,-j - 1/3 €k 5,',]') (13)
where
€ij = 1/2(8v,/8xj+3v]/8x,) (14)

is the rate of strain tensor (for i = 1,2,3 or x, y, z in cartesian coordinates), v is
the viscous diffusivity (also called the kinematic shear viscosity), and the kronecker
delta function §;, j 1s one for i = j and zero if not. Note, e = V-v. As is usually
done for subsonic convection problems, we have neglected the small contribution
to the viscous stress due to bulk viscosity: Aeyd; 7» Where A is called the of kine-
matic bulk viscosity. If the dynamic shear viscosity pov were constant in space, the
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divergence of the viscous stress tensor (when neglecting the bulk viscosity) would
reduce to

Veo = pv (Vv 4+ 1/3V(V.v) (1.5)
The last term on the right of Eq. 1.2 is the gravitational force density, g being the
gravitational acceleration.

By doing a Taylor expansion about both position and time, the left side of Eq.1.2
can be written in the Eulerian form as p(0v/9t + (v-V)v), which by using Eq. 1.1
also equals dpv/dr + V-(ovv). Above we called pv mass flux; here we call it
momentum density. The Reynolds stress tensor, pvv, is the momentum flux due to
the flow. That is, it states how each of the three components of momentum is being
transported in each of the three directions. For example, pv, v, is the rate that the
*-component of momentum is being transported in the z-direction, which is also
the rate that the z-component of momentum is being transported in the x-direction.
The divergence of this tensor is a vector equal to the net rate that each of the three
components of momentum is diverging at the given position and time.

A few more words may be appropriate about the Eulerian and Lagrangian time
derivatives. In an Eulerian representation we ask how the properties of the fluid
are changing in time on, for example, a set of grid points in space, without keeping
track of where the current fluid parcels at these locations originated. In a Lagrangian
representation, on the other hand, there are no set grid points in space. Instead, we
ask how the properties and the coordinate locations of a given set of flujd parcels
change with time. The Eulerian approach is preferred for a continuous fluid that fills
a defined volume. The Lagrangian approach is preferred for a discontinuous set of
particles interacting within an otherwise empty volume of space. We are adopting
the Eulerian approach.

The first law of thermodynamics describes internal energy conservation: the rate
of change of the internal energy of a fluid parcel plus the rate the fluid parcel
does work equals the rate it absorbs heat. Note that “work” and “heat transfer”
are process functions, not properties of the fluid. However, internal energy con-
servation can also be described in terms of state functions. The rate the fluid does
work per mass is pressure times the rate of change of the volume per mass (i.e.,
specific volume, which is 1 /p); therefore, using Eq. 1.1b, the rate fluid does work
per volume is pV.v. The rate the fluid absorbs heat per volume can also be written
in terms of state variables as pTdS/dt, where S is specific entropy (i.e., entropy

per mass). Therefore, conservation of internal energy density is

de ds
- V= — =V-(kVT , .
Par TPV V=pT = =V-GVT)+Q (1.6)

where e is internal energy per mass (i.e., specific internal energy). The first heat-
ing term on the far right side of Eq. 1.6 is the convergence of diffusive heat flux,
—kVT, where T is temperature, k£ = c,p« is thermal conductivity, ¢, is specific
heat capacity at constant pressure, and « is thermal diffusivity. The remaining
term, @, represents viscous and ohmic heating and any other heating or cooling,
e.g., nuclear,

This relationship between process and state functions is valid within the very
good approximation of local thermodynamic equilibrium (LTE). That is, since
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fluid dynamics” is a macroscopic description of the state and evolution of a fluid

veraged over length and time scales large compared to the .moleculfclr s@cMe
and processes, state variables like temperature,'pressure, de-nsuy, specific mtel.’nal
energy, and specific entropy are defined as continuous funct.lons of space and time
that usually vary slowly enough on macroscopic length and time scales that them.lo-
dynamic equilibrium can be assumed in small neighborhoods around every location
and time within the domain of study. For example, although tempera.lture can vary
in space (and therefore drive a diffusive heat flux), ar.o.und any pom‘f within the
fluid there is a small neighborhood in which the velocities of the particles have a
well-defined Maxwellian distribution defined by the local temperature. .

In addition to the internal energy density equation (Eq. 1.6),‘ a useful eq_uatlon
is one that describes the rate of change of kinetic and gravitat‘lonal pqtennal en-
ergy densities. This is obtained by taking the dot product of fluid velocity and the
momentum equation (Eq. 1.2), which gives

P <% (39 + (v-V) (%v2)> =—v-Vp+v(V.a) — pv-VO, (L.7)
where we have written the gravitational acceleration as g = —V®, ® being the

gravitational potential energy per mass. Assuming ® is time independent and using
Eq. 1.1, the gravitational work term in Eq. 1.7 can be written as

ad
—pv- VO = —a(pcb) — V:(pDv).

Equation 1.1 can also be used to write the Lagrangian time derivative on the left
side of Eq. 1.7 as
(5 49+ 69 (7)) = & (107) + V-,
It is also convenient to write the pressure work term in Eq. 1.7 as
—v:Vp=—-V.(pv)+ pV.v.

Also it can be shown (e.g., Batchelor, 1967) that part of the work done by viscous
forces goes into viscous heating and the remaining part into the convergence of
viscous energy flux. That is,

v-(V-0) = —2pv (erjei; — 1/3(V-¥)?) + V- (v-0). (1.8)
Therefore, substituting these expressions into Eq. 1.7 gives the mechanica% energy
density equation, i.e., the rate of change of the sum of the kinetic and gravitational
potential energy densities:

d 1,.2 .
o (300° 4+ p®) =-V-[(Jpv? + p® + p)v— v o]

+pV-v —2pv (ee;; — 1/3(V-v)?) . (1.9)
Combining this equation with the internal energy density equation (Eq. 1.6) and

using Eq. 1.1 to write

de dpe
— = — 4 V+(pev),
Par = 5 TV
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and setting Q to Just the viscous heating rate (i.e., the negative of the first term on

the right of Eq. 1.8) gives the rate of change of the internal, kinetic, and potential
energy densities:

d
— 1.2
ot (e + 300"+ p®) = —v. [(oe + 302+ pd +P)V—kVT — veo| .

. . (1.10)
Note that the “PdV” work and the viscous heating, which occur in Eq. 1.6, cancel

those} in Eg. 1.9. Equation 1.10 says that the local rate of change of total energy
d.en31.ty equals the convergence of the fluxes of enthalpy density (oh = pe + D)
kinetic energy density (pv2 /2), and gravitational potential energy density (o) plus

¢ thermal diffusive heat flux (—=kVT) and the viscous e
nergy fl —Ve
stress-free impermeable bound £y flux (—v-0). For
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ellar interiors and would therefore require much smaller computational time steps
to resolve. This huge reduction in the number of computational time steps needed
to simulate convection (or gravity waves) compared to what would be required for a
compressible model is the main reason for employing the Boussinesq (or anelastic)
approximation in numerical models. Effectively, the speed of sound is assumed to
be infinite. That is, a computational time step in a Boussinesq (or anelastic) sim-
ulation is assumed to be long compared to the time it would take for changes in
pressure to be communicated throughout the modeled domain. Therefore, another
condition for the Boussinesq (and anelastic) approximation to be valid is that the
fluid velocity be small relative to the local sound speed (Eq. 12.8); that is, the Mach
number (the ratio of the fluid velocity to the local sound speed) needs to be less
than, say, 0.1. If, on the other hand, the fluid velocity for a particular problem were
comparable to the local sound speed, a fully compressible model would be needed.

The objective here is to describe how to develop a model and the correspond-
ing code that can be run on a computer to simulate thermal convection in a nearly
incompressible liquid within a uniform gravitational field, heated on the bottom
boundary and cooled on the top boundary, i.e., Rayleigh-Bénard convection. Labo-
ratory experiments of Rayleigh-Bénard convection were first done by Henri
Bénard in 1900 and later the linear stability analysis (Section 3.4) was described by
Rayleigh (1916).

In this book, “model” refers to the equations, numerical methods, and the as-
sumptions and approximations upon which these are based; “code” refers to the
computer program that translates the model into computer language; and “simula-
tion” refers to the numerical results obtained when the code is run on a computer.

As usual, the independent variables, for this Eulerian representation, are the time,
¢, and the cartesian spatial coordinates, X, ¥, and z. The gravitational acceleration,
g = —g,z, is directed downward (i.e., g is positive and £ is the unit vector in the
positive vertical direction).

For simplicity, we make the Boussinesq approximation; that is, when the change
in hydrostatic density across the domain is small relative to the volume-averaged
density, the background density (p,) is taken to be constant in space and time.
Therefore, to first order, the mass conservation equation, 1.1b, is simply

Vov=0. (1.11)

This does not imply that density is exactly constant in space and time, but only that
the amplitude of its rate of change is small, i.e., of the order of the relative change
in hydrostatic density across the domain, compared to the amplitudes of the three
individual contributions to the divergence of velocity.

The local effects of pressure on density are also assumed to be small. That is,
density perturbations (p) are assumed to be produced only by temperature pertur-
bations (T') according to the equation of state:

p=—poaT , (1.12)

where « is the constant coefficient of thermal expansion.
These perturbations produce buoyancy forces that drive the convection accord-
ing to the momentum equation 1.2, which to first order within the Boussinesq




2

12

approximation reduces to

v
37 = VIV 07V L ag, 5 4y (1.13)

This equation was obtained from Eq. 1.2 by first subtracting from it the momentum

equation of the hydrostatic background state:

0=—_% _
.~ &bo.

Density, in the remaining terms, is, to first order, the constant background

density p,.
The viscous force in Eq. 1.13 simp
the Laplacian of velocity. This can b

Updating density perturbations via the equation of state 1.12 instead of the mass

temperature perturbations,

Th.e rate of qhange of internal energy density, pde/dt, for a perfect gas
(Section 12.1.1) is pc,dT /dt, where ¢y is specific heat capacity at constant vol-

T )
= = —V)T + V2T (1.14)

abatic tempera-

mperature gradient (Eq. 12.10) and the

Earamete;rs Cv, Cp, and « are all assumed to be constants. Equation 1.14 also works

of & pe . S . .
per ectly 1ncorppress1ble liquid, in which case Cp = ¢y and there is no “Pdv”
work since V-v vanishes,

.A sgnple way to sulmparize the Boussinesq approximation is that itignores vari-

ations in density except in the buoyancy force and in the equation of state,
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z Thermal convection
A

Gravity Cold top boundary

!

Insulating boundary
Ktepunoq Bupejnsuy

Hot bottom boundary

Figure 1.3 A schematic of a simple one-cell thermal convection pattern in the fluid box
domain of unstably stratified fluid.

1.3 MODEL DESCRIPTION

Here in Part 1 we define the fluid domain as a rectangular region bounded by walls
that are impermeable and stress-free (Fig. 1.3). One could think of this rectangular
box as a small region within a global planet or star. Modifications made to the
geometry and physics of this problem later in Parts 2 and 3 build upon this first
scenario, improving the physical realism of the simulations.

The bottom and top boundaries of our fluid box are maintained at constant
temperatures by external heaters and coolers; the bottom boundary temperature
is higher than the top boundary temperature by an amount AT. Heat diffuses in
through the bottom boundary and out through the top boundary. The side bound-
aries are set to be thermally insulating; that is, there is no heat flow through them.

To keep the problem more manageable, we allow fluid flow and gradients only
in two directions, the horizontal (x-direction) and the vertical (z-direction). There-
fore, 3/3y =0 and the y-component of the fluid velocity, vy, vanishes. In this two-
dimensional (2D) problem the linear terms have ei ght spatial derivatives on the fluid
velocity and pressure, four in z and four in x. Therefore, eight boundary conditions
are formally required to maintain a unique solution of the velocity and pressure.
We apply all eight on the velocity, none on the pressure perturbation, because the
amplitude and gradient of the pressure perturbation are both expected to vary with
time and location on the impermeable boundaries.

Let’s consider the velocity boundary conditions more carefully. Impermeable
means fluid cannot pass through the boundaries. Therefore, the vertical component
of the flow, v,, has to vanish on the top (z= D) and bottom (z=0) boundaries.
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Li.kewise, the horizontal component of the flow, v
aries (x = 0 and L). Stress-fre of

vanishes on the side bound-
angential strain vanish at the
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arth sciences; whereas many studying the dynamics of the deep interiors of
as planets tend to use CGS units because they also study stellar interiors.

this chapter we choose a traditional set of scales for the problem. Length, time,

mperature are scaled by the depth of the box (D), the thermal diffusion time

/), and the temperature drop across the depth (AT), respectively. For conve-

nce, we choose p,k?/D? as the pressure scale. Then Eq. 1.11 is multiplied by

%2 /i, Eq. 1.13 by D*/ic* and Eq. 1.14 by D?/ikc AT . This results in the following
ondimensional versions of these equations:

Vov=0, (1.15)

] A
5; = —(v-V)v — Vp+RaPr Tz + Pr Vv, (1.16)

aT
Fri —(vV)T + V2T . (1.17)
All variables are now nondimensional and 0 < z < 1 and 0 < x < @, where
a = L/ D, the aspect ratio of the box.
This scaling results in two nondimensional numbers, which characterize the type

of flow based on prescribed fluid properties and boundary conditions:

Ra = ZaAT D?
VK

) (1.18)

Pr=_. (1.19)
K
The Rayleigh number, Ra, is a measure of the convective driving; the terms in the

_ numerator promote convection, whereas those in the denominator inhibit convec-

tion. The Prandtl number, Pr, is the ratio of viscous to thermal diffusion; a small
Pr usually means flow structures are smaller scale than thermal structures and vice
versa for large Pr.

Note that an alternative choice would have been to scale the time by the viscous
diffusion time, D?/v, which would have resulted in a slightly different arrange-
ment of nondimensional numbers in the equations. However, neither of these
scalings are particularly appropriate for simulations that are strongly driven by
buoyancy because the resulting convective velocities are typically much greater
than the thermal and viscous diffusion velocities, ¥/ D and v/ D, respectively.

SUPPLEMENTAL READING

Batchelor (1967)

EXERCISES

1. Viscous force density
Derive Eq. 1.5 starting from Eqgs. 1.3 and 1.4 assuming a constant dynamic
viscosity.
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. Nondimensional equations

gzao;sg%i 1‘.10W §caling 2length by the depth of the box (D), time by the
e 1fusion time (D /k), temperature by the temperature drop across
¢ depth (AT), and pressure by p,k2/D? transforms Egs. 1.11, 1.13
1.14 into Egs. 1.15, 1.16, and 1.17, respectively. S and
. A‘n alternative set of nondimensional equations
(I:énfh an?tgler f)et of nondimensional equations by again scaling length by the
degth (OAT)eb (t)); (D) and temperatur§ by‘the temperature drop across the
e ut time by the viscous diffusion time (D?*/v) and pressure by
. The Bf)ussinesq equation of state for a petfect gas
t};*",)(plazm hqw the Boussinesq approximation to the equation of state, 1.12, can
© appropriate for a perfect gas, assuming the domain spans much less th’
density scale height. See Spiegel & Veronis ( 1960). e
. The B?ussinesq internal energy equation Jor a perfect gas
]li)ﬁlam how the Bm}ssinesq approximation to the internal energy equation
.14, can be approprlate for a perfect gas, assuming the domain spans much,
less than a density scale height. See Spiegel & Veronis (1960).

ow we describe a numerical method for solving these equations on a computer.
The vorticity-streamfunction formulation is introduced as a means of conserving
mass. This formulation was used for this problem by Nigel Weiss and his collab-
orators (e.g., Moore et al., 1973; Weiss, 1981a,b). To introduce the reader to two
very different spatial discretizations, the vertical derivatives are approximated with
a local (finite-difference) method and the horizontal derivatives with a global (spec-
tral) method. The nonlinear terms are computed in spectral space; a more efficient
spectral-transform method is introduced in Chapter 10. The time integration is an
explicit Adams-Bashforth scheme; an improved semi-implicit scheme is described

in Chapter 8.

2.1 VORTICITY-STREAMFUNCTION FORMULATION

There are several ways to solve this system of equations. Typically the solution is
evolved in time via computational time steps (i.e., a long series of snapshots), each
step requiring an update of ail the variables in space. For some problems, like the
one described here, it is convenient to first update for the vorticity, ® = V xv, and
then solve for the fluid velocity, v, each time step. This is the approach presented
here.

Recall that for this 2D problem v, = 0 and 9/3y = 0. Therefore,

= 0vy 0Uz\ .
“\%z ax )’
An equation for this vorticity is obtained by taking the curl of the equation for
momentum conservation (1.16):

] a
Vx—é;=—Vx((v-V)v)—Vpr+RaPrVXTz+PerV2v. 2.1)

One might wonder at this point how this could actually lead to a more convenient
method of solution. Since the curl commutes with the Eulerian time derivative,
the term on the left is dw/0¢ §. Also, since the curl commutes with the Laplacian
operator, the viscous term on the far right is PrV2w 3. The buoyancy term is simply
~RaPrdT/0x ¥ and, since the curl of a gradient always vanishes, the pressure term
drops out. This leaves the curl of the nonlinear advection term. Using the standard
vector identity for V(A-B) one can see that

(v-V)v = V2 — v x (VxV); 2.2)
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then taking the curl of these terms it can be shown that this reduces to simply
VX A((v-V)V) = (v-V)w3. 2.3

Therefore, since all the terms in the vorticity equation are in the y-direction, the
scalar equation for the y-component of vorticity is

9 aT
v _ —(v-V)w — RaPr— + Prv2e. (2.4)
o9t ox

This equation states that the Eulerian time derivative of vorticity (on the left side)
is, at a given point in time and space, determined by the sum of the three terms on
the right side: advection of vorticity by the flow, vorticity generation by buoyancy,
and vorticity diffusion by viscosity, respectively. The advection term simply means
that when fluid is flowing toward a given location from a place where its vorticity
is greater than it is at the given location, for example, the vorticity at the given lo-
cation will increase with time. The viscous diffusion term always tries to smooth
the vorticity by reducing its extreme values. That Is, when and where the second
derivative in space of vorticity is positive (e.g., a minimum value of the function)
the viscous term is positive, which tries to make vorticity increase with time. Like-
wise, when and where the second derivative is negative (e.g., a maximum value)
this term tries to decrease vorticity. The buoyancy “torque” term says that when the
temperature perturbation increases in the x-direction, as in Fig. 1.3, fluid tends to
sink on the left and rise on the right. This counterclockwise circulation represents
4 component of vorticity directed in the negative y-direction, which is why, with
the minus sign, this term would generate negative vorticity. Likewise, a negative
9T /3x would drive a clockwise circulation, i.e., generate vorticity in the positive
y-direction.
Of course now, having updated the vorticity, one needs to update the fluid veloc-
ity. This is accomplished by defining a streamfunction, 1, such that
szx(Wﬁ):—%f-l—a—w% (2.5)
0z ox

and recognizing that

(2.6a,b)

Notice that this automatically satisfies the mass conservation equation (1.11),
Vv = 0, and, when substituted into the definition of vorticity (@ = V xv), pro-
vides the equation needed to solve for the streamfunction,

©=-Vy, @7

using the updated vorticity. Then the two components of velocity can be calculated
via Egs. 2.6.

Notice also that Vi-v vanishes with the help of Egs. 2.6; therefore, contours of
constant ¥ are tangent to the local v. In addition, Vi has the same amplitude as
the velocity; so the local density of a set of contours of ¥ (that differ by a constant
increment) is proportional to the amplitude of the local fluid velocity. Therefore,
plots showing contours of ¥ are instantaneous “streamlines” of the flow.

ETHOD
NTAL SPECTRAL DECOMPOSITION

| i 1.17. There are several ways
s 1 described by Egs. 2.4, 2.7, and . seve

?m ISS;(I):’ We choose a spectral method in the horizontal dlre'c‘Flon a(rlldi
.thls Islze method in the vertical direction. The spectr?l method is balsea1 (; "
ffe;r;::msions in x. That is, instead of solving for the tlme—deperzﬁenftu VC tlizon

o ite i ints i ill approximate the fun

“inction on a finite set of grid points in x, we W :

f{‘ilx?i(;telosrfl:ries of sines or cosines in x and solve for the time-dependent and

oefficients of these sines or cosines. ‘
Cpeﬂden;r‘;e would begin by formally expanding all three depende.:nt vanalc)lles,
S\laug Y, in both sines and cosines. However, the chosen set of side boundary

yw, and Yy,

snditions allows us to expand the temperature in cosines only,

Ny
T(x,z,) = ) _ Tulz,1) cos(nrx/a),

n=0

and the vorticity and streamfunction in sines only,

Ny
o, z,0) =Y wn(z 1) sin(rrx/a),

n=1

3 2.8c)
Y(x,2,0) =) Yu(z1) sin(amx/a). @

n=1

i tion level in the expansions;

i de number and N, is the chosen truncal ion 1 . ons;
ger;in tllirthti;n \?alue of N, the be:ter the spatial resolution in the honlz](i)n;al Sltz;l
ti:n I\gIote that the temperature expansion begins with nd= gl bec:fu;e :lt tsh ] rgsiven ;

. i i ts the x-averaged value :

does not vanish for cosines. It represen the given 2
ici i the other hand, have no n
. The vorticity and streamfunction, on _ "
?11(1)(111; because the four boundaries are impermeable and fixed in space and the flui
is i ible, V.v = 0. .
: llillg(t);n apizzsilllatethe n = 1 modes represent a half wavelength E}oaixlrlungalthe l(i:;l%lil
box (i.e., double the value
. One could double the length of the ‘ .
zgpt:lcet [;:’Ei(o @) and change 7 to 27 in the arguments of the Hsmes and.fcgls;:::eiz
i i iginal solution. However, 1
i dd on the mirror image of the origin ( . 1, if
szeijtel(‘ilelii, zould be accomplished much more efficiently via graphlcs' mstf.:adaoi
dzzng tile additional amount of computational work to solve for the mirror imag
the solution. ‘ o
o Or?e could also define a wavenumber k = nr/a, “Zihlch‘:;/lo‘l;l:\’l;::l ‘:isz;lr;{lb%ﬂ '
i Fourier mode wi .

i r unit length spanned by the : . . T |
ram?gssiz lify the arguments of the sines and cosines to‘ be just kx3 but 1:1 is fIIg;
:i:)nli/enientlj for the subscripts of their coefficients to be integers # instead o

k. . ., . —
nuglct)):vr Swi’th these spectral expansions, consider the bounflary conqmol(lls aflt x acg
da ’The insulating condition, 87 /0x =0, is automatlcally sat1'sﬁe , Er IEOde
?Irllode .n because T is expanded in only cosines (Eq. 2.8a). Likewise, eac
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satisfies the impermeable conditio = —
it i 321/,/ax2 0, Uy = —91/37 = 0, and the stress-free cop.

= 0. Not i ; )
boundaries, so doos 9oy 19, ote that since v, vanishes for all z on the side

fﬂ Sin(117x/a) sin(nymx fay dx = { *a/2 ifn; =+,
if’i’l” # ’n2, ’

jf cos(nymx /a) Cos(nymx /a) dx — ifn; =4p,
if ,”l’ 7é ’7[2’ )

3]}, aZT
o =—vv)r] 4 (2L _ (B7N2
31‘ ]n 822 (a ) ];l 9

dw
Ttn ==[(v-V)w], + RaPr (';i) 7,

(5= () ).

. equations are the i i i
:iiigs;:siuof i}ile temperature, vorticity, and streamfuncct(i)giﬁ :;?in::laltnthtg:ei%t?g-r
e prrl(c):dl(l);s (;ft only z and ¢, The ‘[ 1n” terms are nonlinear; that is, they
on contitumok OL'two unknown quantities and, as will be shown, they depend
( 101s Irom many other modes. The nonlinear terms are more challeng-

hes on the top and bottom boundaries; therefore, by Egs. 2.6, ¥, = 0

d 1. We also want the boundaries to be stress-free, i.e., du,/8z = 0.

ording to Egs. 2.6, this means that 3?//82> = 0 on both the top and bot-

daries; and, by Eq. 2.12 and the above impermeable condition, this also

hat w, = O on these boundaries. Therefore, all three Fourier coefficients,

and v, for n > 0 vanish on the top and bottom boundaries, Note that the
ables, @ (x, z, t) and Y (x, z, t), vanish on all four boundaries.

se a simple method that we can continue to employ for the nonlinear prob-

: a second-order accurate finite-difference method to represent derivatives with
spect to z and 7. The basic idea is to use the values of a variable at neighboring lo-
cations to approximate the derivatives of that variable at a given location. The more
“neighbor” values used the higher the order of accuracy. A second-order accurate

. method means that the local error is proportional to the cube of the grid spacing,

AZ3, for spatial derivatives; the global error is proportional to AzZ2.
Finite-difference methods are obtained by expanding the variable in Taylor series
based on powers of the grid spacing. Consider a function, f(z), on a discrete set of
grid points, z; = (k — DAz fork = 1 — N, where N, is the number of vertical
grid points with uniform grid spacing Az = 1 /(Nz ~1).Let f; represent the value
of f at z;. To obtain an approximation to the first derivative of f with respect to z
at zy, represent f;.; as a Taylor expansion of J about z. That s,
f 1(3°f

9
fir1 = fi + <5)k Az > (@)k AZ2+ O(ADD). (2.13)

Likewise, represent f,_; as a Taylor expansion about z:

af 1/82f
fic1 = fi — (E)k Az + 5 (527);{ AZ? + O(AZD). (2.14)

Subtracting Eq. 2.14 from 2.13 and dropping terms of order Az® and smaller gives
the centered finite-difference approximation to the first derivative,

3\ _ fir— fis
<~£)k = T 2.15)

Likewise, adding Eqs. 2.13 and 2.14 and again dropping terms of order Az3 and
smaller gives the finite-difference approximation to the second derivative,

P\ _ e —2f + fic)
<§>k _ L , (2.16)

A simple way to understand Eq. 2.15 is to think of the first derivative of fat
a given grid point, z, as being simply the linear slope between the values of the
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function on either side of
as the finite difference of

the grid po.int. The second derivative is then
the first derivatives atzp + Az/2:

-G, (2), ]/

_ [(fk+1 — B (i~ fi)
Az B Az J/AZ

U1 =2/ + £

(Az)? '
Ther.efore, for this centra] finite-
denYatlves require information fro
require a modification at the top
to be solved on these b
Wy = ¥ =0 are forced
tions.

difference method, both the first and second
anl(li’l I<))nly the two nearest neighbors. This would
M How(;t‘tlszboundaries if Eqs. 2.10-2.12 needed
°S. T, I0r our problem the conditio =
to be satisfied on these boundaries instead of the ﬂulil; e%ueI

: uggest that indeed a
difference method and a factor
thod.
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represented

L METHOD

he a semi-implicit scheme, which uses information from both the current

w time steps to update a variable to the new time step.
s Part 1, however, we choose a second-order accurate explicit scheme, the
Bashforth time integration scheme. The idea is to advance a variable from
ent time step to the new step using an approximation to the time derivative
ay between these two steps, as in Eq. 2.15. Note that although the local er-
¢., for one time step) is formally proportional to A#3, the global error (i.e.,
amulated over the span of many time steps) is proportional to Az2. The time
ivative is a function of the variable itself and likely other variables in the prob-
, all of which are calculated only at the discrete time steps. This scheme uses the
ables at the current time step and the previous one to extrapolate the time deriv-
tive to the midway point between the current and new steps, assuming the time
erivative is changing approximately linearly over these three (small) time steps.
simple analysis shows that the time derivative at the midway point is estimated
o be the time derivative at the current step weighted by 3/2 minus the time deriva-
tive at the previous step weighted by 1/2. For example, let G represent the left side
of Eq. 2.10 for a given Fourier mode number # at time ¢ + At/2, where At is the
length of the computational time step. Then Eq. 2.10, dropping the subscript # for

the moment, is
oT
(_) = Gt+At/2,
0 /i

T, — T
fas =i 326, -1/2Grcn. @17

Therefore, the Adams-Bashforth scheme is
Tipnr = Tt + At/2 3G, — Grpr). (2.18)

which is approximately

Since this time integration scheme is explicit and Eqgs. 2.10 and 2.11 have ther-
mal and viscous diffusion terms, respectively, A¢ needs to be less than the time
needed for a thermal perturbation or shear flow of the size of a grid cell to diffuse
between two adjacent grid points, i.e., Az. The thermal diffusion velocity in the
z-direction for a grid-cell size perturbation is x / Az; therefore, the time needed for
a perturbation to diffuse over a distance Az is (Az)?/k. The actual constraint is
somewhat more severe (see, for example, Ferziger & Peri¢, 1997). In our nondi-
mensional variables, it is

At < (Az)*/4 . @19)

If a At larger than this limit is chosen, a numerical instability quickly develops,
which can easily be detected because the amplitudes of the variables grow out of
control.

If Pr is greater than one, i.e., viscous diffusivity greater than thermal diffusivity,
then it too appears in the denominator of the term on the right in expression 2.19
because the limit is based on the greatest diffusion velocity. The diffusive time
constraint in the x-direction can be approximated by calling Ax = a/N,,. However,




2.5 POISSON SOLVER

Now that the solution method for the prognostic equations, 2.10 and 2

outli
Poislslzf etouultaidate To(z,1) and w,(z, 1), respectively, we need to describe how th
tion, 1, ( q ta op, 2.12, can be solved at each time step for the updated streamf; :
) V(2 1), given the updated vorticity, w, (z, £). An updated Yz, 1) is ne;(;1 Cd-
n 3 (]

to compute the updated velocities vi
via Egs. 2, i i i
step for the advection terms in Egs. 2, qu:lnczl g’ IV;’hICh ieauied at the next ime

Equation 2.12 written for mode # at the kth ~
mate the second derivative, is

.11, has been

-level, using Eq. 2.16 to approxi-

~ 2% + Yy_)

For example, if N, = 5, the matrix equation would be

dia(1) sup(1)
sub(2) dia(2) sup(2) ss(c))ll((Zl)) rhs(2)
sub(3)  dia(3) sup(3) sol(3) | = rhs(3) 2.21
sub(4) dia(4) sup(4) sol(4) rhs(4) ‘ =
sub(5) dia(5) sol(5) ths(5)

The indices, & = 1 to ¥, ¢
= » COIT! .
the bottom boundary is a: k= espond to the z-levels (vertical

row (i.e., for £ = 2 to v,

grid points), wher
1 and the top boundaly isatk = N,. Each intel*&na‘l3
— 1)) corresponds to a different £ in Eq. 2.20. That is
1
sub(f) = ———__
(Az)2°

dia(k) = "i)z +2

a (Az)?2’

sup(k) = ~@ ,

rhs(k) = omg(k, n),

ICAL METHOD

n output sol(k) will be psi(k, n). Rows & = 1 and N, correspond to the bottom
op boundary conditions on ¢, respectively; that is, ¢ = ¥, = 0. Therefore,

dia(1) =1, sup(1) =0, rhs(1) =0, (2.22a,b.c)
sub(N,) =0, dia(NV,) =1, rhs(V;) = 0. (2.22d.e.,f)

Note, since we have chosen impermeable boundaries, which force 1 to vanish
i the boundaries at all times, we could reduce the order of the matrix equation to
N —2) by eliminating the bottom and top rows. However, since N, is usually large
ompared to 2, the savings would be minimal. Also, if we later wish to implement a

_condition that allows ¥ to be time-dependent on the boundary, instead of constant,

the entire N, rows would be needed in the matrix.

After writing a general tridiagonal solver one should first test it by choosing N,
to be something like 100 and prescribing artificial arrays for sub, dia, sup, and sol
using random numbers. Make the absolute values of the elements in the dia array
greater than those in the sub and sup arrays; that is, the diagonal needs to be domi-
nant (as they are for our problem) for a tridiagonal solver to be numerically stable.
Then multiply (via an inner product) the matrix (composed of sub, dia, and sup)
and the solution vector (sol) to get the right-hand side vector (rhs). Then, with the
chosen matrix operator and rhs, check that the tridiagonal solver produces a sol
that agrees with the originally chosen solution. The subroutine for this tridiagonal
solver, which we use in this chapter to solve the Poisson equation for the stream-
function, is also employed in later chapters for improving the numerical method
and modifying the problem.

Also, note that the first loop over z-levels in Appendix A, which computes the
work arrays wk1 and wk2, does not involve rhs. Therefore, wk1 and wk2 could be
computed and saved before the time integration begins instead of being computed
every time step. Then wk1 and wk2 would be input arrays and sub, dia, and sup
would not be needed for this routine. Only the second set of loops over z-levels in
Appendix A, which does involve rhs, would be needed in this subroutine. Doing
this would save computational time but would require additional memory to save
the wk1 and wk2 arrays, which would then be two-dimensional arrays, i.e., over
both z-levels £ and mode numbers #.

SUPPLEMENTAL READING

Boyd (2001)

Canuto et al. (1988)
Ferziger & Peri¢ (1997)
Peyret (2002)

EXERCISES

1. Curl of advection
Show in detail how Egs. 2.2 and 2.3 are obtained.
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. No x-averaged vorticity or streamfunction
Show why the vorticity and streamfunction have no # = 0 contributions when

the four boundari i ; AN
pressible, €s are impermeable and fixed in space and the fluid is incom-

. Adams-Bashforth time integration scheme
Show why the time derivative midway between the current time step and

the new time step can be approximated as the time derivative at the current

step weighted b i : .. !
byli n g Yy 3/2 minus the time derivative at the previous step weighted

Chapter Three

Linear Stability Analysis

In this chapter we describe a linear stability analysis (i.e., solving for the critical
Rayleigh number and mode) so readers can check their linear codes against the
analytic solution. Dropping the nonlinear terms in Eqs. 2.10 and 2.11 not only
simplifies the problem but also redefines the problem. For this linear analysis, each
Fourier mode » can be considered a separate and independent problem since the
linear terms in Eqgs. 2.10-2.12 involve only a single value of #. The question being
asked now is under what conditions, i.e., what values of Ra, Pr, and a, will the
amplitude of the linear solution grow with time for a given mode ». In other words,
this is a linear stability problem.

3.1 LINEAR EQUATIONS

By examining the linear versions of Egs. 2.10-2.12 one sees that although the tem-
perature perturbation, T, is needed in the vorticity equation (2.11), the temperature
equation (2.10), which determines the evolution of T, is independent of both the
vorticity and the streamfunction. It is only a diffusion equation, which would sim-~
ply cause any initial temperature perturbation to decay away. This, in turn, would
cause the vorticity and streamfunction to also decay away, which would not be very
exciting. Therefore, for this linear problem, we consider the x-independent part of
the temperature (i.e., the temperature averaged in the x-direction) to be a prescribed
background (i.e., reference) state that depends on z but not on time, ¢. This couples
the three equations and allows a stability analysis (e.g., Chandrasekhar, 1961). The
idea is that we are interested in how an initial temperature and flow pattern would
grow or decay, with the prescribed background temperature profile and the cho-
sen values of the nondimensional parameters, before becoming so large that the
nonlinear terms would become important.

Therefore, we first define a simple time-independent and x-independent conduc-
tive reference state temperature, To(z). The subscript 0 means this is the n = 0
coefficient in the cosine expansion of the temperature. Recall that wy and vy are
zero everywhere at all times; therefore, since this T is independent of x, the linear
parts of Egs. 2.11 and 2.12 are satisfied for n = 0. All terms in the linear part of
Eq. 2.10 for n = 0 also vanish since Ty is also prescribed to be time-independent.
Therefore, the thermal diffusion term in that equation is simply

32T, -0
922
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The solution to this equation that satisfies
the top and bottom boundaries is simply

Toz) =1—1z. 3.1)

Consequently,

a7y

9z -1

This x and ¢ inde
. pendent background te cont i
linear ) mperature gradient is assumed, i
gradielll)tm'?;em’ to be large relative to the n > 0 perturbations in thentl:r(ril’ s
- Therefore, when solving for the » > 0 linear temperature pe r%zglglre
Tt ns,

q. 2.10is approximated as a linear term by using

the nonlinear (advection) term in E

only th = i

- ty_ 1e ¥ms Odtemperature gra.dlent part in that term, which, as seen above. i

et Of.v p ;e uces the .ad\./ectlon term in Eq. 2.10 to simply the cosine co ’fgs

a increas;. Wi:}llt ;s, for this linear Qroblem, temperature at a given location teend_

e W Withr?e wheil hot fluid flows up from below (because of Eq. 3 1;
1me when cold fluid flows down f; s an

downflows (v,) are obtained using Eqs. 2.6 for a givenr?nn;c?eb :Y& Hhe upllows and

ay
() = (g> = (=) v, (3.2)

which is the coefficient of the cos(nmx
temperature equation.

With this li imati
s linear approximation to the temperature advection term Eq. 2.10 is now

Coupled t() the hllea.l VErsions ()f EqS. 2.11 aIld 2. [2. [he] ej()le [0[ a given ][l()de
* g

n > 0, the linear equation ibi
, s describing the z- and ¢- i i
of temperature, vorticity, and streamfunction are rependent Fourier coeficients

/a) term in the spectral expansion of the

a7,

ot (%) Vn + (8322? - (%)%) : T (33)

dw, ‘

;: = RaPr (%) T, +Pr (B;Za;,, - (%)an> , (3.4)
924,

=T (% B (%n)z‘”> : (3.5)

The boundary conditions, as described above, are

T,,=a),,=1ﬁ,,=0f0rz=0&ndl, n > 0. 3.6)

The next thing needed for this Ij i
tions. Typically, s linear stability problem is to set the initial condi-

the initial fluid velocity i i
o elocity is set to zero, i.e., for each mode z and for

' Wn =Y, =0 at ¢t = 0.
A simple initial condition for the temp

ary condition (Eq. 3.6) is erature perturbation that satisfies the bound-

T, =sin(wz) at ¢ = 0.

the temperature boundary conditions at
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that this is for n > 0 since the n = 0 mode has already been prescribed
. 1). Note that since this is 2 linear problem the amplitude of the initial temper-
permbation is arbitrary as far as the resulting time dependence is concerned.

en the tridiagonal matrix solver for the system 2.21 is working the main code
be designed and written. (Note the words “code" and “program" are used in-
changeably.) Instead of providing a sample computer code that would solve this
roblem, we only provide guidance; the programming language and the particular
esign of the code are up to the reader/modeler.

The parameters representing the number of z-levels, N,, and the number of
Fourier modes, N,, need to be chosen and set. One-dimensional real arrays for z,
ub, dia, sup, wk1, and wk2 need to be dimensioned as (1:N;). In addition, we need
two-dimensional real arrays (1:N;,0:N,) for psi, omg, and tem. Note there is no di-
mension for time since we plan to overwrite the values of these variables every time
step instead of keeping a history of them, which would obviously require a large
amount of storage. We also need three-dimensional real arrays (1:N;,0:N,,1:2) for
domgdt and dtemdt. These arrays store the time derivatives of the vorticity and tem-
perature, respectively, with the third dimension indicating that the value is for the
previous time step (1) or for the current step (2). Recall that these two time levels
are needed for the Adams-Bashforth time integration scheme, Eq. 2.18.

Typically a code like this begins by specifying or asking the user for the val-
ues of the defining parameters, Ra and Pr, the aspect ratio, a, the size of the time
step, dt, and the namber of time steps to be run, nsteps. Also, combinations of con-
stants that appear in the equations and are used each time step should be calculated
once and stored. For example, pi = 4.*atan(1.), which is an easy way of setting
the value of 7 to machine roundoff. Also define a constant c=pi/a and the uni-
form spacing between z-levels, dz = 1./(N,-1), and a constant oodz2=1/dz?. Set
the value of a computational time step, dt, according to the constraint 2.19 or this
divided by Pr if Pr > 1; to be safe, set dt to something like 90% of this limit. In
addition, since the sub and sup parts of the tridiagonal matrix never change, they
can be set once at the beginning of the code. Note sup(N;) and sub(1) are never
used.

The initial conditions for omg and psi, for all z and 7, are usually set to zero, i.e.,
no initial velocity. A simple initial condition for tem, which satisfies its boundary
conditions, is tem(k, n)=sin(pi*z(k)), where the mode number # = 1 to N, and
the z-level z(k) = (k — 1)*dz with k = 1 to N... The values of dtemdt(k, n, 1) and
domgdt(k, n, 1) will be needed for the first time step. The easiest way to deal with
this is to just set these to zero since the initial conditions are arbitrary anyway.

The rest of the code is a loop over the time steps. The first part of each step
involves computing dtemdt(k, 7, 2) and domgdt(k, 7, 2) in a nested loop over all
internal z-levels (k = 2 to N, — 1) and all nonzero mode numbers (n = 1 to
N,). These are updated according to Eqgs. 3.3 and 3.4 using the finite-difference
approximation, Eq. 2.16, for the second derivatives in z.
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Recall that each 7 is an indep
nonlinear terms. Therefore, instead of doing all N,
could write the code to do one at a time. However, s
all modes simultaneously later when we do include
mend also calculating all modes simultaneously for

though N, is chosen to be much smaller for the Ii
twice the aspect ratio.

Now, update tem and om,
and

and psi being the sol on output.

To prepare for the next time step,
copy the current (k, n,2) values of th
(k,n, 1) of these arrays. This can be
steps (nstep) and keeping track of whic
current and previous steps.

Finally, some output is needed to let the user know how the amplitudes of tem,

omg, and psi are changing in time. An casy way to do this is to print out (to the
screen or to a file) the values of these three variables for all n but only for one

make another nested loop over £ and # to
e time derivatives into the previous location
avoided by using an even number of time
h value in the third dimension represents the

z-level, at, for example, the mid-depth or one-third erth.

3.3 CRITICAL RAYLEIGH NUMBER

problem, is to find the value of the Rayleigh
, @, and Prandt] number, Pr, that gives a solution
ime, i.e., the conditions for “marginal stability.”
umber, Ra,,;(n), for mode n. That is, if one sets

supercritical” solution with amplitudes 7, (z, ¢),
wn(z, 1), and ¥, (z, 1) that increase exponentially with time. Likewise, setting Ra <

Rag,;; (n) will produce an exponentially decaying “subcritical” solution. Different
modes, », have different Ra..;;(n). The mode number with the smallest Rag,; (n)
is the critical mode number, #,;;, and Ragei; (o) is the overall critical Rayleigh

number for the chosen Pr and . Actually, n,;; and Ra,,;; are independent of Pr for
this problem,

The idea is to choose a Pr and ana
to bracket the Ra,,;, (n). The closer
more time steps will be needed to de
In practice, one estimates the critic
midway between an Ra that produce
and one that gives a solution that jus

Note that in either case the abso]
of omg and psi will increase as th
therefore needs to be large enough

and then try many values of Ra in an attempt
one gets to the critical Rayleigh number the
cide if the solution is increasing or decreasing.
al Rayleigh number by setting it to the value
S a solution that just barely increases with time
t barely decreases with time,
ute value of tem will initially decrease and that
ermal energy converts to kinetic energy; nstep
(typically several thousand) for the solution, i.e.,

endent stability problem since we have dropped the
problems simultaneously, we
ince we will need to compute
the nonlinear terms, we recom-
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. oy o
d psi, to evolve beyond this initial transient and all be elthe1‘r 1nc:§:sr ati
g,;:; \51&71 time at the same (relative) exponential rate. 'I;o moreu;);r ot
o i i at, for example, one-
; and psi at, fo
i int the amplitudes of tem, omg, . !
‘}lllig‘(lie #. A more convenient set of numbers to print would be

In(|tem(N/3, B)current]) — In(|tem(N;/3, n)previausl)

. “nrevious” means the value saved from th.e
orions e ;{hlci (‘)V;je every 5’00 computational time steps. (Note, one could just
ight be cthC ) f the previously checked to current values; however, (?ften gun-

ﬁ{lt s :vent accurate estimates of these ratios when the func,tlon Value:
o o e onentially) small or large.) These three natural log it (‘1] i li]i_
come very (eXIt) the same time-independent value, which if p051t1Ye woul ln_
shiould (;ir;‘fsiﬁﬁzly growing solution and if negative, an exponentially decaying
cate an

e i ill need to
lution. The closer the Ra is to the critical ve}lue the more e ;t:f Z)::.mple one
| ‘;0 p to determine if the solution is increasing or decreasing. ’
e run

; -5
d to ran 100,000 numerical time steps or more with Ar = ‘10. . e to
T addition, s ’all modes n are computed simultaneously, it is possi .
il ; mcl(;a that is supercritical for one or more modes b}lt subcptlcalhi?r
o e T i the amplitudes of some of the modes may be increasing while
e s Thz‘glls’ odes are decreasing. As mentioned, the first mode to increase
th'ose ’for theI({) 'erirrlréreased is the critical mode number for the chosen aspejct ratio.
M ot  mp 11Srtant oint is that for many cases, depending'on.the Sp'atlal rES(t)-
’Anmher an(;x enI])Ra Pr, and a, single precision arithmetic, i.e., using 4- yaﬁ
T bers : ; not vs;ork, for this problem. It is highly recomrpejndec.l that al
. numl')ers’ " yested in this book be performed in double precision, 1.e.,1 wi "
Compmat;fnfnill)ge%s Integers, on the other hand, usually need only 4 bytes. A siov,eln
?I;le) };zifs rri—:ntione(i above do not converge to tlllle san];claecrzlcir;s(;tiilg ;thllfaf(;; ;5 ven
i i i e pro
RlEl ? I:Iil cizn(?llll: ;fcgieecct(:i):)is 12 izgggctil,yizil t]t\znz/\,/(t)uldpneed to be increased, although
oluti -

usually N, = 100 should be adequate.

3.4 ANALYTIC SOLUTIONS

Now we show that the linear stability problem.can be solved riluc.h mto;: iffrifrrllga}i

i alytic (Rayleigh 1916) approach 1nstead‘of employing ey
et dos };) d in Section 3.3. Of course, if the linear problem were o - only
mettho'd o eould not have bothered to develop the linear code that simulate
ObJeCtlYe, ’We'we dependence. Our intent here though is to check the accurac;i
o SOl‘mf’n X tlIgde bp comparing the critical Rayleigh number§ and mode nutrlrlle
girtsh?t 1;?::11;‘[03 With};he analytic results before adding the nonlinear terms to
CO‘}I‘e' find an expression for the value of Ra.,;; () for a givefl aspect rz}tlt(l) t:z)ng ;g(ig:

(‘)b t the time derivatives in Eqs. 3.3 angi 34to zero since we wis find the

%‘m} rervsﬁich the n-mode solution is neither increasing nor decreasing wi

a fo
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Note, we are assuming that, for our defined problem, convection at Ra = Ra,,;; (1)
occurs as a steady-state solution, i.e., not with an oscillatory time dependence as
can occur when there is double-diffusion (Section 7.3) or rotation (Section 12.4.1).
In addition, instead of using a finite-difference approximation for the second-order
derivatives in z, Fourier expand the temperature, vorticity, and streamfunction co-
efficients in z. This is now a fully spectral method. Since all three of these vanish
at both boundaries, only the sine functions survive; so we have

Ny
T,(z,t) = Z Ty () sin(mrz), (3.72)

m=1

N,

wp(z,t) = Zma),,m () sin(mnz),

m=1

N
Va2, 0) = D Yun(t) sin(mnz), (3.7¢)
m=1
where these coefficients depend on the x-mode number 7, the z-mode number m,
and time.

Next substitute these expressions into Egs. 3.3-3.5 with the time derivatives set
to zero and the z-derivatives now done analytically. The orthogonality property of
sine functions allows one to examine each nm-mode separately. That is, there is a
set of three algebraic equations and three unknowns (Tm» @y Yrum) for each set
of mode numbers # and m. This set can easily be solved, resulting in the following
expression for the critical Rayleigh number:

oy amp)

Racrs (1, m) = (3.8)

a n?
It should be noted that this convenient analytic solution exists because of the sim-
ple geometry and convenient boundary conditions we have chosen. In general an
eigenvalue problem needs to be solved numerically to find Ra,,;; as a function of
mode numbers (see, for example, Glatzmaier & Gilman, 198 1a).

For our problem, however, Eq. 3.8 is quite useful. For example, a square box
(¢ = 1) with a single convection cell (n = m = 1) has Ra,.; = 2374 = 779.27.
Note, for a given aspect ratio a and x-mode number #, the z-mode number m with
the smallest Ra,,;,; is m = 1. That is, the most unstable convective pattern is one
for which the vertical trajectories extend continuously from the bottom to the top
boundary, which maximizes the upward convective heat flow between these bound-
aries. Therefore, Eq. 3.8 for m = 1 can be used to check if a linear numerical
code is working correctly. Notice that for this linear stability problem the critical
Rayleigh number does not depend on the Prandt! number Pr; however, the style of
the nonlinear supercritical solutions (Chapter 4) does depend on the Pr.

The Rayleigh number is a measure of how strong convective driving is relative to
viscous and thermal diffusion, which hinder the convection. It is related to the ratio
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the convective heat flux to the conductive (i.e., diffusive) heat flux jbefore the on-
set of convection. The conductive heat flux is the rate th‘erme.d energy is transported,
per unit time per cross-sectional area, due to thermal dl.ffuswn, i.e., molecular mo-
tions (or unresolved subgrid-scale turbulence) transporting energy from hot to cold
regions. In the vertical direction, it is computed as —k 387 /9z, Whert? the const.ant
of proportionality, k, 1s the thermal conductivity, egual j[o CpPok'; Cp is the spemﬁc
heat capacity at constant pressure. The negative sign simply means tl.lat heat d1’_f-
fuses “down gradient”, i.e., from hot to cold. An estirnatc? of the amplitude of this
flux is therefore ¢, 0,k AT /D. The convective heat ﬂux. is the amount of thermal
energy transported upward, per unit time per cross.—sectlon‘al area, by convectlor},
i.e., by hot fluid rising and cold fluid sinking. To estimate this term we r_1eed an esti-
mate of what a typical convective velocity will be. One way to do this is to2 assumze
the buoyancy and viscous forces will be comparable. That is, pgo = v,o.oa v,/0z°.
Then, using p,a AT to estimate the amplitude of the dens%ty perturbation, p, a'nd
using #/D? to estimate the amplitude of 3%v,/322, the es.tlmate o.f the con\{ectlve
velocity is u &~ aATg,D?/v. Using this to estimate a typical vertical velo?lty, vz,
and using AT to estimate a typical temperature perturbation, T ,'the convectlv'e heat
flux, c,pov, T, would be estimated to be ¢, 0,0 AT 2g,D?/v. This, togetl.ler with the
above estimate for the conductive flux, makes the ratio of these two estimated heat
fluxes equal to what is defined in Eq. 1.18 as the Rayleigh number,. Ra. Hov.vever,
this description is more relevant for the nonlinear problem for Wh.l'Ch ar.npl}mdes
are meaningful. Also, it applies to the bulk of the fluid where there is a significant
convective heat flux. ‘

To find the critical mode number, #.,;;, for a given aspect ratio, a, set the deriva-
tive with respect to n of Eq. 3.8 to zero, which gives, form =1,

neris = nearest integer to %. 3.9
The most unstable horizontal mode number is approximately equal to the aspect
ratio because the preferred number of convection cells in the box depends on the
shape of the box. Circulation cells that extend from the bottom to the top of the
box (m = 1) are typically more unstable, i.e., grow faster, because buoy‘ancy fOI'C(",S
act over more of the fluid trajectory than they would if there were multiple cells in
the z-direction, which would require additional horizontal flow driven by pressure
gradients instead of buoyancy forces. Also, in general, the cells that have a more
circular shape are the easiest to excite because the flow has less curyaulrg and‘ SO
less viscous resistance to buoyancy. In addition, a circular flow minimizes diffusion
of temperature perturbations, which are needed to provide buoyancy ff)rces. On the
other hand, in order to limit the number of upwellings and downwellings, the pre-
ferred aspect ratio of a single cell tends to be slightly greater than unity. Therefore,
for cells that stretch from the bottom to the top, the most unstable mode num-
ber, n, is expected to be slightly less than the aspect ratio of the b(?x, a, as stated in
Eq. 3.9. For example, if the length of the box were five times its .helg.ht (a = 5),0one
would expect slightly fewer than five convection cells in the x-direction (n¢,;; = 4).
For more discussion and details on this linear stability problem see, for example,
Chandrasekhar (1961).
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Note that an aspect ratio of @ = /2 makes nerir €xactly 1 (Eq. 3.9) and gives the
smallest critical Rayleigh number:

277t
Ra,;; = y) = 657.5. (3.10)

In summary, to find the overall Ra,,; for a given aspect ratio, first use Eq. 3.9
to ﬁ1.1d nerir and then use this value of # in Eq. 3.8 (with m = 1). These analytic
pred.lctions can then be compared with estimates of the critical Rayleigh numbers
obtained using the linear code. Assuming there are no bugs in the code, better agree-
ment will be obtained by using better resolution in the z-direction, i.e., a higher
value of N,, which will reduce artificial (numerical) diffusion.

SUPPLEMENTAL READING

Chandrasekhar (1961)

EXERCISES

1. Critical Rayleigh number

Deriv.e tl'le analytic expression for the critical Rayleigh number, Eq. 3.8, by
substituting Egs. 3.7a— into Eqgs. 3.3-3.5 and setting all time derivatives to
zero.

. Cr{'tical Rayleigh numbers vs. aspect ratio and horizontal mode number
Using Eq. 3.8 w.1th m = 1, plot Ra,,;, as a function of the aspect ratio, 0.1 <
a < 10, for horizontal mode numbers # = 1, 3, and 10; and plot Ra.,;; as a

function of the horizontal mode number (an integer), 1 < n < 10, for aspect
ratios a = 0.1, +/2, and 10.

COMPUTATIONAL PROJECTS

1. Critical Rayleigh numbers via a linear convection code
Compare the critical Rayleigh numbers for Pr = 03,a=5andn =1, 3, and
10 obtained using a linear convection code to those obtained using Eq. 3.8
with m = 1. Demonstrate, using the linear convection code, that the critical
Rayleigh numbers are independent of the value of Pr.
. Overall critical Rayleigh number via a linear convection code

Compare the critical Rayleigh number, Ra,,;;, at the critical mode number
Nerit, for Pr= 0.3 and a = 5 obtained using a linear convection code to tha;
obtained using Eqgs. 3.9 and 3.8 withm = 1.

Chapter Four

Nonlinear Finite-Amplitude Dynamics

Now the nonlinear terms are added to produce finite-amplitude simulations. Here

we choose to calculate the nonlinear terms using a Galerkin method in spectral
space; this is replaced with the more efficient spectral-transform method in
Chapter 10. However, a Galerkin method provides a clear understanding for how
nonlinear terms disperse energy among the available modes and what is meant by
spectral aliasing. For a review of spectral methods see, for example, Canuto et al.
(1988), Boyd (2001), and Peyret (2002).

4.1 MOBIFICATIONS TO THE LINEAR MODEL

The linear solution approximates only the initial growth of supercritical convec-
tion that begins with small temperature perturbations. Very quickly the amplitudes
become large enough that the nonlinear terms become significant and stop the expo-
nential growth. This is what is called a finite amplitude simulation since the ampli-
tudes of the variables are no longer arbitrary. For example, doubling all amplitudes
of a solution would no longer satisfy the set of equations because the amplitudes of
the linear terms would increase by 2, whereas those of the nonlinear terms would
increase by 4. For values of Ra below a certain limit the nonlinear solution evolves
to a steady state, i.e., the time derivatives go to zero and all variables become con-
stant in time. A more realistic and interesting situation occurs with larger values of
Ra, which produce time-dependent solutions.

The set of coupled nonlinear equations 2.10-2.12 require expressions for the
Fourier coefficients of the nonlinear terms, which describe the advection of temper-
ature and vorticity. The x-independent (n = 0) part of the temperature perturbation
is now also part of the solution, instead of being prescribed as was done for the
linear problem. That is, the z-dependent horizontal mean of the temperature now
can evolve away from its initial condition (except for its constant boundary values).
Recall that at the bottom and top boundaries 7, @,, and ¥, are zero for n > 0. Our
isothermal boundary conditions require the temperature for n = 0, Ty, to remain
one at the bottom boundary and zero at the top boundary.

Since the full advection of temperature is now part of the temperature equation,
including the advection of Ty(z, t), we no longer need the linearized version of
this term that we added for the linear stability problem. An alternative approach
would be to retain this term and consider Ty(z, ¢) to be the horizontal mean of
the temperature perturbation relative to the time-independent conductive profile,
(1 — z), in which case this To(z,¢) would also vanish at the two boundaries.
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However, since there is no advan

tace i . . .
10 be he horiponty oo o age in doing this, we continue to define Ty(z, £)

‘ p p i i
ns

pears in the linear equation 3.3, needs to b i
! .3, € rem i i
now being modified for the nonlinear problem., Precin the mumerieal code thatis

4.2 A GALERKIN METHOD

sin(a) sin(p) = (cos(a — b) — cos(a + b)) /2, (4.1a)

cos(a) cos(h) = (cos(a — b) + cos(a + b)) /2, (4.1b)

sin(a) cos(b) = (sin(a + b) + sin(a — b)) /2.
Consider the term representing the advection of vorticity:

—(v-V)w:—[vx 8——w + v, aﬁ]
ox

0z
=_[_3h¢3“w 4 oY dw
dz ox _8?5 ’

Using the expressions 2.6 for v, and v,
@ anq ¥ in terms of their Fourier

N, N,
~VVo=-3"3"

n'=1n"=1

2 ) 3 n (sin((n +n)wx/a) +sin((n”-n/)7rx/a))

+ n'm 0wy
_ﬂ) Y o (sin((n” + n)x/a) — sin((n” — n')n’x/a))] . (42)

which nicely gives us only sines like the o
ever, what we need are the Fo
this nonlinear term, i.e.,

ther terms in the vorticity equation. How-

urier coefficients in a single summation over sines for

Ny
~V-V)o=— Z [(v- Viwl, sin(nrx /a) . 4.3)

n=1
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ng Egs. 4.2 and 4.3 one can see that

: No Nu ;1
Viol, = _27T_a Z Z l:(—n ;[Iz

n'=1n"=1

" 0wy
_ (n, Wy, Wy +n”1/f,," n ) (Sn”—n’,n — Sn’_n”"n):l, 4.4

y, 0wy
@ + 1 Yy 3 5”""‘”"”
4

]
az 9z

the kronecker delta function §; ; is one for i = j and zero if not.
strategy of computing the contribution to the nonlinear terms for each mode
o the binary interactions of many other modes is called a Galerkin method.
t is, the spectral coefficients for the nonlinear terms are computed in spectral
space without ever going to physical (x) space. (Note the method here is always
hysical space in terms of the z coordinate.) Chapter 10 describes a more efficient
thod for calculating the nonlinear terms called a spectral-transform method, for
ch variables are transformed to physical space to compute the nonlinear terms
ach time step. However, working with the Galerkin method should provide an
nderstanding of how the interaction of two mode numbers »’ and »” via advection
roduces contributions to mode numbers (#’ + n”) and £(n’ — n").

Now consider the other nonlinear term, the advection of temperature:
or aT :I

-~V -V =— X N za
(V ) [U ax+vaz

Na
==Y [(v-V)T], cos(nmx/a). (4.5)
n=0
The Fourier coefficients for this term are evaluated in a manner similar to those
for the advection of vorticity. One difference is that now we hope to end up with
a series of cosines (Eq. 4.5), like the other terms in the temperature equation. We
will again call the ¥ mode numbers n”; those for the temperature will be n’. Recall
that the cosine expansion of temperature includes »’ = 0. We treat this contribution
separately so the rest of the n’ contributions can be treated in a similar way and at
the same time as those for the vorticity advection. The result is

N, N,
nmw Ty T Zﬂ Z" ,alﬂnu " oTy
B [(v . V)T]n - _71#"_8_; - EE n'=1n"=1 |i<—-n 0z Tn, T 1/}"” 0z 6""‘*‘"/,"
Oy 0T,
+ (n g’z T+ 1" = ) (- +snf_nw,n)}, (4.6)

where the (8,7_y',n + 8—u»,n) should be replaced by just 8,7, ¢ for n = 0; other-
wise each of the n’ = n” cases would be counted twice. Notice that the first term on
the right of Eq. 4.6 is the n’ = O contribution from the double summation, for which
the only nonzero contribution occurs when #” = n. This term is the same as the
linearized advection term used in Section 4.2, except that now 87/9z is allowed
to evolve.

This Galerkin method works nicely here because of the simple geometry and
convenient boundary conditions we have chosen. A Galerkin method could also be
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used to calculate the nonlinear terms in, for example, a 3D spherical convection
problem for which the horizontal structures are expanded in spherical harmonics
(Section 10.6); but the process would be even more difficult and less efficient.

4.3 NONLINEAR CODE

Constructing a nonlinear code by adding the nonlinear terms to a linear code re-
quires planning and care. There is no one way to do this; the goal should be to
produce a clearly organized code that runs efficiently.

4.3.1 Initial Conditions

At the beginning of the nonlinear code the input parameters could be provided in,
for example, a namelist or module format if using Fortran. Besides those already
mentioned for the linear case, a logical parameter should be input that tells the code
if this run should start from random initial conditions or by opening an input data
file and reading in the data from a previous run. If the former is the case, again
it would be good to set the initial values for omg(k, n) and psi(k, n) to zero so
the total integrated momentum is zero and will remain zero since the boundaries
are stress-free. (Note, the momentum would need to be integrated over the con-
vecting box and its mirror image by doubling the value of ¢ and replacing 7nx /a
with 27 nx /a for the arguments for the sines and cosines.) The initial conditions
for tem(k, n) are no longer needed for every mode number 7 because the nonlin-
ear terms will quickly distribute energy among the other modes. However, if only
modes 0 and, say, 10 were initialized (all others having zero amplitude), then only
mode numbers that are multiples of 10 would be amplified. Therefore, it is impor-
tant to initialize at least » = 1 or, alternatively, two mode numbers that differ by
one. The initial profile for tem(%, 0) could be the same as what was prescribed for
it in the linear case, (1 — z), which satisfies the boundary conditions; it could also
be (1 — z) to some power. Likewise, the nonzero mode numbers that are initialized
as small perturbations could have a sin(r z) vertical profile, multiplied by a random
number between —1 and 1 and then by a constant much less than unity since now
the amplitudes are important. That is, the initial nonzero values represent small

temperature perturbations relative to the order-one value of the x-averaged initial
temperature profile.

4.3.2 Nonlinear Terms

There are several ways to gather the contributions to —[(v-V)ol, and~[(v- V)T 1
for each mode # at each z-level and time step. However, one does not want to
actually do the double summations over both 5’ and n” for each n because this
would involve N> “if” statements for every z-level and time step, especially since
most of the kronecker delta functions would be zero. In fact, for a given » and, say,
n' there will be no more than three values of »” that make a nonzero contribution.
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is one way to add these nonlinear terms, starting with a copy of .the

e The loop over the nstep time steps begins, as before, by computing
de.arts of dtemdt(k, n,2) and domgdt(k,n,2) in a nested loop over all

g Is (k = 2 to N, — 1) and all mode numbers (n = 0 to N,); the l_oop
2—1161;: lie the inner loop. Note that now n = 0 is included; so one might

al]lf loops that started with » = 1 in the linear code to now start Wlth n=20

- i par code. However, only dtemdt gets a nonzero contrlbu‘tlon for th.e

‘ 0612(())3? nleo as £nenﬁoned above, the linearized advection term in Eq. 3.3 is
ppedtlllsfi.oop over n, but still inside the loop over k, we want to again loop over
tﬁf;celil in the nonlinear terms. First we take care of n = 0, which applies only to

emdt and only for n” = n’. So in the code add
W
- R Ty )
JT 4 d ! 7
" 2a ln ( az Ly + dz
nl: . .
to the current dtemdt(k, 0, 2) again using Eq. 2.15 to appro;\;imatﬁi Ihe ii??;l;zt;v:;é
alues of »n, from 1 to N,, while st1
Next we take care of the other v ‘ yull inside the
i i d to loop over n’; but w
ver k. Inside this loop over n we again nee 4 tre:
:302% separately since it applies only to dtemdt and only for n"” = n. That is, in

the code add

a
to dtemdt(k, 7, 2). Then we loop over the others, n’ = 1to ]sz,,t VtVltlk)nrzh tl(liltse Lcigi) ax:llg
i ee i d »n') that contribute to bo
ust three values of n” (for a given n an .
gz‘r,r?édt according to the expressions inside the double sur/flmatlons ?f l*iqs_ 4.£:_ a’r11f1
4.6 because of the kronecker delta functions. These are n‘ =n—n, nb = (;zd y t(;
a;ld n’ = n’ — n. The appropriate parts of these expressions need to ; ;: a alz o
. , for each of these three cases the v
dt(k, n, 2) and domgdt(k, n, 2). Note or
:E’e Ir?eec(ls to be) checked to make sure that it is greater than or equal to 1 and less
i i ibution.
al to N,,; otherwise there is no contri .
tha\;l\’iot; i(}llz nonlin’éar terms now computed, the loop over z-levels (k) is c;(})lmlpleetz
i jvati for the current time step. Next, as in the lin
as are the time derivatives of w and T’ ! Nexs, as in he flnear
1 # at all z-levels using the time derival
code, w, and T, are updated for al . g th ivatives ot e
’ i i Eq. 2.12 is linear, ¥, is up
current and previous time steps. Then, since B updated the
it is i i ing the tridiagonal solver. Also, as in
same way it is in the linear code using 120! > 250 the Hnear
= 2) and similarly for domg prepare f
de, set dtemdt(k, r, 1)=dtemdt(k, n, ' .
:}cl)e iext time step (unless the even and odd time steps are correlated with the third

index in these arrays).

4.3.3 Calculating and Saving Data

. . .
Information about the solution is now gathered in thE‘: re;mamdelt (;)fi thc:hk;gf ;):Ceh
i inti t values of the variables at mid-dep :
time steps. Instead of printing ou . . D o anoli
i interested in knowing the maxi
mode number z, one is usually more in nov ampl
tudes of these variables, which can occur anywhere inside the box, and their t
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dependencies if any. One could print the maximum amplitudes for 7;,(z), Wy (2),
and ¥, (z) and the values of the # and z for which they occur every iprint time
steps, where iprint is a user-specified integer.

Data should also be saved that could be used later for postprocessing to analyze
the simulation and to make movies. Again the user would need to specify how
frequently this data should be constructed and saved. One could save a different
file for each movie time step, incorporating the movie step in the name of the file,
Alternatively, all the data snapshots could be saved in one file per run.

One also needs to decide whether to save the data as z-dependent Fourier coef-
ficients (z;, n) or to save the data as fields in purely physical space (x:, zz), where
the x coordinate is

Yi=a(@~1)/(Ne—1) for i= 1, N,.

The number of grid points in the x-direction, N, could be anything but is typically
set to something like a V,; it should be set to at least 2V, to “see” the smallest wave-
lengths, i.e., largest mode numbers n. The latter choice would require constructing
and storing 7T'(x, z), @(x, z), and ¥ (x, z) using Eqgs. 2.8, which may be easier to
postprocess (see Chapter 5). To avoid calculating all the sines and cosines each time
step, which is computationally expensive, these should be precalculated and stored
in arrays. The actual velocities, v, (x, z) and v,(x, z), could also be constructed,
using Egs. 2.6, and stored in the postprocessing output files. If, on the other hand,
the z-dependent Fourier coefficients are stored, the horizontal resolution, N,, can
be decided later. This would also allow a convenient and accurate spectral analysis
and the construction of horizontal derivatives, Of course, if the data were stored in
X, z-space, the Fourier coefficients could be recovered later with an inverse Fourier
transform.

4.3.4 Checking and Changing the Time Step

Besides significantly increasing the computational expense, the nonlinear advection
terms add an additional constraint on the size of the computational time step. The
Courant—Friedrichs-Lewy (CFL) condition (Courant et al., 1928; Durran, 1998) es-
sentially requires the time step to be less than the minimum time a fluid parcel takes
to flow between any two grid points for the advection operation to be numerically
stable. That is,

At < Az/|V;|max- “.7

There is a similar constraint in the x-direction with Ax being approximately a/N,,.
A simple way to understand this constraint is to consider just the one-dimensional

advection equation:

af af

— == =0 4.8

a5 T3, (4.8)
that is, the variable J(x, 1) is advected by a constant velocity v, in the x-direction,
This velocity, v,, could be positive or negative and would be the sum of the fluid

velocity and the sound speed if we were using the fully compressible equations
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t

(a)
Characteristics

(b)
Stable
At < Ax/ vy

(9]
Unstable
At > Ax/ v

i isti dvection equation. (b) An example
i 4.1 (a) A schematic of two characteristics for a'n al . (
rieure <()f)a stable case for which the CFL condition is satisfied. (c) An example of an
unstable case for which the CFL condition is not satis.ﬁed.; Ax is th.e same 2:1 1lri
(b) but At is larger. Circles on (b) and (c) represent points in space-time at whic

the numerical solution is calculated.

(Chapter 1) or just the fluid velocity when using .the Boussinesq (qr anelasttltc) eqtllllz;
tions. The solution is any pattern that is a fllI:lCthl‘l of (x.—— Vpt), i€, a paCernSider
appears constant in time to an observer moving gt velomt)./ dx/dt = v}. on ider
a point, (x,, %), in the x, f-plane that satisfies this advection equation for a g

initial condition. The solution then lies on the “characteristic,
t=1t+ (x "'xo)/vm

which is illustrated with the pair of solid lines in Fig. 4.1a. The “domalg of de.p:,:é
dence” of point (x,, ,) is the set of space-time Romts on which the solutl(l)\I; emson—
prior to time 7, i.e, it is the set of x and ¢ that satlsfy‘Eq. 4.9 f(.)r all t < f‘o. owdct v
sider a numerical method that uses only nearest-neighbor grid points in x an

(4.9)
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update the solution each time step,
ences. The CFL constraint requires

the solid lines in Fig. 4.1, to be inside the numerical domain of dependen
the set of discrete grid points mar]

ked as circles in Fig. 4.1, which have infl
the solution at (%5, £,). This is satisfied for the numerically stable case illus

Jjust nearest-neighbor grid poin
If it is likely that the CFL, constraint could be violate

would need to be monitored, in both directions, and the
be reduced whenever the CFL limit becomes less than, sa
Likewise, the time step should

much smaller, Therefore, the ti

becomes greater than, say, five times the time step. Ne

time steps would be a good place to monitor the CFL
time step when needed, Since this involves transformations from spectral to grid
.8c and then finding the maxi

mum absolute value of v,
ution does not change significantly in one time step, it is

time step; checking it once
v time-dependent the solution is,

y

then it is necessary to moni-
me step when needed. Ag mentioned above,
-transform method for computing the non-
are calculated every time Step; so monitoring the
extra work.
step is changed the weight coefficients, 3/2 and
ged for the first step with the new A¢ since these
ve at the midway point between ¢ and ¢ + At

tor the CFL constraint and change the ti
in Chapter 10 we describe the spectral
linear terms, for which v, and v,
CFL condition then requires little
Technically, whenever the time
—1/2, in Eq. 2.18 should be chan
values estimate the time derivati

ce, le,

d during a simulation, it
time step would need to
, 120% of the time step.
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: tant Az. Consider the case when the pre.vious, current, and ﬁutlhr:
OnZtaIti) £ and (¢ + Atye), respectively, with Atyey 7# Atoy.
e old )s

iployed in Eq. 2.17, we want

Titttnew — 1t
Atnew
lope of G between (¢t — Atyg) and ¢ is (G; — G—ar,,)/ Atorg and we
ar s
efore,
y extrapolate to Gt+ % Aty Ther

=C1 Gt —C Gt—AtaId .

(Gy — Gr_nry) (Afnew>
Atorg 2

J At o (Atnew ) iy (4.10)
2ty 2Atoq

—1/2 of
Atyew = Alyg these coefficients are the same as the 3/2 and —1/

1en Dlpew =

.2.18.

.3.5 Storing the Solution

i i i de should
After the completion of the loop over the time steps, this lr)lonh;ldee;rs i(e)smrt ou
; i it can be re )
i t solution so later i .
ide a way of storing the curren : cotart dat
alrl()\\,;'(illig the };olution to continue to evolve. There are dlffeiie?ltnf \Z?I};lsatted o f
a; in files; the two basic ones are formatted (or ASCII) an

) ) . er,
: ). The data on a formatted file can easily be viewed with an editor. Howewv
nary).

tted files are usually preferred because the data are written to ::h dls;(a:;) ﬁ:
::ﬁen:jcuracy as they are known in computer mem;ng; ail{nd ‘r;:gal;;zweier a e
i i s of disk space. A

Wﬁtt_en in’ ) mlzld; Izzrznzfigig;:::?ﬁl;r;;st:ged on another one needs Fo know
:liad;?egczﬁ)f};f E1},hae numbers (32 or 64 bits per word) and the order the bits were

e . - -
e vt ‘c)ivotrd s(tlzcl)i—lflnizanwiirt::rtllinﬁjﬁ?ss frequently than the movie ﬁlecs1

e regtaft di:n be overwritten each time unless several. restart files ar; ]vvvan;\t;
(ChapterF 1?11116: code described here, it would be good to write the valu.es o c{,; imzé
N, (tho nun ber of x grid points, defined in Chapter 5), the current time an by
e o eflot' mf?tep number can be read during a restart and cpntlnue. or
o numbf':r‘ N o 1t:he time can continue to increase by adding dt to it each itera-
t%lat of Lﬂ'(eWISe, loop. The tem, omg, psi, dtemdt, and domgdt files ‘should then
bos O'f Ny S:lp gnf : the parts of the time derivative arrays that will repres.ent
o Wﬂtt‘?n- A?m 1?:3’ lelen the solution is restarted need to be sFore.d. A convenient
e p:svligll:eﬂtr}?:jatg files is to begin with one or more letters, indicating the case,

a
jfZ‘(/)Ilyowed by the time step number.

4.4 NONLINEAR SIMULATIONS

OV Ilell t]le ()]lll € CO ]l d runs one dS fo C]leC
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of magnitude greater than the critical Ra; note that the larger it is the more energ
there will be in the smaller scales and therefore the larger &, and N, need to be ¢

resolve these small eddies. Typically, the number of second-order finite-differenc,
grid levels in the vertical direction needed to obtai

number of horizontal spectral modes (e.g., Orszag, 1971b). The “a” here is still the

aspect ratio of the box.

If one tries to run a case with too little spatial resolution, the energy that cas.
cades down to the smallest resolved scales (the truncation lengths determined by
the choice of N, and N,) would artificially build up there because the viscous and
thermal diffusivities would be too small to remove the energy fast enough. The re-
sult would be a numerical instability, characterized by the values of the variables at
these scales growing exponentially with time. Note that as one increases the spatial

resolution the temporal resolution also needs to improve, i.e., At needs to decrease
according to Eqs. 2.19 and 4.7.

4.4.1 A Simple Numerical Test

Since the equations are multivariable, multidimensional, nonlinear, and time-
dependent, there will not be a simple analytic solution. However, one can test the
numerical method by constructing simple (nonphysical) functions for the temper-
ature, vorticity, and streamfunction that have sinusoidal dependences in space and
time and satisfy the streamfunction equation 2.12 and boundary conditions. Then
substitute these functions into Egs.2.10and 2.11 and compute the z-dependent and
time-dependent “forcing terms” that would need to be added to these two equations
for each mode n to make the constructed functions be solutions.

Next add the forcing terms to your nonlinear code and add a check to this mod-
ified code that compares the time-dependent numerically produced solution to the
time-dependent constructed functions several times during each sinusoidal period.

When satisfactory agreement is obtained the code without the forcing terms is ready
to be tested with a nonlinear benchmark.

4.4.2 A Nonlinear Benchmark

For example, try the case defined by Ra = 105, Pr = 0.5, and @ = 3 with N, =50,
N, = 101, and At = 3 x 10~5. The overall Ra,,;, for this case is 660.5 and Reri
is 2; so this case is more than 1500 times critical. One could simply initialize the
n = 1 temperature coefficient with 0.01 sin(rrz) and set all other n > 0 coefficients
to zero for all z. The resulting nonlinear solution, T,(z, 1), w,(z, 1), and Y (z, 1),
will initially have amplitudes that increase exponentially in time, as they do for the
linear problem. However, as the amplitudes grow the nonlinear terms eventually
become large enough to stop the exponential growth. Then, for the case suggested
here, the nonlinear solution will reach a steady state. That is, the time derivatives of
Tu(z,t) and w,(z, ¢) will slowly vanish, so all variables become constant in time.
This will take a several hundred thousand time steps, depending on how many
significant figures one wants to see remain constant. The solution evolves to one

TE-AMPLITUDE DYNAMICS

Temperature
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y give,n in Table 4.1 after one million numerical t12n(1)e ;tgps gutfon is fairly well
ar i to 20. The s

i i horizontal mode numbers, x, up 2 Ny
. ume;) f(glisotime. The values in this table can be useq to check .Olie ZSI(I)Tuﬁon
COnVeTg: 1\?0126 that these values are for the formerly mentioned spatial
ear code.
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CHAPTER 4
Table 4.1 Thej Steady-State Nondimensional Values of Ty, @y, and ¥, at z = 0.32 (for
honz.onta‘tl mgde numbers, 7, up to 20 corresponding to the case illustrated on the
left side in Fig. 4.2; the spatial resolution used was N, = 50 and N, = 101; the

nondimensional time step was 3 x 1076).

n T, on Y
0 5.00099E-1 0.00000E + 0 0.00000E + 0
1 291441E-2  581561E4+3  5.67825E+2
2 252654E-4 —3.58935E+0 —6.74022F — 1
3 2.90576E-2 1.93069E + 3 1.03898E + 2
4 287716E4 —6.60995E+0 —5.36102F — 1
5  2.89003E-2 1.14940E + 3 3.23310E + 1
6 3.49647E4 —1.10564E+1 —3.95780F — 1
7 2.87013E-2 8.11296E + 2 1.31673E 4+ 1
8 4.78605E-4 —1.47794E+1 —2.83806F — 1
9 2.82735E-2 6.17174E + 2 6.37517E +0
10 6.45160E-4 —1.69695E+1 —2.06439E — 1
11 27427762  4.88830E+2  3.46088E + 0
12 8.07511E-4 —2.14400E+1 —1.53893F —1
13 2.60559E-2 3.98420E + 2 2.03088E -0
14 9.77967E-4 —2.61548E+1 ' —1.16708F — 1
15 241582E-2  3.26806E + 2 1.25792E + 0
16 1.16483E-3 —2.46904E+1 —8.88572F —2
17 2.18985E-2 2.64619E + 2 8.09779E — 1
18 1.28586E-3 —2.03670E+1 —6.77822E —2
19 1.95530E-2  2.16208E+2  5.37141E — 1
20 1.25455E-3 —2.19120E+1 —5.24029E —2

(N, = 50, N, =101); a comparable or better spatial resolution would produce es-
sentially the same solution but with slightly different distribution of energy amon
the modes, especially for the higher mode numbers. :
At this resolution T, w,, and ¥, near mode number 50 are not significantly
smaller than those at n = 20 for the even number modes; the amplitudes of the odd
number modes do drop about two orders of magnitude from mode 20 to 50. This
apparent need. for higher horizontal resolution (in the even modes) is likely ciue to
the very prominent, shallow, thermal and flow boundary layers that exist on the side
boun(.ianes compared to the small perturbations away from the boundaries: Fourier
functions are not the best for resolving strong local gradients. In addition, ’the even

modes are not needed for this solution other than in the sh;
boundary layers. e shallow bottom and top
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ote that Eq. 3.9 predicts a critical mode number of 2 for an aspect ratio of 3
marginal stability, i.e., for Ra = Racyis. However, for the chosen supercritical
leigh number the initial n = 1 temperature perturbation kicks the system into

= 1 steady-state solution, i.e., a single convection cell. If, in addition to ini-
zing the n = 1 mode of temperature, one gives a higher mode number a 0.01
7z) initial value, the system converges to the steady-state solution seen on the
ht side of Fig. 4.2, i.e., two convection cells. Because this double cell solution is
ymmetric relative to the midpoint in x, all odd #» modes become vanishingly small.

Both of the simulations illustrated in Fig. 4.2 were continued at higher resolution
N, = 200, N, = 101) for more than five thermal diffusion times (5 million com-
utational time steps of Af = 107%) with no indication that either steady-state flow
attern was going to change. Therefore, the same set of Ra, Pr, and a appears to
have at least two nonlinear solutions; the initial condition determines to which one
the system evolves. At this higher resolution the amplitudes at mode number 200
are about four orders of magnitude smaller than their respective values at mode 20.
The amplitude of ¢ drops eight orders of magnitude between n = 1 and n = 200.
Note also that the directions of the circulations shown in Fig. 4.2 occur because
the initial temperature perturbation is positive on the left side of the box. Solutions
also exist with the exact mirror images (in the x-direction) of the temperature profile
with the opposite circulation direction. These would be obtained if the odd-n initial
temperature coefficients were set to —0.01 sin(mz). The values of all the odd n
coefficients in Table 4.1 would then have their signs reversed.

If one does not obtain the steady-state solutions in Fig. 4.2 (or their mirror im-
ages), the code needs to be checked for “bugs.” Debugging is an art. It can be
frustrating, but discovering the bug and fixing it is quite satisfying. The simple,
although not usually most efficient, way is to place print statements in the code at
various locations to check the values of the variables. Of course, one usnally won’t
know exactly what they should be (except at the boundaries and at the initial time
step); the hope is that one might be able to detect which variable becomes too large
first and where in the code. Sophisticated debugging tools are available for most
programming languages and operating systems. One typically sets “breakpoints” in
the code while it is running to be able to decide in real time which variables (includ-
ing entire arrays) to print out when and where. Debugging can be time-consuming;
it motivates one to be very careful when initially writing the code.

4.4.3 Further Studies

When the code is working correctly it is finally ready to be used to study how
the chosen values of Ra, Pr, and a affect the pattern and time dependence of the
convection. Kinetic energy of the convection is continually being lost by viscous
forces (Section 1.1.2) and continually supplied by the gravitational potential energy
associated with the net thermal stratification, which is continually maintained (ex-
ternally) by the isothermal boundary conditions. Increasing the Rayleigh number,
Ra, will eventually produce a solution that is continually time-dependent, i.e., does
not reach a steady state, although probably will reach a “statistically steady state.”

It is sometimes more efficient to start a simulation with a relatively low Ra using
relatively coarse spatial and temporal resolutions and then, after reaching steady
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state, continue the simulation with a somewhat higher Ra. This can be done in

steps; but at least at some steps will require increasing the spatial and temporal
resolutions, i.e., increasing N, and N, and decreasing At. This requires a little

additional coding that would read in a lower spatial resolution and then fill in the
remaining n modes with zeros. Increasing the resolution in the z-direction can be
done with a linear interpolation onto the finer grid. One could write a separate code
that just reads in the solution at the current spatial resolution and writes out the
solution at the desired (higher or lower) resolution. Alternatively, there could be an
option in the main code to do this.

It should be obvious that better resolution is needed when increasing the
Rayleigh number because this increases the convective driving, which increases
the amplitudes of the fluid flow and temperature perturbations while decreasing
their length scales. Better spatial resolution is especially needed near the bottom
and top boundaries, where shallow thermal boundary layers form. Obtaining
better spatial resolution near these boundaries, without increasing the resolution
uniformly everywhere, can be achieved by employing a nonuniform vertical grid
(Sections 9.1 and 9.2) or by using a Chebyshev polynomial expansion in the
vertical direction (Section 9.4).

If the Prandtl number, Pr, is quite different from unity, the fluid flow and tempera-
ture perturbations would not need the same amount of spatial resolution.
A Prandtl number larger than unity produces temperature structures that in general
have smaller length scales than the fluid flow structures, and vice versa. Although
it is easier to provide the same spatial resolution for all variables, it may be worth
the effort to expand temperature in the different number of modes than the vortic-
ity and streamfunction for cases with Pr very different than unity. In addition, the
resolution in one direction may need to be different than what it is in the other due
to the aspect ratio, a.

A time-dependent solution is usually more interesting than a steady-state solu-
tion. Running at a high enough Rayleigh number to obtain a time-dependent solu-
tion becomes more efficient when treating the linear terms implicitly (Chapter 8)
and computing the nonlinear terms with a spectral-transform method (Chapter 10).
Solutions also tend to be time-dependent, even at relatively low Rayleigh num-
bers, when the pattern of the convection is free to propagate in the x-direction by
using permeable periodic side boundary conditions (Chapter 10) and when mag-
netic forces (Chapter 11), Coriolis forces (Chapter 13), and buoyancy forces
(Chapters 12) produce additional instabilities. However, the easiest way to achieve
interesting time dependence at relatively low Rayleigh numbers is by making part
of the domain thermally stable and the other part unstable (Chapter 6).

SUPPLEMENTAL READING

Boyd (2001)
Canuto et al. (1988)
Durran (1998)
Peyret (2002)

EAR FINITE-AMPLITUDE DYNAMICS

rigonometric identities

erive the trigonometric identities in Eqgs. 4.1 using combinations of

; i imulation
1. Benchmarking a nonlinear simu. . ]
: Run the nonlinear case defined in Section 4.4 and compare your steady-state

solution to that listed in Table 4.1. Demonstrate, using the. sugggsted spatial
resolution of N, = 50 and N, = 101, that a nondimensional tnne? step of
3 6e-6 works; whereas one set to 4.0e-6 does not. Does the latter time step
exceed the diffusion limit or the CFL limit?

ili ] lutions
. Stability of steady-state nonlinear so ‘ o . .
? Test the stability of the two solutions depicted in Fig. 4.2 by starting with the

one-cell steady-state solution and gradually increasing ann = 2 te.mper;glre
perturbation. Likewise, starting with the two-cell steady-state solution add an
n = 1 perturbation.

. . L ;
3. Convection with a bolide impac . ' _ o
Between chosen times #; and #, during a simulation of convection in a 2D box

alter the boundary conditions at the top boundary on w, and ¥, forn =2, 4,
6, and 8 in the following way:

b= () () 20,
wn == (=112 (=) (%—) g®).

For all other n, ¥, and w, vanish on the top boundary as usual. Set the time
dependence during the impact (i.e., forty <t <f)to

g(t) =1 —cosQu(t —1)/(ta —t — 1))

with g(¢) = 0 at all other times. Ve is the chosen maximum velocity c;)efs tgg
impact at the top boundary. Note, since % and e, for these four ﬁ-mq oo
not vanish on the top boundary during the impact, check that nowhere in y
code have you assumed they do vanish on the? to;l b;)lundary.

iffusion in a solid above a convecting jiui .

* g?ril?ziidtlljl?rmal convection in the lower half of a box (the ﬂulq part) Eng
solely thermal diffusion in the upper half (‘the solid part) by fo‘rici:;ng 1//th—e b
everywhere in the upper half at all times. This can b‘e done by mo yiﬁg the
matrix operator (Section 2.5) so the part of the ma’frlx Fhat represents ; pgin
half has only a diagonal of ones. In addition, maintain @ = 0 everywher

the upper half of the box, i.e., do not update w for z > 0.5.
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5. 1gonrecz‘ion with constant heat flux through the top boundary
eplace the constant temperature top boundary condition with a constant (ver

tical) heat flux boundary conditi i
mensionsl 37/ :ary ition at the top boundary by forcing the nondj

ve}i:tor potential, 4, is forced to vanish on both the top and bottom boundaries:
:}vl ereas here the vertical gradient of the temperature, T, needs to be —1 SE
boe; It}(()j};rl;ollilnc:ar:l Whllefthe value of T is still forced to be 1 at the bottofn
. Note also, as for 4, here T needs to be u i
: . s pdated every ti
the top b.ound?Iy since it no longer is forced to vanish there o Hmesiep on
. 1gonvectlon with an x- and t-dependent bottom temperature
Wcithlace tgf: constant temperature bottom (and/or top) boundary condition
one that sets all 7, to zero except forn = 3. S i
: ' ; = 3. Set T3 to sin w,t, wh
ih 1st tlzle time in terms of the numerical time step. Pick a frequency gw ) Slf(fl:cl
deathzrf/ct;)lo is 1arge I'.eIE.ItIVC to a typical convective turnover time (ioe the
pth of the domain divided by the average fluid velocity in the Z—directi’on)

1 . « ] . ’9 S ] 1. . ]

initial check of the nonlinear code can be done by monitoring the values of
us T, Wy, and ¥, at various depths as discussed in Chapter 4. However, to
arn from these nonlinear simulations one needs to study them using computer

iphics and analysis.

1 COMPUTING AND STORING RESULTS

To produce a snapshot like those in Fig. 4.2, one needs to Fourier transform the
spectral solution (n-space) to the grid (x-space). (Since the method we have chosen
computes the solution in z-space, no transform in that direction is needed.) This is
simply done according to Egs. 2.8. One must, however, choose a set of grid points
in the x-direction, x; = (i — DAx fori = 1 — N,, where N, is the number
horizontal grid points with uniform grid spacing Ax = a/(Ny — D). As mentioned,
considerable computational time can be saved by computing the sin(nrx;/a) and
cos(nx;/a) once for all # and i and storing these in arrays instead of computing
them every time they are used.

The resulting snapshots of T'(x, z), @(x, z), and ¥ (x, z) need to be stored in a
file during the computer simulation, assuming the Fourier transforms to x-space
are done within the main computational code during the simulation. As mentioned
in Section 4.3.3, one could alternatively store T,.(2), wa(2), and ¥, (z) and do the
Fourier transforms in the postprocessor.

If a movie of one or more of these fields is desired, this process needs to be
done sequentially during the simulation. An input parameter can be used to set the
number of computational time steps that are computed between movie snapshots.
This is typically about 100 to 1000 (depending on the degree of time dependence
and the Ar); the more computational time steps per movie step the faster the movie
will evolve. A different file could be created for each movie snapshot or all the
movie snapshots could be stored in one file. The first routine listed in Appendix B
illustrates how the former method could be achieved in a Fortran code.

5.2 DISPLAYING RESULTS

A postprocessing code would need to be written that reads these movie files and, us-
ing a graphics software package like IDL or Matlab, makes a 2D contoured plot like
those of ¥ (x, z) in the bottom row of Fig. 4.2 or a 2D color-filled contoured image
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5. Convection with constant heat flux through the top boundary

Replace the constant temperature top boundary condition with a constant (ver-
tical) ‘heat flux boundary condition at the top boundary by forcing the nondi-
mensional 7/9z = - 1 using a “ghost point.” See the discussion on the
use of ghost points in Section 11.2. In that section the vertical gradient of the
vector potential, 4, is forced to vanish on both the top and bottom boundaries:
whereas here the vertical gradient of the temperature, T, needs to be —1 aé
the top boundary while the value of T is still forced to be 1 at the bottom
boundary. Note also, as for 4, here T needs to be updated every time step on
the top boundary since it no longer is forced to vanish there.

. Convection with an x- and t-dependent bottom temperature

Replace the constant temperature bottom (and/or top) boundary condition
W.ith one that sets all 7}, to zero except for n = 3. Set T3 to sinw,?, where
t is the time in terms of the numerical time step. Pick a frequency (w,) such
that 27 /w, is large relative to a typical convective turnover time (i.e., the
depth of the domain divided by the average fluid velocity in the z—directi;)n).

Chapter Five

Postprocessing

e initial check of the nonlinear code can be done by monitoring the values of
arious T, @y, and Y, at various depths as discussed in Chapter 4. However, to
\arn from these nonlinear simulations one needs to study them using computer

aphics and analysis.

‘5.1 COMPUTING AND STORING RESULTS

To produce a snapshot like those in Fig. 4.2, one needs to Fourier transform the
spectral solution (n-space) to the grid (x-space). (Since the method we have chosen
computes the solution in z-space, no transform in that direction is needed.) This is
simply done according to Eqs. 2.8. One must, however, choose a set of grid points
in the x-direction, x; = (( — DDAx fori = 1 — N,, where N, is the number
horizontal grid points with uniform grid spacing Ax = a/(N, — 1). As mentioned,
considerable computational time can be saved by computing the sin(nwx;/a) and
cos(nmx;/a) once for all n and i and storing these in arrays instead of computing
them every time they are used.

The resulting snapshots of T (x, z), w(x, z), and ¥ (x, z) need to be stored in a
file during the computer simulation, assuming the Fourier transforms to x-space
are done within the main computational code during the simulation. As mentioned
in Section 4.3.3, one could alternatively store 7,,(z), w,(2), and ¥, (z) and do the
Fourier transforms in the postprocessor.

If a movie of one or more of these fields is desired, this process needs to be
done sequentially during the simulation. An input parameter can be used to set the
number of computational time steps that are computed between movie snapshots.
This is typically about 100 to 1000 (depending on the degree of time dependence
and the At); the more computational time steps per movie step the faster the movie
will evolve. A different file could be created for each movie snapshot or all the
movie snapshots could be stored in one file. The first routine listed in Appendix B
illustrates how the former method could be achieved in a Fortran code.

5.2 DISPLAYING RESULTS

A postprocessing code would need to be written that reads these movie files and, us-
ing a graphics software package like IDL or Matlab, makes a 2D contoured plot like
those of ¥ (x, z) in the bottom row of Fig. 4.2 or a 2D color-filled contoured image
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like those of T (x, z) in Fig. 4.2 for each snapshot. (Note, the “number—crunchjng"
code that solves the nonlinear equations and generates the movie files could also
be written using IDL or Matlab; however, typically this code is written in Fortran
or C language.) The resulting graphical plots or images can then be combined into
an executable movie file using software (like mpeg), which produces additional
frames between snapshots via interpolation, that can then be viewed (at typically
30 frames per second) by several common applications.
An example of an IDL program that reads movie files, one per snapshot, is listed
in the second routine of Appendix B. This assumes the computational code storeg
g movie appears to be in “slow motion,”
remake it using, for example, every other movie file to speed it up by a factor of 2,
On the other hand, if the structure seen in the movie changes too quickly, rerun the
simulation saving movie files more frequently.
As mentioned in Section 4.4, contour plots of the streamfunction (as in Fig. 4.2)
represent streamlines of the flow, which provide a snapshot of the direction and
amplitude of the flow throughout the box. Only if the flow is in steady state do
streamlines also represent the trajectories of the fluid parcels. To obtain trajectories
for a time-dependent flow one could randomly distribute “tracer particles” in the
box and advect them with the flow. A typical numerical algorithm for doing this
is a Runge-Kutta scheme, which involves interpolating the fluid velocity between
the discrete x, z-grid points and between the discrete time steps (e.g., Press et al.,
1992). (A fourth-order Runge-Kutta scheme is described in Section 8.1 as an al-
ternative scheme for integrating a scalar in time.) These particles are called tracers
because they do not affect the flow. The trajectories could be visualized in a movie
displaying the positions of these tracer particles as they change in time. Sometimes
itis useful to make a movie that displays the last 10 (or 50) positions of each particle
S0 it is easier to see the particle paths. The longer the line of positions for a given
particle the faster it is moving at that time. A simple test would be to check if the
trajectories computed this way agree with the contours of ¥ (x, z) for a steady-state
solution,

Plots and movies of the vorticity w(x, z) typically appear similar to those of the
streamfunction ¥ (x, z). Positive o tends to represent clockwise circulation in the
X, z-plane and negative o counterclockwise circulation.

One can also compute and plot the fluid velocities, v, (x, z) and v,(x, z), us-
ing Eqgs. 2.6. The x-derivative of ¥ (needed for 2,
tively, this could be approximated via Eq. 2.15 in the x-direction to get v, as the
z-derivative of ¥ would be done to get v;. Note that on all four boundaries the
normal components of the velocities vanish and the tangential components can be
set equal to their values one grid point inside the boundaries, These velocity com-
ponents could be combined to plot arrows representing the vector velocity. (See,
for example, Figs. 13.9 and 13.1 1.) The tails of the arrows would be located at the
grid points and their heads would point in the direction of the flow at that location
and time. The arrow lengths (and sizes of the arrow heads) should be proportional
to the amplitude of the velocities. This requires first finding the maximum veloc-
ity amplitude for the entire movie. These plots provide the same information as

SROCESSING
ots of streaklines and so should be checked that they agree with the contours

: ture perturbation, T (x, z), can be visualized as a conto.ur.ed plot or
heltoerr—?l)lzrda;:d coﬁtoured image, as in Fig. 4.2, to show where Fhe fluid is Warineltr

eater than 0.5) and cooler (values less than 0.5) relative to the constan

or grd temperature. It is usually a good idea to choose a color table that has
t%(r:zzgle change in color at 0.5. As mentioned, the. color table employed fog

o, 4.2 uses shades of red to represent temperatures higher than the backgg)urlli
- ;amre and shades of blue to represent temperatures lower than.the ack-
mped Sometimes it is helpful to use a rainbow of colors to more easily see the
Otl:lll'n n.ts in the field; however, this can make it difficult to pick out the absol}lte
ahseand lows. Alternatively, one could plot a surface over the x, z-plane mahng
5 local height of the surface proportional to the l.oc'al temperatufe perturbathn. ]
Recall that the density perturbation, p(x, z), Wlthln the Boussmesg approx1maer1_
n, is proportional to the temperature pe@rbaﬂon (Eq. 1.12). Ther‘euore, ci[om}[l)ow
ing plots of the temperature perturbation with thpse of the ﬂ}ud ﬂow; ustral E(s) how
hot (light) fluid tends to rise and cold (heavy) fluid tends to sink. "I“he ottf[)mt o

ary is held at its constant (hot) value and the top boundary at its constan

~value. However, between these boundaries the x-averaged part of the temperature

(the n = 0 mode) is allowed to evolve. Convectiqn ter'lds to make the tempeéaturtf—:
profile adiabatic, which for the Boussinesq approximation is 139thermal, byda V}?:r -
ing hot fluid upward where it is typically cooler and cold fluid dov]vjnwa(ri Wla ©
it is warmer. Since the boundary values are ﬁxF:d, shallow thermal boun aryvey
ers develop in which the vertical gradient of this mean t'emperature f:hcoréle§d A ;};
steep, i.e., superadiabatic. The mean temperature profile in the bulk 01 e Ausl o
approaches a constant value equal to the average of the boundary va ues. SR
increased the boundary layers become thim;ler and the mean temperature in the
i more nearly isothermal. .
. ';};?ei:)‘;;(isﬁ?c(g::tirbation, p()}c, , Z), can also be obtained. However, s1‘nce the pres(i
sure term was eliminated by taking the curl of the momentum' eguat1on, WZ neei_
to go back to the momentum equation, 1.16. Or}e way t‘o do this is to COI'I(S; grﬂfin
ther the x-component or the z-component of this equa.ltlon on .the x,d z-gri V:;ture
the postprocessor, using the known values of the fluid ve.loc1ty ag te?pe .
and using finite-difference methods (Eqgs. 2.15 and 2.16) in both irec 1ops£ e
time derivative could be approximated using the Adarr}s-Bashforth tlme. 1?ltegde
tion scheme, Eq. 2.17, or simply the Euler scheme, Wthh' replaces the nﬁd bs1 e
of Eq. 2.17 with just G,;. A more accurate, but more comphcateq, way wo ;Ch
consider the Fourier-analyzed version of th(e x—c;)n)lponent of this equation, w
i re to be expanded in cos(nmx /a). .

re%\u;rzsﬁtrlll;lrl)lr:tses llllere, checkpthe images of magnetic ﬁeld' 1iI:lCS in Figs. 13.2.1 an?1
13.14, which are produced using a Runge-Kutta scheme 81@1m to that mc?nl'uonec:i !
above, but all at the same time step. That is, instead of f‘?llowmg t,r’acer particles at ¢
vected by the velocity in time, the tracer particles are adv§cted by Fhe magnere—
field; the resulting “trajectories” form the magnetic field hr?es. Starting :lt alpt f
scribed set of locations the three componenits qf the magnetic ﬁeld'are bc cula :1 1
(or interpolated from known values at grid points) to grow each line by a sm
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constant increment. The 3D field is then calculated at the new set of locations and
so on. Typically, 1000 equal-length increments are used for each field line. The
set of 3D grid points that defines these increments is then input to another graph-
ics routine that plots the lines as narrow tubes with the parts of the tubes in front
blocking out those in back.

Several graphics software packages exist that provide additional, more sophisti-
cated visualizations of the scalar and vector data discussed here.

5.3 ANALYZING RESULTS

Besides displaying the various fields discussed in Section 5.2, several additional
properties of the solution can be analyzed. As discussed in Section 3.4, the Rayleigh
number, Ra, is a rough prediction of what will be the ratio of the convective heat
flux in the bulk of the convecting fiuid to the conductive heat flux before the onset of
convection. It is defined in terms of known boundary conditions and fluid properties
before the experiment or simulation is performed. The Nusselt number, Nu, on
the other hand, is defined as the measured ratio of the total heat flow (convective
plus conductive) during convection to the conductive heat flow before the onset
of convection. “Heat flow” means the x-integrated heat flux. Usually Nu is also
defined as the time averaged ratio. Here we denote the horizontally integrated time-
averaged value with ( ). Therefore,

dr ar
Nu = T - — —c — . 5.1a
! <chov + ( CPIOOK dZ )>C0nv /< Cppo,c dZ >}‘l0 conv ( )
The time average (usually) means that the Nu is independent of z, otherwise there
would be convergences and divergences of heat flux that would result in time de-
pendence. That is, Nu should be the same at the bottom and top boundaries and at
any z-level within the fluid box. Therefore, since v, vanishes at the bottom and top

boundaries,
ar ar
Nu = [(_> /<_> ] . (5.1b)
dz conv dz no convz=0 and 1

Note the dimensional value of (dT/d2)no cony is AT/D and the nondimensional
value is one.

Recall that when convection is vigorous, (dT/dz) approaches zero in the bulk of
the convection zone. Therefore, according to Eq. 5.1a, Nu is a measure of what Ra
predicts. Experiments and simulations of turbulent convection (e.g., Rogers et al.,
2003, and references therein) find that

Nu o Ra®, (5.2)

where the ¢ ranges from about 1/4 to 1/3, with ¢ closer to 1/4 for nonslip boundaries
and closer to 1/3 for stress-free boundaries.

Another traditional measurement of nonlinear convection is the Reynolds num-
ber, Re, which is the ratio of the typical peak or root-mean-square (RMS) fluid

ity, ¥, to the viscous diffusive velocity for a length scale D:
Re= Q . (5.3a)
v

en V is scaled by the thermal diffusion velocity, as we have been doing, this is
v
T Pr’
Re, which measures the resulting convective vigor, is expecte(.i to inf:rease with
4, which prescribes the convective driving. Experiments and §1mu1at10ns of tur-
lent convection (e.g., Rogers et al., 2003, and references therein) find that

Re ox Ral/?. (5.4

Re (5.3b)

Another diagnostic test for the nonlinear simulation is the distribution of kinetic
energy among the horizontal modes, i.e., the kinetic energy spectrurg. Define KE(t)
as the total nondimensional kinetic energy in the fluid box per unit length in the

y-direction:

1 1 a
KE(”EE/O /0 [v5 + 7] dx dz

N, 1
E}:/ KE,(z,1) dz.
n=1 0

Using Eqgs. 2.6 and 2.8c—2.9b, one sees that

2 2
=4[ (2e) + (20, k 56

The integral over z in Eq. 5.5 can be done numc.arically using, for example, the
Trapezoidal Rule. One could also compute the time-averaged spectrum and the
root-mean-square deviation from this average spectrum to. provide a measure of
the time dependence of the solution as a function of 7. It is a‘lso §omet1mes use-
ful know the (nondimensional) root-mean-square velocity, which is related to the

kinetic energy:
1 7l e ) 172
vrMs(t) = [—f / [0} + v7] dx dz:l
aJjo Jo

5 1/2
= <_ KE(t)) : .7
a

Note, if the background density were not constant (Chapter 12), it would need to
appear inside the vertical integral in Eq. 5.5 but not in Eq. 57 ‘ o
A useful diagnostic, especially during the initial evolution of.tl}e. snnulatlon,.ls
to plot KE vs. ¢, using Eqgs. 5.5 and 5.6, which would show the initial exponential
growth followed by a steady state or statistically steady state: It can also be use_ful
to plot (using contour lines or banded contour colors) the kinetic energy density,
%(vi +v2), ona z vs. ¢ graph for a prescribed x location or on an x vs. ¢ graph fora
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prescribed z location. This nicely shows how kinetic energy density propagates ip

suggested here could be produced with the data in the
movie files or, if better temporal resolution is desired, the data could be computed
during the simulation and stored.

Justification for truncating the spectral expansions at mode number N, would be
that the kinetic energy permode atn = N, is at least a few orders of magnitude legg
than the peak energy per mode. If the kinetic energy per mode at the truncation scale
(i.e., the smallest resolved scale) were not significantly less than that at the larger
scales or, worse, if it peaked at the truncation scale, the images of the flow would
be dominated by small-scale features and may show periodic oscillations in the
x-direction at the highest spatial frequency. This would mean that viscosity is not

the smallest scales. In such cases N, would
ed to be decreased. One could also Fourier

0
o 1) ==(vV) (1»?) ~V-Vp+RaPr v, + Py yv.v2y

For our 2D model, 2 is v2+v2. Th
energy density, which comes fro the velocity advection
term in Eq. 1.16, using Eq. 2.2. The next three terms on the right of Eq. 5.8 are the
rates pressure gradient, buoyancy, and viscous forces do work per volume on the
fluid, respectively. The sum of the advection and pressure terms could be written
as the convergence of the flux of kinetic energy density and pressure, —V.( %vz +
P)v. This is a convenient form when integrating over the entire fluid box to get
the rate of change of the total kinetic energy because the integrated advection and
pressure terms vanish, as can be seen when applying the divergence theorem and the
impermeable (and fixed) boundary conditions. Therefore, the time rate of change
of total kinetic energy in the box equals the net rate that buoyancy and viscosity do
work; the former being positive and the Iatter negative; in steady state, of course,
the net rate vanishes,

The terms in Eq. 5.8 could
z-directions for each movie

to (numerically) integrate in

resulting profiles in z.
The internal energy density is proportional to the temperature, which when in-
grated over x and divided by a is just the mean profile Ty(z, ¢). However, one
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amine the spectrum of the temperature variance. Integrating the square of the
ature over x gives an expression similar to Eq. 5.6:

a [(To)2 +3 Zf;l(Tn)Z] . (5.9)

in the same manner as the kinetic energy spectrur‘n.

caﬁ:ned?rrrlltlr}l’szi?)ianll goussinesq internal energy density equation is Eq. 1.'17.
:‘ :ame type of time and spatial analyses can be peﬂomed on thl; eql;ftz;rsn
was discussed for the kinetic energy equation 5.8. In particular, sluca1 lan A};SO
w how advection and diffusion o; temper%tu(r; Sn;in :10 é);ﬂ;nc_e 3(:V .(y;VT):
g ES Cszilgzeo(tszIf]?.l.l l.;si’s —(;,7 Y}V ~ VT), ie., the convergence.of the sum
feﬂ?eg (nondimensional) convective and diffusive heat ﬂ}lxes. That is, the lfoct:s.}
mperature increases with time when and where' there. is a convergencef ;)h -
heat flux and decreases when and where there is a divergence. Plots o rg, 21

’mponents of these two fluxes show how they tend to add to a constant vertic
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EXERCISES

1. Kinetic energy spectrum . o
Derive the expression for the Fourier coefficients of kinetic energy (Eq. 5.6).

2. Temperature variance spectrum ‘ . ‘ ]
Derive the expression for the Fourier coefficients of the variance of tempera

ture (Eq. 5.9).

COMPUTATIONAL PROJECTS

1. Conductive and convective heat flows . ‘ o
Slfow for the Thermal diffusion in a solid above a convecting fluid project in

Chapter 4 that, when averaged in time, the total conductive heat flow through
any constant z-level in the upper half of the box equals the sum of the1 con-
ductive and convective heat flows through any constant z-level in the lower

half of the box.

. Mean temperature profile ‘ .
Run a series of nonlinear convection simulations and, for each, plot the mean

(n = 0) temperature perturbation as a function of z to illustre'lte how ths
thickness of the thermal boundary layer depends on Ra .for a given Pr an
aspect ratio @, on Pr for a given Ra and a and on a for a given Ra and Pr.
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. Nusselt and Reynolds numbers vs. Rayleigh number

Run a series of convection simulations with different Rayleigh numbers for a
given Prandt] number and aspect ratio and measure how the Nusselt number
varies with Rayleigh number and compare your results to Eq. 5.2. For the
same series of cases, measure how the Reynolds number varies with Rayleigh
number and compare your results to Eq. 54.

. Kinetic energy diagnostics

Run a simulation of convection for a given aspect ratio and Prandtl number
and for a Rayleigh high enough that the solution remains time-dependent.
Using Egs. 5.5 and 5.6, plot the time evolution of the total kinetic energy,
KE vs. . After reaching a statistically steady state, compute the spectrum of
the time-averaged kinetic energy, i.e., KE, vs. n. Also, plot the terms in the
kinetic energy equation as a function of z, averaged in x and 7.

. Temperature variance and heat Sflow diagnostics

For the case in the Kineric energy diagnostics project plot the spectrum of
the time-averaged and volume-averaged temperature variance (Eq. 5.9). Also,
plot the time-averaged and x-integrated convective and conductive heat flows
as functions of z.

Chapter Six

Internal Gravity Waves

Section 1.1.1 we discuss how a mean (x-averaged) superadiabatic temperature
adient supports thermal convection (assuming a supercritical Rayleigh number)
and how a mean subadiabatic temperature gradient supports internal gravity waves.
Jowever, so far we have focused on how to develop a numerical model for the
ormer, prescribing a higher fixed temperature at the bottom boundary than at the
op boundary. Recall that within the Boussinesq approximation the background is
onsidered both isothermal and adiabatic, so where the mean temperature gradient,

910/0z, is negative the thermal stratification is superadiabatic and convectively un-
stable and where it is positive the thermal stratification is subadiabatic and convec-

tively stable. In this chapter we focus on internal gravity waves in a stable thermal
stratification.

6.1 LINEAR DISPERSION RELATION

When the amplitude of the fluid velocity is small relative to the amplitude of the
phase velocity, i.e., when the fluid moves much more slowly than the pattern of
the wave propagates, a linear analysis, which neglects advection, provides insight
to the relation between the wavelength and frequency of internal gravity waves. In
addition, when thermal and viscous diffusion play relatively minor roles the system
can be further simplified by neglecting diffusion (e.g., Kundu & Cohen, 2008).
Consider the dimensional versions of the temperature equation 1.17, the vor-

ticity equation 2.4, and the streamfunction equation 2.7 and drop the diffusion and
nonlinear advection terms. As we did in Section 3.1, employ a linear approximation
for the advection of temperature by prescribing a constant (in space and time) mean
temperature gradient, dT /dz = AT /D, which here is positive. Using Eqgs. 2.6 to
write v, in terms of v, we then have the following coupled set of linear differential
equations describing 7', w, and 1 as functions of X, z,and ¢:

aT oY dT

d  dx dz’

%_w = —goaa—T, 6.2)

t X

02 a2
w=—<@—|—-a~z—2)1/f. 6.3)

This set of three equations and three unknown functions can easily be reduced to
one equation by taking the time derivative of Eq. 6.2 and substituting in Eq. 6.1 for

(6.1)
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the resulting time derivative of T and substituting in Eq. 6.3 for w. The result is the
internal gravity wave equation:
8? 02\ 82 82
A (A N L 2 . (6.4)
ax2  9z2) a2 9x2
The square of the dimensional Brunt-Viisili frequency is
ar
N? = g0 — ; (6.5)
dz

N has units of time™!. The square of its nondimensional value is
N2, 4im = RaPr.

nondim

Consider a propagating plane wave solution to Eq. 6.4 in the bulk of the fluid (far
from the boundaries) with a frequency @ and a vector wavenumber k = kX + k.7

Y (x, 2, 1) = o, & lrthz=an (6.6)
and similarly for 7', ». Here, i = (—1)"/2. Substituting Eq. 6.6 into Eq. 6.4 gives
the wave frequency as a function of the wavenumbers, i.e., the dispersion relation:

N %,
=+
k|
==%N cos 6, (6.7)

where |k| = |(k2 + k2)'/2|. The angle 6 is the angle between the direction of
the vector wavenumber, k (i.e., the direction of the phase propagation), and the
x-direction. The + sign means that the internal gravity wave propagates in the
positive x-direction if @ and £, are both positive or both negative and in the negative
x-direction if not. .

Now, using the plane wave expression for ¢ (Eq. 6.6) and Egs. 2.6 for v, and v,,
mass conservation (Eq. 1.11) reduces to

Vev =ik vy +kv;) = ik-v) =0. (6.8)

That is, the fluid motion is always perpendicular to the direction of the phase prop-
agation, i.e, this is a transverse wave. This explains why, according to Eq. 6.7,
the maximum internal gravity wave frequency, N, occurs when the phase of the
wave propagates only in the x-direction since then the fluid motions are only in the
z-direction, parallel to gravity, and therefore providing the maximum buoyancy-
restoring forces.

Consider a mode for which £, &, and & are all positive. A snapshot of such a
wave is illustrated in Fig. 6.1. The lines represent the current locations of the maxi-
mum amplitudes of the fluid velocity, with arrows indicating the current directions.
That is, these are lines of constant phase. In this example, Eq. 6.8 says that when
and where v, is positive v, is negative, and vice versa. The velocity of this pattern,
i.e., the phase velocity, is

— w2
Ik
_ kN
R

C

(kX + k.2)

AL GRAVITY WAVES

Internal gravity wave

Hot top boundary

Phase
velocity

Insulating boundary
Arepunoq Bupejnsuy

Group
velocity

Cold bottom boundary

Figure 6.1 A schematic of an internal gravity plane wave in a stably stratified fluid. The
snapshot shows the fluid velocity (arrows) constant along lines of constant phase,
with the pattern of the phase propagating perpendicular to the fluid velocity and
with the group velocity parallel (or antiparallel) to the fluid velocity.

where k = k/|k|, the unit vector in the direction of the phase propagation. How-
ever, the velocity at which the wave energy is transported by a superposition of
many waves with different frequencies and wavenumbers, i.e., the group velocity,
depends on how the wave frequency varies with wavenumber:

kN
R

Comparing the vector components of Egs. 6.9 and 6.10, one can see that the group
velocity is perpendicular to the phase velocity with the horizontal components of
these two velocities in the same direction and the vertical components in opposite
directions. For our example in Fig. 6.1 k and ¢ are directed to the upper right and
¢, is directed to the lower right.

A way to picture this is to imagine a localized wave packet made up of a su-
perposition of many modes, each with different frequencies and wavenumbers (al-
though similar phase velocities). The packet moves with the group velocity while
the pattern of the fluid velocity within the packet propagates with the average phase
velocity perpendicular to the direction the packet travels.

Information about the temperature (and therefore density) perturbations can be
obtained by examining Eq. 6.1, which shows that the amplitudes of v, and 87T /9¢
are in phase. Since T is 90° out of phase with 37'/9¢, it is also 90° out of phase with
v,. Therefore, the peak temperature perturbations occur midway between velocity

(k;X — k,2) . (6.10)
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phase lines in Fig. 6.1. On the lines representing negative v,, T is increasing with
time; therefore, since this pattern propagates to the upper right, high temperatureg
exist below these phase lines and low temperatures above. The physical reason for
this (in this stable thermal stratification for which dT/dz > 0) is that warm fluid
from above is flowing down, causing the local temperature to increase with time,

Likewise, cold fluid from below flows upward along lines of positive v,,
the local temperature.

It can also be shown (e.g., Kundu & Cohen, 2008) that the rate of change of wave

energy density (i.e., the sum of kinetic and gravitational potential energy densities
averaged over a horizontal wavelength) equals the convergence of wave energy
flux. Wave energy flux is wave energy density times group velocity. That is, the
local energy in a wave propagates parallel to the wave fronts; when and where it
converges (diverges) the local energy density increases (decreases).

6.2 CODE MODIFICATIONS AND SIMULATIONS

Now let’s consider what modifications would be needed to convert one’s
thermal convection code to a code that simulates internal gravity waves,
including the nonlinear and diffusive terms. First change the boundary conditions
on the mean temperature to Ty(z = 0) =0and To(z = 1) = 1 to force a sta-
ble stratification. In addition, change the initial condition for the mean temperature
to Ty(z) z. Now the temperature scale, AT, represents the top minus the
bottom boundary temperature and the Rayleigh number, Ra, is still defined as
positive,

Another consideration is the amplitude of the numerical time step, Ar. As was
shown in Section 6.1, the maximum frequency of internal gravity waves is the
Brunt-Viisili frequency, N, which for our nondimensional formulation is
(RaPr)'/2. This is in radians per time. Therefore, if one wishes to have at least,
say, 50 time steps per oscillation, the nondimensional Az should be set to be no
larger than 27r/(50 (RaPr)'/?). A CFL-like constraint on Af also exists in terms of
the grid spacing and the group velocity. For a wave propagating at 45°, for which
k; =k, = nx/a, the constraint is roughly At < 2m/(aN,(RaPr)!/2), where here
n has been taken to be 1, the mode with the greatest vertical group velocity. Of

course, At also needs to satisfy the usval constraints due to diffusion (Eq. 2.19)
and advection (Eq. 4.7).

6.2.1 Internal Gravity Wave Simulations

With these code modifications a simple internal gravity wave could be simulated by
initializing 7, (z) or w,(z) with a sin(m z) vertical profile for some chosen values
of n and m. If one chooses to initiate 7, »(z) the amplitude can be of order unity,
i.e., similar to the total difference in the mean temperatures at the bottom and top
boundaries. This produces an oscillation with the pattern dominated by the chosen

initial condition with the amplitude decaying in time. If only one mode  is excited,
a standing wave usually results.

reducing
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ing si i uced by exciting a more localized wave
mteresu?g :31:1;1; ttl(()) Ii ((;?narlfi II)Jrro:llnd a bg’th to 1. get the initial 7, (z) and
;ex?‘ipa‘;{ n > 0. Initialize the vorticity to be zero everywl;ere except
j;:pt; k-level where, for all even #, set wy (knia) = —(—‘ 1)"./ n/Ny; se‘i
0 for all odd n. This makes a peak in c:l at thefcenier Pglg; ;:lh the box a
, i ipples at all other values of x at mid- .
ﬂluf I}iallgt:rmnglh;ur::i?yp\?vave simulation is quite interesting. The' tempefa—
eSt1r<§lzi:|lf1f11nction evolve through what appears to be a nonrepeatmg series
o symmetric in x and z about the central point. A snapshot is illus-
;‘emt; 1}e,:ft—hand panels of Fig. 6.2. At this point in time the. two hot (red)
l: oneopposite sides of the central point are Propagating horizontally agzg
the central point. These are hot because fluid was adyectedbdownwa; o
a regions from above, where the mean temperature_1s hl.gher. ecause
9% al stratification. Note the downward streamlines just in tfront of these
. th'eri'lcating downward flow, which is now heating up the regions ahead of
- Intl hot regions. Cold fluid is being advected upward in the central re-
nCl:)rfretlllleybox, causing the temperature there to decrease (i.e., become more
ufz the simulation evolves the shapes and propaga'tion‘ d.irectlons of the temé)e:;-t
ture and flow patterns continue to change while maintaining ff? SYITZ:?; tar ;)ﬁo
¢ central point. To break this symme@ one tcli)uii ;h(c))rozc:l g a :ren 1 I;r)l oct ratlo
excite the wave at some other location m : eb n \ o
initial vorticity instead of initializing only even modes. owever,
:Ii’rllg\l: ;;?ittl::fngl;;at{lre boul?(,iary conditions on the four sides of the box limit the
v S elop. ‘ .
ty?f’ksl: ;ﬁ;ﬁiﬁi:h;t t(;laenv;l:\‘/,es irI: this simulation decay becaus:h the wa;viz}sn e):let;c;
= 0; ey decay very slowly relative to the evolutio
Olitye;t tt)ec;lu(s)é ?Z}?Ze}:}gtﬁ lza. To };)roc;}l,ce a nondecaying simulation one could
zpply a continuous excitation with a prescribed frequency or set of frequencies.

6.2.2 Internal Gravity Waves Excited by Adjacent Convection

Alternatively, one could maintain part of the box conl\cllectively unst:lllaéee:
( i ac
table (dTp/dz > 0). This could serve as 1
(dTy/dz < 0) and the other s ‘ e ettvey rogion
interi the sun, which has a stable (ra
model of, for example, the interior of , : o) reglon
in i intert tive) zone in roughly the outer
in its deep interior and an unstable (con\{ec. : .
its radiuspIn the sun’s stable interior radiative transfer is efffmeng;no;lght ;)n ;ael;zy
ire inosi t about 70% of the solar radius the -
the entire solar luminosity. However, a sola » the fempers
i i longer completely ionized, whic
ture is low enough that hydrogen is no . y i ich ncreases
i the efficiency of radiative transport; ,
the opacity and therefore decreases y of 1 e that s, (e
iffusivity i in the deep interior. The resulting converg
thermal diffusivity is less there than in : g ComerBe e
ertical temperature gradient above
of heat flux there makes the mean ve L above his race
iabati i Iting thermal convection in this un
steeper than an adiabatic gradient. The resu \ ‘ his w
regign carries most of the luminosity. Downwelling con‘vect;lve [:)lilmes in ﬂ;l; gl\.llzr
i i ite i ity waves in the inner stable region -
region continually excite internal gravi . :
shioting The steepness of the mean temperature gradient, dTy/dz, in each of these
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Temperature

Streamfunction

=7
=
Z

Figure 6.2 Snapshots of two time-dependent solutions, illustrated with profiles of temper-
ature and streamfunction plotted on the horizontal (x) and vertical (z) grid (see
Color Plate 1b for a color version of this figure). The snapshot illustrated in the
left-hand panels is for Ra= 108, Pr=1, and =1; it has a stable mean tempera-
ture profile and was initialized with a localized perturbation in w at the center of
the box, as described in the text. The snapshot illustrated in the right-hand panels
is for Ra = 108, Pr = 1, and @ = 2; it has a stable mean temperature profile
in the lower three-quarters of the box maintained with a thermal forcing time of
10~ and an unstable profile in the upper quarter maintained with a top boundary
temperature of 0.9 (see description in the text). For temperature, red represents
hot buoyant fluid and blue cold heavy fluid. The horizontal-mean temperature,
Tv(2), is not included in the image on the left so the small temperature pertur-
bations can be seen. The mean temperature profile is included in the image on
the right, displaying the significant increase in mean temperature with height in
the stable region and the nearly adiabatic (i.e., constant) mean temperature in the
upper convection zone. Solid contours of the streamfunction represent positive
¥ (i.e., clockwise flow), broken contours are negative ¥ (i.e., counterclockwise
flow). Both simulations have a resolution of N, =201 and N, = 100; At = 1077
for the left and 1076 for the right simulation,

regions controls the vigor of the convection, the amount of convective overshoot,
and the frequency of the waves.

To establish and maintain part of the box superadiabatic and part subadiabatic,
a time-independent reference temperature could be prescribed as a function of z.
The (total) horizontal-mean temperature would than be the sum of this reference

“BNAL GRAVITY WAVES

perature and the n = 0 temperature perturbation relative to it, which would be
wed to evolve in time.
ternatively, one could continue to have a constant reference state > temperature
prescribe a time-independent reference state heating/cooling term, 0, as a func-
of z, which would be added to the right side of Eq. 2.10 for (only) » = 0. If,
the sun, one wishes to simulate a superadiabatic convection zone overlying a
badiabatic stable zone, Q would be defined as zero everywhere except in a local
gion spanning the desired interface of these two zones where it would be pos-
ve (i.e., a heating rate), possibly with a gaussian shape in z. This could model
the convergence of the upward radiative heat transfer due to a larger opacity in this
egion and would cause the mean (z = 0) temperature perturbation to increase with
- below the interface (i.e., be subadiabatic) and to decrease with z above it (i.e., be
uperadiabatic). If, on the other hand, one wishes to simulate convection below a
table region, a similar Q) could be prescribed, but now it would be negative (i.e., a
ooling rate) to model the divergence of radiative heat flux.
Yet another method for maintaining part of the box superadiabatic and part suba-
diabatic would be to add a thermal forcing term to the right side of the temperature

“equation (2.10) for n = 0 that continually nudges Tp(z) toward the desired profile.

This would mimic some underlying heating and cooling sources like those resulting
from the convergence and divergence of radiative heat flux.

As an example of this last method, choose the interface z-level between the upper
convection zone and the lower stable region to be at the nondimensional height of,
say, z; = 0.75, making the corresponding k-index be k;, = [0.7 (N, — 1) + 1].
Then define the desired mean temperature in the lower stable region to be 7, (k) =
z(k)/z(ks). In addition, choose the (nondimensional) mean temperature at the top
boundary to be a little less than the value at the interface; let’s say Tp(N,) = 0.9. Set
the initial 7o (k) to 7 (k) in the lower stable region and set it to [(1 —z’) + 2’ Ty(N,)]
in the upper convection zone, where 2/ (k) = 1—[(1—z(k))/(1—z(k,))], i.e., a linear
profile that satisfies the interface and top boundary conditions. Initialize T; (k) and
any other desired 7, with an amplitude proportional to sin(r z’); set all T,-¢ = 0
below the interface. Then, in the time integration loop, where the linear term in the
temperature equation (Eq. 2.10) is added in, add the following forcing term to the
n = 0 temperature time derivative:

—(Tok) — T;(B)) /T .

Here 7 is the prescribed time scale for the thermal forcing. The smaller the value of
7 the larger the forcing and so the closer the mean temperature is maintained to the
desired temperature, 7;(z). For this example let’s set 7 = 10~4. Note, no forcing
is required in the convection zone, other than the prescribed value of Ty at the top
boundary.

A snapshot of such a scenario with parameters Ra = 10%, Pr = 1, and g = 2 is
displayed in the right-hand panels of Fig. 6.2. Convection is dominated by strong
downwelling plumes and is efficient enough to maintain a nearly z-independent
mean temperature in the bulk of the upper region. Internal gravity waves are excited
whenever the convective plumes slightly penetrate into the stable region. The wave
amplitude is too small to significantly modify the mean temperature profile in the
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stable region, as is seen by the large positive gradient of the
(from blue at the bottom to red at the interface).
The waves are much more dis

mean temperatyge

(.:ernible' when temperature is plotted without the:
vie of this stmulation, without the mean te

The resulting trans i
€] port of energy can be inferred fro i
velocities of the waves in the s ot e Phase

table region are mainly toward the u i
‘ re er right
1t((i)watl‘rd the upper left; the group velocities have a downward componegf advfctix? ,
netic energy away from the source at the interface. Also clearly seen i; how colg

Slcc)zlréwse;lltigg plumes quickly heat up relative to the subadiabatic mean temperature
able region as they penetrate nearly adiabaticall i

‘ : X Y, through the interface,

Th1s‘ dynamic process ten.ds t9 push the interface slightly deeper and by adiabaa(t:iec

glon just below the interface. A similar process may occur
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Dispersion relation with diffusion

Derive the dispersion relation for internal gravity waves in a Boussinesq fluid,
like that of Eq. 6.7, but with viscous and thermal diffusion included.

Derive the expression for the group velocity given in Eq. 6.10 for a linear
nondiffusive internal gravity wave.

Internal gravity wave energy flux

Show that the rate of change of wave energy density (i.e., the sum of ki-
netic and gravitational potential energy densities averaged over a horizontal
wavelength) equals the convergence of wave energy flux (see, e.g., Kundu &
Cohen, 2008).

OMPUTATIONAL PROJECTS"

1. Internal gravity waves excited by a bolide impact

Do the Convection with a bolide impact project of Chapter 4 but now with the
object impacting a stably stratified fluid.

. Internal gravity waves excited by a continuous central source
Produce simulations of internal gravity waves in a stably stratified fluid box
with a given Brunt-Véisdld frequency (Eq. 6.5). Excite these waves with a
forced, continuous oscillation of ¢ in a small region in the center of the box.
The localization in z is easily done by choosing a small number of z-levels.
The localization in x requires a Fourier expansion of modes that produces
a fully constructive interference only at the center of the box. Demonstrate
that the chosen frequency of the forced oscillation determines the angle of the
resulting phase propagation according to Eq. 6.7.

. Plot of simulated dispersion relation
In our nondimensional spectral formulation, the horizontal wavenumber for
Y is ky, = nm/a and the vertical wavenumber is k; = m, where m is the
vertical mode number. Using the nonlinear simulation from Internal gravity
waves excited by a continuous central source of internal gravity waves excited
by an internal source, compute the amplitude of ¥, (f) from ¥, (z, ¢) using
the inverse of the sine transform in Eq. 3.7¢. Then Fourier transform the time
series of ¥,y (¢), for each set of integers » and m, to frequency space, Y, (&).
Plot the resulting v/, (@) on an & vs. k plot and on an @ vs. k, plot, where k&
is the total wavenumber equal to (k2 + k2)!/2. Compare your plot to the lin-
ear nondiffusive dispersion relation (6.7) using the z-averaged Brunt-Viisili
frequency.

. Vertical dependence of dispersion relation
Continue the analysis of the Plot of simulated dispersion relation project but,
instead of Fourier transforming v, to k,-space, select three different z-levels
and Fourier transform the time series of v, on each of these three levels to
frequency space. Then make & vs. k, plots for these three z-levels to see how
the dispersion relation depends on z.




Chapter Seven

Double-Diffusive Convection

So far we have considered the diffusion of just one scalar quantity, temperature,
and just one source of buoyancy, also temperature. Consider now a fluid composed
of two constituents, a primary constituent and a small concentration of a secondary
constituent with a different density, for example, salt in water (an ocean), MgO in a
magmatic melt (a magma chamber), sulfur in liquid iron (a planetary core), or heavy
elements in hydrogen (a giant planet or star). In these cases, buoyancy is partly
thermal buoyancy, which is what we have considered so far, and partly composi-
tional buoyancy due to variations in the concentration of the secondary constituent,
which diffuses much more slowly than the fluid temperature. In fact, the diffu-
sivity of the secondary constituent within the fluid can be many orders of magni-
tude smaller than the thermal diffusivity. Double-diffusive instabilities can occur
in such a two-constituent fluid when it is in hydrostatic equilibrium with a stable
density stratification (i.e., density decreases with height faster than an adiabatic
density stratification) if the thermal stratification is stable and the compositional
stratification is unstable or vice versa. After the instability grows for a sufficient
amount of time under the right conditions the nonlimear processes can produce
“staircase” profiles in the vertical direction of the horizontal-mean temperature and
composition. These profiles have layers of convection separated by layers of in-
ternal gravity waves. Such processes can significantly increase the vertical trans-
port of heat and composition over what would otherwise be due to just diffusion.
Considerable research has been focused on double-diffusive convection (e.g., Stern,
1960; Veronis, 1965, 1968; Schubert, 1968; Baines & Gill, 1969; Stevenson &
Salpeter, 1977; Piacsek & Toomre, 1980; Spiegel & Weiss, 1982; Schmitt, 1994;
Hughes & Weiss, 1995; Merryfield, 1995; Hansen & Yuen, 1995; Stern et al., 2001;
Charbonnel & Zahn, 2007; Radko, 2008; Stellmach et al., 2011; Rosenblum et al.,
2011). The goals are to better understand the details of the small-scale dynamics,
which can have a scale of only a few centimeters in the ocean, and to parameterize
the enhanced transports as turbulent “eddy” diffusivities that could be used in large-
scale global models. Here we provide a brief introduction to the study of the initial
instability and eventual nonlinear evolution.

The thermal and flow structures that develop at the onset of these instabilities de-
pend on the initial horizontally averaged temperature and compositional gradients.
Here we first consider the “salt-fingering” instability and then the “semiconvection”
instability. To avoid the influences of boundary layers, many numerical modeling
studies of double-diffusive convection prescribe all boundaries of the domain to
be permeable and periodic (Section 10.2) and apply horizontal-mean (background)
vertical gradients of temperature and composition that are constant in space and
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conditions allow “elevator modes,” which are vertical flows

e;ei: 2;11: cIller)rr};zontal direction that are not inhibited by the bottom and top
ries and therefore are excited at lower Rayleigl} numbers than cellular ﬂows
lmpermcable boundaries. However, to minimize thef nuglber of modifica-
at would need to be made to the model dc?vel.oped in this Part 1, h_ere t;vc;
e to prescribe a fluid domain in a 2D box W.lth 1mperm§able bounflanes a:
thermal on the bottom and top and insulating on the sides. In this respect,

¢ water has a greater mass density than that of fresh wate.:r an_d §alt ditjfuses much
re slowly in water than does temperature; the thermal diffusivity, «, is rgggMy a
dred times greater than the salt diffusivity, «;. The ratio of these has traditionally

ke (1.1)

T =2,

K

\ i Lewis number.
Note that 1/7 is usually called the . ‘
A typical situation within the near surface of the equatorial ocean is warm salty
water above cold fresh water because of solar heating and eyaporatlon at the Su;i
ace. That is, using the Boussinesq approximation, the horizontal-mean therm:
tratification is stable,
oT
— >
0z
and, since salt water is heavier than fresh water, the horizontal-mean compositional
stratification is unstable,

0,

ié— >0. (71.3)
0z

Here, & is the perturbation in the local sait concentratior} relative to a tc;)nlstm;;
(well-mixed) background concentration, i.e., the ‘local density of‘ ‘salt over the ,?C
density of the salt water mixture, which is sometimes called Fhe mixing 1_*at101. '
The density perturbation is now determined by an equation of' state involving
both the temperature perturbation, 7' (Eq. 1.12), and the perturbation salt concen-

tration, §&:
p = po(BE —aT), (7.4)

where p, is the usual constant reference state density, o is the thermal expansion
coefficient,

oT

aE—l (a_p) >0, (7.5)
D€

0
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and the density dependence on the salt concentration (the compositional contraction
coefficient) is

1 3,0)
- — 0. 7.
p p (85 T ~ (7.6

Here we assume both & and g are positive constants (Eqgs. 7.5 and 7.6), which is not
always the case, and we assume the horizontal-mean density stratification is stable
across the depth of the domain,

Ap = Prop = Prot = Po(BAE — aAT) < 0, (7.7

where we define

AT = Iz}op - Tbotl and Ag = ,é:top - %-botl » (78)

i.e., also both as positive constants.

Consider what happens as a small parcel of fluid, originally in pressure, ther-
mal, and compositional equilibrium with its surroundings, is displaced upward into
warmer surroundings. As in our discussion of the purely thermal convective insta-
bility (Section 1.1.1), here we assume the parcel is moved slowly enough that it re-
mains in pressure equilibrium., However, instead of assuming it moves fast enough
to ignore heat exchange with the surroundings, here, since ¥ > K¢, We account
for the diffusive transfer of heat from the surroundings to the parcel, but we ne-
glect the diffusion of salt. Therefore, as the parcel is displaced upward it heats up
and comes into thermal equilibrium with its new surroundings while retaining the
smaller salt concentration it had at its original position. This makes the parcel buoy-
ant; therefore it continues to rise. Likewise, a parcel displaced downward continues
to sink. This produces long thin salty downflows (“salt-fingers”) separated by long
thin fresh-water upflows. An estimate of the fingering length scale is given by Stern
(1960):

1/4
L (1.9)
gadT/dz

Like thermal convection, the marginal stability for this double-diffusive instabil-
ity occurs when a Rayleigh-like number just exceeds some critical value. To study
this instability we need to add to the Boussinesq equations (1.11 and 1.14) the fol-

lowing dimensional advection-diffusion equation that describes the evolution of the
salt concentration,

% 2 .
Pl (V-V)E + ks V2 ;

and we need to add a term to the momentum equation (1.13) that accounts for the
full density perturbation, Eq. 7.4, in the buoyancy term. Scaling £ with A£ gives
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ndimensional set of equations for double-diffusive convection:
V-v=0,

O (VV)V—Vp+RaT —Rg 7€) Pr +Prv’y,
a1 _

%tz =—(v-V)T + V2T,

% VeV
a1

e define the compositional Rayleigh number as

_ SBAED® (7.14)

R
d VKg

The boundary and initial conditions on & are prescribed the same way they are
prescribed for the temperature perturbation. ' ' .

Note, sometimes the compositional Rayleigh number, R, is deﬁne.:d with /cg. in
Egq. 7.14 replaced by «. With this alternate choice, R¢ in Eq. 7.11 and in everything
that follows would be replaced by Rg /7. .

We proceed from here as we have for thermal convection; t'hat is, we formulz.lte
a vorticity equation by taking the curl of the momentum equation anq doa Fou:‘ner
expansion in the horizontal direction and a finite-difference meth‘od in the vertical
direction. Like 7' (Eq. 2.8a), £ is expanded in cosines to satisfy its side boundary
conditions. This adds the term

~RyrPr (25 &, (7.15)
a
to the right side of Eq. 2.11 and adds the spectral equation

9%, 0%, _ (mm\? ) 7.16
= —love e (52 - (Z)'s, (7.16)

to the system of coupled equations. The constraint on the numeri.cal time step
now technically also involves the diffusion of &; however, since 7 1§ assumed to
be (much) smaller than unity, in practice the usual limit, Eq. 2.19, is a stronger
constraint. N
We first consider an instability that grows without an oscillation. The critical
“thermohaline” Rayleigh number for the condition of “marginal stability,” .i.e., the
condition for which a perturbation neither grows nor decays, is thep ob'talned by
replacing the nonlinear advections of T and £ with their linear approx1mat1on§ (here
setting their prescribed nondimensional background gradients to +1)‘, ex‘pandmg all
coefficients in sin(mz) as in Egs. 3.7a—c, and setting the time derivatives 'fo zero
for this nonoscillating instability. The resulting system of algebraic equations is
then solved as in Section 3.4. This gives the critical thermohaline Rayleigh number
(i-e., the difference of the two Rayleigh numbers) for vertical mode number 7 and
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horizontal mode number n:

3
(Rf - Ra)crit = [—gﬁ ('Bﬁ — OlAT):’

v Ke K

—_—— =

mn -
n?

- (5) ey
a

For the onset of a nonoscillating salt-fingering instability, (R¢—Ra) needs to b
greater than the right side of Eq. 7.17. That is, the unstable compositional Rayleigh

number needs to be sufficiently larger than the stable thermal Rayleigh number for
this nonoscillating salt-fingering instability to grow. As for purely thermal convec-
tion (Section 3.4), this critical condition is independent of the Prandtl number and
the most unstable mode occurs as a single cell (im = »n = 1) in a box with an
aspectratio of a = /2, i.e., the minimum R,,,, is 2774 /4. Note, this large horizon-
tal cell size occurs because the thermohaline Rayleigh number considered here is
just barely critical; for more supercritical cases the horizontal scale of the dominant
mode is significantly smaller than the depth of the box because the higher vertica]
velocities require thinner cells to be able to diffuse heat fast enough (Stern, 1960).

The choice of R; and Ra is also limited by the stable density stratification con-
straint for salt-fingering, Eq. 7.7, which is satisfied by requiring

R:t <Ra. (7.18)

Combining Egs. 7.17 and 7.18 gives the range in which the thermal Rayleigh num-
ber needs to be for a nonoscillating salt-fingering instability:

Rt <Ra <R¢ —R,,. (7.19)

According to this constraint, if Ra were less than Rg7, there would be full-scale
compositional convection; and if Ra were greater than Rg — R,,,,, the system would
be dynamically stable,

7.2 SEMICONVECTION INSTABILITY

Double diffusion can also drive an instability when the vertical gradients of temper-
ature and of the more-dense less-diffusive constituent are both negative (Veronis,
1965). This process is called “semiconvection” in the astrophysical community and
“diffusive-convection” in the geophysical fluid dynamics community. In this case,
again using the Boussinesq approximation, the horizontal-mean thermal stratifica-
tion is unstable,

ar
— <0, (7.20)
9z
and the horizontal-mean compositional stratification is stable,
o

3 < 0. (7.21)

For example, consider the upper layer of the Arctic Ocean where cold fresh water
from the melting of sea ice can exist above a relatively thin layer of warm salty
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that has circulated in from the Atlantic Ocean. The overall (perturbation)
stratification within this region is again stable:

Ap = Prop — Pror = Po(@AT — BAE) < 0.

‘both AT and A£ are still defined as positive, their con?ribution§ to the drop 13
erturbation density across the domain in Eq. 7.22 for this scenario are reverse
‘;ilfgrtzizjnl;llf (r]m7gIZt be the region just above a nuclear-burning convective
of a massive star (more massive than the sun) where t.he mean tempere;tﬁurfa iﬁl—

nt is superadiabatic but the heavy element concentration decreases suf c)led en}_f
-with radius (because of hydrogen burning) that the overall (perturb.atlon "
stratification is stable (Eq. 7.22), which prectudes full—scal‘e con.vec'tlon acccz}rl :
to the Ledoux criterion (Ledoux, 1947). (The Schwarzschild crz‘terzon szyst ;16
ere there is no compositional gradient the mean temperat.ure gradient Eee sto b
adiabatic to precludé full-scale convection:) How.eve'r, since T could be tasb Tmre_
1077 in stellar interiors, semiconvection might exist in S}lch a Ledoug—sdgff e o
ion, which would enhance the fluxes of heat and composition above their diffus

To see how semiconvection can occur, again consider an upward dlsplacelfltentﬂ(l)ef

small parcel of fluid during which heat is now transferred' fI'OII'l the Iiﬁrce.tsonew
urroundings while maintaining a heavy-element conf:entrauQn higher than i sew
urroundings. Therefore, when released, the parc‘el s%nks, gl}lckly hc'ae.lts ulp; a peat

now transferred into the parcel, and, after .passglg its ongma}l position, .eiclzotion
compositionally buoyant. That is, now therfe is an 1nterna¥ ,.gravrfy wave 0;;:1 z:n 11:
The oscillation is “overstable,” i.e., for a slightly supercr’lucal s1tua‘[1on,1 e ;1 hli)nd
tude of the oscillation grows with time because the pa.rc.el ] tempf:rature ags bel .
that of its surroundings as it moves away from its ong?nal position. Cor}llsequen 13;
this temperature perturbation, via thermal buoyancy, trlfas t9 accelc?rate t Z par'ce;n :
little farther from its original position duﬁng each os'c111at.10.n whlle.t.he omin
compositional buoyancy always accelerateshlt t(?ward ‘1t-s original pos1t10;1, ions

Here again we first consider a nonoscillatlng 1r%stab1‘11ty. The system o eg;u o
for a nonoscillating onset of semiconvection is identical to that for Sa}lglt- n7g§r)1 ai
(Egs. 7.10-7.16). We also continue to deﬁpe Ra, Rg, AT, apd A? ( lqls). ;ld
positive constants but with the understanding that the nondimensional boundary

conditions for semiconvection are
Tpor = 1, T;‘op =0, &bot =1, ‘Stop =0,

i hat they are for salt-fingering. .
th%(V)g E:;;Itteh;)fe‘llvore ﬁndy the critical thermohaline Rayle_igh number for nonf)sal:[
lating semiconvection using the same methoc.l we used in Sectl‘on 7.f1 ;o a(x;‘;vet lf\e
Eq. 7.17, except that now, in the linear approximation for advection of 7" an ‘,ti ¢
nondimensional vertical gradients of the background temperature and compositio ]
are both set to —1. This reverses the order (relative to that for salt-fing;nnlg). oh
R; and Ra in the semiconvection expression for the critical thermohaline Rayleig
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(Ra - R&)crit = [ng (g - aAT)]

mn -

R .
(Recall that Ra and R; are still both defined as positive.) For the ons

lating semiconvection instability, (Ra —
qf Eq. 7.23. That is, the unstable therm,
CIen‘tIy larger than the stable compositi
semiconvection instability to grow.

‘ Th.e choice of R and Ra is also limited b
ification constraint for semiconvection, Eq

y the stable (perturbation) density strat
7.22, which is satisfied by requiring
However, since 7 i o o
A Saﬁsﬁéd e hls assumed to be lc;ss then unity, Egs. 7.23 and 7.24 can

» Wiich suggests that semiconvection begins as an oscillating insrz;?lyt;h

7.3 OSCILLATING INSTABILITIES

Consider now the
bility h

nugnbefs for the onset of an oscillating instability.
olving the same set of linear equatio: '

time depend i i
Lot pendence, we get a cubic equatio

ns as above, but now with the sinusoidal
n for the frequency (Stern, 1960; Veronis

- 3 -
@ +C20)2+C10_)+C0 =0,
where the constant coefficients

Co=itPr [-kﬁ + (R; — Ra) (E)z]
a 3

Cr==pr[(147+ L)k & (Rer  re) () ]
%) =]

(7.25)

Co=ik*(14Pr+1),

with a 2D wavenumber squared defined as

= [(mn')2 + (7162_77)2] .

Here, the & me
ans use the 4 for salt-fingering and use the — for semiconvection
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5 has three roots. One is @ = 0, the nonoscillating case, which
dy considered. That is, Co = 0 is Eq. 7.17 for salt-fingering and
emiconvection. As mentioned, Eq. 7.23 is incompatible with our

ive condition that the overall perturbation density decreases with
24).
+ two nonzero roots are obtained by separately setting the real and imag-
of Eq. 7.25 to zero. Setting the real part to zero gives the (nondimen-
ersion relation for the oscillation:
NZ 2
& = K*(Pr + TPr + 7) + —osiin (E> , (7.26)
a
the nondimensional Brunt-Viisilid frequency is

N2

nondim

= (Rs T —Ra)Pr. (7.27)

the dimensional Brunt-Viisélé frequency is

dT _ dE
2 — =
N _go(ot e ,de>.

emmiconvection, N, onaim is real because of Eq. 7.24; the onset of semiconvec-
is like an internal gravity wave driven by the imbalance resulting from double
sion.

Substituting Eq. 7.26 into the imaginary part of Eq. 7.25 gives the stability con-
aint:

(Pr-l—v:)) _ (Pr+l+t)(l+r+t/Pr):|:rRmn. (7.28)
Pr+1) /) i Pr+1)

gain, the & means use the + for salt-fingering and use the — for semiconvection.
For a growing salt-fingering instability the corresponding supercritical value of the
left side of Eq. 7.28 needs to be less than the right side; that is, Rg needs to be larger
than its critical value (all other parameters being the same). On the other hand, fora
growing semiconvection instability the corresponding supercritical value of the left
side needs to be greater than the right; that is, Ra needs to be larger than its critical
value (all other parameters being the same). In the limit of 7 — 0,

Pr
Ra—Rgt——) = Run. (7.29)
( § (Pr+1)>crit

Note, Rg 7 is finite.
Overstable semiconvection requires both Egs. 7.24 and 7.28 to be satisfied and
therefore occurs when R 7 is in the range

D ra P94 9g,,],
Pr+ 1) Pr

assuming Ra is less than the far right side of Eq. 7.30 for the chosen set of para-
meters. Recall that for semiconvection, Rg7 is the stabilizing effect. If RgT were

Ra < Re7 < (7.30)
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stratification is stable.

Overstable salt-fingering requires both Eqgs. 7.18 and 7.28 to be satisfied an
therefore occurs when R¢t is in the range

Pr+1) (Pr+1+7:)(1+t+f/Pr)+1’
Ra > Ret > m[Ra— FrrD Rm,,] , (7.31)

assuming Ra is greater than the far right side of Eq. 7.31 for the chosen set of pa-
rameters. Recall though that a nonoscillating salt-fingering instability occurs when
Ra is less than R¢ ~ Ry (Eq. 7.19); so this also needs to be checked to determine
the type of salt-fingering instability that occurs for a chosen set of parameters and
the mode mn that is the most unstable.

7.4 STAIRCASE PROFILES

Salt-fingering and semiconvection are both driven mainly by the stratification of the
more-dense less-diffusive constituent. However, in both scenarios, after evolving
beyond the onset of the instability, thermal diffusion between the moving parcel
and the surroundings can alter the initial linear vertical profile of the horizontal-
mean temperature into a “staircage” profile. This evolution of the temperature pro-

produced by Piacsek & Toomre (19
stars by Merryfield (1995).

74.1 Salt-Fingering Staircase

Consider salt-fingering. The mean femperature profile (relative to the adiabat) over
which fluid parcels rise (sink) as they transfer heat from (to) the surroundings be-
comes nearly isothermal (i.c., adiabatic). That is, the convection, driven by com-
positional buoyancy, tends to reduce the horizontal-mean vertical temperature gra-
dient. However, this process has to be confined to local regions if the temperature
(relative to the adiabat) is forced to be greater at the top boundary than at the bottom
boundary. That is, within thin interfaces between these local well-mixed nearly adi-
yers the mean temperature needs to increase significantly with
height in order to have a net increase in temperature from the bottom boundary to
Thermally driven internal gravity waves are continually excited
» strongly subadiabatic interfaces by the convection that occurs
adjacent to the interfaces. A schematic of the resulting “staircase” profile of the
horizontal-mean temperature is displayed in Fig. 7.1.
The vertical fluxes of heat and composition through an evolved staircase profile
are significantly greater than what they would be if they were only due to diffusion
down the initial linear gradients. This occurs because compositional convection in

‘E-DIFFUSIVE CONVECTION

Double-diffusive staircase profiles of the mean temperature

Salt-fingering Semi-convection
i id li horizontal-mean temperature T (relative
] 7.1 Schematic plots of evolved (solid lines) n te :
e to the adiabat) vs. height z. The initial profiles of T are indicated as dash.e<'i lines.
The nearly constant (adiabatic) 7" levels represent regions of c.omposmonany
driven convection for salt-fingering and compositionally driven internal gra’vny
waves for semiconvection. The interfaces defined by the nearly st.ep cI'langes in T
are strongly subadiabatic for salt-fingering and strongly superadiabatic for semi-
convection.

the well-mixed layers is so much more efficient than fliffusion; and, w1thlri§ﬁ thz Itlltulrz
strongly stable interfaces that develop, int.ernal gravity waves areﬂvery e ec:j e in
transporting heat and composition. That is, the 'enhanced eddy ; yxe:l Zriﬁ:uswity
advective processes. For salt-fingering, the. effe.ct}ve eddy gompos1t10n Hiisvicy
tends to be greater than the eddy thermal d1ffus1'v1ty. The klnet.IC energy o is flow
structure is obtained from the continual conversion of thc? grav1tat101}gl pqten L
ergy into kinetic energy within th; netdunstable dci:t(?mlzosmonal stratification, w

i ly) maintained by the boundary conditions. o

° Saﬁi?gl;ﬁe}gng staircase pZoﬁles have been obsc?wed in the oceans, mailhnly 1; atllclz
tropics where the greater solar heating and resulting evaporation rate a'trbi e su roe
produce warm more-salty surface water above cold fresher de.ep Wgter. iis proc
has been studied via laboratory experiments and in numerical s1mu1at10nls ge.gl.,
Stellmach et al., 2011). The process usually begins‘ with a large number of re a}tllve y
thin convective layers; but, as it evolves, convective lay‘ers merge and télle ck atnge
in temperature within the stable interfaces increases until the system settles into a

preferred configuration.

7.4.2 Semiconvection Staircase

A staircase temperature profile can also develop with sejn'liconvectlon. Hotwe(\lrcil(r),
in this process internal gravity waves, driven by com[{osmona.l bu‘oyar?cy, enal

increase the horizontal-mean vertical temperature gradlent, which in this czlls(;e SC)'
makes it nearly adiabatic because now rising (sinking) parcels heat up (cool down
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the surroundings via thermal diffusion. Again, this cannot extend over the entire
vertical domain if the temperature (relative to the adiabat) at the bottom boundary
is forced to be greater than that at the top boundary. Therefore, local well-mixegd
nearly adiabatic regions of internal gravity waves become separated by thin inter-
faces in which the temperature decreases significantly with height. Thermal con-
vection is driven within these thin strongly superadiabatic interfaces. A schematic
of the resulting “staircase” profile of the horizontal-mean temperature is displayed
in Fig. 7.1.

The vertical fluxes of heat and composition through the evolved staircase profile
in semiconvection are also significantly greater than what they would be if they
were only due to diffusion down the initial linear profiles. Here it occurs because of
advective transport in the well-mixed layers by internal gravity waves and, within
the thin interfaces, by the thermal convection. For semiconvection, the effective
eddy thermal diffusivity tends to be greater than the eddy compositional diffusivity,
The kinetic energy is again obtained from the continual conversion of the gravita-
tional potential energy, now due to the net unstable thermal stratification, which is
(externally) maintained by the boundary conditions.

7.4.3 Other Double-Diffusive Processes

We have been assuming that the externally maintained gradients of temperature and
composition are only in the vertical direction. In reality they can also have a small
horizontal component, which causes “lateral intrusions” of heat and composition.
These relatively thin and slightly tilted layers can transport heat and composition
over very large horizontal distances.

We have also been assuming that the secondary constituent is more dense than
the primary. However, this is not required for a double-diffusive instability. Con-
sider the Earth’s core, for example, which has a solid inner region and a liquid outer
region; both are mainly iron with small concentrations of less dense elements. As
the core slowly cools, liquid iron plates onto the solid inner core more easily than
the lighter elements, which produces a source of compositional buoyancy at the bot-
tom boundary of the fluid outer core (the “inner-core boundary,” ICB). Latent heat
is also released in this process and therefore provides a source of thermal buoyancy.
Heat is convectively transported to the top boundary of the fluid core (the “core-
mantle boundary,” CMB) where it diffuses into the mantle. However, the lighter
constituent, which is also convectively transported to the CMB, accumulates there
and possibly develops a compositionally stable stratification within the unstable
thermal stratification. Semiconvection might therefore occur in this upper region of
the Earth’s outer fluid core. In such a scenario the B (Eq. 7.6) would be negative
and horizontal-mean compositional gradient, d& /dz, would be positive.

Double-diffusive processes and their evolved structures can be affected by many
other instabilities caused by, for example, shear flows, Coriolis forces, turbulence,
chemical reactions, radiation pressure (which depends on the particular secondary
element and its excitation and ionization state), and magnetic pressure. For exam-
ple, several studies (e.g., Schubert, 1968:; Spiegel & Weiss, 1982; Hughes & Weiss,
1995) have been made of double-diffusive instabilities due to buoyancy being partly
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and partly magnetic in 2.5D models (Section.s 10:5 ar}d 10.§) for whi?h the
round magnetic field is horizontal but in the d1‘rect1‘on in which no variables
d (the y-direction for a box, the longitudinal d11"ect10n for a spherical shell).
ge studies magnetic buoyancy is due to magnetic pressure (Chaptetr 11) and
netic diffusivity is assumed to be much 1es§ tl_lan thegngl fi{tffus1v%ty. It‘has
, suggested that this double-diffusive magnetic instability initiates disruptions
oroidal magnetic field stored just below the solar convection zone, which then
yantly rise to the solar surface, forming sunspots.

‘DOUBLE=DIFFUSIVE NONLINEAR SIMULATIONS

nonlinear 2D model, Egs. 2.10 — 2.12, can easily be modified to simulate the
lution of these two double-diffusive processes by adding the expression 7.15to
right side of Eq. 2.11 and updating & using Eq. 7.16. As mer'1t1.<).ned abo.v.e, &
xpanded in cos(nmx/a) and its nondimensiona.l bqundary and initial conditions
¢ the same as those for 7. The nonlinear advection in Eq. 7.16 can be calculated
xactly as it is in Eq. 2.10 (Chapter 4). However, one needs t.o choosc.e R, Ba, T,
nd Pr to satisfy Eq. 7.19 if sali-fingering is desired. An effective density ratio,

aAT _ E?_
BAE ~ Ret’

or salt-fingering is about 1.1 (Stellmach et al., 2011). I‘f, on the other hand, semi-
onvection is desired, Eq. 7.30 should to be satisfied, which would make the fienS}ty
ratio less than one. Besides considering the parameter regimes .for double—d1ﬂus1ve
instabilities when choosing values for Ra, Rg, and 7, also estimate the horlzor%tal
length scale for individual flow structures, Eq. 7.9. Also recall that for salt-fingering
both 7,_o and &, are set to 0 at the bottom boundary and to 1 at‘ t‘he top bound-
ary when using a nondimensional code; the opposite boundary conditions are set for
semiconvection. A small initial sin 7 z perturbation in, say, then = 1andn = N, /2
modes of T or £ is needed to trigger the instability. ' o o
A major computational challenge for double-diffusive convection sgnulatlc.)ns is
to use a realistically small T because, roughly speaking, the smal'ler kg is relative to
« the smaller the typical compositional length scale will be relative tq the temp§ra—
ture length scale. When representing both 7' and § with the same spatial resolu.tlon,
as we have assumed here, that spatial resolution needs to be adequate for simu-
lating the fine-scale structures of £ and therefore will likely be much greater than
is needed for structures of T'. A related challenge is to simultaneously resplve the
small-spatial-scale short-time-scale structures (fingers) and the l.arge—'spatl_al—scale
long-time-scale structures (staircases). The Galerkin method outl'med in this Part 1
is not a particularly efficient method to deal with these computational challenges.
A more efficient way to deal with the need for an extremely small ‘could be to
treat the evolution of & using a Lagrangian method, instead of an Eulepan _rnethod
(Section 1.1.2), which would approximate the extreme limit of a n(.)nfhffuswe sec-
ondary constituent. For example, a “particle-in-cell” method‘uses millions of tracer
particles to represent the distribution of &. These tracer particles are advected each
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time step by the fluid velocity using, for example, a Runge-Kutta scheme, The ac-
curacy of the advection is determined by the order of the Runge-Kutta scheme, the
order of the interpolation of the fluid velocity to the particle positions each time
step, and the size of the time step. The degree that these are inaccurate contributeg
to “artificial” (i.e., numerical) diffusion. The fluid domain is divided into cells, each
containing a central grid point; and the Eulerian value of § at a each grid point is
proportional to the number of tracer particles in the cell containing the grid point.
The concentration, &, in grid space could then be transformed to spectral Space
each time step if the Fourier spectral method is used in the horizontal direction,
Alternatively, a fully finite-difference method (Section 9.3) could be employed.
The numerical methods introduced in Part 2 could also help with the compu-
tational challenges of simulating double-diffusive convection. For example, if 5
spectral method is desired, the spectral-transform method of computing the nonlin-
ear terms would allow significantly greater numerical resolution compared to the
Galerkin method. Also, to avoid the influence of impermeable boundaries and non-

SUPPLEMENTAL READING

Brandt & Fernando (1995)

EXERCISES

1. Onset of a nonoscillating salt-fingering instability
Derive the analytic expression for the critical thermohaline Rayleigh number
for the onset of nonoscillating salt-fingering (Eq. 7.17).
. Onset of an oscillating double-diffusive instability
Derive the cubic equation (Eq. 7.25) for the frequency of an oscillating
double-diffusive instability and solve for the dispersion relation (Eq. 7.26)
and stability constraint (Eq. 7.28).

COMPUTATIONAL PROJECTS
1. Double-diffusive linear Stability analyses

Convert a linear convection code to a linear double-diffusive code and check,
using the procedure described in Section 3.2, that it predicts the critical
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ermohaline Rayleigh number for salt-fingering, Eq. 7.17, and for §emicon—
ection, Eq. 7.30. Recall that for the salt-fingering instability the h‘near ap-
oximations to the advection of T and & are constructed by setgng their
escribed nondimensional background gradients to +1; for the semiconvec-
on instability, these are set to —1. :
Double-diffusive nonlinear simulations: initial linear profiles '
Convert a nonlinear 2D Boussinesq convection code to a nonlinear double-
diffusive code. For a 7 somewhat less than one, a Pr = 1,and a = V2, run
a salt-fingering simulation and a semiconvection simulation, choosing appro-

priate values for Ra and R, for each case, considering the horizontal length

scale estimate of fingers, Eq. 7.9. Use linear profiles of the horizontal mean
(n = 0) T and & for initial conditions, i.e., the dashed lines in Fig. 7.1. Plot
the total kinetic energy and vertical heat flow as functions of time. Analyze
how the pattern and evolution of the flow and the horizontal-mean profiles of
temperature and composition depend on Ra and Re.

Double-diffusive nonlinear simulations: initial step-function profiles

Run double-diffusive simulations and analyses as outlined in the Double-
diffusive nonlinear simulations: initial linear profiles exercise but' now with
initial step-function profiles for the horizontal-mean 7 and &. That is, for salt-
fingering set the initial # = 0 parts of the nondimensional tempqgtyre and
composition to 1 for z > 0.5 and to 0 for z < 0.5; reverse this initial con-
dition for semiconvection. Set the # = 1 and # = N, /2 modes of & to 0.1
at z = 0.5 and zero at all other z-levels. Monitor how the thicknesses of the
temperature and compositional interfaces grow with time. For comparison,
simulate a “Rayleigh-Taylor” instability by setting the initial n = O part of T
to 0 and & to 1 for z > 0.5 and vice versa for z < 0.5, including the corre-
sponding bottom and top boundaries; that is, make both the tempera@e and
composition unstable. This Rayleigh-Taylor case could also be done with the
original non-double-diffusive code using just T'.




Temperature

Streamfunction
L

steady-state solutions, illustrated with profiles of the temperature and streamfunction plotted on
orizontal (x) and vertical (z) grid for Ra = 108, Pr = 0.5, and a = 3. The solution on the left was
Jatized with an n = 1 temperature mode; whereas the one on the right was initiatized with both
{1 = 1 and n = 8 modes. For temperature, red corresponds to hot buoyant upflow and blue to cold
svy downflow; green is vanishingly small relative to the background temperature. Solid contours
iue streamfunction represent positive ¥ (i.e., clockwise flow), broken contours are negative ¥ (i.e.,
imterclockwise flow).

Temperature

Plate Ib Snapshots of two time-dependent solutions, illustrated with profiles of temperature and streamfunc-
tion plotted on the horizontal (x) and vertical {z) grid. The snapshot illustrated in the left-hand panels
is for Ra = 108, Pr= 1, and @ =1; it has a stable mean temperature profile and was initialized with 2
Tocalized perturbation in ¢ at the cemter of the box, as described in the text. The snapshot illustrated
in the right-hand panels is for Ra = 10%, Pr = 1, and @ = 2; it has a stable mean temperature
profile in the lower three-quarters of the box maintained with a thermal forcing time of 10+ and
an unstable profile in the upper quarter maintained with a top boundary temperature of 0.9 (see de-
seription in the text). For temperature, red represents hot buoyant fluid and blue cold heavy fluid.
The horizontal-mean temperature, Tp(z), is not included in the image on the left so the small tem-
perature perturbations can be seen. The mean temperature profile is included in the image on the
right, displaying the significant increase in mean temperature with height in the stable region and the
nearly adiabatic (i.e., constant) mean temperature in the upper convection zone. Solid contours of
the streamfunction represent positive ¥ (i.e., clockwise flow), broken contours are negative ¥ (i.e.,
counterclockwise flow). Both simulations have a resolution of Ny = 201 and N, = 100; At = 1077
for the left and 1076 for the right sinmulation.
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Temperature

Magnetic field lines

Plate 42 Snapshots of three magnetoconvection solutions, Hlustrated with: profiles of temiperature and ve,

tor potential (i.e., magnetic field Hnes) plotted on the horizontal (x) and vertical (2) grid. The
& - -

snap.shot illustrated in the top row is the case on the right in Fig. 4.2 with the addition of a
relatively weak vertical background magnetic field (Q=10% and q = I). Initially it appears to

be in steady state, like the nonmagnetic version; but after about one thermal diffusion time the

pattern switches to a single cell like that on the left side of Fig. 4.2. The snapshot illustrated
in the middle row is the same case but with a much more intense background field Q=10*
and g = 1). This case is quite time-dependent. The snapshot illustrated in the bottom row is
the case on the right in Fig. 6.2 with a relatively intense background field Q=10 q = 1),
I too is time-dependent as it was without the field. For temperature, red represents Iiot buo -
ant fluid and blue cold heavy fluid. The horizontal-mean: temperature is included in these ima e}‘:‘
Solid contours of the vector potential are magnetic field lines, entering the bottom boundary ind

exiting the top.

Temperature

Magnetic field lines
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Plate 4b Snapshots of three magnetoconvection solutions, illustrated with profiles of temperature and vector
potential (i.e., magnetic field lines) plotted on the horizontal (x) and vertical (z) grid. The cases
represented in the top, middle, and bottom rows are the same as those in Fig. 11.1 except that here
there is a horizontal background field. Note the dashed lines represent negative vector potentials
because of the arbitrary cheice we made for the top and bottom boundary values of A. ‘

: Plate 5 A snapshot of the entropy perturbation in an anelastic simulation of thermal convection in a 2D box

with Ra = 10', Pr = 1, N, = 5, and an aspect ratio of 0.75 {see Color Plate 5 for a color version
of this figure). Reds represent hot fluid, yellows warm, and blues cold fluid relative to the volume-
averaged mean entropy.




(@
Rotating
magnetic
low Ra

(b)
Non-rotating
non-magnetic
high Ra

Ty
e
P o i
S L
o L

(@
- Rotating
: e e non-magnetic

. ~~~  highRa

P e
e
e
e
i :’s‘}‘f::'
5 s o
L e
Sl :
L
o

-
L
e
SEl
e
R

e

(d)
Rotating
magnetic
high Ra

Plate 6 A snapshot of the. e.ntropy perturbation in an anelastic simulation of thermal convection within a 2D
annulus after a million computational time steps with N, = 3, Ra = 1.3 x 10'°, and Pr = 1. Reds
represent hot fluid and blues represent cold fluid relative to the constant reference state entropy, with
the crossover from blue to yellow at S = Sj; -+ AS/2. |

7 Snapshots of the entropy perturbation in four anelastic simulations of thermal convection in a 2D box
with an adiabatic polytropic reference state defined by # = 1, N, = 0.2, and Pr = g = 1. Case (a)
has Ra = 3 x 105, Bk = 10~%, and Q = 10%. The other three cases have Ra = 3 x 10'2. Case (b) is
nonrotating and nonmagnetic. Cases (c) and (d) are rotating with Ek = 1079, Case (c) is nonmagnetic
and case (d) has a vertical background magnetic field with Q 10°. Reds represent hot fluid, yellows
warm fluid, and blues cold fluid. (This material is reproduced from Glatzmaier (20052) with permission
from Taylor and Francis Group, LLC, a division of Informa plc.)




fluid. (This material is reproduced from
Group, LLC, a division of Informa plc.)

= 5. Here dark colors represent cold fluid and light colors hot

Glatzmaier (2005a) with permission from Taylor and Fran

cis

Snapshots of the entropy perturbation for the two anelastic simulations, (a) and (b), of rotating thermal
convection in an annulus described in Section 13.3.2. Dark (light) colors represent cold (hot) fluid. The
arrows show the angular velocity relative to the rotating frame, which rotates counterclockwise in the
inertial frame. (This material is reproduced from Glatzmaier et al. (2009) with permission from Taylor
and Francis Group, LLC, a division of Informa pic.)




Radial component of the magnetic field

At surface At core-mantle boundary

Geomagnetic field (1980) up to degree 12

Snapshot
of entropy

G-R simulation plotted up to degree 12

Time
averaged
angular
velocity

A snapshot of the radial component of the magnetic field simulated with the Glatzmaier-Roberts
geodynamo model. The fields are plotted on equal-area (Hammer) projections of the entire core-
mantle boundary and of what would be the Earth’s surface at two different spatial resolutions: a coarse
resolution (up to spherical harmonic degree 12) and a higher resolution (up to degree 95). These are
compared to the Earth’s field in the year 1980 on both surfaces up to degree 12. Blue represents
inward-directed field and yellows and reds outward-directed field. The intensities (colors) are scaled
the same, except that each of the three surface images have been multiplied by 10 to produce color
intensities similar to those at the core-mantle boundary. (This material is reproduced from Roberts &
Glatzmaier (2000) with permission from the American Physical Society.)

Plate 10 (Top) A snapshot of the entropy perturbation for the continuation of the N, = 3 simulation iflus-
trated in Fig. 12.3 but with Ra increased to 101, Pr decreased to 0.5, and now rotating with Ek =
2 x 1078, Reds represent hot fluid; blues represent cold fluid. (Bottom) Time-averaged differential
rotation. Reds and yellows represent counterclockwise angular velocity (i.e., prograde flow) and blues
represent clockwise (retrograde) flow, both relative to the counterclockwise rotating frame.




%::;m—www’“ g Plate 13 A sequence of snapshots, displayed at 3000-year intervals during a spontaneous simulated magnetic
e, 3 dipole reversal. (Bottom) The longitudinally averaged magnetic field plotted within the core. The

ww-« . .- - .
small circle represents the inner-core boundary and the large circle is the core-mantle boundary. The

poloidal field is shown as magnetic field lines on the left-hand sides of these plots (blue is clockwise
and red is counterclockwise). The toroidal field direction and intensity are represented as contours
(not magnetic field lines) on the right-hand sides (red is eastward and blue is westward). (Middle and
"Top) The radial component of the field on the core-mantle boundary and at what would be the surface,
plotted as described in Fig. 13.13. (This material is reproduced from Glatzmater et al. (1999) with
permission from the: Nature Publishing Group.)

Plate 12 A snapshot of the magnetic ﬁe}d maintained in a geodynamo simulation illustrated as magnetic

field lines. Gold field lines i ial i
Glatamager & nepe .)(Th]S material is reproduced from




Surface longitudinal winds Zonal winds in meridian plane

Simulated banded zonal winds

Surface radial magnetic field Zonal field in meridian plane

Plate 14 A snapshot of the longitudinal flow from a Saturn dynamo simulation.’ Reds and yellows are prograde
flow relative to the rotating frame and blues are retrograde. (This material is reproduced from Stanley
& Glatzmaier (2009) with permission from Springer Science 4+ Business Media BV)

Plate 15 A snapshot of a Saturn dynamo simulation, as in Fig. 13.17. (Top, left) The differential rotation
(zonal winds) at the surface; red and yellow represent prograde flow, blues are retrograde. (Top,
right) The longitudinal average of the zonal winds below the surface; red and yellow are prograde,
blue is retrograde. (Bottom, left) The radial component of the magnetic field at the surface; yellow
represents outward-directed field, blue is inward. (Bottom, right) The longitudinal average of the
toroidal field below the surface; red and yellow are eastward-directed, blue is westward. (This material
is reproduced from Stanley & Glatzmaier (2009) with permission from Springer Science + Business
Media BV.)




Kinetic energy density Magnetic energy density

Plate 16a A snapshot of the kinetic and magnetic energy densities in the equaterial plane of a 3D dynas,

mmulation of a giant planet like Saturn. The kinetic energy is greatest near the surface and decs

with depth; the magnetic energy peaks in a narrow fayer at roughly 20% of the radius below
surface.

S
S
S

Plate 16b A snapshot of the magnetic field, illustrated with magnetic field lines, maintained in the Saturn
dynamo simulation (Fig. 13.17). Gold field lines are directed outward and blue inward. (This

material is reproduced from Stanley & Glatzmaier (2009) with permission from Springer Science +
Business Media BV.)
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apter Eight

me Integration Schemes

plicit Adams-Bashforth scheme for integrating the equations in time, which
cribed (Eq. 2.18) and employed in Part 1, is relatively simple and efficient
at each time step the time derivatives are needed for only the current and pre-
. time steps. This works fairly well and is second-order accurate, although the
‘nulated error is proportional to only A¢2. Many more accurate time integra-
chemes do exist, which are higher order but computationally more expensive.
example, in this chapter we describe fourth-order accurate Runge-Kutta and
ctor-corrector schemes. However, the stability constraints on the size of the
linear diffusion (Eq. 2.19) and due to the nonlinear advection (Eq. 4.7)
xplicit schemes are still present. In many cases, the former is more severe than
atter. Therefore, we also describe time integration schemes that allow larger
¢ steps (and therefore fewer steps for a given amount of simulated time) by
ating the linear diffusion terms implicitly. The nonlinear terms, however, couple
the modes and so would be extremely expensive to treat implicitly; therefore
y are usually treated explicitly. This “semi-implicit” scheme greatly improves
efficiency of the code.

1 FOURTH-ORDER RUNGE-KUTTA SCHEME

As described in Section 2.4, the explicit second-order Adams-Bashforth time in-

egration scheme for, say, temperature, T, is illustrated in Eq. 2.18 where G, rep-

resents the time derivative at time ¢. Now, instead, approximate the integral from

time ¢ to  + At of the temperature time derivative with a weighted average of four

svaluations of the time derivative: one at the current time 7, two at the midpoint

time ¢ -+ At /2, and one at the new time ¢ + Af. That is, let the temperature equation
- be represented as

At
Ternr = Tt+"6_ (G1+2G2+2G3+ Ga)

the vorticity equation be
At
Wepnr = @ + 3 (Hy +2H, +2H3 + Hy)

and the solution of the Poisson equation for the streamfunction for a given vorticity
be represented as

Yrear = Yr(werar) -
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For the standard fourth-order Run |
ge-Kutta scheme (e.g., Press et
to our problem the designated functions are e el 19 e

Gi1=G(T;, ¥(wy)),
Hl = H(E’ Wy, W(wt)),

At
@sGm+Eﬁbw@+%m»

At At
H=H — At
h (T + > Gy, wt+7HI’ ’lf(wt-i-?HI)),

At
@sGm+Eﬁbw@+§&»

_ At At
Hy = H(T, + 7G2, w; + 7Hz, V(o + %Hz)),
Ga= G(T; + AtGs, Y(w, + AtH)),
Hy = H(T, + AtGs, o + AtH, (e, + AtHy)).
One way to program this without involving a significant amount of code mod-

ification or additional disk space would be to add arrays teml, omgl, and psil

with the same dimensi .
defined as 10ns as tem, omg, and psi, and to add an array here called rk

rk(irk, 1) =0, ﬂ, ﬂ
27 27

tk(irk, 2) =0, 1, 1, 1,
tk(irk, 3)=1, 2, 2, 1,

At,

forirk = 1,2,3 4. Then, just inside the loo over time

a c'ounter', .irk, from 1 to 4. Inside this looppﬁrst set ter;tlezs’t:fld ;nll(;P:ﬂ:ileCleg
psil = psi ifirk = 1 or, if irk > 1, set tem1 = tem + rk(irk, 1)*dte,mdt1 omgl §,oanlll
+ rkglrk,l)’f‘domgdtl, and call the tridiagonal solver to get psil givel’l omg l—Thergl
continue with the original code that computes the linear and nonlinear contfit;ution
to_ dt'emdtl and domgdtl, but now using teml, omgl, and psil. After this stili
within the loop over irk, set dtemdt2 = rk(irk,2)*dtemdt2 + rk(irk‘ 3)*dtemdti and
§et domgdt2 = tk(irk,2)*domgdt2 + rk(irk,3)*domgdt1. This en(is the loop over
irk. The final step in updating the solution, per time step, is setting tem =Iiem +
At/ 6*dte_mdt'2, omg = omg + Az/6*domgdt2, and calling the tridiagonal solver to
update psi using the updated omg. The remaining diagnostics and data storage are
the.san'le as in the original code, except that now there is no need to store theg ti
derivatives, dtemdt2 and domgdt2, in the data files, e
‘ Of course, the price one pays for the additional accuracy is that each numerical
time step takes about four times as much computer time as an Adams-Bashforth
St?p. The type of problem and needed spatial and temporal resolutions will deter-
rmlI:le if a fourth-order method like this one is worth the price N

or a review of other Runge-Kutta is i i

and efficiencies see Carpentfr & Kenrslzlc;;n(lfzng Feompansomef heir accuracies

again the time integration for temperature, 7', as illustrated in Eq. 2.18
represents the time derivative at time ¢. An alternative integration scheme

oT
(--) =aGiar + (1~ )Gy
0t Jiinep

Tivnr — aAtGep = I + (1 — ) AtG, . 8.1

ere set to 0, the scheme would be fully explicit and numerically unstable. If
ere set to 1, the scheme would be fully implicit and numerically stable but not
accurate. In general, if @ > 1/2, the scheme is unconditionally stable, i.e.,

e is no limit (like Eq. 2.19) on the size of At to maintain numerical stability.
ever, if At were set to a relatively large value, Eq. 8.1 would reduce to

at is, the “solution” would erroneously change sign every time step. Therefore,
e choice of At must also be based on accuracy.

The scheme depicted in Eq. 8.1 is accurate to second order only for o = 1/2,
vhich is called the Crank-Nicolson time integration scheme. Since a value of o
only slightly less than one half would result in a numerical instability, sometimes
when the solution is very time-dependent « is set to something greater than one
half to ensure numerical stability at the cost of a little accuracy. For example, when
starting a simulation from small random perturbations one might choose to set «
to something greater than one half until the nonlinear terms have established a
statistical equilibrium, after which it can be set to one half. If numerical instabilities
occur, it may be better to achieve stability by reducing At (well below the CFL
constraint), keeping o at one half. On the other hand, for very high Rayleigh number
simulations, and therefore high Reynolds number, the linear diffusion terms play
a relatively minor role at most length scales compared to the nonlinear terms; for
such cases making the diffusion terms more implicit to avoid numerical instabilities
may be a wise choice.

As mentioned, implementing an implicit scheme for the nonlinear terms is usu-
ally too expensive because all » modes are coupled and therefore would need to
be updated simuitaneously in one huge expression (per z-level) or iteratively with
many cycles per time step. The linear diffusion terms, on the other hand, are de-
coupled in n and so we can easily implement a “semi-implicit” scheme, which
treats the linear diffusion terms implicitly and the nonlinear terms explicitly (Dur-
ran, 1998). For example, the semi-implicit time integration scheme for mode » of
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the temperature equation 2.10 would be

52 2
[1 — aA? <ﬁ - (faﬁ) )]Tn(z,t—l—At) =

82 n\ 2
[1 + (1 - a)ar (@ -(5) )] T 1)

side of Eq. 8.2, for a given mode 7, is

sub(k) Ty—y + dia(k) T} + sup(k) T4 q ,
where

sub(k) = sup(k) = _%
Z

dia(k) = 1+ oA (-2 4 ("l)z
. Az? a -

The right-hand 31d§ (ths(k)) of Eq. 8.2 is easily calculated for each f because the
and the nqnh'ngar terms at the current and previous
' if a time-dependent “therma] forcing” term
impliotty Section 6.2, that term could also be treated semi-
hSchematically, this “collocation” equation (for N, = 5) looks just like Eq. 2.21
Wwhere now the output sol(%) is Tk, at the new time step. Rows £ = 1 and N, ’
correspond to the bottom and top boundary conditions on LNy =1Ty,=0 foi
{1 E 0. Therefore, the matrix elements in those two rows are the séme as tﬁgse listed
In Egs. 2.2.2. Forn =0, ths(1) = 1 if convection is being simulated or rhs(N,) =1

if the gravity wave boundary condition is desired. ’

I;Egnetlg Yectl(;r potential equation if included) need to be treated semi-implicitly,
€ semi-implicit integration of t ici i i imilar
o sen g he vorticity equation can be handled in a similar
. ttNiTow }clonglder a f‘ew.coding issues. Within the loop over time steps, start by
ng the time derivatives at the current step for the temperature and vorticity

HATION SCHEMES 89

times all the linear terms, including, for example, the temperature-
buoyancy term in the vorticity equation. Then compute and add in the
erms using either the Galerkin method described in Chapter 4 or the
transform method described in Chapter 10. Next update the temperature,
e n at a time, by constructing the rhs(k) vector of the matrix operator,
e tridiagonal matrix solver, and then overwriting the T, (z) with the sol(k).
using the updated 7,(z), add o times the buoyancy term to the corre-
ng rhs(k) of the vorticity equation and update the vorticity, one # at a time.
eats the buoyancy term implicitly. The streamfunction is finally updated
ginal way using its matrix operator and the updated vorticity for the

REDICTOR-CORRECTOR SCHEMES

redictor-corrector time integration scheme approximates an implicit scheme. It
two (or more) steps per numerical time step. The predictor step evaluates the

ated function using a chosen explicit scheme. The corrector step then evaluates

time derivative at the new time step using this first approximation to the func-

on and uses it in an implicit scheme in place of the actual time derivative at the

w time step. This requires two evaluations of the (nonlinear) time derivative per
merical time step, but does not require a matrix solution method.

For example, consider again the second-order accurate Adams-Bashforth scheme

q. 2.18), which is explicit, and the second-order accurate Crank-Nicolson scheme

q. 8.1 for @ = 1/2), which is implicit. The predictor step first computes the time

derivative of, say, temperature T; at time ¢ (which we again call G,) and uses it

to get the first approximation to the temperature at time ¢ + At using the Adams-

Bashforth scheme:
. At
Tian=T+ 5 GG = Gia) - (8.3a)

Then the corrector step computes the time derivative of T}% ,, at time £ + Az (i.e.,
Gi1ar)» as it would if this were our usual second-order Adams-Bashforth scheme

updating T to time ¢ +2A¢. However, now this G}, ,, is instead used to get a better

estimate of T at time 7 + A¢ by using it in the Crank-Nicolson scheme to get the
updated Ty a;:

At
Tovar =T + — (Griar +Gr) . (8.3b)

If even greater accuracy were desired, one could do additional corrector steps
each numerical time step. The number of additional steps could be determined by

checking when either the average or maximum value of
k k-1
Tivar = Tifae

k
Tar




drops below some prespecified tolerance, where here % is the iteration count fof
the additional iteration steps. However, this scheme is still only second-order a
curate; so it would be better to reduce the Af than to do many additionaj
iterations.

Many other explicit and implicit time integration schemes exist, which could be
used alone or in some combination within a predictor-corrector scheme. For exam-
ple, in addition to the second-order Adams-Bashforth scheme we have been using,
there is a family of higher order explicit Adams-Bashforth schemes obtained using
a polynomial interpolation. The third- and fourth-order explicit Adams-Bashforth
schemes are, respectively,

At
Tone=T; + 7 (23G; — 16G1—a¢ + 5G1-2a1)

At
Tine=T + Zl-— (55G; — 59G_ps + 37G1_3n;: — 9G;_3as) -

Likewise, there is a family of implicit Adams-Moulton schemes. The second-order
Adams-Moulton scheme is what we have been calling the Crank-Nicolson scheme;
the third- and fourth-order implicit Adams-Moulton schemes are, respectively,

Tivss = 2 G =T, 4 2 86, ~ Guoa)
Tivar — %%‘tGH-At =T+ % (19G; — 5Gs_a; + Geaar) -
A semi-implicit scheme (Section 8.2) could be designed that uses any of the
explicit Adams-Bashforth schemes to update the nonlinear terms and any of the
implicit Adams-Moulton schemes (of the same order) to update the linear
terms. '
Alternatively, a predictor-corrector scheme could be designed that uses, for ex-

ample, the fourth-order accurate Adams-Bashforth scheme in the predictor step,

At
T;T;_A, =TI+ ﬁ (55G; —59G,_at + 37G,_gp; — 9G;3ar) s (8.4a)
and the fourth-order accurate Adams-Moulton scheme in the corrector step,
At
Tiinr =T + N (9G;k+m +19G; - 5G,_a; + Gt—ZAt) . (8.4b)

Again, one could use the check mentioned above to determine how many ad-
ditional iteration steps would be needed to attain a prespecified accuracy using a
constant A¢. However, it would be more efficient to use an automatic time step
adjustment with the predictor-corrector scheme to maintain a given accuracy. The
idea is use an estimate of the error after one predictor-corrector iteration to decide
if the predictor-corrector step should be done over using a smaller Az (if the esti-
mated error exceeds some prespecified tolerance) or a larger At (if the error is too
small). For this fourth-order predictor-corrector scheme (Eq. 8.4) the error estimate
on the updated 7}, 5, after on iteration step is

1
TR — Troar ™ 7 (Tovar - Tias) -

{NTEGRATION SCHEMES o

, this check would need to be an average or maximum value over all grid
s.and/or modes of T'.
, which time integration scheme should one use? It depends on the compro-
that needs to be made between desired accuracy and computational expense
ow that choice balances similar choices made about the spatial discretiza-
,-resolution, and geometry (Chapters 9 and 10) and how physically realistic
actual model equations are (Chapters 11~13). In any case, it is better to be-
with a simple scheme (as we do in Part 1), get it working, and then improve
time integration later if and when needed. For a given problem, one needs to
sider the additional computational time required for some schemes due to the
itional times the nonlinear terms are computed per numerical time step and
ance this with using a smaller Az in a lower order accurate scheme. In prac-
, comparing the accuracy, efficiency, and memory requirements of several test
s with several different schemes at the desired spatial resolution and model pa-
rameters is usually the best way to make these choices. Having said all that, the
dams-Bashforth-Moulton predictor-corrector schemes, either the second-order
curate version, Eq. 8.3, or the fourth-order accurate version, Eq. 8.4, would be
good choice, especially with the automatic time step adjustment. If the stabil-
y constraint on the time step due to linear diffusion (e.g., Eq. 2.19) is more se-
re than the CFL constraint (e.g., Eq. 4.7), i.e., the diffusivities are not small, it
ay be worth implementing a semi-implicit scheme that treats the linear terms im-
icitly with a Crank-Nicolson scheme (or a higher-order Adams-Moulton scheme)
d uses the predictor-corrector scheme only for updating the nonlinear

.4 INFINITE PRANDTL NUMBER: MANTLE CONVECTION

Thermal convection within the mantle of a terrestrial planet, like the Barth, is dom-
inated by huge viscous forces to the extent that the inertial, Coriolis, and magnetic
Lorentz forces in the momentum equation are negligible. The Prandtl number (ra-
tio of viscous to thermal diffusivities) is on average about 103 and so is approxi-
mated as being infinite in studies of geodynamics. Therefore, mantle convection is
controlled by the balance among buoyancy, pressure gradient, and viscous forces.
Convection in magma chambers is also typically studied using the infinite Prandt]
nmumber approximation and as a double-diffusive process (Hansen & Yuen (1995);
Chapter 7). Note that the typical fluid velocity in the Earth’s liquid core is estimated
o be a few tens of kilometers per year, which is much smaller than typical veloc-
ties in the Earth’s atmosphere or ocean but is about a million times larger than
ypical mantle convection (and tectonic plate) velocities. The slow creeping fluid
ow of mantle convection is called “solid-state convection”.

It is interesting that viscosity is usually the challenge in most studies of convec-
tion in planets and stars. However, unlike studies of convection in the liquid iron
cores of terrestrial planets or in the atmospheres of planets and stars or in the deep
fluid interiors of giant planets and stars, for which making the model’s viscosity
as small as possible is the challenge, the challenge for mantle convection is that




the viscous diffusivity is highly temperature- and strain-rate-dependent. Viscog
in a terrestrial mantle can vary by several orders of magnitude from one location ¢y
another because of the large variations in temperature that are needed to producé
sufficient buoyancy forces to drive the convection. The viscous diffusivity is algg
not just a scalar, but a tensor, dependent on the amplitude and direction of the ]q.
cal rate of strain. Therefore, the viscous force is a complicated nonlinear term, As
shown in Chapter 12, a spectral model can accommodate a depth-dependent scalag
viscosity, which would represent its horizontally averaged value; but if one wants a
viscosity that also varies in the horizontal direction in a nonlinear time-dependent
manner, a local numerical method (e.g., finite-difference) is recommended, espe-
cially if large gradients of viscosity can develop. In addition, nonlinear viscoug
heating (Eqs. 1.8 and 12.31), which we have so far neglected, is important in
mantle convection; see Egs. 12.31 and 12.32.

Here we show how the current model can easily be modified to study mantle
convection (also called “geodynamics™). Consider the vorticity equation (2.11) in
the limit of an infinite Pr:

(Ge-(a)-m@n e

This equation is a Poisson equation and therefore can be solved like the streamfunc-
tion equation (2.12). At each time step, first update the temperature semi-implicitly
as in Eq. 8.2. With the updated 7;,, solve for w, via Eq. 8.5. Then use the updated
wy 10 solve for ¥, via Eq. 2.12. Each of these three steps, for every time step and
each mode 7, involves a tridiagonal matrix solution; only the temperature equation
(8.2), however, has a time derivative and a nonlinear term.

We discuss the infinite Prandtl number approximation further at the end of
Section 10.6.2 for a 3D spectral density-stratified spherical-shell model of mantle

convection (Glatzmaier, 1988). However, readers interested in simulating mantle
convection, especially with more realistic visco-elasto-plastic rheologies and phase
transitions, are advised to check the numerical methods outlined in, for example,
Ismail-Zadeh & Tackley (2010) and Gerya (2010). For a very comprehensive re-
view of mantle convection studies for the Earth, for other terrestrial planets, and for
satellites of giant planets check Schubert et al. (2001).
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EGRATION SCHEMES

odify a computer code developed in Part 1 by replacing the Adams-
ashforth time integration scheme with the fourth-order Runge-Kutta scheme
outlined in Section 8.1.
Semi-implicit scheme
Modify a computer code developed in Part 1 by replacing the Adams-
Bashforth time integration scheme with the second-order semi-implicit
scheme outlined in Section 8.2.
. Predictor-corrector scheme
Modify a computer code developed in Part 1 by replacing the Adams-
Bashforth time integration scheme with the second-order predictor-corrector
scheme outlined in Section 8.3.
. Infinite Prandtl number scheme
Modify a computer code developed in Part 1 by replacing the Adams-
Bashforth time integration scheme with the infinite Prandtl number scheme
outlined in Section 8.4.

MPUTATIONAL PROJECTS

1. Comparing the Runge-Kutta and Adams-Bashforth schemes

Compare the accuracy of the fourth-order Runge-Kutta scheme
(Section 8.1) with the second-order Adams-Bashforth scheme (Part 1) by
running the convection scenario illustrated on the left in Fig. 4.2 and tabu-
lated in Table 4.1 with both schemes using the same spatial resolution and
a series of different time step sizes A¢. Compare the computer time required
per numerical time step by each scheme to obtain a desired degree of
accuracy.

. Comparing the semi-implicit and Adams-Bashforth schemes
Compare a convection simulation produced with an explicit Adams-Bashforth
code with one that employs the semi-implicit scheme (Section 8.2). Confirm
that when using the same value for Az (which will need to be less than both
the diffusion limit and the CFL limit) and the same spatial resolution (i.e., the
same N, and N;) that the two codes produce very nearly the same solution.
This comparison is easier when a steady-state case is tested. Then test how
the solutions from these two codes compare as the At for the semi-implicit
code is increased above the diffusion limit but below the CFL limit. Also test
how the value of o affects the results. Confirm that an « less than one half
causes a numerical instability.

. Comparing the predictor-corrector and Adams-Bashforth schemes
Compare a convection simulation produced with an explicit Adams-Bashforth
code with one that employs the second-order predictor-corrector scheme out-
lined in Section 8.3. Use the same value for Az and the same spatial resolu-
tion.
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4. Comparing the semi-implicit gndg infinite Prandy] number schemes

Corrpare an inﬁr.u'te Prandtl number simulation (Section 8.4) with a se
selm-l'mphc:lt finite Prandt] number simulationg (Section 8.2) with th .
Rayleigh numper and aspect ratio byt with increa :

pter Nine

1 we chose to treat the horizontal direction with a spectral method and the
direction with a finite-difference method on a uniform grid. For some prob-

this chapter we introduce two ways of doing this within a finite-difference
using a nonuniform grid and mapping to a new coordinate variable. We
utline how one can simulate the convection and gravity wave problems de-
d in Part 1 either by using finite differences in both directions or by using a

» compact finite-difference, arbitrary Lagrangian-
rian, particle-in-cell (marker-in-cell), and adaptive mesh refinement.
elated to the choice of spatial discretization is the design of spatial decompo-
processors on a massively parallel computer. We
vide a very brief introduction to parallel processing at the end of this chapter.

Part 1 we employ uniformly spaced grid levels in the vertical direction for the
cond-order accurate finite-difference method. However, as the Rayleigh number
Increases the depths of the thermal and viscous boundary layers at the bottom and
top boundaries decrease, requiring smaller (constant) Az (ie., a larger N,) to re-
solve them. In addition, v, decreases as one approaches the bottom or top boundary
are impermeable (and fixed in space); so using smaller

Az in these regions usually does not affect the CFL condition. Therefore, it can

be advantageous to prescribe a nonuniform vertical grid, one that smoothly varies
from a minimum Az at the boundaries to a maximum Az at mid-depth. There may
also be interfaces within the fluid domain where better spatial resolution is needed,;
for example, at the interface between the stable and unstable regions in the case
illustrated on the right in Fig. 6.2.

A general finite-difference method can be derived using the process, mentioned
in Section 2.3, of adding and subtracting two Taylor series expansions, but now
with a prescribed grid, z;, for which the grid spacing, z; — Z;—1, depends on the
level index k. Consider three grid levels, z;_q, z, Zpyr, suchthat Az_ =z, — Zp_1
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and Az = z;,; — z;. Write two Taylor series about z;, one for Ji—1 and the oth,
for fii1. Thatis,
af 1/8%f

Si1= fi — (E>k Az_ + 5 (—@>k AZZ_ + O(Azi) 9.1

2
fori = fi + (g)k Azy + % (%)k AZy + O(AZY). 9.2)
Subtracting Eq. 9.1 from 9.2 and dropping terms of order (Az> + Az%) and smaller
produces an expression for (3//3z); in terms of (32 f/82%);. Likewise, adding Egs.
9.1 and 9.2 produces an expression for (82 f/9z%); in terms of (0f/9z)k, again
dropping the higher order terms. Substituting the latter into the former gives a finite-
difference approximation to (3 f/9z). Then substituting this into the latter gives a
finite-difference approximation to (82f/8z%);. The result is that the first derivative
of a function f on a general grid z; is

d
<a_§) =a(k, =1 fie1 +alk, 0) fi + a(k, 1) fin ©3)
k

and its second derivative is

82
(52—{) = bk, =1 fir + bGK, 0) i + bk, 1) fo
k .
where the arrays a and b (dimensioned as (1 : N, —1 : 1)) are

_ ‘*AZ+
T Az_(Az_ + Azy)

alk,—1)

Azy — Az

alk, 0) = Az Az

Az_
Az (Az_ + Azp)
_ 2
T Az_(Az_+ Azy)’

-2

Az Az’

2
Azp(Az_+ Azy)
Note that these reduce to the corresponding centered finite-difference expressions
for a uniform grid (Egs. 2.15 and 2.16) when Az_ = Azy.

Assuming the nonuniform grid is time-independent, these coefficients only need
to be calculated once and then stored. If derivatives are needed on a boundary,
“ghost points” could be established at a grid point outside the boundary the same
distance from the boundary as the adjacent grid level within the fluid. The value
of a variable on a ghost point is typically a function of its values at the boundary
and at one grid point inside the boundary and is determined by what it needs to be

atk,1)=

bk, —1)

bk, 0)=

bk, 1) = 9.5)

AL DISCRETIZATIONS 97

sfy the boundary condition with a centered finite-difference formula. See the
sion on the use of ghost points in Section 11.2. An example is also discussed

tion 9.3.

onvenient nonuniform set of z-levels that provides a smooth transition from

patial resolution (small Az) near the boundaries to coarse resolution (large
mid-depth is a Chebyshev grid defined as

1 i k—-Dm
Z"”5< _""S((Nz—l)))

,again, k = 1 — N, (Fig. 9.1).
ote that when using a nonuniform grid the time step constraints require treating
as a function of z. That is, the (nondimensional) diffusive constraint is now

- (Azyin)?

4 ’
suming an explicit treatment of the diffusion terms and constant diffusion coeffi-
ents, and the CFL constraint is

(%)
At < | — .
Vz J MIN

Also note that if graphics data were prepared and stored while the solution is
ing generated (as described in Section 5.1), first interpolating it onto a uniform
id before storing it in the output file might be beneficial. That way the same
aphics postprocessor can be used for different computational grids.

At

2 COORDINATE MAPPING

alternative way of achieving higher spatial resolution in different regions of the
fluid domain is to map (or “project”) a nonuniformly spaced set of grid levels in
the original independent variable, z, onto a new independent variable, say, ¢, that
uniformly spaced. This requires all derivatives with respect to z in the original
cquations to be written as derivatives with respect to £ .
For example, let 0 < ¢ < 1, like the nondimensional z, and define a Chebyshev
mapping of z as a function of £:

1
2(8) = 5 (1 —cos(wg)).

The discrete version of this is Eq. 9.6. Then the first derivative of, say, I' with
espect to z at level & is

), = (i)
(32 ¢ T osin(mee) \ 3¢ /,

N 2 Tir1 — T
7 sin(wy) 2 AZ
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and the second derivative is

(82T 4 cos(mgy) [9T 4 02T
9z )k_ 7 sin’ () (34“ )k " s ez (34“2)k
A cos(mdy) <Tk+1 - Tk—l)
msin’(wg) 2 A¢
4 (Tk+1_2Tk+Tk—l)
72 sin® (&) Ag? ’

where, again, X = 1 — N, and now AZ is aconstant 1/(N, — 1). All z-derivatives
in the temperature, vorticity, and streamfunction equations, as described in Part 1,
would need to be replaced with corresponding ¢ -derivatives like those of Egs. 9.7
and 9.8. These two equations would have problems at £ = 1 and N, where
sin(w¢y) = 0; however, a prescribed constant-temperature boundary condition
would avoid this problem.

Similar methods use an independent variable other than height or radius for the
“vertical” direction to achieve a more natural distribution of vertical levels or to
accommodate topographic or bathymetric bottom boundaries or top boundaries de-
fined by a specified pressure or total column mass. For example, 1D stellar evo-
lution models typically use the integrated mass from the center of the star as the
vertical coordinate, so radius becomes a dependent variable. Some ocean circu-
lation models employ “isopycnal coordinates,” which use density (relative to an
adiabatic density profile) as the vertical coordinate. Atmospheric general circula-
tion models often use the hydrostatic pressure (normalized by the surface pressure)
as the vertical coordinate. In these cases, the equations need to be written in terms
of the new independent variable instead of height or radius.

9.8)

9.3 FULLY FINITE-DIFFERENCE

As mentioned in Section 2.3, a spectral solution converges much faster to the
actual solution as the number of modes employed increases compared to a finite-
difference method as the number of grid points increases. However, the program-
ming required is typically much simpler for a finite-difference method. In addition,
for a computer code written using parallel processing on a cluster of processors,
a local numerical method, like finite-difference, requires much less communica-
tion between processors because usually only “nearest neighbor communication” is
needed (Section 9.5.2). That is, the spatial domain is typically divided into cells (or
grid points); finite-difference derivatives at a given cell depend only on the values
in the adjacent cells. A spectral method, on the other hand, usually requires “global
communication”, for which every processor needs to send and receive data from
every other processor every numerical time step (Glatzmaier & Clune, 2000) be-
cause all spectral modes are needed to compute spatial derivatives and these modes
are distributed over the all the processors. So, a simple parallel finite-difference
method with enough grid points to obtain comparable accuracy might be more
computationally efficient at some high spatial resolution than a spectral method.
Also, a spectral method, which is inherently nonlocal, can have more difficulty
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local method with a solution that is supposed to have large amplitude flows
ne end of the domain and none at the other end. Therefore, for one or more of
&.reasons, a finite-difference method could be preferred over a spectral method.
y books have been written describing local methods like the finite-difference
finite-volume methods (e.g., Patankar, 1980; Ferziger & Perié, 1997; Griebel -
.» 1967; Durran, 1998; Slingerland & Kump, 2011). High-order compact finite-
erence methods (e.g., Rai & Moin, 1991; Lele, 1992; Yu et al., 1994; Durran,
§98; Gamet et al., 1999; Liao, 2008; Takahashi, 2012) provide a nice compromise
tween a spectral method and a strictly local method, providing high numerical
curacy without some of the disadvantages of a spectral method. Spatial deriv-
ives are obtained with this method via an implicit coupling among all the grid
vels in, for example, the vertical direction; they can easily be solved at each time
ep using a tridiagonal solver (Section 2.5).
Here we outline one way of treating both the vertical and horizontal directions
th simple finite-difference methods. One could solve Egs. 1.15-1.17 for T, D,
, and v, without introducing the vorticity or streamfunction. However, here we
choose, as we do in Part 1, to define a streamfunction (Eqgs. 2.5-2.7), which au-
iomatically satisfies mass conservation, and to solve for vorticity via the curl of
the momentum conservation equation, 2.4. We use mass conservation, Eq. 1.15,
to write the nonlinear advection terms in Eqs. 1.17 and 2.4 in their “conservative”
forms, i.e., as divergences of temperature and vorticity fluxes, respectively. Recall
that since we are assuming that the V-v = 0, mathematically v-VT = V.(Tv).
However, the finite-difference approximations of these two forms are not exactly
equal. It is usually more accurate and stable to compute the finite-difference di-
vergence of a nonlinear product than to compute the nonlinear product of v and a
gradient of 7" or . Therefore, our working set of equations is

® = -V, (9.9)

dw
at

aT
=—V.ov— RaPrg— +Prviw, 9.10)
X

%i: — _V.Tv+ V2T ©.11)

These equations need to be updated on a 2D set of grid points. Let the horizontal
grid points be defined as x; = (¢ — )Ax fori = 1 — N, and the vertical grid
points again be defined as z; = (k — 1)Az fork = 1 — N,. To obtain comparable
accuracy in both directions, we choose the (constant) grid size in the x -direction,
Ax = a/(N,—1), to be as close as possible to the grid size in the z-direction, Az =
1/(N; —1). That is, we choose the number of grid cells in the x-direction, (N, — 1),
to equal the nearest integer to (N, — 1)a. Of course, one could use nonuniform grids
(Section 9.1) or coordinate mappings (Section 9.2) in both the x- and z-directions.

Since the set of equations 9.9-9.11 has Laplacian operators on each of the three
dependent variables, the system requires three boundary conditions on each of the
four boundaries. As described in Part 1, the impermeable boundary condition forces
¥ to vanish on all four boundaries; and this combined with the stress-free boundary
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condition forces e to vanish on all four boundaries. That is, Vil =Yy, = Vg
Y¥n,.k = 0 and likewise for w. Therefore, ¥ and  should be updated only
grid points interior to the boundaries, The isothermal boundary conditions on
bottom and top boundaries require 731 = 1 and T; ,

waves are desired instead of thermal convection). Therefore, temperature shoy},
not be updated on the bottom and top boundaries. It does, however, need to pe
updated on the insulating side boundaries. The vanishing horizontal gradient of
temperature on these boundaries requires ghost points on which Tox = Doy and
Tne+14 = Ty,—1 4. An example of ghost points on the top and bottom boundarjes is
discussed in Section 11.2. As in that section, here the ghost points do not actually
need to be allocated; instead, first- and second-order horizontal derivatives of T on,
say, the left side boundary, (1, k), should be calculated as

T Do — Tox
— —_— 2 i =O’ )
<3x)1k 2Ax 9.12)

9x? Ax? Ax? ©.13)
Similar formulas should be used on the right side boundary, (N, k).

Equations 9.10 and 9.11 can be integrated in time using the explicit Adams-
Bashforth scheme employed in Part 1. However, since all dependent variables are
already in grid space, the nonlinear terms are much simpler to compute in this fully
finite-difference method compared to the spectral Galerkin method. The advection
of temperature at grid point (7, k) in Eq. 9.11 is, making use of Eq. 2.15,

(32T) _ D=2+ Tox 2T — i)
1k

- [V°TV]i,k = - [

(Tve)iv1k — (Tvy)iz1p) 4 (Tv)i 441 — (Tv.)i-y)
2 Ax 2 Az

9.14)

and similarly for the advection of vorticity in Eq. 9.10.

Recall that temperature needs to be updated on the side boundaries, However,
instead of writing the advection of temperature there as in Eq. 9.14, it can be written
as —v- VT, where only the —v,8T /9z part survives because of our side boundary
conditions; and this part does not require ghost points. Using Eq. 2.16, the thermal
diffusion term is

[V2T]ix = [

Tk =2 T+ Ty + Tipe1 =2 T + Ti,k-l] . 9.15)

Ax? AZ2
This term does require a ghost-point treatment on the side boundaries like that of
Eq.9.13.

The buoyancy term in Eq. 9.10 is simply

8T Tivig — Thm
_ I:Ra Prﬁ] ~ _Ra Pr[ +1k— T I,k] .
ox ik 2 Ax

The Laplacian terms in Eqgs. 9.9 and 9.10 are formulated like that for temperature
in Eq. 9.15.
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that if Ax = Az, the finite-difference thermal diffusion opera.tor (Eq. 9.15)

make a positive contribution to the temperature (in Eq. 9.11) if the .temper—

ere less than the average of the temperatures of its four 'nearest neighbors.

se, the operator would try to decrease the temperatur‘e if 1t' were larger than

rage of its nearest neighbors. That is, thermal diffusion tries to smooth the

distribution of temperature, which is needed to balance the tendency- for

near advection of temperature (Eq. 9.14) to shear the temperature profile into
scales. ‘

w consider how Eq. 9.9 can be solved each time step to update x/f‘ with _the

ed . There are several methods for accomplishing this, usually 1nvo¥v1ng

rative relaxation process to converge to a numerical solution that sa¥1sﬁe.s

prescribed tolerance. A simple method for solving this Poisson equat1or} is

cobi relaxation method, which iterates on the finite-difference representation

of Eq. 9.9 until the error in the numerical solution. is within some set tolerance.

ng Eq. 9.15 for ¢ instead of T, Eq. 9.9 at grid point (i, k) for iteration from step

on-+1is

ikt = €L (Wirtien + Vimtn) + €2 Wi rrn + Vik—10) + 3 w1, (9.16)

ere the coefficients are
Az?
=g
2(Ax? + Az?)
he Ax?
CENA T AR
Ax? AZ?
3= YIS R
2(Ax?2 4+ Az%)
pply Eq. 9.16 to all internal grid points, keeping the boundary values equal to
ro. Two arrays are needed for ; ;, one for iteration # and the other for z + 1. Set
e value of ¥ on the first iteration to its value from the previous time step. Stop
e iteration when the maximum value of
h[/i,k,n+1 - Wi,k,nl
(i kntt] + Vi hnl)
(over all i between 2 and N, — 1 and % between 2 and N; — 1) drops below some
prescribed tolerance, say, 1075, or when the interaction count reaches some pre-
scribed maximum number, say, 100. If and when the latter occurs, the maXIm.um
error should be printed and the simulation stopped. Note that a smaller Az requires
fewer iterations per time step; but the cost of a simulation is related to the product
of the number of time steps and the average number of iterations per step.

One can try to accelerate the convergence each time step by incorporating a
weighting factor. Let the right side of Eq. 9.16 be called WYi k.« and set

Yiknt1 = Vikx+ (1 =) Yign,

where 0 < ¢ < 2. Try ¢ = 1.5, for example, to see if the average number of
iterations per time step decreases relative to ¢ = 1.




Figure 9.1 Plots of Chebyshev polynomials vs. x for degrees m = 0 — 5.

9.4 FULLY SPECTRAL,: CHEBYSHEV-FOURIER

9.4.1 Chebyshev Polynomials

Traditionally, the independent variable for Chebyshev polynomials has been called

%, not to be confused with our horizontal coordinate. The Chebyshev polynomial
(of the first kind) of degree m on —1 = x =< 1is defined ag

T (x) = cos(m arccos(x)) . 9.17)

Plots of T, (x) for m = 0 — 5 are displayed in Fig. 9.1. Note that the degree of
the Chebyshev polynomial equals to number of “zero crossings” the function has
between —1] = ¥ =< 1 and that these nodes become more concentrated at the two

boundaries of this domain as the degree increases. Also note that T, (1) = 1 and
Tn(=1) = (=1,
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To(x) = 1 (9.182)

Ti(x) =x, (9.18b)

er degree polynomials can be obtained from a recursion relation:
Tnt1(x) = 25T (%) — Ty (x) . (9-18¢)

ng the first derivative of Eqgs. 9.18, we have

T _ o
dx
ah =1 (9.19b)
dx

for higher degrees the recursion relation gives

AT Ay _ dTn
Tax TR

ing the second derivative of Egs. 9.18, we have

Ty _ (9.20a)
dx? ’

(9.19a)

(9.19¢c)

d’Ty
dx?
d for higher degrees the recursion relation gives

st _ (8T o BTy dTy s : (9.20c)
dx?  dx dx? dx?
Now we choose the Chebyshev-Gauss-Lobatto grid points:
(N —bn
Xr = COS (_]VZT) ,
where again 1 <k < N,. Substituting this into Eq. 9.17 gives
m(N, — k)n') .
N, -1
The Chebyshev-Gauss-Lobatto grid points can be written in a more general form:

D (Nz_k)n
Zk=21+3<1+cos<_}va ’

where the depth of the fluid domain, D, is zy, — z; with z; beiflg the‘bottom l?ound—
ary and zy, the top boundary. Here we continue to use nondimensional variables;
soz; =0 aind zy, = 1, which makes D = 1. Therefore,

1 (Nz*k)ﬂ )
Zk:—z—(l—}-cos _7\’2—“1 >

=0 (9.20b)

Tm (xk) = COS (




N, -k
Tm (Zk) = COSs (”l(]vzz\_l)ﬂ
which should be stored as, say, cheb(m, k). :
The point of all this is that an arbitrary function, say, F(z;), can be approximateg
as a series of (orthogonal) Chebyshey polynomials,

2 172 NZ—I//
F(z) = (r) m{_; Jn T (zg), .21y

. —

where the Chebyshev transform provides the coefficients

2 2 M ”
Jm = (\) Fz) Ty (z).
)8

where the right side is obtai

with respect to z is
2\2
)=(3) (

where here the right side is obtained from Egs. 9.20. These should be stored in
arrays, say, dcheb(m, k) and d2cheb(m, k), respectively. Using these one can com-
pute the first and second derivatives of a function 7 with Iespect to z when the
Chebyshey coefficients, Jm> of F are known. That is,

N;—1

dF 2\ " dT,,
(E)f(r—l) 2 ﬁ"(z)k ©29

N—1
d*F 2\ 3 d’T
) =\7=7) X n(El) . (9.26)
dz? J, N, -1 dz2 J,
m=0

An alternative way of taking derivatives of functions expanded in Chebyshey
polynomials is convenient in some situations. It applies a backward recursion rela-
tion directly on the Chebysheyv coefficients of the function. Let the coefficients of

the first derivative of 3 function F with respect to z be called ¢ . That is,

dF 2\,
(E) = (ﬁ) D dfuTaz),

k m=0

AL DISCRETIZATIONS 105

, for the two highest degree coefficients,
diz—l =0 (928&)

=1
dfyn,—2 = % Jn.<1 (9.28b)

for degrees m = (N, — 3) =0,

1
Afyr = dfyr + 4(’”D+ ) b, (9.28¢)

ain, the depth D is set to one in our nondimensional equations. The coefficients
- the second derivative, ddf,,, can be computed in the same manner after com-
ting the d f,,, which would be

0, = '“(m;?l) even m
" 0 odd m

“'Then, using Eq. 9.21,

> 2 X,
/ F(z) dz = (N 2 ) Z SO . (9.30)
0 m=0

> —1

More information about Chebyshey polynomials and their use can be found in
several books. For example, check Fox & Parker (1968) and Boyd (2001).
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of the vertical coordinate (height z or radius ), which makes these terms more than
Just quadratic nonlinear in the vertical coordinate. As a result, a Galerkin method
would be much more complicated and computationally inefficient. The Chebyshey
collocation method projects the solution onto Chebyshev space much more easily
and efficiently.

Consider again the semi-implicit time integration scheme described in Section

8.2. However, instead of applying the finite-difference operators to an equation like
8.2, now expand the temperature coefficient, T, in Chebyshev polynomials as in
Eq. 9.21. That is,

) >1/2 N:-1

T(ak 1) = ( 1) 2 Tm@®TaG). ©31)
z m=0

Be careful here not to confuse the temperature coefficient, 7, nm (2), with the Cheby-

shev polynomial, Ty, (z). Then, using the precalculated second-order derivatives of
Chebyshev polynomials (Eq. 9.24),.

P, ([ 2\ N’Z“’,,T o (LT
8z2  \N,—1 o S dz2 ),

Substituting Egs. 9.31 and 9.32 into the linear terms of Eq. 8.2 gives us

2 12 NZ_I// d*T,, nm\2
(=) X [e-one (), - (5) 1)

m=0

=rths,(z1), (9.33)

where ths, () is the (known) right-hand side of Eq. 8.2 and T, is the updated
temperature solution in Fourier(n)-Chebyshev(m) space at (¢ + Af). This solution
is obtained by a collocation method, which forces Eq. 9.33 (for a given n) to be
satisfied on the N, —2 internal z-grid levels corresponding to rows & = 2 — N,—1
of the N; X N, matrix operator. The rows corresponding to £ = 1 and A, force the
bottom and top boundary conditions to be satisfied, respectively.

Boundary conditions are easily formulated in Chebyshev series. For our problem
the temperature is a constant at the bottom and top boundaries; so the k¥ = 1 row
of the matrix operator is simply composed of the Chebyshev polynomial values
Tn(z = 0) and the k = N, row is composed of the T,,(z = 1) values for matrix
columns m = 0 — N, — 1. In addition, for n > 0, ths,(z = 0) and ths,(z = 1)
need to be set to zero. For n = 0, rhsg(z = 0) = 1 and rhsy(z = 1) = 0 if thermal
convection is being simulated or vice versa if gravity waves are being simulated.
Remember to multiply every element of the matrix operator by (2/(N, — 1)1/,
including those in the bottom and top rows. In addition, remember to multiply every
element in the first (m = 0) and last m = N, — 1) columns of the matrix operator
by 1/2.
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For example, a schematic of matrix Eq. 9.33 for N, = 5 and some horizontal
de number z > 0 is

Ti/2 Ty T Tp Ta/2 Two 0
A2n/2 Agin Agay  Ags, Ay /2 T ths,,
Asn/2 Azin Az Ass, Azgy /2 Tia | = | rhsy

A40n/ 2 A41n A42n A43 T, ths,
TSO/Z TSI n n3 n4

2
Atmn = Ty (2z1) — a At (( 43

e Chebyshev functions for degree m at z-level k are Tim = Ty (22); the coef-
ients for the updated temperature of Chebyshey degree m and Fouri;:r mode »
€ Tym; the right-hand-side elements for z-level k and Fourier mode n are ths,;, =
sn (2); and the constant is ¢ = 2/(N, — 1))2, "
This N, x N, matrix equation is then solved using a standard matrix solver, for
example, LAPACK routines dgetrfand dgetrs. The dgetrf routine factors the matrix

n. This needs to be done at the beginning
the time step, Az, is changed during the
the dgetrs routine uses the factored

With the updated temperature solution now in Chebyshev-Fourier space, use Egs.
.31 and 9.32 to transform it and its second derivative back to z-space. These are
eedf:d to construct the rhs of the temperature equation for the next time step. De-
endmg on .how one chooses to compute the nonlinear advection of temperature, its

grstccilerévatlve may also need to be computed and transformed to z-space. Recall

the Chebyshev coefficients for the first and second derivatives ¢ ia

‘ an be calculat

Egs. 9.27 and 9.28. e via
After updating the temperature, a similar matrix solution procedure, for each

n > 0, is required for the semi-implicit vorticity equation after including the buoy-
ancy term,

RaPr(@T,(ze t + AD) + (1 - @) T, (2, 1))

in 1t§ ths vector. Then, with the updated vorticity w, (z, t + At), use a similar
mafrix solution procedure to solve the Poisson equation for the streamfunction

(st + A, ’

The nonlinear terms for the next (Adams-Bashforth) time step in the temper-
atu're ar‘ld vorticity equations can be calculated using the Galerkin method de-
scnbc_ed in Chapter 4 or the spectral-transform method described in Chapter 10. Any
z-derivatives can be calculated by first transforming the function to Chebyshev

Space using Eq. 9.22 and § s N :
Eq. 925, g Bq and then transforming its derivative back to z-space using
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The Chebyshev transforms that are performed on both the linear and nonlinear
terms are much more efficient when using Fast Fourier Transforms (FFTs). This is
done by first converting the Chebyshev polynomials to quarter-wave cosine func-
tions (the “preprocess”), then doing a fast Fourier transform (Cooley & Tukey,
1965), and then converting back from the Fourier to the Chebyshev representation
(the “postprocess”). This may seem like much more work but the efficiency of the
FFT makes this absolutely worthwhile (see, e.g., Press et al., 1992; Boyd, 2001).
However, when using a fast Chebyshev transform, Eqs. 9.27 and 9.28 should be
used to compute the first and second derivatives. Running the FFTs in parallel, ie,
performing the FFTs in z simultaneously over all (or a subset) of the horizontal
modes n, makes this spectral method even faster. A recommended FFT package
is “FFTW,” the “Fastest Fourier Transform in the West” (www.ffiw.org). Fourier
transforms are discussed further in Chapter 10.

The rest of the fully spectral code, the diagnostics, the CFL condition check, and
the data processing for output files can remain as is.

9.5 PARALLEL PROCESSING

Parallel processing is necessary, even for 2D problems, to take full advantage of to-
day’s powerful computers in order to produce simulations that approach the turbu-
lent conditions of planetary and stellar interiors. However, even a cursory summary
of parallel processing techniques would be beyond the scope of this book. There are
several comprehensive books on this topic (e.g., Chapman et al., 2007; Snir et al.,
1998) and tutorials on the Internet (for example, https://computing.linl.gov/tuto
rials/openMP/ and https://computing.1lnl.gov/tutorials/mpi/). Here we provide just
a brief introduction to the basic ideas, some issues that need to be addressed, and
choices that need to be made when designing a parallel code.

The basic goal is to either reduce the “wallclock time” required to run a given
Job or to be able to increase the spatial and temporal resolution of the job without
significantly increasing the wallclock time. The former goal exists when the job is
CPU-limited; the latter exists when the job is memory-limited. Usually the latter is
the case for problems described in this book.

Because of the limitations in reducing communication times within a computer
processor, combining tens of thousands of processors all working concurrently on
a problem is much more efficient than improving the speed and memory of a single
processor. This requires considerable communication among the processors every
time step while the job is running. The computation and memory can be divided
in many different ways: the challenge is to design a code that is efficient, i.e., all
processors are working nearly all the time. There are two basic styles of parallel
programming. One is Open Multiprocessing (OpenMP), which is a specification
for doing “shared memory multiprocessing”; that is, all processes have direct (high-
speed) access to the memory. The other is Message Passing Interface (MPI), which
is a specification for doing “distributed memory multiprocessing”; that is, each
processor (or node) has direct access to only the memory attached to it.
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A code’s performance is typically measured by how well it scales as the number
f processors increases. For a job that is CPU-limited the performance is mea-
ured by its strong scaling efficiency, which is the number of processors, N, times

e wallclock time required for N, processors to complete the job divided by the

allclock time required for one processor to complete the same job, i.e., with the
same spatial and temporal resolutions and for the same number of time steps.
For a job that is memory-limited the performance is measured by its weak scal-
ing efficiency, which is the wallclock time required for N, processors to com-
plete a job divided by the wallclock time required for one processor to complete
a job that requires N, times fewer computations. That is, for weak scaling we
would like the required wallclock time to be nearly same among jobs for which the
amount of computation is proportional to the number of processors used. This is
typically the case for parallelization schemes that employ nearest-neighbor com-
munication, and not typically for schemes that require global communication. In
addition, a code is efficiently parallelized when the time the average process spends
communicating with other processes is a small fraction of the time it spends
computing.

OpenMP and MPI both require the programmer to add to a code statements that
determine how computations are distributed among the available processors and
how results are communicated between processors. Each style needs to have its
libraries loaded with the compiled parallel code, which can be written in, for exam-
ple, Fortran, C, or C4+. OpenMP and MPI can run on most computer architectures
and operating systems.

9.5.1 OpenMP

OpenMP is simpler than MPI to incorporate into a code but may be less effective in
speeding up a code. There are many OpenMP directives that control where in the
code the work is distributed among processors (i.e., “multithreaded”) and where
it is done by a single processor (i.e., the “master thread”). Usually the main ob-
jective is to make large “do loops” that are executed many times and run much
faster by distributing their iterations over the available “threads” (i.e., processes).
The programmer needs to identify which loops to parallelize by adding statements
(preprocessor directives) just before each loop that list those variables in the loop
that are “shared” among the threads and those that are “private,” i.e., are temporary
and used by only one of the threads. The OpenMP library uses this information to
design how the iterations are divided among the processors, which would then be
run concurrently. The programmer must be sure all statements within the loop are
independent of the others for this to work. This works best for loops with many iter-
ations, require a large amount of computational work per iteration, and are executed
many times during the run.

See an example of an OpenMP loop in Appendix D.

In addition, a hybrid parallel code can be designed that uses both OpenMP and
MPIL. For example, a parallel computer can have many “nodes,” each of which has
several processors, each of which has several “cores.” All the cores on one node
share the memory on that node; and so OpenMP can be used among the cores
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of one node, one thread i ; i i
communicate via MP[. _ ising parallel FFTs, which would do the necessary interprocessor data transfers,

atively, one could transpose all the data from being distributed over Fourier
: s to being distributed over z-levels (using, for example, an MPI_ ALLTOAIL
9.5.2 MPI mmand), then do the needed FFTs within processor to go from Fourier space to
ace, compute the nonlinear products in x-s ace, do the inverse FFTs back to
MIPY can run on a small cluster of processors, even on 2 laptop computer, a]] ghe ier spaceI,) and then transposle the data backpto being distributed over Fourier
. - 1t provides considerable flexibil- es. Although these two ways tend to require comparable amounts of computa-
price for this is that the programmer needs to nal time, the latter way is usually the preferred way of doing a spectral transform

parallel.
How many processes to use is also an important choice. The more used, the less
-clock time per run; however, at some point the code will no longer scale well
th the number of processes. “Coarse-grained” domain decomposition means the
main (physical or spectral) is divided into a relatively small number of
domains; and so a large amount of computation is performed between
terprocessor communications, which keeps the ratio of communication time to

omputation time small. “Fine-grained”

Another issue is how data is input in and output from the disk during a run.
ince 10 is usually done much less frequently than updating the time step, one
ould designate one process as the one that is in charge of 10. However, typically

there is not enough Memory per processor to store all the data of the problem.
Therefore, when reading in the data the IO process needs to read in small chunks
of it at a time into a temporary array and send it to the correct process before
reading in the next chunk. Likewise, when writing out the data to the disk the 10
process needs to receive small chunks of data at a time from each of the other

- processes. Alternatively, parallel IO could be employed, for which each processor

: simultaneously reads (writes) its data from (to) a separate data file on the disk. Of
course a large number of data files then would be associated for a given job for
each restart; additional sorting would be required if one chooses to restart with a
different number of processes. The single designated IO process method does not
have these disadvantages.

After this very brief introduction to parallel processing, one needs to read some
of the suggested books and tutorials and write simple programs that test the var-
ious parallel processing directives and routines to gain a good understanding of
basic tools. Then, before writing a parallel convection code, one should first write
a serial code to test the chosen numerical method and to have a numerical
solution to which the parallel solutions can be compared. However, converting a
serial code to a parallel code is usually not straightforward. For example, data
arrays usually need to be restructured since each process works with only a por-
tion of the data. Debugging is also more challenging since many processes are

. running simultaneously and data is passed between processes; “Totalview” is a

each \:ariable) but has all the 5. ¢ i _ common parallel debegger that can keep tract of w%lat each process is doing. For
difference derivatives in 7 can e . obvious reasons, it is usually good to debug using a very small number of

method requires FFTs ove :  Processes. o .
i ver the See examples of some common MPI routines in Appendix E.

“domain decomposition” is also critical; but the design de-
method. If a local method (like finite differences) is used,
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SUPPLEME
NTAL READING total and the number in the lower region three-quarters of the total, i.e., pro-

portional to the depths of the two regions. This “stacked” Chebyshev grid

. provides better resolution near the interface between the stable and unstable
regions and in the boundary layers at the top and bottom boundaries. Compare
the flow and temperature patterns obtained with the finite-difference method
on this nonuniform z-grid with those obtained with the finite-difference
method on a uniformz-grid having the same total number of z-levels. Use
a semi-implicit time integration scheme for both methods and a Az small
enough to satisfy the CFL constraints for both methods,

. Finite-difference solutions on nonuniform and coordinate-mapped grids
Simulate the problem described in the Finite-difference solutions on uniform
and nonuniform grids project but now using Chebyshev coordinate mappings
to uniform grids, &, in each of the two regions, as described in Section 9.2.
Use the same number of ¢ -levels in each region as z-levels for the nonuniform

EXERCISES method. Compare the flow and temperature patterns obtained with the finite-

' difference method on this mapped coordinate method with those obtained
with the finite-difference method on the nonuniform z-grid method, using
semi-implicit schemes with the same Af.

. Fully finite-difference method on nonuniform grids

Boyd (2001)

Chapman et al. (2007)
Durran (1 998)

Ferziger & Peri¢ (1997)
Fox & Parker (1968)
Griebel et al. (1 967)
Patankar (1 980)

Peyret (2002)

Press et al. (1992)
Slingerland & Kump (2011)
Snir et al. (1998)

1. Fz'm:te-diﬁ‘erence Jormulas on g nonuniform grid
Derive the coefficients defined in Egs. 9.5 for the finite-difference formulas
(9.3 and 9.4) on an arbitrary nonuniform grid.

- Test Chebyshey derivatives
Write a test program that computes the Chebyshev coefficients, f,,,
ddf,, of an arbitrary function of your choice, F(z;), that has known analytic

derivatives with Tespect to z. Then Chebyshey transform thege
-Space and compare the res

- Test Chebyshey integrals
Write a test program that computes the Chebyshey coefficients, £,
tegral coefficients, O, of some function, F(z;), that has a known analytic

Integral from z = ( to 1. Test how the error in the integral via Eq. 9.30 de-
pends on A,.

. Test the Chebyshey transform method
Qons&uct a function of your choice, F(z,), on a Chebyshev grid, 2, for a
given N;. Use Eq. 9.22 to calculate its Chebyshev coeffici
a reverse transform, Eq. 9.21, to calcul i
original z-dependent function. Show ho
ative to F(z;) depends on N, for several choices of F' (zz).

COMPUTATIONAL PROJECTS

1. Finite-difference solutions on uniform and nonuniform grids

Construct a fully finite-difference model of convection using nonuniform
grids in the x- and z-directions.

- Fully finite-difference method with q semi-implicit scheme

Starting with the Fully finite-difference method on nonuniform grids project,
treat the thermal and viscous diffusion with an implicit Crank-Nicolson time
integration scheme.

. Fully finite-difference vs. Fourier/finite-difference solutions

Compare a solution obtained using a fully finite-difference model of convec-
tion as described in Section 9.3 with that obtained using the original mode]
of Part 1. Set the number of horizontal grid points, Ny, equal to the num-
ber of horizontal Fourier modes, N, . Use either explicit or semi-implicit time
integration schemes for both methods.

. Finite-difference and Chebyshev spectral solutions

Simulate the problem described in the Finite-difference solutions on uniform
and nonuniform grids project but now using a Chebyshev collocation method
in each of the two regions, as described in Section 9.4.2. Use the same number
of z-levels in each region as used in the finite-difference non-uniform grid
method. Compare the flow and temperature patterns obtained with the spectral
Chebyshev collocation method with those obtained with the finite-difference
method on the nonuniform grid method, using semi-implicit schemes with the
same At.

- Fully finite-difference with constant heat flux through top boundary

Using a fully finite-difference method, implement a constant diffusive heat

flux boundary condition at the top boundary, keeping the bottom boundary
at a constant temperature. Note that ghost points will need to be employed
above the top boundary and the temperature equation will need to be solved
on that boundary level.




114

CHAPTE

8. Fully finite-difference with b
g ith background flow through bottom and top boy,

0  forx <(-2)x,,

4 F= 0 -2,
m) for(1-2)x, <x<a-(1-2zx,,

Aja forx >a— (1 —-2)x,.

Show that mass is conserved. Prescribe a time-dependent amplitude, 4
simulate a volcanic eruption into a convecting atmosphere S
- Fully finite-difference simulations of internal gravity wave:s
Rel?eat the Ir.ttemal gravity waves excited by a continuous central source
Ip;lr;)g;g; ‘descrlbed at the end the Chapter 6 using a fully finite-difference
. Fully ﬁi?ite-dzﬁerence simulations with nested grid
To pbtam higher spatial resolution within a portion of the computational do-
main, construct a “nested grid” in a chosen region of the interior of a 2D box
model qf convection. Double the resolution by adding grid points between
each pair of the original grid points and in the center of each original cell
That 1s, decrease Ax and Az each by a factor of 2 within this region Dur-.
ing eacb numerical time step, first update the solution on the coarse gri‘d and
then, using the updated values on the boundaries of the fine grid as the cur-
rent boundary conditions for the fine grid, solve the equations on the fine grid
The boundary conditions on the new grid points need to be interpolated frorri
tl}ose on the original grid points. When the fine grid solution is obtained for a
given tlme.step, update the coarse solution on those original grid points that
cqmmde with the grid points on the fine grid. Compare this nested simulation
w1t.h one that runs only on the original coarse grid, using the same time ste
which will need to be small enough to satisfy the constraints on the fine gng,

Boundaries and Geometries

egin this chapter by outlining how one can implement “absorbing” top and bot-
1 boundaries, which reduce the large-amplitude convectively driven flows within
ow boundary layers or the reflection of internal gravity waves off these bound-
es in a stable stratification. Then we focus on the side boundaries, outlining how
replace the impermeable side boundary conditions with permeable periodic side
undary conditions. This permits fluid fiow through these boundaries and nonzero
an flow, i.e., time-dependent horizontal flow that varies in the vertical direc-
{on but not in the horizontal direction. The model can then easily be converted
m cartesian box geometry to polar annulus geometry with gravitational accel-
tion directed toward the center of the annulus. This changes the model from a
mall-scale regional model, which is not significantly influenced by global curva-
ture, to a global model, albeit one that is still 2D. Then we describe how, with these
modifications, it is straightforward to also replace the Galerkin method for calculat-
ng nonlinear terms (in a spectral model) with a spectral-transform method, which
s much more efficient. Next we introduce “two and a half dimensional” (2.5D)
eometry within a cartesian box geometry for which there are now three compo-
ents of the fluid flow but all variables still depend on just two spatial coordinates;
¢ also outline how a fully 3D cartesian box model could be constructed. We fin-
sh this chapter with a description of a model of convection in a fully 3D giobal
pherical shell and how to easily reduce this to a 2.5D (axisymmetric) spherical-
hell model. For this we represent the horizontal structures in terms of spherical
armonic expansions.

10.1 ABSORBING TOP AND BOTTOM BOUNDARIES

Convection in the Earth’s outer fiuid core is confined by impermeable top and bot-
tom boundaries; however, planetary and stellar atmospheres do not have imperme-
able top boundaries. Therefore, an impermeable boundary condition is not always
very realistic for the problem being simulated. Within an atmosphere, rising con-
vective plumes should not be artificially forced to “splash” against a fixed imper-
meable boundary and be converted into a shallow, high-speed horizontal flow along
such a boundary. Likewise, in a stable stratification, upward-propagating internal
gravity waves should not be artificially reflected downward by such a boundary.
Several methods have been developed to reduce these problems. The methods
attempt to simulate “open boundaries,” through which mass and energy can flow
without a periodicity constraint (see, for example, Durran, 1998). A simple example
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sponge boundaries.” T
ond the region of intereg

””

ways to implement a sponge layer.

One way is to gradually increase the viscou
tance beyond the (internal) boundary of the region of interest, i.e., with distanc
into the sponge layer. For example, to produce a sponge layer of thickness § at both
the top and bottom boundaries define the viscous diffusivity as

v@=%0+§p+mq§ﬂ)

=y, for§ <z < (D-9),
A D—
=, <1+5[1+cos<¥)]) for(D-8)<z<D

and likewise for the thermal diffusivity. The usual impermeable and stress-free
boundary conditions are applied at z = 0 and D, which are the exterior edges of
the sponge layers.

The amplitude of the relative increase, 4, in diffusivities across the sponge lay-
ers, and the thickness of the layer, 8, need to be adjusted for a given scenario and
desired effect. A reasonable first attempt would be to set 4 = 10 and § = D/4.
To avoid a severe constraint on the size of the numerical time step (Eq. 2.19), the
viscous and thermal diffusion should be treated implicitly (Section 8.2).

Another way to damp the disturbances within a sponge layer is to employ
“Rayleigh damping” by adding a term to the right sides of the temperature and

vorticity equations (2.10 and 2.1 1) that reduces the amplitude of the variable. For
example, add

for0 <z <3,

a)n(Zi t)
4

to the right side of the vorticity equation, where the time scale, 7, is defined as

c= g [t (5]

=0 foré <z < (D-§),

=§[1+cos(%)] for (D—-8) <z<D.

for0 <z <3,

A similar expression would be added to the right side of the temperature equation.
Again, the values of the parameters A and § need to be chosen for a desired effect
and the usual impermeable and stress-free boundary conditions are applied at the
bottom and top boundaries of the full domain. Of course, the solution should be
analyzed only within § < <(D-9).

ARIES AND GEOMETRIES

ERMEABLE PERIODIC SIDE BOUNDARIES

scussed in Chapter 2, the Boussinesq approximation (V-v = 0) in 2D al-
us to define a streamfunction, v, the spatial derivatives of which give“, the
omponents of the fluid velocity (Eqgs. 2.6). Now we wish to allow ﬂu1.d to
n and out of the side boundaries with the only constraint being that the time-
dent flow and temperature profiles in z on the two side boundaries always
identical or, instead of duplicating that location in x, the left and righ? sides
uld be treated as being adjacent to each other. That is, the side boundaries are
fodic.
:gz)dic side boundaries for a finite-difference method in the x-direction are
ively easy to implement. Instead of imposing fixed boundary conditions on the
s, calculate the first- and second-order derivatives in x on the left side boundary,
in terms of the function values at x N,» X1, and x,. Likewise, derivatives on the
t side boundary, xy_, are written in terms of XN,—1, Xn,, and x1.
Periodic side boundaries for our spectral method in the x-direction requires fu}l
ourier expansions in x over the length of the box, L (or the aspect ratio a if nondi-
ensional), that corresponds to multiples of 27

N
V@50 = Y Yulz,£) STE

m=—N,,

ote, here m is the horizontal mode number instead of n, which is the symbol used
to this point. We make this switch in anticipation of the conversion (later in

s chapter) to cylindrical and then spherical geometry for WhiCh‘n.'l is the more
frequently used symbol for the longitudinal mode number. In addition, the sym-
bol 7 is the commonly used symbol for the polytropic index, which we use to
describe density stratification in the vertical direction in Chapter 12. The symbol
/ in the above equation is the imaginary number »/—1. The wavenumber is now
m = 27tm /L (or 2wm /a if nondimensional, instead of 7m /a as it has been for the
box with impermeable side boundaries) so each mode will exactly span an integral
number of wavelengths within the box, making the side boundaries periodic. Like-
wise, the temperature and vorticity are now represented as full Fourier functions

X,

For ¥ (x, z, t) to be real (opposed to a complex number) the coefficients v, (z, 7)
need to be complex with the constraint that the imaginary contributions in the sum-
mation cancel out. That is,

Yo = ﬁ,

(Where the % is the complex conjugate of ¥,,); so for each pair of modes, m and
—m (form > 0),

w—m e—Zm’mx/L +wm eZm’mx/L_:(_wm eZm’mx/L)* + ('l,/fm eZm‘mx/L)
=2 Re (w_m eZiTimx/L)
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(where here Re(f) is the real part of a complex function f). For m = (,
purely real. Therefore,

N
W(x,z,t)=vo(z, £) +2 Z Re (wm (z, 1) eZn’imx/L)
m=1
No
=2 Z Re (Y (z, 1) eZm’mx/L) ,

m=0

where the single prime on the summation symbol means that the first term in the
series (i.e., m = 0) is multiplied by 1/2. Likewise, :

N
T(x,z,t) = ZZ’ Re (Tm (z, 1) eZﬂimx/L)

m=0

Nm
w(x,z,t) =2 ZI Re (0n(z, 1) 71
m=0
Note that an alternative to complex variables is to use double summations; that is,
each variable would need to be expanded in both sines and cosines. The relationship
between a single summation with complex coefficients and a double summation of
real coefficients can be seen by noting that the right side of Eq. 10.1 equals
N
/
Yix,z,1) = Z [wm,cos(z’ t) COS(Z]U’VUC/L) + Ym,sin(2, 1) sin(2n'mx/L)] s
m=0
(10.4a)
where the two real coefficients for each value of m are
Vm,cos(2, 1) = 2Re (Ym (2, 1)) , (10.4b)

Ym,sin(2, 1) = —2Im (Y (2, 1)) . (10.4¢)
However, the complex variable formulation, which we use here, is recommended
over the double summation because the “bookkeeping” is much simpler and pro-
gramming languages easily provide for complex arrays and operations. Of course,
the T,,, w, and ¥, arrays would need to be declared complex in the code. Note,
the m = 0 modes would be included in these complex arrays but would have a zero
imaginary part.

The two components of the fluid velocity are therefore

J

Nn
] ’ 3¢m i
=" =2 R wimx/L
vx az mg(:) € (-—az 4

Nm

Yy ! 2mim Simx/L
vzz—a—)—c-=2m2:R6< 7 Y €27IMF )

=1
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i s mpermeable side boundaries, NOW vy has an x-independent
;, I;l:lrtﬂfeizlslznguid can flow through the sides. That is, the x-averaged
a1 velocity is —9¥0/92, which can be a function of z and £. The x-averageig
i\zelocity, however, vanishes for all z an.d t becaussa ot.herwme massbwou
conserved for this incompressible fluid in a box with impermeable bottom
boundaries. o
wise, the y-component of vorticity is now

eZn'imx/L) , (10.7)

2 2
2mm “Vm 10.8
wm=—(T) Ym+ 7 (10.8)

i i i ither does wo.
e, since Yo no longer necessarily vamshgs, neit ‘ )
zf:(;rthe bottom and top boundaries are still impermeable, v, vanishes at z =
and D; therefore, by Eq. 10.6, Y = 0atz=0and D fo_r alm > 0. F(?r the
" 0 mode we consider the total momentum in the x-direction (per length in the

direction), which is

D/va dx dz = —poL/D%dZ= — poL (Wo(D) — $o(0)) -
Jo Jo 7 o 9z

. ce the bottom and top boundaries are tangentially stress-free an@ there are 1o
sternal forces, this total x-component of momentum needs to r?mmq constant‘ in
ine For convenience, we choose a frame of reference in which it Va}nlshes, which
:eans that Yo(D) = ¥o(0) for all times; and we choose their arbitrary value to
& 0. Therefore, for all m = 0,

¥p=0 at z = 0 and D.

In addition, the stress-free bottom and top boundary conditions (3v,/9z = 0) mean
that, by Eq. 10.5,

2
Ym _ at z = Oand D.

Given these boundary conditions on Y¥m, Eq. 10.8 forces
w=0 at z = Oand D.

These bottom and top boundary conditions on T/,'” and wy, are the sahrge as tho;e
for the impermeable—side—boundary case. Likewise the boundary conditions on Iy
ed. o

haﬁz(?—zgiiiiﬁves in these equations can be computgd by usipg a ﬁm.te-dlfference
method on a uniform grid (Section 2.3) oron a npnumform grid (Se;c‘uons 9.1,9.2)
or by using a Chebyshev spectral method (Section 9.4). The nonlinear termsﬁclag
be computed via a Galerkin method (Section '4.2) ora spectra}-tragsform Fne 0

(Section 10.4), which is presented later in this chapter. The time integration can
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Figure 10. i

gure 10.1 g(l:rez Sflapshots of a Boussinesq simulation with permeable periodic sid
etel;;] ane; (see Co7lor Plate 2 for a color version of this figure). The parame
: 0173.2;:1(1 (a)T) 110 , Pr = .1, apd a= 2. The snapshots are at (2) 0.01, (b)
résent,e and tﬁe I.ftthelrmal diffusion times. The temperature perturbation is ,rep
ett column with maximum valye (1) being d ini ,
value (0) in dark blue. The corres i ines o Potiod o

. . ponding streamlines are plotted i
with broken lines representin i cond-onder o

/ g counterclockwise flow. A d i
difference method on a uniform i i 56) 1 employed s

: vertical grid (N, = 256) is emploved wi

2111 Fourier spectral method in the horizontal direction (N, = 515 ]\}; =Wll’t7}(l))a
ﬁoipiesc?rzil-traltlsgo.rm method is used to compute the nonlinear terrrls f[‘he solu.
Integrated in time with a semi-implicit time j i : ing 2
(nondimensional) numerical time step oprt = 10(E7mtegratmn weheme using

?)e done by using an explicit scheme (Sections 2.4, 8.1, 8.3), or by using a semi

implicit scheme (Sections 8.2, 8.3). Of course, modifications need to be made to

having nonzero x-independent (m = 0) modes.

. ;;\rlészizgpilj I(;f C(;nvectlor} in a box W'ith permeable periodic side boundaries
RS Prandtllg. 0.1. This is a Boussinesq simulation with Rayleigh number
- snap,ShOtS ) {mmber l?r = 13 and an aspect ratio of @ = 2. The figure shows
(D oy, s uring the 51mu1aU(?n, which spans 0.1 of a thermal diffusion time
SnapSh(;t‘ g ﬁirgfzflztgzﬁofze(rg;bellgoln )a?d the sgeamfunction are shown at each
‘ - 1U.1a) 1s at nondimensional time 0.01 and sh
a palr‘of well-developed upwelling and downwellin initially appout
to be in steady state. However, it is an unstable equ%li%lgumrf grlg:ﬂlln;t:)?iley(zll)liez
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Mean temperature Mean horizontal velocity

z 0 z

e 10.2 The horizontally averaged temperature and horizontal velocity profiles at the
final snapshot (¢ = 0.1) illustrated in Fig. 10.1.

‘ncation errors) causes these plumes to slowly deform and then drift, the lower
arts to the right and the upper parts to the left (in this case). The iilt in the flow
ttern produces negative Reynolds stresses (ovyV;); that is, positive x-momentum
transported in the negative z-direction and negative x-momentum is transported
the positive z-direction (Fig. 10.1b, at time 0.017). The convergence of this non-
ear momentum flux drives an x-independent (i.e., mean, m = 0) x-component
momentum to the left (i.e., negative momentum) in the upper part of the box and
mean x-component of momentum to the right in the lower part. The final con-
figuration (Fig. 10.1c, at time 0.1) is a superposition of tilted plumes in extended
convective boundary layers that are advected by the mean horizontal flow, which
is sheared in the z-direction (Fig. 10.2). That is, fluid flows to the left (negative
mean v, ) near the top boundary (z = 1) and to the right near the bottom bound-
ary (z = 0). However, its direction reverses at five different heights. The greatest
shears in the z-direction of the mean horizontal velocity (8 < v, >/3z) occur in the
extended boundary layers. The pattern of the streamfunction in these boundary lay-

. ers (at the final configuration) is that of a characteristic Kelvin-Helmholtz (shear)
instability (e.g., Kundu & Cohen, 2008). This boundary layer convection slightly

flattens the mean temperature profile (Fig. 10.2) in these regions. Outside the
boundary layers the z-derivatives of 7 and v, are nearly constant, which mini-
mizes both thermal and viscous diffusion in this middle region. Note, the directions
in which the plumes initially drift, which ultimately determines the directions of
the final mean flows in the upper and lower parts, are randomly determined by
the noise. This example demonstrates how important it is to run a simulation for
enough time, possibly a diffusion time or more depending on the Rayleigh number,
before concluding that the solution is really in a stable steady state.

Alternatively, one may wish to suppress any mean horizontal flow within the
computational box to avoid its dominance over the eddies or, for example, to simu-
late only a small region within a larger aspect-ratio box that has impermeable side
boundaries far from the computational domain. Such suppression of the mean flow
can easily be done by maintaining w,—¢ = 0 and ¥,—0 = O atall z and ¢. Likewise,
the mean horizontal magnetic field could be suppressed by maintaining 4,—o = 0
and J,,—g = 0 (Chapter 11).
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Figure 10.3 A sketch of an equatorial annulus with cylindrical coordinates 7 and ¢ ang

radial, 7, and longitudinal, ¢, unit vectors indicated at the current position. The
z-axis is directed outward, normal to this plane.

10.3 2D ANNULUS GEOMETRY

A model of a 2D box of fluid with periodic side boundaries can be converted into
a 2D annulus of fluid in which gravi

ward th i

flow or

13.3) is the name “equatorial plane” ; unti we simply
mean an arbitrary plane containing the center of the body, the origin of our coor-
dinate system. As can be seen in Fig. 10.3, we now switch from cartesian coordj-
nates to cylindrical coordinates: 7 for cylindrical radius with N, radial levels, ¢ for
longitude with Ny longitudinal levels, and z now for the direction normal to the
plane of the flow. If we wished to work with nondimensional variables, the length
scale could be the radius of the top boundary, D = %i0p; SO the nondimensional
top radius would be unity and the bottom radius would be #,,/ Ttop. An alternative

would be to choose the depth of the annulus, D = Ftop — Tpot, as the length scale.
Here we work with dimensional variables,

10.3.1 2D Annulus: Equations

With the convective domain now representing much of the body’s equatorial plane,
we can no longer assume that the reference state gravitational acceleration,

& = —gF, has a constant amplitude. For a reference state that depends

{ES AND GEOMETRIES

V.g=-4nGp,

~ 1o the gravitational constant and p is the reference.state density, whlih
e grfunction of r, especially for stars and gas giant planets. Densi y
Oﬂ}d b'e p sidered in éhapter 12; here we continue to I.nake the 'BoquS1-
 oximation and so the reference state density is assumed md§pendent ofr.
PfOleaitlllon ork in cylindrical coordinates, we are interested in the ejquato—
'ugh w?ﬂz a“; herical planet or star. Therefore we compute g(r) u?mg the

;ii:gperr;tor Ii)n spherical coordinates assuming spherical symmetry:

A — 9B _ _4rgp.
r: or

equently, the amplitude of the gravitational acceleration is
_ 4G [T _ 4
g =—3 /0 pr-dr,

ich, for constant p, is

AnGp 10.10)
gy =——r (
con-
re we have assumed that the core below the .bo‘ttom boundlaryf ltllallisstg:nsa:;e;ly "
tc t density as that of the convecting fluid within the annu u:,l et 5
‘andiﬁed if desired by prescribing the total mass of the central co f ote that 2
o being a function of » means that one needs to choose a value o ga1 e o
tl; Wdelillrrxli%ion of the Rayleigh number. For exampleii. :1 001171;11:); ;:C\;V:r o
i 1d be a radial or ;
dary or top boundary or it cou 0 - .
zg(c):rl?oli):euga:rybecome a standard. We will choose theﬁvallllle ;)If gtz;ttirén:qgﬁpi)& -
tion still satisfies hydros ,
The reference state momentum equation still . :
which appears the same in spherical and cylindrical coordinates:

b _ —gp (10.11)
dr
0 i me
In Chapter 12 we consider a radially dependent p; but here we continue to assume

t reference state density, . o o R
: C\?\gﬁose to solve the fluid dynamics equations in cylindrical coordinate:

the equatorial plane. Therefore the streamfunction, ¥, is defined by
19y, 0Oy~

V=YY= st T

and so the velocity components are

8 E 3 L¢ 8 and V7 O' (10'12a7b’c)
p . N
I Ile 2,' ) assum on SO CO. str al deIlVathe eSpC (8] (4]

v
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Instantaneous “streamlines”
the z-direction is

o ¥y 19
= V"’*(%ﬂ?a‘w
;

Now consider the bound
(vr = 0); so

oY
£=O at  rp, and Tiop-

Therefore, as is done in Section 10.2, we set

v=0 at Vpor

Our .boundaries are also stress-
gradient of the angular velocity:

0= vy /r) _ *1 %y 1 oY
P P T Rtrwe al 75y and 7,
, » (10.16)
These two conditions on each
force the vorticity on the bound

>

boundary (Egs. 10.15 and 10.16

boundary ) with Eq. 10.13

~_g%_2v¢

it there, Consequently,
the vorticity equation in this cyli

twice the angular i

bor scome tri velocity unlike the solution method for the
. drical

amfy g . n geometry cannot be so]

simultaneously Witlrll nglo Iflollslrullﬁate(;i Via B, 10.13; instead, both need to be :gl\‘::g

on . undary conditions (Eqs. 10.15 and 10.16) placed

. As discussed in Section 10.2, these e
dlffere{lce method in longitude, carefu
derivatives at ¢ = ( and

quations could be solved by using a finite-
Ily constructing the continuous horizontal
ng a full Fourier spectral method in longi-
ng 27x /L in Section 10.2 with Iongitudegd)

27, or by usi

Nm
T(r¢,0)=2) " Re(T,(r, ) em?y
=0

Ny
o ¢, 1) =2 Z/Re (0n(r, 1) eim¢) ,
m=0

Nm
V(¢ 0=23 " Re (Y, 1) ™).
m=0
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Egs. 10.12, we have

Ny
2 e . ;
v == :z; Re (imy, €™?) (10.18)

(10.19)

tuting these expressions into the temperature, vorticity, and streamfunction
ons (noting the orthogonality of the Fourier functions) gives the following
dimensional spectral equations for the annulus:

8T, 19T, m* Tm) ,

_[V.VT]m-l—K(—"‘—+ )
v

Loy 10.20
orz  r or ( )

2w,
ar?

2 2
o (a Un  10¥m _ ’:’_2,,,”,) , (10.22)

ar? r or

ince there is no term linear in ¥ or w in Eq. 10.20, we can update, at each
umerical time step, all the 7,, before the w, and v, are updated. Any of the
time integration schemes described in Chapter 8 could be used. Here we choose a
econd-order semi-implicit time integration scheme, which treats the linear terms

9T, 18T, m?
e (s 2] -
or r or ¥ t+AL

At K (asz 19T, sz )
t

) ., (1021)

T or? I"—a—l’_'——r_zm

A
7’ (BIV- VT = V- VTl roar) (10.23)

This can be solved via the collocation method outlined in Section 8.2 using the
usual temperature boundary conditions: form > 0 I, =0 andform =0Ty =1
at rp,, and 0 at 7,, for convection or vice versa for internal gravity waves. Note
that the solution, T 4, and the right-hand side are complex vectors. However,
each N, x N, matrix operating on T}, ;. (left side of Eq. 10.23), if using either a
finite-difference method or a Chebyshev spectral method in radius, is real (i.e., not
complex). Therefore, the real and imaginary parts of T, (for each mode m) could
be updated separately via Eq. 10.23 and then combined again (at each time step)
into the complex T,

Now consider w,, and ¥,,. The impermeable boundary condition at 75, and 7yop
(Eq. 10.14) does not require the axisymmetric part of the streamfunction, ¥, to
vanish on the boundaries because the axisymmetric part (m = 0) of v, vanishes




126 :
CHAPTE;

everywhere (Eg. 10.18). However, we have arbitraril
aries (Eq. 10.15), which make Y set o to zero on both bou

. s the total angular momen i -directj
length in the z-direction) be ¢ p i e &~ direction

/2n /topp ) er,, d¢ top 3100 ) top
0 Joor 107 - -—27rp,,/b0t ?rd”:‘l'm%/ Yo r dr
bot

0,

Ym =0, (10.253)
3%,

| e PRy . (10.25b)
Sometimes, when employing stress-free boundary conditions with no

torques, one wishes to force the t

matrix operator, The top
ticity equatjon,

Atga Im(T sy nr + Lot)
—=_Vmi A T dmy)
r 2

At
> Bv-Vol,, ~[v- Vol ), (10.26)
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bottom N, rows represent the streamfunction equation,

2 v
W + (a L + =0. (10.27)
ar? r

ng the top half of the solution vector as the radial values (or Chebyshev

s) of wy, and the bottom half as the values of v, make the top-right quad-

f the matrix operator completely zeros since the vorticity equation has no

terms involving v, ; the bottom two quadrants would both be nonzero since
eamfunction equation involves linear terms in both w,, and v,,.

tice how updating the temperature first allows us to effectively treat the buoy-

erm in Eq. 10.26 implicitly. That is, the average value of the temperatures

e t and ¢ + At is used and included in the right-hand-side vector. If, on the

1 hand, a modified problem introduced linear terms in the temperature equation

tving w,, Or Yy, all three equations (10.23, 10.26, and 10.27) could be solved
ultaneously using a 3N, x 3N, matrix operator for each mode m.

ow consider the boundary conditions (Egs. 10.25), which involve only v. The

ermeable conditions (v, = 0) can be imposed on the top and bottom rows of

top-right quadrant, instead of forcing the vorticity equation to be satisfied on

¢ boundaries. The stress-free conditions involve radial derivatives, which require

host points in the streamfunction equation on the top and bottom boundaries if

ing a finite-difference method. If, on the other hand, a Chebyshev spectral method

ere employed, this boundary condition could easily be represented as a series

Chebyshev coefficients (Section 9.4). In addition, element 1 and elements N,

ough 2N, in the right-hand-side vector need to be set to zero.
The nonlinear terms can be computed each time step via a Galerkin method;
wever, employing a spectral-transform method (Section 10.4) is recommended

10.3.3 2D Annulus: Influence Matrix Solution Method

An alternative method of solving the coupled vorticity-streamfunction system, Egs.
10.26 and 10.27 with boundary conditions 10.25, without solving one 2N, x 2N,
matrix equation per mode per time step is to use the influence matrix method (eg.,
Peyret, 2002), which instead requires two N, x N, matrix solutions. The point here
is to take advantage of the linear properties of the system, the nonlinear terms being
part of the known forcing term.

To simplify the notation, we write Eq. 10.26 as

L,w=rhs (10.28)
and Eq. 10.27 as
Ly = ~w, (10.29)

where L, and Ly are the linear operators with up to second-order derivatives in
radius and here w = w,(r, ¢t + Af) and ¥ = ¥, (r, ¢ + Af). The four boundary
conditions are

v=0 at 7y and 7y, (10.30)
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The first step is to solve Egs. 10.28 and 10.29 for a temporary solution, (wy, v
that satisfies the boundary conditions: ,

w1 =0 at ry and Frop
and
Yi=0 at 1y and 7y,

1.e.3 the same boundary condition as on 1, (Egs. 10.30). Since both equations have
their own separate boundary conditions, this is easily done by first solving Eq. 10.28
to get w; as a function of radius and then using this w; in Eq. 10.29 to get Y asa
function of radius.

The second step is to solve the homogeneous version of Eq. 10.28,
Lwa)z = 0,
with boundary conditions
w=0 at ry
and
wy=1 at rpy.
Then use this w; to solve Eq. 10.29 to get v, again using boundary conditions
Yo=0 at 7y and top-
The third step is to again solve the homogeneous version of Eq. 10.28,
Lwa)3 = 0,
but now with boundary conditions
w3=1 at ry
and
w3 = 0 at Voot «
Then use this w3 to solve Eq. 10.29 to get 3, again using boundary conditions
Y3=0 at rp and Frop.

The actual solutions are then linear combinations of the three temporary
solutions,

o = + 1wy + w3

T/I = 1#1 + 01102 + s,
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satisfies the first set of desired boundary conditions on v, Eqs. 10.30. The
set of desired boundary conditions on v, Eqs. 10.31, requires

2 2
_ lﬁﬂ) te (‘”’2 - lﬂ%) +c2(a ¥s _ 1%) =0 (10.32)

r or ar? r or ar? r or

o and 71p. The coefficients, ¢; and c,, are then easily determined from this
f two algebraic equations, Eqs. 10.32, which is called the influence matrix,
everything else in these two equations is now known (after taking the radial
satives of the temporary solutions ¥y, ¥, and 3 at the two boundaries).
ote, the homogeneous solutions, (@, ¥2) and (w3, ¥3), do not depend on time;
s, they do not depend on the time-dependent forcing term, r4s. Therefore, they
their contributions to Eqs. 10.32 need to be solved only once and stored, be-
the time integration begins. Thus, as mentioned, this influence matrix method
ces the one 2N, x 2N, matrix solution per mode per time step (required for
& direct matrix method) with two N, x N, matrix solutions.
‘A modification to this method would be to apply

2 2
Py l?ﬂ) _ (aa:? _ 13_‘”_2) _ (a Vs 1%) —0  (1033)

ar2 r or or? r or

rpor and ryop in steps 1-3, respectively, instead of
Y=Y =v3=0 (10.34)

rbot and 71,p. Then the influence matrix, from which ¢; and ¢, can be obtained,

Y1+ iy + oty = 0.

).3.4 2D Annulus: Simulation

s an example, consider a Boussinesq simulation of thermal convection in a 2D
ulus with central gravity having a Rayleigh number Ra = 10'!, Prandtl number

= 0.2, and 7po¢/10p = 0.2. A Chebyshev-Fourier spectral method (Section 9.4)
used with a semi-implicit time integration scheme (Section 8.2) and a spectral-
ansform method to compute the nonlinear terms (Section 10.4). The spatial reso-
ution for this case is Ny = 4096 and N, = 1537, i.e., Fourier modes up to 1365
(Section 10.4) and Chebyshev modes up to 1536. The code was run in parallel using

‘MPI (Section 9.5.2) on 512 processors.

Figure 10.4 is a snapshot of the temperature perturbation near the beginning of
simulation. As seen in this image, one plume is dominant at this early stage; it
brings cold (blue) fluid down on one side of the hot bottom boundary and takes




Figure 104 A snapshot of temperature for a Boussinesq simulation of thermal convection

in a 2D annulus (see Color Plate 3 for a color version of this figure). The
parameters for this case are Ra — 101, pr = 0.2, and 74, /Ttop = 0.2. Yellows

represent hot fluid and blues fepresent cold fluid relative to the background
temperature,

heat.ed (vellow) fluid up from the other side. This dipolar flow pattern is the most
efﬁmept me_tl;(?d of transporting heat from the bottom to the top boundary before
shear instabilities break up this pattern into small-scale turbulence, However, there

continues to be a tendency for a large-scale dipolar flow co
scale turbulent eddies. Th y i oy small-

initial

104 SPECTRAL-TRANSFORM METHOD

The Galerkin method (describe,

X d'in Part 1) for calculating the nonlin t
time step certainly works and £ car terms every

nicely illustrates how energy is transferred between
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owever, the amount of computation increases rapidly with the number of
ince convection is turbulent in planetary and stellar interiors, more realis-
ations require significant spatial resolution, i.e., a large number of spectral
It was shown years ago (Eliasen et al., 1970; Orszag, 1970) that a spectral-
rm method is much more efficient than a Galerkin method when the number
des exceeds roughly 10. The objective here is to obtain the spectral coeffi-
for a nonlinear product of two dependent variables, i.e., a quadratic nonlinear
The process is to transform the two variables from spectral (mode) space to
ical (grid) space, simply multiply them together in physical space, and then
form that product back to spectral space. Although more programming is in-
in this method, it is much faster than the Galerkin method when fast Fourier
forms (FFTs; Cooley & Tukey, 1965) are employed. Note, this method is of-
so called a “pseudo-spectral” method; this name, however, is usually reserved
e method that does the time integration in physical space and goes to spectral
e and back each time step to accurately compute the spatial derivatives (instead
using something like a finite-difference method in physical space). In contrast,
spectral-transform method, which is described here for the horizontal direction,
s the time integration in spectral space. As mentioned, Canuto et al. (1988),
d (2001), and Peyret (2002) review spectral methods.
onsider a function F(x) on 0 < x < L that is periodic, i.e., F(0) = F(L)
d likewise each of its derivatives at x = 0 equals that at x = L. If modeling an
nulus instead of a box, let F(¢) beon 0 < ¢ < 27. As usual, define a discrete
orm grid, x; = L(j — 1)/N,, where J =1— N, for a box or, for an annulus,
fine ¢; = 27(j — 1)/Ny with j = 1 — Ny. Note that in the computations
pposed to the graphics) the function at x = 7, (or at ¢ = 2x) is not allocated.
te also that one could choose to start counting grid points at j = 0 and end at
— 1, in which case the (j — 1) above would be replaced by j. Here we choose
start counting at 1.
. Asin Sections 10.2 and 10.3, we want all functions in physical space to be real;
0 the complex Fourier coefficients Jm of the real function F are constrained by
A Jm- That s, for a periodic box the complex-to-real Fourier transform, which
ould be used to transform variables from spectral to physical space, is

Nm
Fapznt)= 3 fular) emmoit

m=—N,,

Nm
= 55ty mmso

m=—N,,

]Vm
=2 ""Re (fu(zi, 1) eZHimU=D/1) (10.35)
m=0
and for an annulus is
N,

F(j re,t) =2 Z/ Re (fon (1, £) €27imU=D/Ns) (10.36)

m=0




N,
1 x
fm (Zk, t) = -]\Z -5' F(‘xj5 st t) e—znim(j—l)/Nx
Jj=1

and for an annulus is

N,
1 4
Ity = j}_lf F(@y, 1y, 1) e 20imG-1/N,

products , IVy would need t i.e., the num
er of different m modes from —N,, to +N,. If, however, two modes ’both witl;

" . .
Ny were transformed to physical space, their product would involve a contri-

bution from m = 2Nn, as can be seen from Egs. 4.1 or simply by considering

eim1¢eimz¢ — ei(m1+m2)¢’

wheiej: my = my = Np. Adding this nonlinear term to the soluti
]v\&;ous C(})lntarmna‘te tl}f: sqlution, which is only represented by modes with |m| <
2 ,,; ;id::i: l:oaﬂslolutllon‘ 1s said to be “aliased”” The problem is that additional energ;r
i € solution each time step, which can i i
o spn Philips (19891 cause the numerical solution to
(so the quadratic nonlinear term
thfa part of this nonlinear term tha
aliased” solution, Orszag (1971a) later noticed that if just 3§, + 1 grid points were

ushe.d in physi.cal space, the aliasing would affect only those modes with im| > N,
which are being filtered out anyway (e.g., Boyd, 2001). Therefore, set "

on each time step

Nx23Nm+1

and likewise for Ny if an annulus,
The average amplitude of F is simply

1 L
Z/o F(x)dx = f;

or, for an annulus replace L with 27 i
: us, and x with ¢. Another convenient fo
calculating horizontally averaged variances and energies is rntor

1t Ny
z/ﬁ F®de = f+23 111
m=]

and likewise for an annulus.
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AND 2.5D CARTESIAN BOX GEOMETRY

del that solves for all three components of the fluid flow (and magnetic
but with dependence on only two of the three coordinate directions is said
a two and a half dimensional (2.5D) model. Note, a “2.5D model” has also
defined by some authors as one that has one Fourier mode in the third co-
te direction; but here we define it as having no dependence in the third
on.

ere we briefly outline what modifications would need to be made to our 2D
ian box model to convert it to a 2.5D model with cartesian coordinates x,

and z. As in our 2D models, the gravitational acceleration is in the negative

irection; but now fiuid velocity is

v=0X+v,J+v.2Z (10.39)

all velocity components and thermodynamic variables being functions of only

and ¢. Such a configuration is mainly employed when the equations are solved

rotating frame of reference (Chapter 13) with the axis of rotation in the z-
ection so Coriolis forces, resulting from flows in the x-direction, drive flows in
¢ y-direction.

Consider, for example, a small region of a sphere with the z-direction being

e local radial direction (i.e., upward), the x-direction being the local colatitude

ection (i.e., southward), and the y-direction being the local longitudinal direction

e., eastward). We are again assuming the size of this box is small relative to the

dius of the spherical body so we can neglect the spherical curvature. Note that

nless the body is rotating the south and east directions are arbitrary.

We start with the same 2D Boussinesq formulation that we employ in Part 1 and
Section 10.2, vorticity (w,) and streamfunction (¢), both in the y-direction, and
temperature perturbation (7). To this we add another variable, the velocity in the
y-direction (v,), and another equation, the momentum equation in the y-direction.
Therefore, the fluid velocity is

V= Vxy§+ v, (10.40)

As can easily be seen, Eq. 10.40 forces mass conservation everywhere, Eq. 1.15.
The y-component of vorticity is related to the streamfunction in the same way it is
in the 2D formulation, Eq. 2.7. However, now vorticity also has components in the

x- and z-directions:
] ]
% and o, = 22, (10.41a,b)

=" = ox

. Using Egs. 10.41 and that 3/3y = 0, one can easily show that the vorticity equation

in the y-direction is also the same as it is for a strictly 2D box, Eq. 2.4. That is,
unless there is a Coriolis term (Chapter 13), the equation for 0w, /0t is not affected
by v,. Likewise, the energy equation is unchanged, Eq. 1.17.

The additional equation, the y-component of the momentum equation (1.16), for
this 2.5D formulation, assuming no Coriolis force, is simply

(10.42)
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This equation needs boundary conditions. For al] boundaries being impermeabr
and stress-free set

8vy
<=0 at x =0and ¢
Jx
and set
dv,

= =0 at z=0and 1.
0z

Therefc?re, to satisfy the side boundary conditions, expand v y and w, in cos(nrwx /a)
a‘nd w; M sin(nmx /a). Permeable side boundaries would require full Fourier expan-
sions (Section 10.2).

NoFe, if vy is initially zero everywhere, Eq. 10.42 shows that vy, will remain
Zer0, 1.e., the solution is strictly 2D. If, on the other hand, the initial vy iS set to be
nonzero (for example, proportional to cos 77z), the x and # components of the flow
yvill advect v, around as vy, viscously diffuses away. Therefore, this 2.5D problem
1s not very interesting unless there is a Coriolis force (Chapter 13). For example, if
the planetary rotation vector is in the z-direction, there is a Coriolis force drivi,ng
vy due to vy and a Coriolis force driving v, due to v,

In preparation for Section 10.6, consider an alternative to the “vorticity-stream-

fl.mction” representation for this 2.5D box formulation. Instead of Eq. 10.40, let the
divergence-free velocity be defined as ‘

V=VxVxW3+ VxZ3, (10.43)

wher§ W is the poloidal velocity scalar and Z is the toroidal velocity scalar, both
functions of X, ¥, z, and ¢ if fully 3D or of X, z, and ¢ if 2.5D. Like Eq. 10.40,

Eq. 10.43 also forces mass conservation, i.e., makes the velocity divergence-free
everywhere. In 3D, the three Components of Eq. 10.43 are
_ PW 9z

Vy = JE—
* = dxoz T ay’

(10.442)
_PW sz

v, = - =
= 50 T i (10.44b)

v, = —VZW, (10.44c)
where VZ = 82/9x2 + 8%/ The three components of the curl of Eq. 10.43 are
IVIW 327
—_—_ + -,

dy 0xdz
IVEIW + 8?7
0x 9ydz’
(Vxv),=-Vv%7;
and the z-component of the double curl of Eq. 10.43 is

(Vxv), =—

(Vxv), =

(VXVxv), = V2 vy,
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ping all terms in Eqs. 10.44 with a 8/9y gives a 2.5D representation, which
n compared to Eq. 10.40 shows that
aw 0Z
ax v and ax
If W and Z were expanded in Fourier functions in x, which are the eigenfunc-
ns of the Laplacian operator in x, it would be straightforward to update W, (z, ¢)
the z-component of the momentum equation and Z,(z, t) via the z-component
the curl of the momentum equation. The z-component of the double curl of the
mentum equation is sometimes used instead of the z-component of the momen-
equation to avoid having to solve for the pressure when updating W, (z, ). If a
ctly 2D model were desired, the toroidal scalar, Z, would be set to zero and only
poloidal scalar, W, would be needed.
~ Note that it would also be straightforward to make a fully 3D cartesian box model
ith periodic side boundaries by representing the structures in both x and y by
ourier expansions and using, for example, either Chebyshev polynomial expan-
ions or finite differences in the z-direction. One could also make the box periodic
all three dimensions by using Fourier expansions in all directions; or one could
ake all six boundaries impermeable by using Chebyshev polynomial expansions
r finite differences in all directions.
We conclude by mentioning that, if a magnetic field (Chapter 11) were included,
2.5D model would need to represent it with equations similar to Egs. 10.40 and

—v,. (10.45a,b)

1043, where ¥ would be replaced with the vector potential, 4, v, by B, and

the poloidal and toroidal scalars by corresponding poloidal and toroidal magnetic
scalars (Section 10.6).

10.6 3D AND 2.5D SPHERICAL-SHELL, GEOMETRY

Consider a spherical shell of fluid (Fig. 10.5) with spherical coordinates r,  and
¢ being the spherical radius, colatitude, and longitude. Colatitude is the polar co-
ordinate, which is zero at the north geographic pole and increases southward to 7
radians at the south pole. Longitude is the azimuthal coordinate, which increases
eastward from zero back to 27 radians. Fluid velocity is now

V=0, + 98 + vy, (10.46)

where all the velocity components and the thermodynamic variables are functions
of 7, 8, ¢, and ¢ if fully 3D or functions of only , 8, and ¢ if 2.5D, i.e., axisym-
metric. Here we describe a poloidal-toroidal representation of the equations that
is solved using a spectral method involving spherical harmonic expansions for the
horizontal structure and Chebyshev polynomial expansions for the radial structure
(Glatzmaier, 1984). We present it here for a fully 3D model of convection and mag-
netic field generation (Chapter 11) in a spherical shell of a density-stratified fluid
(Chapter 12) that is rotating (Chapter 13); then we explain how one can choose
to use just the axisymmetric modes to make a simpler and less computationally
expensive 2.5D model.




S

Figure 10.5 A sketch of a meridian plane in a 3D spherical shell with spherical coordinates
¥,6,and ¢ andAradial, 7,and colatitudinal, 8, unit vectors indicated at the current
position. The ¢ unit vector is directed into the plane on the right side of the axis

and out of the plane on the left side. The § unit vector is everywhere directed
southward.

The magnetic, density-stratification, and rotation terms are included in this sec-
tion for convenience, before they are formally introduced and described in Chapters
11, 12, and 13. Therefore, reading the introductions to those chapters is encouraged
before proceeding with this chapter. Alternatively, the magnetic, density-stratified,
and rotation terms could be ignored the first time through this section. That is,
the formulation reduces to a honmagnetic, nonstratified, nonrotating problem when
neglecting the magnetic (B) terms and equations, setting the background density
(0) to a constant, setting the entropy perturbation over the heat capacity (§ /cp) to
the temperature perturbation over a constant background temperature (T/T), and
setting the planetary rotation rate (2) to zero.

10.6.1 Spherical Harmonic Expansions

Spherical harmonics, Y6, ¢), are a natural set of functions for this problem be-

cause they constitute a complete and orthogonal set of eigenfunctions of the hori-
zontal Laplacian operator in 6 and ¢. That is,

VR = 2 (sing %4 f
a7l rz Sin9 20 (Sln ) + r2 Sin29 a¢2
w+n_.

T T (10.47)
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eigenvalue is —I(I + 1)/#2. This is convenient beca.use all thfa diffus-io.n
se in\i)lve the Laplacian operator. Although not something we will use, it is
‘noting that the function

£, 0,9) = (arr' +ar="P) Y76, ¢)
solution to the Laplace equation
V2f=0.

sherical coordinates. . e
121}2::1 spherical harmonic is a product of a complex Fourier function, e, an

ssociated Legendre function (of the first kind), F" h(cos g).'TviohmOd:n?;H;%f:
: e herical harmonic degree, /, and the spherical harm - order,
ﬂ; t:lee IYI>’(;h aenilp—l < m < [. There are several choices for the n9rmahzat10n
‘fyﬁcei:ent in front of this—i)roduct. Here we adopt one common to physics, quantum

hanics in particular:

A+ 1= 1mDN im¢ 10.48)
)/}M(G’QS)EG(?—W) P (cos0) '™, (

is (—=1)" for m > 0 and 1 for
alled the Condon-Shortley phase factor, is ( .
hzr% 6’i‘§ereefore a spherical harmonic with a negative m is related to the complex

njugate of the corresponding positive m harmonic by

Y7 = (=DM (10.49)

This normalization is chosen to make a convenient orthogonality integral,

2
/ " f " (Y,'") Y] sin6 d6 dop = 8p18mim-
0 0

i i i listed in Table 10.1. Recall
les of spherical harmonic functions are : :
thaft\ sfler:lweeiar?lp iscoszpml/ 2. 5o these could be written as just functions ofhco'sfli
The first routine listed in Appendix C is the way to ccénllputt? tltll(lie Valuleiisctk)lfisspn :;iced
i itudes, and longitudes, w
cs for many degrees, orders, colatitudes, : .
?(?f: (c):r(;lde that employs spherical harmonic expansions. The routine a;o%glzzzss zh)e
i i just the theta integral, P, ,
f a Legendre function, normalized over jus :
jfljiu: ;iven déggree, order, and colatitude. Then the value of a complex spherical

harmonic for a given [, m, 6, and ¢ is

€ Him| im¢
Ylm(0,¢) = ﬁ Pl (COSQ) 4 .

i i 1. For
Recursion relations exist for spherical harmonics that are very usefu

eXElInple,

sin 6 %— =l Y — A+ D) Y, (10.50b)




Table 10.1 The First Few Spherical Harmonic Functions,

9 = Ve
) = ,/fy;cos@

1 — /3 i
Y = 5 sinf e

= /i (Beos?o—1)

Y} - & cos @ sind ¢

Y2 \/3_12—?: sin @ 2i#

7 = [ (5c0820 - 3)coso

¥i = — /2L (5c0826 — 1) sing i
7} = \/%5 cos 6 sin? § ¢2#

v = —3{51—5]; sin’ § e%#

where the coefficient, ¢}, is defined as
o = ( At m)d —m) \'?
Q+12-1 ’
Using Egs. 10.47 and 10.48, we also have

(10.50c)

: 0 : aYlm 2ym .
sing o Smf— - ) =m*¥" —I(I + 1) sing Y. (10.50d)

[} I
56.0.6.0=3" 3 ¢, ¥"0, ¢); (10.51)

=0 m=—]

and we usually simplify the notation by writing the two summation symbols in

Eq. 10.51 as just Zl,m‘ The complex coefficients, S, in Eq. 10.51 need to satisfy
the constraint

S = (=1 (S (10.52)

so the double summation in Eq. 10.51 ends up being a purely real function. That

is, using Eqs. 10.49 and 10.52, for every I and m # 0 combination in the double
summation
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that S,’O and Y,O are both purely real. Therefore, only the m > 0 modes are
¢; and, like Eq. 10.1, the truncated version of Eq. 10.51 is

lmax Imax I

5¢,0.4,0=3 S 0Y©O)+2) Y Re [P 1) 176, 9]

=0 I=1 m=1

=> sy, (10.53)
I.m

re the second line of Eq. 10.53 is the shorthand notation for the first line, which
will use from now on.

ied by Eq. 10.38 or equivalently an FFT, which is much faster, and an inverse
gendre transform from 7, 6, m-space to r, I, m-space, which can be accomplished
machine accuracy) using an exact Gaussian quadrature method defined by

Ny
N, ) =) N™(rg, 0, 1) (—1)"v/27 G; P (cos6;). (10.54)
i=1
re, N;” represents the /, m coefficient of a nonlinear term. The N, Gaussian
atitudes (6;) and weights (G;) can be calculated using the second routine listed in
pendix C. Usually, Np is chosen to be an even number. The 6; are the colatitudes -

at which ??VB (cos 6;) vanish and the G are then

G — (2N9+3)< sin 6, )2_

T (Mo +1)2 Py, 41(c0s6;)

A fast Legendre transform would make the spherical spectral transform much
aster; however, although some approximate algorithms have been proposed, no
table exact fast Legendre transform has been devised yet. Fortunately, though,

e multiply and add operations required for this discrete Legendre transform are

pically very efficient on most modern computers.

However, a savings of roughly 50% can be made when doing the Legendre trans-
orm to 6-space from /-space by taking advantage of the fact that spherical harmon-

s, ¥}, are symmetric with respect to the equator (6 = 7 /2) if (I — m) is even and

they are antisymmetric (and vanish at § = w/2) if (I — m) is odd. For example,
.the products in the summation in Eq. 10.53 need to be done only for the northern

hemisphere (0 < 7/2) because the contributions to the summation in the south-
ern hemisphere are equal to those in the northern hemisphere (at the same latitude
from the equator) for the even (! — m) harmonics and the negative of those for odd
(I — m). Likewise, the reverse transform to I-space from §-space can be done by
forming the symmetric and antisymmetric parts of the nonlinear terms in O-space.
For example, the summation in Eq. 10.54 needs to be done only overi = 1 to Ny/2
if N™(ry., 6;, t) is redefined as N™ (e, 6, 1) + N™(ry, ONy+1-i, 1) for even (I — m)
and as N™(ry, 6;, t) — N™ (v, ONy+1-i» t) for odd (! —m). Then a procedure similar
to that for the transform to 6-space can be employed for this reverse transform from
6-space.
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Note that Eq. 10.53 could also be represented with just real coefficien
real spherical harmonjc functions written in terms of cos(m¢) and sin(mg

Egs. 10.4; however, ag mentioned, the complex formulation is much eag;i
and code,

B

spherical harmonic degree to Imax and includes all orders up to m,,,, = Imax. Th

fo obtain an alias-free spherical harmonic transform, the number of colati
points needs to be

and the number of longitudinal grid points (for a spherical surface) needs to be
2Ny. A triangular truncation scheme provides a relatively balanced amount of sp,
tial resolution over 3 spherical surface, That Is, as one chooses spherical harmonic
(within the retained set) with a larger order m, the greatest latitudina] wavenumbe,
Unax —m), decreases. In other words, within a triangular fruncation, increasing th

longitudinal resolution is at the expense of decreasing latitudinal resolution, ag
vice versa.

to

ax = N +m.
requires the constraint Eq. 10.55;

An alias-free spherical

but now the number of longitudinal grid points (for a spherical surface) needs to
be > N, and the largest bmax, i.€., the one for m is N + Mmasx. However,
unless noted, we wil] use al harmonics,

For vector variables that are divergence-free, like mass flux (0v) and magnetic
field (B), we use a poloidal-torpida] decomposition (Bullard & Gellman, 1954,
Chandrasekhar, 1961), which, like the vorticity-streamfunction formulation, en-
Sures mass conservation everywhere within either 3 Boussinesq or anelastic (Chap-

ter 12) model. That is, we define the poloidal and toroidal mass flux scalars, W and
Z, respectively, by writing the mass flux as

oV = VXVXWF 4 Vxz# (10.56)

So that

due to the €xtra factor of 7,
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 expand these scalars, W and Z, in spherical harmonics:
| W(r,6,¢,0) =Y W', 1) Y76, ¢), (10.58)
Im

Z(r,6.6.0) = Y Z1(,0) Y76, ). (1059

Im

i i ime-dependent spherically sym-
dynamic perturbations have time ' :
: t(lile th: rIIl05'87 ()] Y%, because of Eq. 10.57 the spherically symmetric
mo ::{ars.g'{yooan,d Zg, are set to zero. To include a sphennally symmetnc;iﬁ
ﬂel?;iailsion i)r c?;)ntraction or pulsation would require an additional equati

9). '
; bcggilllgtilrigl 9E6qs) 10.58 and 10.59 into Eq. 10.56 gives the three components of

S flux in spherical coordinates,

m 10603)
po =5 YU+ )W AP, (
r
Im

1 Z aW;n siné 8Ylm + Z;n aYlm:l , (10.60b)
Y sing 4 ar 3¢ ¢
Jm

oWy ayy 70 sin anl’"}’ (10.60c)
> ar ¢ a6

I.m

and the divergence of the velocity,

ko mym (10.61)
V.v:—hpvrz—ﬁ—rz— I‘L’;l(l—{—l)wl fi

and the three components of the curl of mass flux,

1 o (10.62a)
(VX,OV)r 72 g ( 1

2w\ ay”
F oo 0N (D PWP 8] ,
-1 Z 3z sin @ —% +( 7 W ar? ) 9¢
(VxpV)o = ar 96 r
Lm (10.62b)

2y arr
1 ozZy 3Yzm_<l(l+l)W;n_3le)sin9 891 ]’
(Vxpv)y = r sin@ 2 o o r2 or
Lom (10.62¢)

and the radial component of the double curl of the mass flux,

2
14+ D gym 38“;5" ) Y'. (10.63)
r2 r

1
(VXVxpv), = 2 ZI(H' D (
Lm
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To obtain the horizontal components of vorticity,
need to add terms involving 4 0> Which is the inve
ho=dhnp /dr.

Since the magnetic field vecto
we also describe it with poloi

B=VxVxB#+ vV xJr
so that

V.B=0

everywhere. Then, like the mass flux scalars, the B and J scalars are ex
spherical harmonics, P

Br.6.6.0=3"Br(, 1) 170, 9), (10.66)
Lm

106.6.0=3" 1,0 70, ), (10.67)
lLm

and the sphel‘icall}./ Symmetric scalars, Bg and Jg, are set to zero. Replacing the mass
flux Yector, PV, with the magnetic fiel ass flux scalars, W and
Z, with the magnetic scalars, B and J, respectively, in Eqgs. 10.60 gives the three
components of the magnetic field, .

1
B, = > Zl(l-}- 1) B’ v, (10.68a)
1Im

1 oB™ aym” aym
By = 1 ! I
* 7 Fsing sz [3r smf— +J§”T¢ ] (10.68b)

1 OB} oy "
By = pe %:[Trlﬁ ~ 7 sine‘%’]. (10.68¢)
leewis‘e, making these replacements in Egs. 10.62 and 10.63 gives the curl of the
magnetic field and the radia] component of its double curl, Note that the electric
current tilensity is VxB/pu, where H is the magnetic permeability,

Here. 1s probably a good place to discuss the relationship between the poloidal
magnetic field scalar, BY, and gauss coefficients, which are used to describe the
Ppotential magnetic field at and above the top boundary of the convective dynamo
(Section 13.6). By definition, within a potential field, ¢

(10.69)
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ally has been written as

o ! I+1
rsuerZ (rs;—rf) (e cosmep + 7" sinme) P" (cos 6), (10.70)

I=1 m=0
here P}’ (cos 8) is the Schmidt quasi-normalized Legendre functions, which,
0, are the same as the usual associated Legendre functions but for m > 0
I —m)!/(I +m)))1/? times the usual associated Legendre functions. The g*
h” are the gauss coefficients and rgy, ¢ is the radius of the surface of the planet.
omparing the three components of Eq. 10.69 to those in Eqgs. 10.68 one can

that form =0

1/2 }"l
) (rl’fé’ ) Re(B))10p, (10.71a)

surf

B =o0; (10.71b)

241\ [ m
g;n=(_1)m;<T) —2 | Re(B)1op, (10.71c)
4 rsurf

2+ 1\ (7
) (&
I

F10p- For the Earth, 10p Would be the core-mantle
oundary radius; for a giant gas planet or star, T1op Would be typically just

urf -
The degree / = 1 gauss coefficients represent the magnetic dipolar part of the

field; I = 1, m = 0 is the axial dipole and/ = 1, m = 1 is the equatorial dipole.

The magnitude of the “geocentric” magnetic dipole moment, ml, is
2 2 271/2
mi=rl, | (&) + (&))" + ()]

3\ 1/2 1 o 2 1 ) 1 12
= <E> Tiop [E (Re(Bl)top) + (Re(Bl)top) + (Im(Bl)top) ] )
assuming the magnetic permeability, p, is the free-space value. The ST and CGS
units for this can be confusing. If the radii were in cm, the gauss coefficients in
gauss, and B} in gauss cm?, the magnetic moment would be in gauss cm3. K, on
the other hand, the radii were in m and the gauss coefficients in nT, the magnetic
moment would have units 1072 A m?, where here T is tesla and A is amperes.
(Note, 1T = 10* gauss and 14T = 10~5 gauss.)

One more tool we need to describe is a set of algorithms (Glatzmaier, 1984)

that is very useful for computing the full divergence and horizontal divergence of a




19/
VA= — 1 m
Lm [rz ar +(l+1)clmfé,l—1

— lc;illezﬂ + z'mf;j}] b

VH-A: ] M rm
1,;[( + 1)¢f o *lc,”jrlfz"”lﬂ +,'mjr3"rzl] v,
, IZIE[( OGS e gy

(VxVxA)r=Z[l(l': D
Im r ’

—_ l ] C +1J2 ‘
13 ( + ) 7 ~f2.,1 1 ]Cl 1f,1+1 l ‘f:“),l:l) [

1s defined in Eq. 10.50c. Here the arbitrary vector is

A =Ar”'\+Agé+A¢¢?

Im
A9 " ™m
—— =
rsing Z fZJY d
m

4y
rsing EZ Sy,
Im
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m for the thermodynamic scalars

S pp'), the poloidal mass flux scalar (W7"), and the toroidal magnetic field
J") and use only odd values of I — 7 for the toroidal mass flux scalar )
7*)- This would allow radial and longitudinal

tde any flow in colatitude across the equator or any radial or longitudinal field

equator. Usually these restrictions would be more unrealistic than those for

posed longitudinal symmetry; therefore, imposing this equatorial symmetry
ot advised.

6.2 The Equations for a Spherical Shell

e model is anelastic, i.e., density-stratified (Chapter 12), the reference state is
structed as described in Section 12.2. Conservation of mass (Eq. 10.57) and
agnetic flux (Eq. 10.65) are automatically satisfied by expressing mass flux and
agnetic field in terms of poloidal and toroidal scalars, Egs. 10.56 and 10.64.
Consider now the spherical harmonic decomposition of the internal energy equa-
n, Eq. 12.34 (or its Boussinesq version, Eq. 1.14), which is needed to update the
tropy perturbation S (7, ¢) (or the temperature perturbation I (r,1)). The I, m-
ode of the entropy form of the internal energy equation (12.34), for an adiabatic
(dE/dr = 0) reference state, is obtained by projecting the equation onto the set of
spherical harmonics:

s Il+1)
R Slm:’

sy 32Slm 2
W:K[Wﬁ- ;+h,( +h,+hy

20 1 5 n 1"
+|-v-VS§S4+ €ije;; — —(V'V) + —T_‘,VXBI . (1073)
T 3 wpT I

Here 4, = dInk/dr, h, = dlnp/dr, and hy = dlnT/dr; all of which vanish
for a Boussinesq model. The last term in this equation represents the nonlinear
advection of entropy and the nonlinear viscous and ohmic heating (Section 10.6.3).
The prescribed reference state heating term, /47 0/ (67) (Eq. 12.33), should
also be added to the right side of the spherically symmetric part ( =0, m = Q) of
Eq. 10.73.

The poloidal mass flux scalar, W7 (7, ¢), could be updated via the radial compo-
nent of the momentum equation, in which case one needs to simultaneously solve
the divergence of the momentum equation, or just its horizontal part, for the pres-
sure perturbation P (r, t). Alternatively, one could use the radial component of the
double curl of the momentum equation to avoid having to solve for the pressure
perturbation; this, however, is a fourth-order differential equation in radius, which
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can be solved as two second-order differential equations (e.g., Jones & Kuzanyan,
2009); see Section 10.3.3.

Here we describe the former method. In theory, solving either the full or the
horizontal divergence of the momentum equation with the radial component of
the momentum equation should be equivalent because the full divergence equa-
tion can be constructed from the horizontal divergence and the radial derivative
of the radial component equation. In practice, however, the full divergence of the
anelastic (or Boussinesq) momentum equation is a diagnostic equation because of
Eq. 10.57; that is, there is no time derivative. This forces a significant constraint on
the system every numerical time step; whereas the time derivative in the horizontal
divergence of the momentum equation produces small adjustments in the solution
every time step and so tends to be more stable numerically and puts less energy
into the smallest scales. Also, the full divergence equation requires a radial deriv-
ative of the nonlinear advection term; whereas the horizontal divergence equation
does not (Egs. 10.72). On the other hand, the horizontal divergence equation has a
third-order radial derivative in the viscous term (Eq. 10.75), which the full diver-
gence equation does not have. Here, however, we describe the method that uses the
horizontal divergence of the momentum equation.

The I, m-mode of the radial component of the anelastic momentum equation
(12.29) in spherical coordinates for an adiabatic reference state.is

alpv I+ 1D) owWT
- ot

_{ap
~5(35) &
P
2Q owW?T
+T [(l + 2)0;11Z;n+1 —( - 1)c;" ;"_1 +im ——l—}

ar
B+ 1) [02W ho) OWT
VRTONEZEL  (2h, -2
+ 2 [3,,2 + 3 or

([T o G|+ 5w

+[—(VopvW)r + (VxB) x B)/u]; (10.74)

where here P” is the reduced pressure (Eg. 12.25), the thermodynamic deriva-
tive (3p/3S), = —p/cp for a perfect gas, and &, = dInv/dr. The terms on
the left side of Eq. 10.74 are the pressure gradient, buoyancy, Coriolis, viscous,
and the nonlinear advection and Lorentz terms. The projection onto spherical har-
monics is straightforward for the pressure gradient, buoyancy, and viscous terms.
The projection of the Coriolis term, however, requires the use of Eqgs. 10.50 and
therefore couples W7 with Z7",, and Zj" ;. The Coriolis term also couples the real
and imaginary parts of W' for m > 0. The nonlinear terms couple all the I-
and m-modes, which is why we compute these using a spectral-transform method
(Section 10.6.3).
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Equation 10.74 is solved simultaneous]

‘ with i i
anclastic momentum equtcn. y the horizontal divergence of the

d m
= Vv S [ii 2oy = D 8 cowy
ot | 2 9r r . 2 3\ ar
_a+n ., 29
72 pr; + 72— [l(l + 2)01'112;11 + 1+ 1)([ _ I)Clm ;n—l

. oW Il

r 7
CR
or?

2h
_'_(_p_'_%_'_hv 2 +l(l+l) Wy
r a3 ro 7 r? ar

d+1) 2 2
- (hv+—hp+ )W;”}

I+ [ a’wr
+“[_ 55— (v —hy)

r2

3 r

+ ,:VH. <~V-,5vv + YxB) xB B)]m .

P 1 (10.75)

We used the anelastic mass conservati
! . _ ation (Eq. 10.57) in the first line in thi i
gn()lor‘der };o write the time derivative in terms of the poloidal melllslsthtlifl)iq:cason
con:::;%en?; ;01.74 émd }8.75 together each time step updates W/ and P" Ita;
olve Egs. 10.74 and 10.75 simultaneous] -
: d 1 y because the pri -
turbation needs to be free to vary in time and space on the fixed impermSazslzu;zlfne;—

aries. That is, no boundary condition should be placed on the pressure; the required

mber of boundary conditi i
s ary conditions can be all placed on the fluid velocity (Section

The toroidal mass flux scalar, 77

, is updated usi i
Lof the momentim exomrien p using the radial component of the

0 I(+1)azy
—J(Vxov). 1" = ) 9Z
ot [( va)"]l - 72 _BIL

_29 m
———’7 l(l+2)cl+1 <

+(+ DU ~ D (
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_ % dh 2 e
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M 1 (10.76)
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Here it is seen that the projection of the Coriolis term onto spherical harmonic
couples Z]* with W7’ ; and W7 ;.

The poloidal and toroidal magnetic field scalars (Egs. 10.66 and 10.67) are up- -

dated in a similar manner using the magnetic induction equation (11.13). The radial
component of the magnetic induction equation, projected onto spherical harmonics,
provides the equation for updating B},

o[B 1" 1U+1)3By
a2 ot
Al + 1) (8213;” l(l+1)Bm)
= - 1

r? or? r?
+[(Vx(v xB). I, (10.77)

and the radial component of the curl of the magnetic induction equation provides
the equation for I7*,

OL(VxB), I} _1A+1) 3y
at Y
nd+1) (a2 a1+ 1),
T2 o h”?‘ Rl

r? ar?
+I(VxVx(vxB). I, (10.78)

where 7 is the magnetic diffusivity and 4, = d In#/dr.

Notice that this method of updating the magnetic field differs from the 2D formu-
lation described in Chapter 11 where we “uncurl” the magnetic induction equation
to get an equation in terms of the magnetic vector potential. This difference affects
the choice of magnetic boundary conditions, which constrain the total (integrated)
amount of magnetic flux through a boundary in the 2D formulation instead of the
local magnetic field on a boundary in the 3D formulation presented here (Section
10.6.4). Another important difference is that the magnetic field cannot decay away
in the 2D magnetoconvection problems presented in Chapter 11 because the total
magnetic flux through a boundary is prescribed and held constant. On the other
hand, the magnetic boundary conditions we choose for the 3D problem allow the
field to decay away if the convection is not able to generate enough new field to
compensate for magnetic diffusion. When convection is able to maintain a dynami-
cally self-consistent self-sustaining magnetic field, the mechanism is called a mag-
netohydrodynamic dynamo (Section 13.6). However, as Cowling (1934) proved, a
magnetic field maintained by dynamo action needs to be fully 3D, i.e., dependent
on all three dimensions. This usually involves a fully 3D fluid flow; but certain
prescribed 2.5D flows that are spatially periodic can maintain 3D time-dependent
magnetic fields (Roberts, 1972). However, a fiow and field that are both 2.5D (Sec-
tions 10.6.7 and 13.4) with the same magnetic boundary conditions as the 3D case
cannot be an MHD dynamo.

Another point worth discussing here is how this system of equations is modified
for the infinite Prandtl number approximation (Section 8.4), which is employed in
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ies of mantle convection. In the limit of an infinite Prandtl number, which is
ry appropriate for mantle convection in terrestrial planets, the momentum equa-
on reduces to an instantaneous balance among the pressure gradient, buoyancy,
viscous forces; the inertial, Coriolis, and Lorentz terms are negligible. Equa-
ons 10.74 and 10.75 are then independent of the toroidal mass flux scalar, z7

latzmaier, 1988). This toroidal scalar is the only dependent variable left in Eq.
.76 and is therefore set to zero since it would diffuse away if ever excited. Equa-
ns 10.74 and 10.75 are then solved simultaneously as outlined in Section 10.6.3
t without the time derivatives, Coriolis terms, or nonlinear terms, as is done in
ction 8.4 for a simple 2D cartesian box model of Boussinesq convection. If, how-
er, tectonic plates are included, which have a rotational component due to plate
undary constraints, or if a more realistic nonlinear viscous term is employed, the
roidal mass flux scalar would couple with the poloidal scalar and pressure and
erefore would need to be retained in the system of equations.

Bercovici et al. (1989) published the first Boussinesq benchmark comparison be-
tween two independently written, 3D spherical shell, infinite Prandt] number, man-
tle convection codes. Anelastic (Chapter 12) infinite Prandt! number simulations of
thermal convection in a 3D spherical shell have been produced for studies of man-
fle convection in the Earth (e.g., Glatzmaier, 1988) and in Mars and Venus (e.g.,
Schubert et al., 1990). When the infinite Prandtl number approximation is valid, a
simpler formulation, the “liquid anelastic” approximation, may also be valid (Jarvis
& McKenzie, 1980; Anufriev et al., 2005).

10.6.3 Chebyshev Collocation and Spherical Spectral Transform

The Chebyshev collocation and spectral-transform methods that are described in
Chapters 9 and 10, respectively, are now applied to a spherical shell. The complex
spherical harmonic coefficients of the dependent variables, i.e., the thermodynamic
perturbations and the poloidal and toroidal scalars for the mass flux and magnetic
field (Section 10.6.1), are further expanded in a series of Chebyshev polynomials
nradius T, (rz). The Chebyshev radial grid levels are defined as

P =r -{—2 1 4 cos N — b
k=rit g N 1 ,

where the depth of the fluid shell, D, is ry, — r1 With 7| being the radius of the
ottom boundary and ry, the top boundary. The Chebyshev grid levels are num-
ered from k = 1 to N, and in spectral space the Chebyshev degrees (modes) are
umbered from 7 = 0 to N, — 1. The spherical harmonic coefficients of the entropy
erturbation, for example, are

2 /2 N1
S/ (e 1) = (N — 1) Z STy (7, (10.79a)
r n=0

where the Chebyshev coefficients, SJ”, are complex and the Chebyshev poly-
nomials, T,, are real. The inverse Chebyshev transform from r, /, m-space to
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n, 1, m-space, like that described in Egs. 9.21 and 9.22 is

2 il

1/2

m _ ” m :
S() = (r — 1) E S e, )T (r). (107
k=1 '

Howeyer, instead of performing the transform 10.79b, we obtain the Chebysh
coefﬁcu':nts by solving semi-implicit matrix equations that update each Sphzs‘ i
harmomc; coefficient in ways similar to that described in Section 94.2. ThaItlcai
the matrix equations force the equations described in Section 10.6.2 to be S
fied on all the interior Chebyshey levels, 7, for k = 2 to N, — 1, and forceatl
boundary conditions at levels 7, and 7n,- The matrix operators ar;: composed

d their first and second radial derivatives,

spectral-transform method (
Eqgs. 10.53 and 10.60-10.62 to construct the scalars,

s,
or
2 - . -

r pv,, 7 8in@ puy r sin9,5v¢, rz(Vx,Bv),, (lO.SOC,d,e,f)

d L, 9 3
. . 2 — —
5 7°hv.), sind = (r?pv,), ﬁ(rzpvr), (10.80g,h,i)

0 L 0 .
5(}’ sin @ pug) 5(}’ sin b pv,), (10.80,k)

d . a .
ﬁ(r siné pug), %(F sing pvy,), (10.801,m)
ZB : .
r°B, ¥ sing By, 7 sinf By, (10.80n,0,p)
2 .
r“(VxB), , r siné (VxB)y, 7 sinf (V xB)y, (10.80q,r,s)

in grid space (one radius at a time) by first Legendre transforming their represen-
tauOI}s in 7, [, m-space to 7,6, m-space and, if 3D (i.e., form > 0) Fourier trans-
fomung them from #, 9, m-space to r, 8, ¢-space (i.e., to fully physical grid space)
using FFTs. These are used to produce the nonlinear terms,

S = [pv, 8], (10.81a)

,5ng "
S =
1 [rsin@]l ) (10.81b)

(10.80a,b)
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(10.81c)

m

29 1 n
4m = | == e,~~ei~~—v-v2>+—_ VxBZ} , 10.81d
RY [T ( j€ij 3( ) Msz" I l ( )

W1j' = [~(V-pvW), + ((VxB) x B), /u]", (10.81e)

_ovg  (VB) x B/ - (1031f)

m=
w2 _[ 7 sin@ ¥ sin@ ’

!

_omg , (VB) x B,/ 3 (10819

¥ sinf 7 sin@ ’

W3}"E[
I

BI' =7 [(v x B),I”", (10.81h)

m
B = [(v x B)o] ’ (10.81i)
rsing |,

m
B3I = [w} , (10.81j)
rsing |,
hich are first constructed in grid space using the (real) functions 10.80 and then
3D) Fourier transformed from r, 0, ¢-spacetor, 0, m-space using FFTs and then
Legendre transformed from 7,0, m-space to r, I, m-space using Gaussian quadra-
tures (Eq. 10.54). The complex spherical harmonic coefficients, 10.81, are then
combined using Egs. 10.72 to compute the additional divergence and curl opera-
tions needed for the nonlinear terms in Egs. 10.73-10.78.
For example, the nonlinear advection term in Eq. 10.73 is computed as

L o comm
[~v- VS =3 [V-pSv]]

19

5 [,,2 ar

Note that the radial derivative of S17" is computed using transforms to Chebyshev

space and back (Egs. 10.79) and recursion relations (Section 9.4.1) after the S17

functions are computed on all radial levels. The additional nonlinear viscous and

ohmic heating terms in Eq. 10.73, S47", are computed using the spherical coor-

dinate representation of the rate of strain tensor (e1, Eq. 1.4) and Eqs. 10.60-
10.62 to calculate the velocity and magnetic field terms.

S+ U+ D82 — 1efy 820, +im 537’] :
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Likewise, the nonlinear terms in Egs. 10.74-10.78 are
((VxB) x B),:"" _wiy

24 I r?

3

[—(V-ﬁVV)r +

[VH. <——V.,5vv+ ————(VXB) X B)]
u l

=+ D)WL 1 W2, +im 3P,

l:( ( - (VxB) x B)) ]m
Vx| —~V.pvv 4 —F
o2 rdi

=+ D)W, — 1 W3, —im W2,
[(VX(vVxB) I = ( +1) ' B3], — 1\ B3}, — im B2,

I0+1) 9

1
[(VxVx(vxB)),]I' = Bl + 53

— (PP (a+ 1B,

-
—lcyy B2]' +im B3]')).

Notice that S27, w2y, w3r, B2F, and B3} need to be calculated up to degree

| = ly4x + 1 for each order m.

Consider again the matrix equations that use Chebyshev collocation to update
the solution in time. Since the (linear) Coriolis terms in Eqgs. 10.74-10.76 couple all
degrees [ of W}" and ZJ, these poloidal and toroidal mass flux scalars for all / for a
given m would need to be updated simultaneously if the Coriolis terms were treated
implicitly. This would require a complex block pentadiagonal matrix equation for
each m, with block elements being N, x N, submatrices. Although this would be
more accurate and stable, it would require a huge amount of computer memory,
especially for large values of N, and /. The odd degree W; and even degree 7
combine to form a set of equations that is decoupled from the even degree W, and
odd degree Z", which provides a little savings. Here, however, we treat the Coriolis
terms explicitly with the nonlinear terms, which allows us to solve a larger number
of much smaller matrix equations, one for each spherical harmonic mode /, m, each
numerical time step. With this choice we could just compute the vector Coriolis
forces in grid space with the nonlinear terms and project the combination back onto
spherical harmonic space via the spectral-transform method instead of computing
them the way they are expressed in Egs. 10.74—10.76. However, we usually choose
to compute them as expressed in these equations; but we set the Coriolis terms to
zero for the (I = l,,,,) mode of these equations since for this mode there is no
({max + 1) contribution to combine with the (/4 — 1) contribution.

Another issue is how Egs. 10.74 and 10.75 are solved simultaneously for W7
and F/" each time step. Recall (Eq. 9.25) how the radial derivative of the poloidal
mass flux scalar can be calculated via

iy 2 7,
(7).-=) 2w (F)
ar ), \N, -1 = ar /),

0
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ing stored values of d'T,/dr on the N, Chebyshev levels, r;, and likewise the

cond- and third-order radial derivatives of W/ and the first-order derivative of

. The 2N, x 2N, collocation matrix operator represents the terms at the new

e step in the semi-implicit formulation of Egs. 10.74 and 10.75; the 2N, x 1

olution vector is composed of N, Chebyshev modes W, and the N, Chebyshev

modes P,j. The explicit parts of the time integration scheme compose the known

N, x 1 right-hand-side vector. However, the actual method of solving the coupled

ystem of Eqs. 10.74 and 10.75 simultaneously for Wi* and P/ could be a direct

matrix solution method similar to that described in Section 10.3.2 or an influence
matrix solution method similar to that described in Section 10.3.3.

0.6.4 Spherical Shell Boundary Conditions

- This combined system, for each spherical harmonic mode [ , m, is fourth order in

the radial coordinate because of the third-order derivative of W/" and first-order
derivative of P/ and therefore requires four boundary conditions. However, for an
impermeable boundary, which we assume here, it is not physical to place a bound-
ary condition on the pressure. Therefore, besides being impermeable we constrain
the flow to also be either stress-free or nonslip (or some linear combination of
these). These four boundary conditions (e.g., impermeable and stress-free at both
the bottom and top boundaries) are forced via their Chebyshev polynomial expan-
sions on the four rows of the matrix operator that represent the bottom and top radii
in each of the two equations. The equations are forced to be satisfied on all of the
other (internal) rows of the matrix, as described in Section 9.4.2.

Boundary conditions on the velocity provide boundary conditions on the poloidal
and toroidal mass flux scalars because of Eqgs. 10.60 and the orthogonality of spher-
ical harmonics. An impermeable boundary requires v, to vanish there; therefore,
W;" vanishes there. If an impermeable boundary is stress-free,

()=

there and therefore

2W" /2 Iwn
! ~(—+h,,) Wi =0

or? or

r

9z (2
d (; +h,,)Z;” =0.

or
If, on the other hand, a boundary is nonslip, vy and vy vanish there in addition to
v, and therefore

oWy
or

Typical thermal boundary conditions are constant entropy (or constant tempera-
ture), over the boundary,

S (or T”) = constant,
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or constant diffusive heat flux through the boundary,

Tm
a7 (or " ) = constant.
ar or

Typically, homogeneous (i.e., spherically symmetric) thermal boundary conditiong
are prescribed, which means that Sg or its radial derivative is set to a constant and
the S or _a_zg for [ > 0 are set to zero. If, on the other hand, a heterogeneous
thermal boundary condition is desired, it can readily be produced by setting all or
some subset of the S* or %Sr"i to constants on the boundary.

There are also several choices for the magnetic boundary conditions. Typically
the region above the top boundary is assumed to be a perfect insulator out to in-
finity; therefore, the magnetic field that extends into this region is a potential field,
That is, there are no electric currents in this external region (tJexs = VX By = 0);
and so B,,, can be written as the gradient of a potential (Section 11.1). In addition,
the external field needs to decrease at least as fast as 1 /73 as 7 — oo because there
are no magnetic monopoles. We can therefore write the external magnetic field as

ym
Bo: = ZBZlextV (;l{f-_1> s (1082)
I,m

where the coefficients, B}",,,, are only functions of time and ‘Bg‘ exr = 0. The spher-
ical components of Eq. 10.82 are

d+1
Brow=—Y B, b i (10.83a)
l,m

7 ! __BYI’" 10.83b
BG,ext = Z Bl, €xt;l+—2 39 (10. )
I,m

7 L on 10.83¢)
B¢,ext =4 ZBl’e’“mW' ( .33C
Im

This external potential field at the top boundary needs to exactly match the convec-
tively generated field, Eqs. 10.68, at the top boundary at every time step, assuming
M is continuous across the top boundary. Therefore, at the top boundary

[7,0p = 0. (10.84a)

or

[331 +£B;n:| =0; (10.84b)
r top

and the external potential field can be calculated for = Frop At every time step
using Egs. 10.83 with

B exs = 171, [B]'],,, - (10.85)
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the core below the convection zone were also assumed to be an insulator, the
d there would be a potential field but one that is finite at 5 — 0. Consequently,
interior potential field can be written as

By =) B,V ("7, (10.86)
Im

here the coefficients, B}",,, are only functions of time and BY ;.. = 0. A deriva-

(10.87a)

(10.87b)

axm
—’J = (10.89a)
or bot

92Br
7. o

Instead of assuming the external or inner region is an insulator (zero electri-

cal conductivity) or a perfect conductor (infinite electrical conductivity) one could

specify a finite electrical conductivity in the region and solve the magnetic induc-
tion equation (10.77 and 10.78) there with no flow, ie., a magnetic diffusion equa-
tion. This inner or external magnetic field would need to be solved simultaneously
with the field in the convection zone, forcing continuity of the normal component of
the magnetic field and of the tangential electric field at the interface. The tangential
component of the magnetic field would also need to be continuous across the in-
terface if the magnetic permeability, u, were continuous and there were no surface
current density on the interface. Likewise, if the permittivity, €, were continuous
and there were no electric charge density on the interface, the normal component
of the electric field would also be continuous,

Here we should mention the different meanings of “core” used in various fields,
Iron-rich cores in terrestrial planets, like the Earth, are usually described as a “solid
inner core” surrounded by a “fluid outer core,” or, if the planet is young enough,
the core would be completely liquid. The “core” of a star is a dense gas and refers
to the central region where nuclear burning occurs. The “silicate core” of a giant
Planet usually means the central region where elements heavier than hydrogen and
helium have concentrated; it could be either solid or liquid.
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‘ Solving for the time-dependent magnetic field within a finitely conducting so
1nner core, like the Earth’s, is relatively straightforward. Such a core should be ap
to rotate as a solid body relative to the rotating frame of reference in response to th;

viscous, topographic, magnetic, and possibly gravitational torques acting on it (eg.

Buffett & Glatzmaier, 2000). The resulting time-dependent solid-body rotation ig
represented by spherical harmonic degree / = 1 of the colatitudinal and longity-
dinal components of the velocity. Of this, the “off-axis” rotations (/ = 1, m = )
are typically small compared to the “on-axis™ rotations (! = 1, m = 0) if the body
has a significant basic rotation rate; therefore in many cases only the on-axis solid-
body rotations are computed. In either case, though, the only nonlinear term in the
magnetic induction equation within a solid inner core is the induction due to thig
solid-body rotational velocity relative to the rotating frame of reference, which is
relatively easy to compute knowing the moment of inertia of the inner core and the
time-dependent torques on it.

The complication, for a spherical coordinate system, is the singularity at the orj-
gin, 7 = 0, where all but the / = 1 spherical harmonic contributions need to vanish.
In addition, regularity conditions need to be satisfied that require the poloidal and
toroidal magnetic scalars to be proportional to radius to the (/ + 1) power as the
radius goes to zero. A convenient way to enforce this is to redefine the magnetic

poloidal and toroidal scalars inside the inner core (Glatzmaier & Roberts, 1996a)
as

by (r, ) = x~E DRI )
and
i =D g,

where here x = r/r;cp and rrcp is the radius of the inner core boundary. The three
components of the field are now

1
Br=—— 310+ Dx Dy, (10.90a)
Friee T

1 bl [+1 ayr
By = —_— E x(l_l) et 8 m I St A I:m
o ricp Siné — [ g ar + rics b’ | sind 30 X

(10.90b)

- _ 1 ab I+1 ayr oym
B - xD (0 4 b7 L Lm o f
’ Ficp sind IZ—;‘[ * " ries ') ag )] smehae .

(10.90c)

Corresponding changes to the magnetic induction equations for bj" and j}" also need
to be made. These equations are solved simultaneously with those for B}” and I} in
the fluid core with the above mentioned continuity conditions at rrcp-. In addition,
to reduce the radial resolution near the origin, we employ a half-Chebyshev grid in
radius within the solid inner core by spanning the diameter of the inner core and
using only even Chebyshev degrees.
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stead of modeling a solid core below a fluid shell, one may wish to model con-

on or internal gravity waves within a full sphere, i.e., within a body without

lid inner core. This is a challenge for codes employing a spherical coordinate

m because of the singularity at the origin. It poses a similar challenge for a 2D

der without a solid inner core when using cylindrical coordinates. Not only

uld there be a severe CFL constraint on A7 due to a convergence of the grid at

origin, but regularity conditions similar to those described above for the mag-

tic field at the origin would exist for all variables, with the additional nonlinear

mplication of having nonvanishing fluid flows through the origin. A relatively

ple way to avoid these issues would be to employ a different spatial discretiza-

n and a local numerical method. For example, a full sphere can be simulated

thin a 3D cartesian box or within a “cubed-sphere” grid, which better represents

outer spherical boundary. A more challenging and probably more accurate way

uld be to expand the radial dependencies of all variables in, say, Worland poly-

omials (Livermore et al., 2007; Boyd, 2011) instead of Chebyshev polynomials.

Worland polynomials naturally satisfy the regularity conditions as a function of the

pherical harmonic degree /; however, unlike the Chebyshev polynomials, they do

ot have a fast spectral transform. Another consideration is the relatively poor par-

allel processing efficiency of spectral methods in general compared to simpler local
umerical methods (Section 9.5.2).

0.6.5 Spherical Shell Time Integration

aving discussed issues related to boundary conditions, now consider some issues

’: related to the time integration. One is called the “pole problem,” which is avoided
when using spherical harmonic expansions on a sphere. That is, the CFL condition

(Eq. 4.7) for horizontal flow on a spherical coordinate system would be a very
severe constraint on the numerical time step if these equations were integrated in
time in grid space because the longitudinal grid spacing, 7 sin@ A, is small near
the poles, i.e., as @ — 0 or 7. However, the spherical spectral-transform method
integrates the equations in spherical harmonic space, which has a CFL condition
based on a global average horizontal grid spacing:

1/2
},.2
At < — (10.91)
Imax (nax + D (@] + 02)

min

Notice how this spectral CFL constraint is essentially the minimum value of the
smallest horizontal wavelength divided by the largest horizontal velocity at each
radius.

Of course, there is also the CFL condition in the radial direction. Although the
Chebyshev radial grid spacing decreases as either the bottom or top boundary is
approached, the radial velocity also decreases as fluid approaches an impermeable
boundary. However, the spectral CFL condition also depends on the Alfvén velocity
(Eq. 11.35), which needs to be included in Eq. 10.91; and the radial component of
this velocity, which is proportional to the radial component of the magnetic field,
does not vanish at an impermeable boundary (unless it is a perfectly conducting
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boundary). Therefore, a strong magnetic field extending through a boundary ¢
require the numerical time step to be significantly smaller than it would otherw
need to be for a weak field scenario. :

Another time integration consideration is to treat the buoyancy term in thé
momentum equation implicitly without necessarily computing the energy and mg.
mentum equations simultaneously. This is accomplished at each time step by firg
updating the entropy while saving the old value so the average of the old and the
updated values can be used in the buoyancy term when the momentum equation jg
updated.

Here we also just mention that this basic 3D spectral method for convection in a

spherical fluid shell can also be adopted for a simple model of mantle convection =
(Glatzmaier, 1988). If viscosity is at most a function of radius and vorticity due to .
the interaction of tectonic plates is neglected, the toroidal mass flux scalar function
(Z in Eq. 10.56) vanishes and the radial component of the curl of the momentum

equation does not need to be solved. As mentioned in Section 8.4, the inertial,
Coriolis, and magnetic forces are also neglected, which removes the time derivative
and the nonlinear terms in the momentum equation. Only the energy equation has
a time derivative (of entropy or temperature) and nonlinear terms.

10.6.6 Spherical Shell Energy Analysis

The thermal, kinetic, and magnetic energies and their spectra need to be calculated
when analyzing simulations. For example, a measure of the total thermal energy
relative to the adiabatic reference state is the volume integral over the convection
zone of the perturbation entropy density:

— top _
/ pTSAV =4x / T SY r*dr
hell

bot

top
= / F(rydr
b

0t

2 1/2 N, — 1
“:‘j) Z Jo QOn

1
n=0
F(r) = Van p(r)T (r) S (r)r?

N,

2 1/2 "
fu= (m) ; F@o)Tn(r)-

0, is defined by Eq. 9.29.
Unlike the anelastic thermal energy, which is linear in the perturbation, the
kinetic and magnetic energies are nonlinear. The total kinetic energy within the
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wction zone relative to the rotating frame of reference is

1 top
/ —pv2dV = f F@)dr
shell 2 bot

9 1/2 Nr—lﬂ
=(Nr_1) > /10

/l<1+1> WAD womn  [3WF ] w2
F()_ZZ [ Wy ? + }a—r +|Z,|] (10.92)
I=1 m=0
d f, is defined as the Chebyshev coefficients of F(r) as above. Recall that the
uare of the absolute value of a complex function is the product of that function
es its complex conjugate. Also recall that the single prime on the summation
mbol means that the first term in the series (i.e., m = 0, the axisymmetric part)
multlphed by 1/2. The a)usymmetnc meridional circulation kinetic energy is ob-
ined by summing over only the W and 9W?/3r terms; whereas the axisymmetric
erential rotation kinetic energy is obtalned by summing over only the Z0 term.
The total magnetic energy within the convection zone is

BZ top
/ —dV = / F(r)dr
shell 2“ bot

) 1/2 N,— 1
N _1) Z j;‘lQn’

where now

v I+ 1) [ 1 +1 9By |
F(r)= ZZ ¢ )[(Jr )|B'"|2 1# +|J;”|2] (10.93)

I=1 m=0

The axisymmetric poloidal magnetic energy is obtained by summing over only
the BO and 3BY/dr terms; whereas the axisymmetric toroidal magnetic energy is
obtalned by summing over only the J? term.

Instead of calculating the total energy, one could calculate and plot a two-dimen-
sional energy spectrum on an / vs. m grid, i.e., the energy for each spherical har-
monic mode; or one could sum over all the m values and plot the energy spectrum
as a function of degree /; or sum over / and plot the energy spectrum as a function of
order m. In addition, instead of plotting the volume-integrated energies, one could
plot the energy densities as functions of radius.

10.6.7 2.5D Spherical Shell

Before attempting to construct a 3D spherical shell model, it is recommended that
one get a 2.5D spherical shell model working. Such a model is easily obtained by
using only spherical harmonic order m = 0 in the equations presented in this chap-
ter, i.e., only the axisymmetric modes. This allows the fluid velocity and magnetic
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field to have ¢ components but makes all variables independent of longitude o
also makes all the spherical harmonic coefficients real instead of complex.

It is instructive to compare the streamfunction formulation, which we empl}
throughout most of this book, with the poloidal-toroidal formulation, which
recommend for a 2.5D spherical shell model since it can be extended to 3D. Ma
flux in the streamfunction formulation of an anelastic 2.5D model in spherical co.
ordinates is

pv = Vx( Js) + .
Notice how now in spherical coordinates we need to include an » sin @ in the cur
operation in order to satisfy Vi -v = 0 and have contours of the streamfunction, v,
represent the instantaneous longitudinally averaged streamlines of the meridional
mass flux. On the other hand, a poloidal-toroidal formulation of mass flux is

OV =VXVXWF + VxZF,

rsinf

Expanding these vector operations and equating their spherical components reveals
that the streamfunction is

ow axy
w:-sinea—-—-—ZW?sine—aj (10.94)
!

and the ¢ component of the mass flux is
10Z 007,

_ 1 |
Prp=—=— =~ ;zl R (10.95)

This is similar to the relationships found for a 2.5D Boussinesq box model (Egs.
10.45). Likewise, the 2.5D magnetic field is

B =Vx4sp + By

B = VxVxBF + VxJ#,
which makes the ¢ component of the magnetic vector potential

]306_1710

10.96
FY: (10.96)

(10.97)

Since here we have not included a factor of » sin 6 in the curl operation, contours of
(d4y r sin ) represent the longitudinally averaged magnetic field lines in a meridian
plane. Note that positive contours of ¥ and of (Ag rsin@) represent clockwise
circulation and clockwise magnetic field lines, respectively, in the » — 6 meridian
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g when the ¢-direction (i.e., eastward) is viewed into the image; negative values
ounterclockwise.
other issue is the choice of an initial magnetic field for the 2.5D (or 3D)
rical shell problem. If, for example, both the inner core (below the bottom
undary) and the external region (above the top boundary) are perfect insulators,
e might choose an initial magnetic field that is axisymmetric and purely poloidal
ide the shell (rp; < 7 < 710p). A potential field outside the shell would satisfy
insulating boundary conditions, Eqs. 10.84 and 10.87. A simple choice would
an axial dipole constructed by setting (at t = 0) Ji" =0 for all / and m and setting
=0forall/ and m except! =1, m = 0:

BY") = a1 P2 fi(r) + f’r—z A0 (10.98)

e constants a; and a are defined by the chosen values of the radial compo-
t of the field at the north geographic pole at the bottom and top boundaries,
espectively:

7 T
a; = /3 B0 =0,r=rp;) and a,= \/;rfopBr(G =0,7 = ryop).

The radial functions are defined for 7 < 7, as

fit)=1 and fo(r) =0,

AH@)=0 and f@) =1,

‘and for pp; <7 < 14,p as

fitr) =1—=3x] 4 3x} — x§
and

fo(r) =1 —3x2 4 3x} — x5,

¥ — Fpor

X=———— and x= .
Ytop — Fbot Ttop — Fpor

rtop —F

Note, the current density associated with this initial field vanishes within the insu-
lating inner and external regions but not necessarily within the shell.

It is important to understand, however, that the axisymmetric variables in a 2.5D
model lack the maintenance of the nonaxisymmetric variables via nonlinear terms
(e.g., Reynolds and Maxwell stresses and magnetic induction), which makes all the
difference in 3D models. Many studies have been done using “mean-field” models
and “intermediate dynamo” models; see Roberts (2007) for a review of the basic

. theory upon which these models are based. Simply put, they compensate for the

lack of a three-dimensional influence on the axisymmetric flow and field by adding
prescribed axisymmetric terms to the momentum and/or magnetic induction equa-
tions. Although the sensitivity to various types of prescribed forcing terms can be




learned by this approach, the results cannot serve as predictions since the added
terms are not self-consistently computed as they would be with a 3D model. These
missing nonlinear contributions could be computed in a 3D simulation and saved:
as functions of 7, §, and ¢ and then added to a 2.5D model as source terms; but of .
course this would provide no new information beyond that provided by the original

3D model. The effects on the axisymmetric (i.e., the longitudinally averaged) part

of a simulation due to the 3D nonlinear terms is clearly seen by comparing 2.5D

and 3D spherical shell simulations (with magnetic field, density stratification, and

rotation) that are illustrated in Sections 13.4 and 13.6, respectively.

A final note for this section is that this 3D spectral method involving spherical
harmonic and Chebyshev polynomial expansions and spectral transforms (Glatz-
maier, 1984) has proven very efficient and accurate for many studies of stellar
dynamos, giant planet dynamos, the geodynamo, mantle convection, flows within
planetary satellites, and laboratory fluid dynamics experiments. However, if we
wish to take advantage of the latest parallel computers, which have hundreds of
thousands of processors, a change may be needed because of the rapid increase
in computational resources required as one increases spatial resolution due to the
global communication of spectral transforms (Section 9.5.2; Glatzmaier & Clune,
2000). Therefore, we may be on the verge of going back to simpler, less accurate,
methods like finite element, which require only nearest neighbor communication
and so will likely outperform the spectral method at some high spatial resolution
even though requiring more nodes than would be needed to obtain comparable ac-
curacy with a spectral method. A compromise might be a spectral element method.
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EXERCISES

1. A 2D convection simulation using a poloidal decomposition
Convert a strictly 2D model of convection in a box that employs a vorticity-
streamfunction representation to one that uses a poloidal decomposition
(Egs. 10.45).

. Critical Rayleigh number for convection in a 2.5D fluid box

Consider convection in a 2.5D box with impermeable and stress-free bound-
aries. Show that a linear stability analysis that expands T, Wy, and ¥, in
sin(mmz) as in Egs. 3.7 and vy, in cos(mmz) produces the same critical
Rayleigh number as for strictly 2D convection (Eq. 3.8).
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. Spherical harmonic recursion relations

Show that the spherical harmonics listed in Table 10.1 satisfy the relations
10.50.

. Spherical harmonic construction

Extend the list of spherical harmonics in Table 10.1 to/ = 4 and m = 0 to 4
by using either Eq. 10.50a or Eq. 10.50b.

. Additional spherical harmonic recursion relations

Formulate the recursion relations for the following expressions: sin’@ Y,
cosfsing 9Y;" /36, 3/96(sin6 ¥;™), and cos @ sin® 6 e,

. Legendre transforms

Write two codes that simply test a Legendre transform to and from 8-space
as described in Section 10.6.1. Have one do the summation as described in
Egs. 10.53 and 10.54 and have the other take advantage of the ( — m) deter-
mined symmetries with respect to the equator.

. Poloidal magnetic field scalar and gauss coefficients

Confirm the relationship between the poloidal magnetic field scalar and gauss
coefficients, Egs. 10.68-10.71.

- Insulating magnetic boundary conditions and fields

Derive the electrically insulating magnetic boundary conditions on spherical
boundaries and the expressions for the potential magnetic fields beyond the
boundaries, Eqs. 10.84, 10.85, 10.87, and 10.88.

. Kinetic and magnetic energy densities in a spherical shell

Derive the expressions for the kinetic energy density, Eq. 10.92, and magnetic
energy density, Eq. 10.93, within a spherical fluid shell.

. Streamfunction and poloidal-toroidal decompositions in 2.5D Spherical

geometry

Derive the relationships in 2.5D spherical geometry between the streamfunc-
tion and poloidal-toroidal formulations for mass flux (Egs. 10.94 and 10.95)
and for magnetic field (Eqs. 10.96 and 10.97).

. Axisymmetric meridional circulation

Assume a simple meridional circulation described by a single poloidal mass
flux scalar, W9, Let W9 increase from zero at the bottom boundary, peak with
a positive value at mid-depth, and decrease to zero at the top boundary. Ex-
amine the sense of this flow circulation in the meridian plane by checking
the signs of v, and vy at various locations. Confirm that this makes Y >0
everywhere, i.e., that the circulation in the meridian plane is northward near
the bottom boundary and southward near the top boundary.

. Testing an FFT

Write a test program that compares the results from an FFT (fast Fourier
transform) to those from a standard discrete Fourier transform, which is de-
scribed in Eqgs. 10.35 and 10.37. Consider one z;-level and one time . Choose
random values for the Fourier coefficients, S

- Axial dipole field with insulating boundary conditions

Show that the magnetic field defined by Eq. 10.98 satisfies the insulating
boundary conditions, Eqgs. 10.84 and 10.87, and that the current density van-
ishes below rp,; and above F10p. Derive the expression for the current density




inside the shell. Write a graphics code that plots the magnetic field lines fy
this field for given values of the radii and radial magnetic field intensities g
the polar bottom and top boundaries.

COMPUTATIONAL PROJECTS

1. Sponge layers in a 2D box

Test the effects of viscous and Rayleigh sponge layers in a simulation of con-
vection within a 2D box and compare how large & needs to be for a given
value of 4 to produce comparable damping. Likewise, compare these two
methods by varying A for a given §.

. Convection with and without a mean zonal flow in a 2D box

Produce a simulation like the one illustrated in Fig. 10.1 and another with
@Wn=0 = 0 and Y=o = 0 for all z and 7. Compare these two cases via movies
of T'(x,z) and ¥ (x, z) and plots of their horizontally averaged profiles (as
functions of z) of T and v,.

. Convection with traveling-wave thermal boundary conditions in a 2D box
Produce a simulation like the one illustrated in Fig. 10.1 but with no mean
zonal flow. Replace the bottom thermal boundary condition with a tempera-
ture that has the form of a traveling wave by selecting one horizontal mode,
mo > 0, frequency, w,, and real amplitude, 4,, and at z = 0 setting

T, (0, 2) = Ape—@!

with
Tntm,(0,£) = 0.
This makes the time-dependent temperature at the bottom boundary

T(x,0,1) =24, Re (e'®mmo/L=o)
=24, cos@ram,x/L — w,t),

which is a horizontal wave with wavelength L /@mm,) propagating in the
positive x-direction (for @, > 0) at a phase velocity of (w,L)/(2mwm,). Pick
a frequency (w,) such that 27 /w, is large relative to a typical convective
turnover time (i.e., the depth of the domain divided by the average fluid ve-
locity in the z-direction). Also try this type of time-dependent temperature
condition on both the bottom and top boundaries using the same values of
Mo, Wy, and A,, or using the same m,, and 4, but setting w, on the top bound-
ary to —w, on the bottom boundary. Also try this with a sum of several modes
m,, each with different values of w, and 4,.

. Instability determined by the initial perturbation in a 2D box

Produce a simulation like the one illustrated in Fig. 10.1, but just before the
shear instability begins (Fig. 10.1b) add a small external perturbation (to
T (2) or wy(z) for some m) in a way that will initiate the instability. Then
rerun this case with the perturbation of the opposite sign.
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Internal gravity waves with no significant mean zonal Slow in a 2D box
Produce a simulation with the parameters for the case illustrated in Fig. 10.1,
but with the top and bottom boundary conditions on Ty switched, i.e., simulate
internal gravity waves. Let the initial condition be 7 o=zand T} = 0.5sinxwz.
Convection with periodic flow through all boundaries of a 2D box
Sometimes one wishes to simulate convection only within a small part of
a much larger fluid region. This can be done by imposing periodic boundary
conditions on all four boundaries of a 2D box, i.e., allowing fluid flow through
not only the side boundaries but also the bottom and top boundaries, which are
no longer impermeable and stress-free. In this case a convenient method is an
expansion of all variables in full Fourier series in both the x and z directions.
Construct such a model.

. Prescribed fluid flow rates through boundaries of a 2D box

Simulate convection within a 2D box with a constant and equal total fluid
flow rate through the side boundaries. That is, set the integral in z of v, over
each of the side boundaries to the same constant. Likewise, impose a constant
and equal total mass flow rate through the bottom and top boundaries.

. Convection in a 2.5D box

Construct a nonlinear Boussinesq convection model for a 2.5D fluid box
with all boundaries being impermeable and stress-free. Use a finite-difference
method in z and Fourier expansions in x with a spectral-transform method to
compute nonlinear terms. Describe the evolution of vy(x, 2, 1).

. Convection in a 2D annulus

Construct a nonlinear Boussinesq convection model for a 2D fluid annulus
with impermeable and stress-free top and bottom boundaries. Use a Fourier
spectral method in longitude and either a finite-difference method or a
Chebyshev spectral method in radius. Compute nonlinear terms using a
spectral-transform method. Solve the vorticity-streamfunction equations
using either the direct matrix solution method (Section 10.3.2) or the
influence matrix solution method (Section 10.3.3).

. Internal gravity waves in a 2D annulus

Do the Internal gravity waves excited by a continuous central source project
described at the end of Chapter 6 in a 2D annulus geometry using the method
described in Convection in a 2D annulus.

. Convection in a 2.5D spherical shell

Construct a nonlinear Boussinesq convection model for a 2.5D (axisymmet-
ric) spherical shell with impermeable and stress-free bottom and top
boundaries. Use spherical harmonic expansions in colatitude, Chebyshev
polynomial expansions in radius, and a spectral-transform method to com-
pute nonlinear terms.
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Chapter Eleven

Magnetic Field

gnetoconvection is the term usually used to describe thermal convection of an
ctrically conducting fluid within a background magnetic field maintained by
me external mechanism (e.g., Roberts, 1967; Weiss, 1981a; Glatzmaier, 2005a;
mpel et al., 2009). For example, much of the solar magnetic field generated
p within the sun extends to the surface, where it is swept by the convection
into intense small-scale magnetic flux concentrations called “sunspots,” which in-
ibit outgoing heat flux and so appear darker than the surrounding photosphere.
Inderstanding this mechanism was the motivation for much of the magnetocon-
ection research that Nigel Weiss and colleagues pioneered in the 1980s (Weiss,
981a). Matthias Rempel and colleagues recently produced one of the most so-
histicated and realistic 3D magnetoconvection simulations of a sunspot (Rempel
t al., 2009). Magnetoconvection is also being studied as the mechanism that in-
uces fields within the subsurface oceans of icy satellites orbiting within the back-
ound magnetic field of their parent giant planets, like Europa around Jupiter or
itan around Saturn. In these examples, the flow of electrically conducting fluid
duces new magnetic field by doing work distorting the original field. However,
2D the induced field would decay away if the background field were removed.
A self-sustaining magnetohydrodynamic (MHD) dynamo, on the other hand, is a
mechanism that maintains the magnetic field without any background field or ex-
ternal mechanism other than heat being transferred through the convecting domain.
Stellar and planetary dynamos are of this type. Self-consistent simulations of MHD
dynamos necessarily produce 3D magnetic fields (Cowling, 1934; Section 13.6).
However, considerable insight can be gained by first doing 2D magnetoconvection
and magneto-gravity wave studies.

We begin this chapter with a review of the magnetohydrodynamic equations.
Then we explain how to make such a 2D model by adding an externally maintained
background magnetic field to the Boussinesq model in a box with impermeable side
boundaries (Chapter 4) or to any of the variations to that model described in this
book. First we consider the case of a uniform vertical background field, which, for
example, might be a simple model of the outer convective layer in the polar region
of a planetary core or stellar interior that has a dipole-dominated global magnetic
field. Then we consider the case of a uniform horizontal background field, which
could represent the magnetohydrodynamics of the equatorial region of such a body.
We also discuss how one could simulate a case of a uniform background field that
is tilted relative to both the vertical and horizontal axes.
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11.1 MAGNETOHYDRODYNAMICS

The magnetic induction equation describes how new magnetic field is conting;

generated by convection of electrically conducting fluid, which on average balap

the removal of the field by diffusion. This equation is derived from the pre-Maxw,
equations, Maxwell’s set of electromagnetic equations modified by the MHD

We assume, as is usually done for the MHD of stellar and planetary interiors, 5
linear isotropic relationship between the (applied) magnetic field, H, and the net
magnetic flux density, B = pH, and between the (applied) electric field, E, ang
the net electric displacement field, D = ¢E, where 1 is magnetic permeability
and ¢ is the permittivity (or dielectric constant) of the fluid. We also take U and
€ to be their “free-space” values because of the high temperature of liquid iron in
terrestrial cores or of ionized hydrogen in stellar and giant planet interiors. Thig
high temperature precludes any permanent magnetism; that is, the magnetic field
would decay away if it were not being regenerated. The magnetic permeability of
free-space, u,, is 4w x 107 henry/m and the permittivity, ,, equals 1/ (uy,),
where c is the speed of light in a vacuum., In addition, we neglect the plasma effects
that would exist in low-density magnetospheres due to electrons, ions, and neutral
particles flowing at different velocities; representing these effects would require a
more complicated Eq. 11.3. We also assume the electrical conductivity is isotropic.
The relevant equations, in SI units, are then

VxB=uJ, (11.1)

OB
VxE=——, (11.2)

J=0(E+vxB), (11.3)

where o is electrical conductivity of the fluid.

Ampere’s Law (Eq. 11.1) states that an electric current density, J, generates a B
field, which is usually just called the magnetic field. Maxwell’s correction says that
a magnetic field is also generated by a time-varying electric field, i.e., the displace-
ment current density. However, this contribution is of order (v/c)? relative to the
contribution J makes and therefore is neglected within the MHD approximation.
Taking the divergence of Eq. 11.1 shows that this approximation makes the current
density divergence-free:

V-I=0. (11.4)

Faraday’s Law (Eq. 11.2) states that a time-varying magnetic field induces an
electric field, E. (Note, the MHD approximation on Ampere’s Law begins by scal-
ing Faraday’s Law to show that |E|/|B| should be of order v and by noting that

/c*.) Taking the divergence of Faraday’s Law gives Gauss’s Law,
' V-B=0, (11.5)

ng the initial V-B vanishes. That is, there are no magnetic monopoles. Con-
tly, a vector potential, A, can be defined such that

B=VxA, (11.6)

h ensures that B is divergence-free (Eq. 11.5).
‘E J, and v in Egs. 11.1-11.3 are measured in the lab frame of reference.

in the MHD approximation (i.e., when dropping terms of ordf:r (v/c)?), B and
Galilean-invariant (frame-independent). However, the electrlc. field measured
frame moving with the fluid is (E + v x B), the electric ﬁe.:ld in the lab fran}e
the “electromotive force”. The electric current density is driven by the electric
d the fluid experiences, i.e., Ohm’s Law, Eq. 11.3. . ‘
The frame-dependence of the electric field also ma.kes the ‘electnc charge density,
frame-dependent since Gauss’s Law for the electric field is

qg=¢€V.E.

though conservation of charge is technically g /3¢ = ~V.]J, the amplitude of
/8t is of order (v/c)? smaller than the individual componen_ts of V.J. T?lerefore,
thin the MHD approximation, Eq. 11.4 represents conservation of electric charge
n-all frames of reference. Equations 11.3, 11.4, and 11.7 tl'ler} show .that Wl}en
bserved in the lab frame of reference the charge density within a fluid moving
ith velocity v is
q = —€V+«(vxB),

hereas when the observer is moving with the fluid (i.e., v = 0) the charge density

anishes. . .
The electric field (in the lab frame) is the sum of a static field, determined by the

adient of the electrostatic scalar potential, ®,, and an induced field determined
by the time derivative of the vector potential, A:
oA

= (11.8)
3t

E=-V®d, —
Therefore,
V-E = -V2®, (11.9)

(when choosing the Coulomb gauge, V-A = 0), which by Eq. 11.7 relates the
charge density to the electrostatic potential, and
0V xA

=— (11.10)
VxE ryamt

which by Eq. 11.6 is Faraday’s Law, Eq. 11.2. Note also that, according to Egs. 11.1
and 11.6,

nI=VxVxA
=-V?A, (11.11)

again assuming the Coulomb gauge.
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The secondary role played by the electric field relative to the magnetic field
within the MHD approximation also extends to the electromagnetic force and en-
ergy. The electric force density, gE, is of order (v/c)* smaller than the magnetic
force density, J x B; so within the MHD approximation the Lorentz force density
is taken to be just the magnetic force density. With Eqgs. 11.1 and 11.5 (and the
constant 1), this Lorentz force density can be written as

2
JxB=-V <§—> +V-<-]E) ) (11.12)
2u u

This illustrates how the magnetic force density is the sum of a gradient of magnetic
pressure, B2/2u, and the divergence of the Maxwell stress tensor (or magnetic ten-
sion), BB/u. Likewise, since the electric energy density, €E?/2, is order (v/c)?
smaller than the magnetic energy density, B2/2u, the electromagnetic energy den-
sity, within the MHD approximation, is taken to be just B?/2u4.

With the electromagnetic force and energy being only a function of B, it would
be convenient to also have an equation for the evolution of B only in terms of B
and the fluid flow. This is easily accomplished by eliminating the electric field and
current density via Egs. 11.1-11.3 to obtain the magnetic induction equation.

B

—87=Vx(v><B)—Vx(anB), (11.13)

where the magnetic diffusivity, 7, is 1/(uo’). When 7 is constant, Eq. 11.13 simpli-
fies, with the help of Eq. 11.5, to

%:Vx(va)—l—anB. (11.14)

Note that having solved for v and B, one can use Eq. 11.1 to compute J and then
Eg. 11.3 to get E.

Like viscous (v) and thermal («) diffusivities, n has units of length squared per
time. The magnetic diffusion time (the time for magnetic field to decay to 1/e of its
original intensity) for a length scale of D is roughly D?/y. In the Earth’s liquid iron-
rich core 7 is much larger than « and so the dominant magnetic structures are likely
larger than the dominant thermal structures. The opposite is true within the sun’s
convection zone because « there is mainly due to radiative transfer, which transfers
heat much more effectively than molecular conduction. Therefore, as mentioned,
the dominant length scale of the magnetic field observed on the solar surface is
small compared to a global scale.

Equation 11.14 shows how the magnetic field is induced by the flow of the elec-
trically conducting fluid across an existing field. The resulting distorted field re-
sponds with a Lorentz force density (Eq. 11.12) on the fluid, which is added to the
momentum equation 1.2.

By taking the dot product of Eq. 11.14 with B/ and using Eqs. 11.1-11.5 and
several vector identities one obtains the equation for the rate of change of the mag-
netic energy density:

2 2
E(B_> =_v.<EXB) B g xmy. (11.15)
ot \2u U g

AGNETIC FIELD

he first term on the right side is the convergence of the Poynting flux, (E x B)/p,
e flux of electromagnetic energy. The second term on the right is minus the ohmic
eating, which is added to the internal energy density equation (1.6) as part of Q.

e third term on the right is minus the rate work is done by the Lorentz forces,
hich is added to the left side of the mechanical energy density equation (1.9).

ese two terms therefore cancel out when Eq. 11.15 is added to Eq. 1.10 to get
e total energy density equation that now includes magnetic energy (although not
prescribed internal heating such as radiogenic):

0 e+1v2+ <1>+B2 =-V +l 24 pd
37 Y 2/0 P 2% = pe 2pv +p0+p —

ExB
V. [—kVT —veo + —;—} . (11.16)

For stress-free impermeable boundaries the rate of change of the volume-integrated
total energy density equals minus the surface integral of the thermal heat flux and
Poynting flux out of the fluid domain.

Now, a few words about units. In SI units, B is in tesla, J is in amperes per
meter squared, K in volts per meter, 1 in henries per meter or newtons per ampere
squared, and o is in siemens per meter. See the appendix in Jackson (1998) for a
comprehensive discussion of other systems of units. If CGS units were chosen for
Eqgs. 11.1-11.5 and if magnetic field were measured in gauss (10~ tesla), the free-
space uo (which is usually what 1 is taken to be if the temperature is high) would
be 47, this is without any modifications to Eqs. 11.1-11.5.

11.2 MAGNETOCONVECTION WITH A VERTICAL BACKGROUND
FIELD

Consider the nonlinear Boussinesq model of convection in a box with impermeable
boundaries on all four sides as described in Chapter 4. To keep this model rela-
tively simple, we take 5, 1, and o to be constants and force the two-dimensional
constraints on the field: B, = 0 and dB/dy = 0. For an initial condition we set
B = B, = B,Z, a uniform vertical magnetic field within the fluid domain. This B,
is an externally imposed background field that exists at all times. Attime zero there
is not yet an induced magnetic field.

We want to maintain the boundaries tangentially stress-free, so magnetic stress,
B.B./u (Eq. 11.12), in addition to viscous stress, needs to vanish on them.
For the top and bottom boundaries, B, B,/u is the magnetic force in the x-direction
per surface area normal to the z-direction; and for the side boundaries B, B, /i is
the magnetic force in the z-direction per surface area normal to the x-direction.
In addition, we want magnetic field to permeate through the top and bottom bound-
aries. These conditions are accomplished by forcing the horizontal component of
the field, B,, to vanish on all four boundaries. We also want to maintain the
net magnetic flux (per length in the y-direction) through the top and bottom
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boundaries at the initial (background) value,

L
/ Bzdx = BDL .
0

Note, because the field does not permeate through the side boundaries and becg;

of Eq. 11.5, Eq. 11.17 holds for all values of z within the box of fluid. This “exte

nally maintained” boundary conditio ;
Having specified the initial and b

now describe a way to solve Egs. 11.

field. As we have been using the vector streamfunction, v §, to ensure that t

fluid velocity is divergence-free, here we use a magnetic vector potential in th

y-direction, A = 43, to ensure, by Eq. 11.6, that Eq. 11.5 is satisfied. That is,

a4 a4
B=VXA=-—£+_2
0z x
and therefore

04 04
Bx = ——— and Bz = T—. (lllga’b)
oz dx

Also, since the current density, J, is related to A via Eq. 11.11, and since A is in
the y-direction, J = J . That is, like the streamfunction and vorticity, the vector
potential and current density are only in the y-direction but depend only on x, z,
and ¢. Also, contours of 4 are magnetic field lines, which are everywhere tangent to
B and have a density proportional to the local amplitude of B for the same reasons
contours of yr are streamlines of the flow as discussed in Séction 2.1,

However, instead of taking the curl of the magnetic induction equation, as we
did for the momentum equation to get a vorticity equation, here we write Eq. 11.14
in terms of the vector potential:

dVxA

ot
Then, using the standard vector identity for V(A-v) and the 2D constraints, it is eas-
ily seen that in Eq. 11.19 v x (Vv XA) = —(v.V)A. Also, since the time derivative
and the Laplacian both commute with the curl, we can “uncurl” Eq. 11.19 to get

the familiar advection/diffusion equation for the y-component, 4, of the magnetic
vector potential:

= VX(v x (VxA)) + VIV xA . (11.19)

94
B = V4 +9Vi4, (11.20)

Note that the integrating factor, the y-derivative of a electrostatic scalar potential,
vanishes because of the 2D constraints. Therefore, by Egs. 11.7, 11.8, and 11.9, the
electrostatic potential makes no contribution to the electric field or to the electric
charge density. Also note that the advection term in Eq. 11.20 equals (v x B), and
the diffusion term equals —J/o.

Now, by using Eqgs. 11.18, the integral boundary condition at the bottom and top

boundaries, Eq. 11.17, equals the vector potential at x — . minus that at x = (),
Therefore, for convenience, we set

A=0at x=0 and A=B,L at x =1L, (11.21)

tion, to force B, to vanish on all four boundaries we want
o4 =0 (11.22)
oz o
1l boundaries, which means that Eq. 11.21 needs to hold fo'r all z. The vanishing
on all four boundaries also means that there is no Poynting flux, (E x B)/pu,
X

h the boundaries. .
l(l)%v we need to decide how to solve these equations. We could employ a fully

difference method (Section 9.3) or a fully spectral methqd (Section 9.4): HOW-
here we again choose to Fourier expand in the x-direction and use ﬁmt.e .d1f—
ces in the z-direction (Part 1). Therefore, to satisfy these boundary conditions
A we define the vector potential as
N,
A(%,2,1) = Box + Y Ay(z, 1) sin(nwx/L) (11.23)

n=1

04,
0z

{Note, in this chapter we revert to using » as the symbol .for the hgnzpntal mode
humber as is done in Part 1.) The spectral magnetic induction equation is therefore

34, 34, rnmN2 ) 11.25)
N =—[(v-V>A1n+n< () 4 (

This equation describes the evolution of the field by inductiqn and dlffllSlOI;. .

Now consider the back reaction of the field on the flow via the Lorentz orce in
the momentum equation. As is described in Pal.’c 1, we curl the momentum e(llue;tltﬁn
o get the vorticity equation. We discussed, using Eqgs. 2.1-2.4, how the curl of the
nonlinear advection term is

—VX({(v+V)V) ==~V x(w x V)
=—(v-V)oy

=0at z=0 and D. (11.24)

since d/dy = 0, v, = 0, V-v = 0, and @ = Vxv. Similarly, since /3y = 0,
B, =0, V-B = 0and uJ = VxB, the curl of the Lorentz force per mass,
y B

1 -
iVX(J xB) = I—;(B-V)Jy , (11.26)
P o

(4

needs to be added to the vorticity equation. .
If the model being modified here is nondimensional, scale B by the constant

B,, A by B, D, and multiply Eq. 11.14 by D?/k B, and Eq. 1.1.'20 (an.d 11.25).by
Do/,/c B,. This results in nondimensional versions of the magnetic induction ejquatlon
with tl(;e only difference in appearance being that 7 is replaced by 1/q in those
equations, where

q=«/n (11.27)

is the Roberts number (after Paul H. Roberts). In addition, thf: nonfiime‘nsional
version of Eq. 11.21 requires 4 = g at x = a (the aspect ratio). Likewise, the
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nondimensional spectral vorticity equation (Eq. 2.11), but now with the Lorep,
“torque” (Eq. 11.26) included, is

20 e [(vV)ol, + RaPr () 1+ (82&;" - (E)zw)

at a9z a
+% [(B-V)J], (11.28)

2 2
o= 2570 (11.29)
PoV
is the Chandrasekhar number. For the remainder of this section we assume this
nondimensional model.
With 4 expanded according to Eq. 11.23 and employing Eqs. 11.18, we have
expansions for the two components of the (nondimensional) magnetic field,

M 84
By, 7)== E sin(nrrx/a), (11.30)
n=1

N, .
B(r,z,)=1+) (-”—’1) A, cos(nmx/a), (11.31)
n=1 a
and, using Eq. 11.11, the nondimensional current density is

N,
J(x,z,t) = Z Ju(z, t) sin(nnx/a), (11.32)

n=1

9z2 a

Jy =~ (32‘4” - (”—”)ZA,,) . (11.33)

By Eq. 11.32, the current density vanishes on the side boundaries.

Notice the similarities in the equations for B and v, and for 4,, and Yy, and for J,
and w,. There are differences, however, in the way these equations are solved. At
each time step, A, is first updated using the 9.4, /9¢ equation (11.25) and then Jn
is easily updated with Eq. 11.33 by simply taking spatial derivatives of A, whereas
w, is updated using the dw, /9t equation (11.28) and then v, is updated by solving
the Poisson equation (2.12) via the tridiagonal solver and applying two boundary
conditions on v,,. This difference is due to our choice of a horizontally integrated
boundary condition on B,, Eq. 11.17, instead of a local boundary condition.

Having discussed the magnetic boundary conditions, we also need to mention the
initial condition on the vector potential. Since we want just the uniform background
field in the z-direction initially, we set 4, = 0 everywhere for all # at f = (), which
makes the nondimensional B, = 0 and B, = 1 everywhere at ¢ = 0.

The subsequent evolution of the system of equations now has additional diffusive
and advective constraints on the nondimensional time step, A¢. Magnetic diffusion

At < (Az)%q/4
the CFL condition requires
At < Az/|V4,

here the nondimensional Alfvén velocity, the velocity a transverse disturbance in
e field propagates along the field, is

172
Vi= (ngl) B. (11.34)

dimensional units,
(11.35)

ote, in CGS units with y = 47, p in gm/cm?, and B in gauss, V4 from Eq. 11.35

= would be in cm/s. The Boussinesq (and anelastic) approximations also require that

V4 remains small relative to the local speed of sound, which effectively limits the
amplitude of the magnetic field.

Next we consider in detail the addition of the nonlinear terms involving the mag-
netic field: the Lorentz torque in the vorticity equation (11.28) and the advection of
the vector potential in the magnetic induction equation (11.25). Here we describe
these for the Galerkin method (Chapter 4); but of course they could be computed
via the spectral-transform method (Section 10.4).

The Lorentz torque in Eq. 11.28 is (using Eqs. 11.18)

P P ADd
o, SB[ 2L 2]

9z dx ' ox 9z

Since A and J are both expanded in sin(nwx/a), as are ¥, and w, and since 4,
and J, are related to each other (Eq. 11.33) in the same way ¥, and w, are related
Eq. 3.5), the Galerkin formula for calculating the contribution

o the induced magnetic field is, other than the minus sign and the (Q Pr/q) factor,

(11.36)

identical to Eq. 4.4 with v, replaced with 4, and w, replaced with Jpoforn > 0.In
 practice, one can simply add this magnetic contribution to the nonlinear advection

of vorticity using the coding strategy described in Section 4.3.2. However, there is
one more contribution that needs to be included: that due to the interaction of the
induced current density with the externally maintained constant-background mag-
netic field, which is the “1” in Eq. 11.31 or, equivalently, the “ ,x” in Eq. 11.23.
This linear part of the (nondimensional) Lorentz torque is simply (Q Pr/q)3.J, /dz,
which can be added in with the other linear terms in the vorticity equation.

The Galerkin formula for calculating the advection of the induced vector poten-
tial in Eq. 11.25 is also identical to Eq. 4.4 but now with just e, replaced with
Ay forn > 0. In practice, this nonlinear term can be added to the linear diffusion
part of the time derivative of the vector potential just as the nonlinear terms in the
time derivatives of the vorticity and temperature are added to their respective linear
terms before updating in time. However, as for the Lorentz force, this advection of
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the vector potential has an additional contribution due to the background vector po
tential, the “B,x” in Eq. 11.23. The (nondimensional) gradient of this is “1” in thy
x-direction; so the additional (linear) contribution to this advection term is simp]
—(vx)n, which is 3, /0z.

The magnetic induction equation has an additional complication. Unlike 7,,, e, ;
and ,,, which all vanish on the bottom and top boundaries, 3.4, /dz, not 4, needs -

to vanish on these boundaries. Therefore, Eq. 11.25 needs to be solved on the
bottom and top boundaries to update 4, there while forcing Eq. 11.24. This re-
quires knowing, on these boundaries, 324, /9z* for the magnetic diffusion term and
0, /92 for the advection term. We could employ “noncentered” finite-difference
methods that approximate these boundary derivatives; but these are typically less
accurate. Instead, there is a clever way to use centered finite-difference methods by
defining ghost points one grid level beyond the boundaries based on the boundary
condition.

Consider the magnetic diffusion term on the bottom boundary, which involves
the second derivative with respect to z of 4, calculated according to Eq. 2.16 for
(k=1):

azAn> _ (An)Z - 2(An)1 + (An)O
( 02 ), = (Az)?

The ghost point is k£ = 0; but, since

(%) _ (An)Z — (An)O
1

=0,
0z 2Az

the value at the ghost point, (4,)o, must always equal (4,),. Therefore,
(32An> _ 2((A4n)2 — (4n)1)
1

dz2 (Az)?

Likewise, at the top boundary (k = N,)

azAn) — 2((AH)NZ—1 - (An)Nz) . (1138)
9z2 ) (Az)?

Now consider the advection term on the bottom boundary. This involves
(—v,04/03z), which vanishes there since both v, and 04/0z vanish there, and
(—v,84/3x), which does not vanish. The challenge here is calculating —(v,), on
the bottom boundary, which is

8wn . (wn)Z - (%)0
3z 1— 2Az '

We know from Part 1 that the impermeable and stress-free boundary conditions
force both ¥, and 8%,/9z2 to vanish on the bottom boundary. Therefore, by
Eq. 2.16 (¢,)o must always equal —(1/,,)2, which makes

i‘i) _ W) (11.39)
0z 1~ Az

In summary, the vector potential, 4
evels, including the top and bottom

’

e background field) plus a full (complex)

for an x-independent x-component of B,

we would also solve the n = O'part of the magnetic induction equation for 4y (z, 1).
Finally, ohmic heating, |J)? /o (also called Joule heating), is an additional non-
linear term in Eq. 1.6. However, like viscous heating, we neglect it here for sim-

- plification. See Eqgs. 12.31 and 12.32 if including them is desired. Otherwise, the

energy equation remains unchanged. Total energy, however, will not be conserved
exactly when viscous and ohmic heating are neglected; but the system adjusts by
having slightly less heat flow out through the top boundary, on average, compared
to the heat flow in through the bottom boundary.

11.3 LINEAR ANALYSES: MAGNETIC

Before discussing nonlinear numerical simulations we check what can be learned
about the stability and structure of magnetoconvection and the dispersion relation
for magneto-gravity waves from analytical analyses without the nonlinear terms.
It would also be wise to test whether the magnetic modifications discussed in the
previous section that apply to the linear system of equations work before adding

~ the nonlinear modifications,

11.3.1 Linear Stability: Magnetic

First consider the nondimensional linear equations and boundary conditions,
Egs. 3.3-3.6, for an unstable background temperature gradient but now with the
linear part of the curl of the Lorentz force per mass, (QPr/q)8.J,/8z, added to
the right side of the vorticity equation, (3.4). In addition, we have the relationship
between J, and 4, Eq. 11.33; the (nondimensional) linear magnetic induction

equation,
04, 3y, 1 (824, nwy2
- = - —(—) 4,); 11.41

ot 3Z+q<822 (a) " ( )

and the (nondimensional) boundary conditions,

04,

=0 atz=0and 1. (11.42)
0z
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As discussed in Section 3.4, T,,, w,, and v, are expanded in sin(mmz) to satisfy
their top and bottom boundary conditions. To satisfy the boundary conditions op
A4,,Eq. 11.42, let

N
An(z,8) =) Aun(t) cos(mrz),

m=1
where again the coefficients depend on the x-mode number #, the z-mode number
m, and time ¢. Then, as is done in Section 3.4, substitute the expressions, now in-
cluding 4, and J,, into the linear equations (including the linear part of the Lorentz
torque) with all time derivatives set to zero. The resulting critical Rayleigh number
is

4 (n2 + (am)?)’ 2

Rétgr (1, m) = (%) Q—%)—)- n (fnﬂ) (n2+ @m?) Q.  (11.43)
Again, cells that extend from the bottom to the top (m = 1) are more unstable.
However, as Q increases, i.e., as either the intensity of the background magnetic
field (B,) increases or the electrical conductivity of the fluid (o) increases, the
Rayleigh number needed at the onset thermal convection increases. That is, the
greater the Lorentz force, which tries to prevent fluid flow across magnetic field
lines, the more thermal driving is required to maintain a given level of convection.

One can also check how the magnetic field affects the preferred spatial scale of
the resulting convection by setting the derivative with respect to n of Eq. 11.43 to
zero to find the critical horizontal mode number 7.,;,. The result, for m = 1, is

2 (E)G + (u)4 = % +1. (11.44)
a a 4
For no magnetic field, Q = 0, this reduces to Eq. 3.9. As Q increases #,,;; increases;
that is, the larger the background magnetic field the smaller the preferred horizontal
length scale because the Lorentz forces inhibit large horizontal flows across the
vertical magnetic field.

Equation 11.44 can be solved for n..; by checking what the left side of this
equation would be for the Q = 0 value of n.,4, i.e., the nearest integer to a/ V2, and
then checking the left side for increasingly higher integer values of n.;, until the
left side exceeds the right side, for the given value of Q. The actual 7.y, will then
be the integer that most closely satisfies Eq. 11.44. Also, based on this equation,

Q
272

These analytic predictions for the critical Rayleigh (Eq. 11.43) and mode number
(Eq. 11.44) can be used to check the linear magnetic modifications to the convec-
tion code. One could start with the original convection code and add an option
to run as a linear code by skipping over the nonlinear terms. Then, as discussed
in Chapter 3, one could check if the linear magnetic code produces the critical
Rayleigh number, for a given a and Q, as predicted by Egs. 11.43 and 11.44. As
mentioned, this would be a good way to test the linear magnetic modifications
before proceeding to the nonlinear modifications.

1/6
Aeris = @ < ) and Ra.;; — an as Q— o0.

GNETIC FIELD
.3.2 Internal Gravity Waves: Magnetic

e linear magnetic code could also be tested by simulating internal magneto-
yity waves in a stable temperature stratification. As is done in Section 6.1, drop

nonlinear terms and the diffusion terms. The resulting set of dimensional equa-
ns is

T 3y dT
T e (11.45)
do 3T B, dJ
a—t——goaa ;;E’
34 3y

E:'E‘ 0>

(11.46)

(11.47)

82 82
a)=—( +5;2->1//, (11.48)

ax2

1/ 8% a2
J=——{ =+ — ) 4. .
M (8x2 + 822> (11.49)
By taking the time derivative of Eq. 11.46 and substituting in the other equations,
this set of five equations and five unknowns can be reduced to one equation in terms
of, for example, only v:

32 2 2 2 2 2 2
(—qui)a‘/’=_1\123—'”+vi<—8~+8 )M (11.50)

ax2 ' 922 ) a2 9x2 ax2 | 8z2) 822

where N is the Brunt-Viisild frequency (Eq. 6.5) and V4 is the Alfvén speed
(Eq. 11.35) based on the background field B,. The resulting dispersion relation,
relating the wave frequency, &, to the wave vector, k, of a planewave solution
(Eq. 6.6), is

2k 2,2 2
o= (N k—; +VAkz> . 1Lsn

This shows that the frequency of an internal magneto-gravity wave increases with
both stratification, N, and magnetic field intensity, V 4. However, the more horizon-
tal the direction of the phase propagation the more the wave behaves like an internal
gravity wave because the restoring forces on the transverse fluid motions are more
in the direction of gravity. The more vertical the phase propagation the more the
wave behaves like an Alfvén wave because the restoring forces on the transverse
fluid motions are more in the direction perpendicular to the vertical magnetic field
lines.

The linear magnetic code could then be tested by comparing simulated wave
frequencies with those predicted in Eq. 11.51 for a set of wave vectors, kyandk,,a
given background thermal structure, N, and magnetic field, V 4.
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11.4 NONLINEAR SIMULATIONS: MAGNETIC

Now let’s consider nonlinear simulations of magnetoconvection in a box wi
impermeable side boundaries. Choose a Ra significantly greater than the over:
critical Rayleigh number for a given aspect ratio, a, and now also for a given
Chandrasekhar number, Q. The larger the prescribed value of Q the more intenge
the background field and therefore the more difficult it will be for the system to
convect,

A convenient way to illustrate the magnetic field is to plot magnetic field lines,
As mentioned in Section 11.2 for this 2D problem, contours of 4 represent instan-
taneous magnetic field lines, which like the constant-1 streamlines are not physical
but only a graphical illustration of the local direction and intensity of the field. Note
that magnetic field lines permeate through the top and bottom boundaries; whereas,
because of the impermeable velocity boundary conditions, the fluid streamlines do
not.

Consider the case illustrated on the right in Fig. 4.2 but with the addition of a
relatively weak vertical background magnetic field (Q = 102) and with a magnetic
diffusivity equal to the thermal diffusivity (q = 1). A snapshot of this case is dis-
played in the top row of Fig. 11.1. The kinetic energy is so much greater than the
magnetic energy that the changes in the temperature and fluid flow profiles due to
the presence of the field are extremely small. However, the magnetic field profile
is significantly changed from its initial uniform profile, now having most of the
field swept into the upflows and downflows, where it is nearly parallel to the flow,
minimizing the inhibiting Lorentz forces. Nigel Weiss and colleagues pioneered the
study of this “magnetic flux expulsion” effect (e.g., Weiss, 1966; Moore et al., 1973;
Galloway et al., 1978; Weiss, 1981a,b) using similar 2D magnetoconvection mod-
els. Recall that the nonmagnetic case (illustrated on the right in Fig. 4.2) continues
to be steady and to maintain the two-cell pattern even after five thermal diffusion
times. The magnetic case here appears to be steady initially; but after about one
thermal diffusion time the central downwelling is seen to slowly drift to one side
and eventually replace the upwelling there, converting the pattern to a single cell
like that on the left side of Fig. 4.2.

Now consider the same case but with a more intense background magnetic field
by setting Q to 10*. The Lorentz forces are now about 100 times larger; so the
field acts like a stiff elastic medium, strongly resisting flows locally perpendicular
to it. The resulting solution is nicely time-dependent, a combination of thermal
convection and Alfvén waves. A snapshot of this solution is displayed in the middle
row of Fig. 11.1. There is still a small tendency for the expulsion of magnetic flux
from regions of strong horizontal flow and the concentration of it within regions of
strong vertical flow; but since the pattern is so time-dependent and the field is more
intense this process is not as efficient, as seen for the case illustrated in the top row
of Fig. 11.1. Increasing Q further makes the motion change from convection to an
oscillation. A value of Q greater than that predicted by Eq. 11.43 with the critical
Rayleigh number and aspect ratio set to the Ra and a for this example, 10° and 3,
respectively, m set to 1, and n determined by Eq. 11.44 will cause the convection
to decay away.

\NETIC FIELD

Temperature Magnetic field lines

Figure 11.1 Snapshots of three magnetoconvection solutions, illustrated with profiles of
temperature and vector potential (i.e., magnetic field lines) plotted on the hor-
izontal (x) and vertical (z) grid (see Color Plate 4a for a color version of this
figure). The snapshot illustrated in the top row is the case on the right in Fig. 4.2
with the addition of a relatively weak vertical background magnetic field (Q =
10% and q = 1). Initially it appears to be in steady state, like the nonmagnetic ver-
sion; but after about one thermal diffusion time the pattern switches to a single
cell like that on the left side of Fig. 4.2. The snapshot illustrated in the middle
row is the same case but with a much more intense background field (Q = 10*
and q = 1). This case is quite time-dependent. The snapshot illustrated in the
bottom row is the case on the right in Fig. 6.2 with a relatively intense back-
ground field (Q=10%, q=1). It too is time-dependent as it was without the field.
For temperature, red represents hot buoyant fluid and blue cold heavy fluid.
The horizontal-mean temperature is included in these images. Solid contours of
the vector potential are magnetic field lines, entering the bottom boundary and
exiting the top.

Finally, consider the case illustrated on the right in Fig. 6.2, now with a rela-
tively intense vertical background field (Q = 104, q = 1). A snapshot of this case
is displayed in the bottom row of Fig. 11.1. The Lorentz forces reduce the kinetic
energy in the convection zone as the flow does work on the field there. Magneto-
gravity waves are continually excited at the interface and propagate through the
lower stable region. However, the amplitudes of these waves are not sufficient to
significantly distort the uniform field profile there.
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11.5 MAGNETOCONVECTION WITH A HORIZONTAL BACKGROUND
FIELD

Consider a magnetoconvection problem like that described in Section 11.2 but now
with an imposed uniform horizontal background magnetic field B, = B, %. Again;
we want no magnetic (or viscous) stress on the boundaries. However, now we want
the field to permeate through the side boundaries and none to permeate through the
top and bottom boundaries. To satisfy these constraints, we force B,, and therefore
04 /0x, to vanish on all four boundaries. Here again, 4 is the amplitude of the
vector potential, which is in the y-direction.

We also want to maintain a net magnetic flux through the side boundaries equal
to its initial (background) value:

D
/ B.dz = B,D. (11.52)
0

This integral constraint will hold for all values of x within the fluid because of
Eq. 11.5 and of the top and bottom boundary conditions on B,. Using Egs. 11.18
and 11.52, the vector potential at z = 0 minus that at z = D equals B, D, so we
can choose

A=0atz=0 and Ad=—-B,D at z=D

for all x and ¢. Therefore, since we want § 4 /0x to vanish on all four boundaries,
the dimensional vector potential for this problem is

Nn
Ax,2,8) = —Boz+ Y dn(z,8) cos(nmx/L) (11.53)
n=1
with
A, =0at z=0 and D.

The — B,z in Eq. 11.53 is the uniform, background, x-directed, magnetic field; in
nondimensional format it is —z.

The vector potential version of the magnetic induction equation is the same as it
is for the case of a vertical background field, Eq. 11.25. Note also that for this case
of a horizontal background field the top and bottom boundary conditions on 4,
are simpler than those for the vertical background field case. That is, the equation
for 4, (Eq. 11.25) does not need to be solved on the top and bottom boundaries
and no ghost points are needed since the 4, vanish on these boundaries.

Using Egs. 11.18 and 11.53, the two components of the nondimensional mag-
netic field are

M 94
Bi(x,z,)=1-)_ W cos(nrx/a),
n=1

Ny
B,(x,z,t)=— Z (_na_n) A4, sin(nmx/a),

n=1

d, by Eq. 11.11, the nondimensional current density, which is still only in the
direction, is

Ny
J(x,z,t) = Z Ju(z, t) cos(nmx/a),

n=1

024,  /nw\2
- (_) An) s
072 a
the same as in Eq. 11.33. Note, for this case, the current density does not vanish on
the side boundaries.

Now consider the nonlinear terms. We discuss their computation using the
Galerkin method (Chapter 4), but of course they could instead be calculated us-
ing a spectral-transform method (Section 10.4). Consider first the Lorentz torque,
Eq. 11.36, in the vorticity equation 11.28. Since 4 and J are both expanded in
cosines, this nonlinear term involves products of sines and cosines as it does for
the vertical background field. However, now the sines appear because of the deriv-
atives with respect to x. Using Eq. 4.1c, the coefficients of sin(nwrx /a) for the
Lorentz torque in the vorticity equation are

QPr _ QPrax QPrm N Lo
T[(B-V)J]n———q——a—Jn——q——zzzz

n'=1n"=1

0 A, aJ,
(OIS

0A4,» oy
+ <nl 3Zn Jn’ + n”An” aZn ) (an"—n’,n - 8n’—n",n)J .

(11.54)

Note that the linear part of this (nondimensional) Lorentz torque, due to the induced
electric current through the horizontal background field, is

QPr/aJ _ QPrner
q ox /,

=g
The nonlinear contribution due to the induced current through the induced magnetic
field, i.e., the double summation over »’ and »”, is the same as that in Eq. 4.4 when
Vv 1s replaced with 4, and w, is replaced with J,, except for the factor (Q Pr/g)
and the plus sign in front of the third line of Eq. 11.54. One can also compare this
nonlinear contribution in Eq. 11.54 to that for the case of a vertical background
field in Section 11.2, where the only difference is the sign in front of the second
line in Eq. 11.54.

Next consider the advection of the induced vector potential in Eq. 11.25. We
are now looking for coefficients of cos(n/a) since the vector potential is now




186

expanded in these. Therefore, for n > 0,

N, N,
VAl =y, - 23 5

n'=1np"=]

0z

a 7" aA "
[("n, i Aw + 1" Yy aZn ) Snrin'n

Yy ]
z

Note that the linear part of this (nondimensional
tion of the horizontal background field, is

Ay

9z ) (an”—n’,n + 8n'-n”,n)] .

(11.55)

) advection term, due to the advec.

- (vza(_2)> = Ewn .

0z

a

The nonlinear part of the advection term, i.e., the double summation, is the same

as that in Eq. 4.6 when T}, is replaced with 4,,.
ear contribution in Eq. 11.55 to that for the cas
Section 11.2, where the only difference is the s

One can also compare this nonlin-
e of a vertical background field in
ign in front of the O pn term in

the third line of Eq. 11.55.

The vorticity and magnetic induction equations are solved as they are for the
vertical background field case except that, as mentioned above, there is no need to
solve the induction equation on the top and bottom boundaries because now the A,
are forced to vanish on these boundaries.

Snapshots are shown in Fig. 11.2 for scenarios that are the same as those in
Fig. 11.1 except that here there is a horizontal, instead of a vertical, background
field. The weak horizontal magnetic field in the scenario illustrated in the top row
initially gets deformed by a central downwelling and side upwellings, as depicted
in the temperature snapshot in the top row of Fig. 11.1. The field grows more than
order of magnitude until the Lorentz force becomes significant enough to desta-
bilize the flow pattern, first causing it to evolve erratically and then allowing it to
settle into a slightly time-dependent, single-cell pattern as seen in the top row of
Fig. 11.2. Note that this statistically steady pattern maintains such a large induced
magnetic field that the much smaller horizontal background field is not visible with
the chosen contour interval for A.

The middle scenario is for a horizontal background field one hundred times
larger. This case is relatively time-dependent with both the flow and the field contin-
ually changing but always trying to be aligned as much as possible to avoid Lorentz
forces.

The scenario in the bottom row is also time-dependent, and much more so in the
upper convection zone than in the lower stable region. Notice how magnetic field
lines near the interface connect both regions. This situation may be relevant to the
global magnetic field well below the solar surface in the equatorial region, with the
x~direction representing colatitude. On the other hand, the situation illustrated in

Temperature Magnetic field lines
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Figure 11.2 Snapshots of three magnetoconvection solutions, illustrated with profiles of
temperature and vector potential (i.e., magnetic field lines) plotted on the hor-
izontal (x) and vertical (z) grid (see Color Plate 4b for a color version of this
figure). The cases represented in the top, middle, and bottom rows are the same
as those in Fig. 11.1 except that here there is a horizontal background field.
Note the dashed lines represent negative vector potentials, because of the arbi-
trary choice we made for the top and bottom boundary values of A.

Fig. 11.1 might be more like the solar field in the polar region, especially when the
global field is dominantly dipolar.

It is important to remember, though, that these simulations are forced to be 2D,
with both the field and the flow directed only in the x, z-plane. In 3D, however,
the flow would prefer to form convection rolls with axes parallel to the constant-
background horizontal field and solid-body flow around each axis, in which case
magnetic induction and Lorentz forces vanish. However, for more complicated 3D
flow and field patterns, like a sunspot, there is magnetic flux expulsion.

11.6 MAGNETOCONVECTION WITH AN ARBITRARY BACKGROUND
FIELD
After studying magnetoconvection with an imposed uniform vertical background

magnetic field in Section 11.2 and with a horizontal background field in
Section 11.5 we are tempted to consider magnetoconvection within our cartesian
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box with a uniform background magnetic field in an arbitrary direction within th
x, z-plane:

B, = BV,OQ + BH,of .

Since the magnetic induction equation is linear with respect to the magnetic field
we can define the total magnetic field as

B=By +By=VxA=Vx(4y + Ay

and divide the vector potential version of the magnetic induction equation into ver-
tical and horizontal parts:
04y
ot
04y
3

We might also adopt the boundary conditions from the purely vertical and horizon-
tal background field cases:

=—(V-V)dy + V24, ,

=—(V-V)Ay +1nV3Ay.

04
By,=——"=0,
0z

04y

Pre=T =0

L
/ BV,zdx=BV’oL R
0

D
/ BnydZ=BHYUD.
0

However, there is a problem. We no longer satisfy our tangentially stress-free
boundary conditions on our cartesian box, i.e., B, B,/u does not vanish on the
boundaries as it does for the purely vertical or purely horizontal background field
cases. Allowing these stresses would require changing the boundary conditions on
the velocity.

Proceeding anyway, we might continue to assume that all four boundaries are
impermeable and solve the vertical and horizontal parts of the vector potential as
we do in Sections 11.2 and 11.5, respectively. That is,

Nn
Ay(x,2,0)=By,x + Y Ay,(z,1) sin(nrx/L),

n=1
Nn
Ar(e,z,0)==Buoz+ ) Apa(z,1) cos(uux/L),

n=1

0dy
0z

Agn=0at z=0 and D.

=0 at z=0 and D,

3

ﬁowever, the next problem is that the Lorentz torque (Eq. 11.26) in the vorticity
uation is nonlinear with respect to the magnetic field. Therefore,

[B-V)J]n = [By-V) Iy 1, + [(By-V)July + [(By-V)Jy], + [(By-V)Jyl,.

The first two terms on the right could be calculated as they are for the purely vertical
and purely horizontal background field cases, respectively. The problem is that the
third and fourth (“cross™) terms involve sines squared and cosines squared, which,
according to Egs. 4.1a,b, are the sums of cosines, Since the vorticity for this case
of impermeable side boundaries is expanded in sin(nwx/L), these cos(nmx/L)
contributions to the Lorentz term in the vorticity equation (11.28) are incompatible.
Again, the reason is that there would be stresses on the boundaries, which would

: require different boundary conditions on the velocity. Imposing permeable periodic

boundary conditions (Section 10.2) on all four boundaries is one way that would
work.

As a final remark about arbitrary background magnetic fields, we remind the
reader that so far we have considered strictly 2D magnetoconvection in a carte-
sian box. Several very interesting studies (e.g., Spiegel & Weiss, 1982; Hughes &
Weiss, 1995) have been done for magnetoconvection in a 2.5D box (Section 10.5)
for which the background magnetic field is horizontal but in the y-direction, nor-
mal to the plane of the fluid flow; however, all variables are independent of y.
These studies focus on double-diffusive instabilities and evolution (Chapter 7) due
to buoyancy being partly thermal and partly magnetic (Section 12.4.1) with mag-
netic diffusivity  being much less than thermal diffusivity «. A modified Boussi-
nesq approximation, “magneto-Boussinesq,” is employed in these studies of a very
slightly density-stratified perfect gas. This approximation uses an anelastic version
of V.v (Eq. 12.15) in the magnetic induction equation and, like the anelastic ap-
proximation, retains the effects of the pressure perturbation in the equation of state
and energy equation because what is assumed to be small is the sum of the pertur-
bation gas and magnetic pressures.
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EXERCISES

1. Neglecting the displacement current density in Ampeére’s Law _
Scale Faraday’s Law to show that |E|/[B| should be of order of the fluid
velocity v and then show that the displacement current density in MaXWeu’g
equations should be of order (v/c)?.

. Derivation of the magnetic induction equation
Derive the magnetic induction equation (11.13) by eliminating the electric
field and current density via Eqs. 11.1-11.3.

. Elsdsser variables

Starting with the magnetic induction equation and the Boussinesq equations

for mass and momentum conservation for the case of no buoyancy (or ro-
tation) and assuming constant viscous and magnetic diffusivities, formulate
equations for §Z* /3¢t and 8 Z~ /9t, where the

0Zt=v+V,,

v and V4 being, as usual, the fluid velocity and Alfvén velocity vectors, re-
spectively. Let g be the sum of the fluid and magnetic pressures divided by
density and v be defined as (v &) /2. Write the two equations only in terms
of Z%, q, and v+,

. The advection term in the vector potential equation
Using the standard vector identity for V(A-v) and the 2D constraints, show
that in the magnetic induction equation (11.19) v x (VxA) = —(v.-V)A.

. Critical Rayleigh number and horizontal mode number for convection in a
box with a vertical background magnetic field
Derive the expression for the critical Rayleigh number, Ra,, n,m),
(Eq. 11.43), and for the critical horizontal mode number, 7.,; (Eq. 11.44),
for magnetoconvection in a box with a vertical background field.

. Magneto-gravity wave for a vertical background field
Derive the magneto-gravity wave equation for a vertical background field
(Eq. 11.50) by manipulating Eqs. 11.45-11.49. Also derive the phase and
group velocities (Section 6.1) for this case.

. Magneto-gravity wave dispersion relation with diffusion
Derive the magneto-gravity wave dispersion relation for a vertical background
field, like Eq. 11.51, but with viscous, thermal, and magnetic diffusion in
Eqgs. 11.45-11.47 for constant values of v, &, and 7.

- Magnetic energy flow through boundaries and Lorentz force on boundaries
Show that the total flow of magnetic energy through the impermeable bound-
aries (i.e., the integrated Poynting flux) vanishes for a vertical background
field. What are the Lorentz forces on these boundaries? What magnetic energy
flows and Lorentz forces exist on the boundaries for a horizontal background
field?

. Critical Rayleigh number and horizontal mode number for convection in a
box with a horizontal background field
As can be seen in Eqs. 11.54 and 11.55, the linear part of the Lorentz term in
the vorticity equation is (—Q Pr n7 J, /aq) and the linear part of the advection
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term in the induction equation is (n7 1, /a). Since 4, = O atz = O and 1, set
N
An(z,t) =Y Aum(?) sin(mnz) .
m=1
Using the method described in Sections 3.4 and 11.3, show that the critical
Rayleigh number for this horizontal background field case is
3
74 (n? + (am)?) N2, , ) p
Ragri (1, m) = (;) Tt (;) (n® + (@m)®) Q. (11.56)
Compare this to Eq. 11.43. Also derive the equation that determines the criti-
cal horizontal mode number (n.,;;) for this case.

. Dispersion relation and phase and group velocities for magneto-gravity

waves with a horizontal background field. _
Using the method described in Sections 6.1 and 11.3, show for a horizontal
background field that, when neglecting the nonlinear and diffusion terms, the
dispersion relation, relating the wave frequency, @, to the wave vector, k, of a
plane wave solution (Eq. 6.6), is

2 172
o= (NZ% + Vikﬁ) : (11.57)

Compare this to Eq. 11.51. Notice how for this case the gravitatiogal and
magnetic restoring forces both act in the vertical direction. Also derive the
phase and group velocities (Section 6.1) for this case.

. Magnetic energy per mode

As described for kinetic energy in Section 5.3, show that the nondimeqsional
magnetic energy per mode n (per unit length in the y-direction), for either a
vertical or horizontal background field, is

2
QPra 04, (nn 2
=——=—||— — A4 .
e o ==—7 () +(5 )
This can be compared to the energy in the background field, which is just
QPr/q.

COMPUTATIONAL PROJECTS

1. Testing a linear code by finding the Ra,,i; and ne; for magnetoconvection in

a box with a vertical background field o

Find the Ra,,;; and n.,;; using a linear code for magnetoconvectlop ina box
with a vertical background field and compare to the analytic predictions for
several values of Q.

. Magneto-gravity wave dispersion relations: simulated compared to analytic

Using a linear diffusive magneto-gravity wave code for a Vertical‘background
field, compare simulated wave frequencies with those predicted in Eq. 11.51
for a set of wave vectors, k, and k;, a given background thermal structure,
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N, and magnetic field, V 4. Likewise, compare the simulated frequencies wj
those predicted by the diffusive dispersion relation obtained in the Magneto
gravity wave dispersion relation with diffusion exercise.

. Nonlinear Simulations, Vertical background field: Poynting flux, current den
sity, and electric field

Produce simulations of magnetoconvection in a box with a vertical back-
ground field, like those illustrated in Fig. 11.1. Calculate and plot the Poynting
flux, the current density, and the electric field for these cases.

. Nonlinear simulations, vertical background field: simulated dispersion relg.
tion

For simulations of magnetoconvection and magneto-gravity waves in a box
with a vertical background field, like those illustrated in Fig. 11.1, measure
the dominant frequency and wavenumber of the waves in the stable region
and compare to that predicted by Eq. 11.51.

. Testing a linear code by Jfinding the Ra,.i; and n,y; for magnetoconvection in
a box with a horizontal background field

Find the Ra,,;; and n.,; using a linear code for magnetoconvection in a box
with a horizontal background field and compare to the analytic predictions
for several different values of Q.

. Kinetic and magnetic energy vs. time and energy spectra

Simulate one of the time-dependent scenarios illustrated in this chapter and
plot the total (z-integrated) KE(¢) and ME(¢) vs. time ¢ (not including the
background magnetic energy). Also plot, at a given time step, the spectra of
total kinetic energy and total magnetic energy vs. mode #n:

1 1
/ KE,(z,t) dz and / ME,(z,t) dz.
0 0

- Semi-implicit magnetic induction equation

As described in Chapter 8 for the nonmagnetic case, modify the magnetocon-
vection model, for either the vertical or horizontal background field, by treat-
ing the diffusion term implicitly in the magnetic induction equation 11.25.
Care needs to be taken in the construction of the implicit matrix operator for
the vertical background magnetic field case because the vector potential is
updated on the top and bottom boundaries.

. A time-dependent background field

Make B, proportional to sin w, so the background magnetic field (either ver-
tical or horizontal) has a time-dependent amplitude and direction. Pick a fre-
quency (w,) such that 277 /w, is large relative to a typical convective turnover
time (i.e., the depth of the domain divided by the average fluid velocity in the
z-direction).

- A nonuniform background field

Modify your code by replacing a uniform vertical background field with one
that varies linearly in x, i.e., with B,x /LZ. Likewise, replace a uniform hori-
zontal background field with one that varies linearly in z, i.e., with B,z/Dx.

Chapter Twelve

Density Stratification

d planets that span several density scale heights it is important to account for the
ffects of large variations in density with depth, i.e., density stratification. (Here we
ually mean continuously stratified, i.e., no discontinuities in density with depth.
exception would be a localized phase transition within a planetary interior.) As

 do this would be to treat the nonlinear advection terms implicitly; however, since

these terms couple all the modes this would be very expensive (in terms of com-
puter memory and time). A better way, which we describe in this chapter, would be
to use the “anelastic approximation.” Here anelastic models for 2D cartesian box
and 2D cylindrical annulus geometries are described, using entropy and pressure
as working thermodynamic variables or using temperature and pressure, for both
convectively unstable and stable regions.

An alternative approximation may be a better choice for some problems. For
example, there is the liquid anelastic approximation (e.g., Jarvis & McKenzie,
1980; Anufriev et al., 2005), which sits between the Boussinesq and anelastic ap-
proximations and can be used for density-stratified liquids when the product of
the thermal expansion coefficient and the fluid’s average background temperature
is much less than unity. This constraint is satisfied for mantle convection and ar-
guably also for convection in the Farth’s liquid core. In this approximation the
background density varies with depth, as in the anelastic approximation, but the
density perturbation is assumed to be a function of the temperature (and possibly a
compositional) perturbation but independent of the pressure perturbation, as in the
Boussinesq approximation. In addition, viscous (and ohmic) heating are included
in the energy equation, as they are for the anelastic approximation.

Another alternative, called the “low Mach number” approximation or
the “pseudo-incompressible” approximation (e.g., Majda & Sethian, 1985; Dur-
ran, 1989; Cook & Riley, 1996; Bell et al., 2004; Almgren et al., 2006a; Almgren
et al., 2006b; Lin et al., 2006; Lessani & Papalexandris, 2006; Plourde et al., 2008;
Almgren et al., 2008; Zingale et al., 2009), sits between the anelastic approximation




pressure. However, unlike the anelastic approximation, the density, entropy, anq

temperature perturbations are not assumed small relative to their respective back-
ground values. This could be useful for simulations of gravity waves in a strongly
stable thermal stratification or thermal convection in a viscous mantle. In addition,
the equation of state and mass conservation are formulated in ways that differ from
the anelastic method. For example, the density perturbation is obtained from the
mass conservation equation instead of the equation of state and the equation of
state involves the background pressure instead of the pressure perturbation.

Here we focus on the anelastic approximation. The first global 3D anelastic sim-
ulations of a stellar dynamo were published in the early 1980s (Glatzmaier, 1984);
that model was then modified to simulate mantle convection (Glatzmaier, 1988), the

geodynamo (Glatzmaier & Roberts, 1996a), and giant planet dynamos (Glatzmaier,
2005b).

12.1 ANELASTIC APPROXIMATION

The anelastic approximation to the equations of motion (Batchelor, 1953; Ogura &
Phillips, 1962; Braginsky, 1964; Gough, 1969; Gilman & Glatzmaier, 1981; Ginet
& Sudan, 1987; Lantz, 1992; Braginsky & Roberts, 1995; Lantz & Fan, 1999;
Braginsky & Roberts, 2007; Jones, 2007; Berkoff et al., 2010; Jones et al., 2011)
was formulated to avoid the severe CFL condition due to sound waves while in-
cluding the effects of density stratification. Slightly different approaches were taken
to derive the anelastic equations and the equations evolved from a nondissipative
plane-parallel model to models in spherical geometry with viscous dissipation and
magnetic fields. Like the Boussinesq approximation, the anelastic approximation
filters out sound waves by neglecting the 9 /3¢ term in the mass conservation equa-
tion (1.1). This is Jjustified via a formal scale analysis (e.g., Gough, 1969; Gilman
& Glatzmaier, 1981) based on the assumption that the Mach number M = fluid
velocity /sound speed) is much less than unity and the assumption that the ther-
modynamic perturbations have amplitudes of order M2 relative to their respective
horizontally averaged values. These assumptions are usually well satisfied in the
interiors of planets and stars. However, since the speed of sound is proportional
the square root of the temperature (Eq. 12.8), vigorous convective flows in some
atmospheres (where the temperature is relatively Iow) can approach or exceed the
local sound speed; in these cases a fully compressible set of equations needs to be
solved. On the other hand, the density in the interiors of our solar system terrestrial
planets (their mantles and cores) typically varies by no more than about 20% from
the bottom to the top boundaries; the Boussinesq approximation has usually been
used to simulate these problems and is arguably valid. “Super-Earths” which are
now being discovered around other stars, with masses on the order of ten times the
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’s mass, likely have much larger variations of density through their .interiors;
'oussinesq approximation would not be valid fqr these. The B.oussmesq ap-
ximation is also not valid for global models that s1mulat§ the entire convectl_ng
n or even just a portion of the outer region of a star or glant planet, over WI}Kih
nsity varies by several orders of magnitude. An anelastic or fully compr.essﬂ? e
del is needed for such problems to adequately represent the huge expansion ris-
s fluid parcels experience and contraction sinking parcels experience, which sig-
cantly affect the flow pattern and how it transports of heat, angular momentum,

1.1 Equation of State

ere are several slightly different ways to formulate the' a}nelastic equations;. how-
er, all are based on the assumptions that the fluid ve1001t‘1es are very subsonic and
the thermodynamic perturbations are small relative to the1r. honzon?al mians. Here
we describe the thermodynamic variables as sums of their prescnbeq reference
tate” values (5, T, and p) and the perturbations (p, TZ and p) relative to .these
eference state values such that |p|/p, |T'|/T, and |p|/ p are small.. The hongon-
tally average (mean) state, which is a function of the vertical coordinate and time,
s the sum of the horizontally independent time—indep‘endent refer_ence state and @e
orizontally averaged time-dependent thermodynamic pert_urbauons. An anelas.tlc
imulation will not numerically “blow up” if these anelastic assumptions are vio-
ated; therefore, the validity of an anelastic simulation always needs to be checked
by comparing the resulting fluid velocities with tl}e loca}l sound speed and compar-
ing the resulting thermodynamic perturbations with their respective reference state
Val';‘lt(:: reference state thermodynamic variables are functions of only the vertical
coordinate (z or r) and are in hydrostatic equilibrium:

(12.1)

We choose these variables to have an isentropic, or nearly isentropic, stratification
in the convection zone,

— =0, (12.2)

dz
where §S is the specific entropy of the reference state. Not.e, si.nce local thermo-
dynamic equilibrium (LTE) is usually a very good appr'ox1'mat10n, processes are
assumed reversible; therefore, we use the terms isentropic (i.e., cqnstant entropy)
and adiabatic (i.e., no heat transfer) interchangeably when refeg’mg tf).thf: ten.i—
perature and density stratifications of an atmosphere in hydl‘*ostatlc equilibrium in
comparison to the change in temperature and density that an ideal te§t parcel would
experience when vertically displaced within the at'mf)s;.)here (Sect19n 1.1:1.). FJn-
less the planet or star is exploding or imploding, it is in hyflrostauc ethbpum
to first order; convection tends to keep the thermal stratification very ne.arly isen-
tropic (isothermal if Boussinesq, as illustrated ip Fig. 4.2). A subadiabatic thermal
stratification is chosen for a stably stratified region.
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Here we assume a perfect gas equation of state, which is a good approximation

for the atmosphere and interior of a star and the outer region and atmosphere of 4
giant planet:

P+p)=RH+p)T+T),

where R is the gas constant divided by the mean mass per particle (in atomic magg
units) for the gas, which is assumed a constant; that is, we assume the gas hag
a constant chemical mixture and ionization state. Note, R = Cp —cyand y =
¢p/cy, Where ¢, and ¢p are the specific heat capacities at constant volume and

pressure, respectively. We also assume these are constants, The equation of state
for the reference state is therefore

P=RpT (12.3)
and the linearized equation of state for the perturbations is

L. (12.4)
p p T
The perfect gas approximation assumes intermolecular forces are negligible and
particle collisions are elastic. An ideal gas is like a perfect gas but allows molecular,
atomic, and nuclear reactions, which change the number density of the gas particles
(ions and free electrons); therefore, ¢, c,, and R vary in space and time. Here,
however, we assume a perfect gas.

The specific entropy for a perfect gas is defined, to within an arbitrary constant,
S,, as

(S+8) =c,In(p+ p) — c,In(5 + p) + 5, .

Therefore,

§=cvlnﬁ—cpln,6+So (12.5)
and the linearized version for the perturbations is

S=c,2-¢,2. (12.6)
p o
Rearranging Eq. 12.6 gives the density perturbation in terms of the entropy and

pressure perturbations, which is what is needed for the buoyancy term:

o o dp dp
Yp ¢, /s as/,

As mentioned, one of the anelastic assumptions is that the fluid velocity is very
subsonic; to check this one needs to know the local sound speed. A sound wave is
very nearly an adiabatic and reversible process because of the low amplitude and
high frequency of the associated pressure, density, and temperature perturbations.
Therefore, the isentropic (i.e., constant entropy) sound speed is a very good approx-
imation for the actual sound speed. The reference state isentropic sound speed, c;,
which is usually just called the “adiabatic sound speed,” can easily be derived for a
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fect gas using Eqs. 12.3 and 12.5:
——1/2
s = (8_p) = (yRTH2. (12.8)
op/g
te, ¢, varies with position according to the square‘root of 1.:h_e reference state tel_n-
rature. In the interior of the sun, for example, fluid velocities are very subsonic.
wever, in the photosphere fluid velocities are somewhat greater, due to the lo?ver
density, and the sound speed is significantly less, due to the lower temperature; so
re the anelastic approximation is not valid. . ‘
As also mentioned (Eq. 12.2), we usually set dS/dz = 0 in the convectlop zone.
at is, the reference state temperature gradient is adial?anc_ @d can be ezlsﬂy cal-
culated by starting with Eq. 12.5, using Eq. 12.3 to W.nte p in terms qf p‘a;ld ﬂ]l" ,
taking the z-derivative of this expression for S, and using Eq. 12.1. This gives the
reference state entropy gradient,
ds _¢p|dTl + &
dz T |dz ¢ |’

which when set to zero gives the adiabatic temperature gradient for a perfect gas in

hydrostatic equilibrium:
(@) = ——-g—. (12.10)
dz b Cp

Substituting this back into Eq. 12.9 shows that the reference state entropy gradient,
in general for a hydrostatic perfect gas, is a measure of difference between the

reference state and adiabatic temperature gradients:

dS _cp |dT _(dT —c M_<‘”“T) ] (12.11)
E_T dz dz D Pl dz dz D

In addition, manipulation of Eqgs. 12.1, 12.3, and 12.5 shoyvs that the differenc_:e
between the reference state and adiabatic temperature gradients for a hydrostatic
perfect gas can be written as

E_ E =l fl_T._(y_l)lenﬁ] , (12.12)
dz dz D y | dz dz

which will be useful. o '
In a convectively stable region the actual temperature gradient is less steep (i.e.,

less negative) than the adiabatic temperature gradient anfl therefore dS/dz > 0.In
these regions fluid motions take the form of internal gravity waves (Chapter 6); and
the Brunt-Viisild frequency (Section 12.4.2) is proportional to the square root of
the local entropy gradient:

V)
N=(Z95) (12.13)
cpdz
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lIsecall., when comparing Egs. 6.5 and 12.13, that the temperature perturbatj
oussinesq model should be interpreted as the temperature relative to the agli1

A .
; Iso, since buoyfincy could occur due to compositional gradients in additiop
cmperature gradients, a more general expression is .

N (é[(dln,é) _dlnpT\?
dz AD dz ’
Recall, however, that even when N > 0, double-diffusive convection can occyr

ﬂ IIIUCh more ()Wl

12.1.2 Mass Conservation

1/; fo;lrpeill scale analysis (e.g., Gilman & Glatzmaier, 1981) chooses a length scal
» Which could be the depth of the convection zone, and a fluid velocity scale th:

isaM i i p/p i
ach number, M, times a typical (5/5)!/2, Le., M times a characteristic speed

of sound. The time scale is therefore th i
! he tir : € ratio of the length and velocj
I?i)slc‘;,c $ :rntlgllpatlotg of }flavmg to use turbulent (eddy) diffusivities insteadths::lnf:i
values, the thermal and viscous diffusivities ]
velocity and length scales and so are o i and Spoed oot of the
; rder M times the sound speed times D. Th
;fzunﬂ]lmg ;he pressure gerturbation (p) scales like the Reynolds stress (,6vv). P aiﬁi
other t emodynmc perturbations (because of Eq. 12.4) are of order M5 i
their respective reference state values. e

As a result, the anelasti ] I
o stic form of mass conservation (Eq. 1.1) to a scaled order

Vepv=0. (12.14)

lee the BouSSIr‘leSq version (Eq‘ 1‘11 5 1 >
the mass ﬂux’ /c > 18 dl EIgEIlCE erE, nCtJuSt the EIC Clt)' Ihat 18 )

12.
where .

(12.16)

is ’tll"l; negative inverse of the local reference state density scale height
e th;lffiegd?\fi (c;ipa/l 0t in Eq. 12.14, which is arguably smaller by a factor of
ual components of V-0v, is what eliminates the pre
. , ssure wi
S(Z]ue;t;(t);l, ar(lid thzlerefore? sound waves, by severing the direct connecljtion betW::;j
tivé) o Ean1 D, Wthh' would otherwise exist when equating the time deriva-
e o al(;ll.pr.elssalllrid thertgi\l;ergence of Eq. 1.2 Consequently, as in a Boussinesq
, € pe ations that occur during a ti i i
known everywhere within the domai isted, instond of somr s
: main and have adjusted, instead of iri
nite amount of time for them to travel (via ’ 1t iho domn
' sound waves) throughout the domai
as would occur in a fully com; i i cinesq model e
. pressible model. Also, as in a B i
density perturbations are obtained e i i on of s (o T
( ach time step via an equation of state (E 12
! : L12.7
instead of via mass conservation, as they would be in a fully compressibl(e Icrllodel.)

ITY STRATIFICATION
3 Momentum Conservation with Entropy as a Variable

anelastic form of momentum conservation (Eq. 1.2), to a scaled order of M?
subtracting out the reference state hydrostatic equilibrium (Eq. 12.1), is

3 _
’33_: = V-V =V p— VD — pVD
1
+V' [Zﬁl_) (e,-j — §(V'V) 8,-,]->] . (1217)

call that (Eq. 1.5) the viscous force density, the last term on the right of
. 12.17, would reduce to

oy (v2v + %V(V-V)>

f the dynamic viscosity pv were constant in space.
The gravitational potential energy per mass is (® + @), where the reference state

gravitational acceleration is

G = VT (12.18)

and @ is the perturbation in the gravitational potential energy per mass. This per-
turbation, @, is due to density perturbations throughout the domain and could be

(12.19)

after updating the density perturbation and setting V2® to zero at the boundaries,
assuming no external density perturbations.

The “self-gravity” term —pV @ in Eq. 12.17 is seldom included in thermal con-
vection simulations because it is usually quite small when most of the mass of the
body is below the simulated domain and the density perturbations are small. How-
ever, when the simulated domain extends down close to the center of the star or
planet or when it includes the center (where g vanishes) this term can be relatively
significant and should not be neglected. It is included here, which, as is shown next,
requires no extra work unless one needs to calculate the actual pressure perturba-
tion.

Consider the working thermodynamic variables to be the perturbations in the
pressure, p, and entropy, S. Then an equation of state (Eq. 12.7) is needed to write
the density perturbation, p, in Eq. 12.17 in terms of p and S. Now, unlike a Boussi-
nesq model, p appears in both the pressure gradient term and the buoyancy term.
To avoid having to solve for this pressure perturbation (as we have avoided solving
for it in our Boussinesq models) Lantz (1992) and Braginsky & Roberts (1995)
independently showed, with no additional approximation other than those already
made for the anelastic equations with an isentropic reference state, that the sum of

the pressure gradient and gravity terms in Eq. 12.17,

Vp— VO - pV, (12.20)
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can be simplified. Write the first two terms in Eq. 12.20 as

~Vp— VO = 5V (;{’ + cb) - 2y;. (122
b

The_n‘, a§sunﬁng a reference state that is isentropic (Eq. 12.2) and in hydrosta
equilibrium (Eq. 12.1), write the gradient of 5 as

_ dp. op\ dp ap
Vo=-"2F=(L}) Z28s _ _(PP) .,
dz <8p)sdzz (ap>spgz. (1222

Substituting Eq. 12.22 into the last term on the right in Eq. 12.21 gives
_ _ a
—Vp—pVd=_5v (£+CI>)+ (_,0) 4
F P ap ng . (12.23)

Next, usipg the reference state gravitational acceleration (Egs. 12.18) and our linear
perturbation equation of state (Eqs. 12.7), write the other term in Eq. 12.20 as

- o ap dp
—pVP =—pgt = — (—) +{ 5= %4
op Sp 35 pS gz. (12.24)
Finally, adding Eqgs. 12.23 and 12.24 and defining the “reduced pressure” as
V4
P= ,E + @ (12.25)

gives

i _ 3
~Vp—jV® — pVE = -5V P _ <£> 8%, (12.26)
y4

The critical. result here is that the part of the buoyancy term due to the pres-
sure perturbation has been absorbed by the pressure gradient term, leaving just the

(nonpotential) buoyancy force due to the entrop i i i
y perturbation, which Braginsky &
Roberts (1995) call the “co-density™: iy

p\35/, Cp

Substituting the Lant'z-Braginsky-Roberts simplification (Eq. 12.26) into the anelas-
tic momentum equation (12.17), assuming a constant PV, and dividing the equation
by 6 transforms the anelastic momentum equation into

EY =—(V-V)v—-VP_— (-aﬁ)
a5

5 . 1
% §Sz+v<v2v+§\7(v-v)>, (12.27)

o
P
which ma.k?s it look very similar to the Boussinesq momentum equation (1.13)
when p/p, in that equation is replaced with P and & T is replaced with S/c »- Note,
for a perfect gas, the reference state thermal expansion coefficient, o, is 1 /7’ and
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e Lantz-Braginsky-Roberts formulation (Eq. 12.26) was derived assuming an
opic reference state. If instead one wanted to simulate a domain (or part of a
ain) that is convectively stable, Eq. 12.22 would need to be modified to account
S/dz > 0 (Rogers & Glatzmaier, 2005a). The reference state density gradient
d now be a function of both the pressure and entropy gradients:

) o\ .. (o) dS|.
Vo= |2 - == 13. 12.28
p l: (3P)Spg+(3S>pdz]z ( )

ing Eq. 12.28 in place of 12.22 gives a more general anelastic momentum equa-
n (again assuming a constant gv):

1 1dS \. 1
v _ —~(V-V)V—VP+ — (gS+ —_—f >z+1‘) <V2v+ —V(V-v)) . (12.29)
Cp pdz 3

wever, if the reference state were nearly adiabatic, i.e., dﬁ/dz ~ Mch /D, the
/(cp p)dS/dz p part of the buoyancy term in Eq. 12.29 could be dropped within
e anelastic approximation. Moreover, as we show in Section 12.4.2 and was first
ointed out by Brown et al. (2012), this additional pressure term could cause prob-
ems with energy conservation within the anelastic approximation; therefore, drop-
ing this term, even where the reference state is not nearly adiabatic, would proba-
ly be a wise choice.
The assumption of a constant dynamic viscosity, oV, in Egs. 1.5, 12.27, and 12.29
not necessary. When this assumption is made, ¥ varies in radius inversely with 5.
esides the convenience of a somewhat simpler viscous force density, there is a
physical argument for making this assumption when the viscous diffusivity, v, is
taken to be a parameterization of subgrid-scale turbulent eddies. The mixing done
by these eddies may be more effective in the upper less-dense part of a density-
stratified domain since the smallest resolved eddies there tend to have more kinetic
energy than they do at greater depths. That is, the amplitude of the fluid veloc-
ity tends to increase with decreasing density and the size of the dominant eddies
tends to decrease with the density scale height, (i.e., also with radius). If, however,
one prescribes a depth-dependent dynamic viscosity, the viscous term should in-
clude derivatives of pv (Eqgs. 1.2, 1.3). This is not a concern for our Boussinesq
models, for which both § and ¥ are constant in space. Note that the anelastic mo-
mentum equation also has a viscous term proportional to Vv, which vanishes for
the Boussinesq approximation.

12.1.4 Internal Energy Conservation with Entropy as a Variable
Now consider the anelastic form of internal energy conservation (Eq. 1.6), correct
to order M. Note that

- — d —dS _— d§ = ds
@ +o)T+1)—(S+8) ~ pT — + pTv,— + (oT + pT)v,—, (12.30)
dt d dz dz

where we continue to assume 3.5/9¢ = 0. If d S/dz were set to zero in the convection
zone, only the first term on the right side of this expression, which has a scaled
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amplitude of order M3, would survive there. The second term would also survive

dS/dz were prescribed as negative in the convection zone with a scaled amplitugd
of order M2. However, then the amplitude of the third term on the right should p
of order M? smaller than that of the second term; and so we neglect this third termy

On the other hand, dS/dz can be quite large (and positive) in a convectively sig
ble region below or above a stellar convection zone compared to its amplitude iy
the convection zone because of the efficiency of radiative heat transport. Although
gravity waves, via the associated thermal advection and diffusion, can alter the
mean temperature gradient, the effect is usually significant only near the interface
between the convection zone and the stable region where they are excited by over-
shooting convective plumes. One exception, however, is the role of gravity waves
in double-diffusive convection (e. g., Stellmach et al., 2011).

If dS/dz were as large as ¢,/ D the Brunt-Viisild frequency (Eq. 12.13) would
be of order (g/D)!/2, roughly the inverse of the free-fall time through the depth D,
The corresponding maximum gravity wave speed (Eq. 6.9 and 6.10) would then be
of order (gD)'/? (for a horizontally directed phase velocity with a wavelength of
27 D). For comparison, the sound speed (using Egs. 12.1 and 12.16) is

“(8p> 1/2 ~ (@/dﬁ)l/z B < g )1/2

o) \dz'dz) T \|n,| ‘

Therefore, if dS/dz were of order ¢ p/ D and if the local density scale height, 1 /Aol
were not significantly greater than the depth of the stable region, D, the maximum
gravity wave speed could be of order of the sound speed; in such a case the anelastic
approximation would not be valid (Lantz & Fan, 1999).

The amplitude of dS/dz could therefore be limited for anelastic simulations;
certainly the resulting wave velocities in a stable region (in addition to fluid veloci-
ties in the convection zone) need to be compared to the local sound speed. Internal
gravity waves, however, tend to have frequencies smaller than N (due to the pen-
etration angle of overshooting convective plumes) and wavelengths much smaller
than D (because of the small horizontal scale of these plumes) and therefore have
much smaller wave velocities than the maximum estimated here. In addition, the
density scale height within a stable region far below the surface is typically much
larger than the radius of the star. Therefore, dS/dz could conceivably be of order
¢p/ D deep within a stable region without the gravity wave speed or the fluid veloc-
ity approaching the sound speed. However, the third term on the right in Eq. 12.30
would still be of order M? smaller than the second term and therefore should still
be neglected.

Note, here we have been considering the amplitude of the reference state entropy
gradient within a stable region. The anelastic approximation also assumes that the
entropy perturbation, S, is of order ¢pM? (Eq. 12.6); this could be violated in a
thermal boundary layer within the convection zone, where dS/dz is set to zero but
|05/9z] is large. One could also define dS/dz to be zero within the stable region
and attribute the change in entropy across the stable region to the entropy pertur-
bation, which, if comparable to ¢ p» Would violate the above mentioned anelastic
assumption. The bottom line is that the amplitudes of the resulting fluid velocities
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thermodynamic perturbations need to be checked for each anelastic simulation

etermine the validity of the anelastic approximation for the given simulation.
The anelastic version of the thermal diffusion part of the internal energy conser-

on equation (1.6) also needs some discussion. This heating term represents the
nvergence of diffusive heat flux, which is partly the usual radiative (or molecular)

thermal convection in stars and planets one cannot afford the spatial resolution
eded to resolve all length scales down to the viscous dissipation scale. Instead, a
mmon practice is to truncate the numerical resolution at a much larger scale and
ssipate the energy that cascades down to this scale by prescribing an enhanced
diffusivity, . This “turbulent” or “eddy” diffusivity is a crude representation of the
ansport and cascade of energy by the unresolved “subgrid-scale” convective ed-
dies. Since the actual eddies are driven by an entropy gradient (similar to the idea
behind mixing length theory in stellar structure models), it is reasonable to make
their parameterized diffusive heat flux be proportional to the local entropy gradi-
ent. The convergence of this turbulent diffusive heat flux tries to make the entropy
constant in space, as does turbulent convection. On the other hand, the convergence
of the usual diffusive heat flux (proportional to the temperature gradient) tries to
make the temperature constant in space. (Note, the viscous diffusivity, 7, likewise
epresents a turbulent transport of momentum by subgrid-scale eddies.)

Tt could be argued that the T part of this thermal diffusion can be neglected since
its magnitude is so much less than T'; however, technically this should be checked
since the spatial derivatives of T and 7T are being compared here. Keeping the T
part would require calculating the pressure perturbation each time step to write
T in terms of § and p. To simplify our model, we will drop the terms involving
temperature perturbation, 7.

The anelastic internal energy conservation equation also includes viscous heating
and, if magnetic, also ohmic heating:

Q =26 (eyjer; — 1/3(V-v)?) + %5, (12.31)

where e; ; is the rate of strain tensor (Eq. 1.4) and J is the electric current den-
sity (Section 11.1). The viscous heating part of Q can also be written, for our 2D
cartesian box, as

L (3uN (90N 1 fou, au,\2 A2
200 | [ = — - (= 2 ) — 22
P [(ax) +<Bz +2<8z+8x> 3% | (12.32)
The heating terms in Eq. 12.31 can be computed each time step with the other non-
linear terms. In addition, there may be a reference state heating term representing,
for example, nuclear burning or radioactive decay or gravitational contraction or the
convergence (heating) or divergence (cooling) of radiative heat flux (Section 6.2.2).

We combine all purely reference state heating or cooling terms into one prescribed
function:

0= V-®pTVS + coicrpVT) + - (12.33)
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Therefore, our anelastic internal energy equation is

,aT%—tS- =—5Tv.VS— 5Tuzj—f + V- (kpTVS)+ Q0+ 0.

Now consider again a convectively stable (subadiabatic) reference state. Sucﬁ
region can be prescribed by defining S as an increasing function of z. If the dom,
also has a convective region, both § and d@/dz need to be continuous at the inte
face between the convective region, where dS/dz is zero or slightly negative, ap
the subadiabatic region, where dS/dz > 0. The entropy perturbation, S(x, z, ¢
is relative to this S(z) in both regions and the magnitude of this perturbation my:
be much less than ¢ » (of order M?c p) for the anelastic approximation to be vali
because of Eq. 12.6 (Lantz & Fan, 1999; Berkoff et al., 2010).

Another consideration is that within a convectively stable (subadiabatic) regio
the eddy diffusive heat flux (—k oT dS/dz) is directed downward. However, th

degree of turbulence there would likely be significantly less than it is in a con-.

vection zone and so i should be significantly less in a stable region. For a stable
region below a convection zone, & should be prescribed to decrease by orders of
magnitude within a short distance below the interface between the stable and un-
stable zones. The large-scale (resolved) convective heat flux at the top of the stable
region is also on average downward directed because convective plumes overshoot
into the stable region nearly adiabatically. This makes them become hotter than the
surrounding subadiabatic environment; therefore, when the overshooting plumes
deposit their heat in the upper part of the stable region they steepen the temperature
gradient there toward an adiabatic profile. Ideally the z-dependence of & should
evolve as a function of the vigor and extent of the resolved overshooting convec-
tion. In any case, however, the reference state radiative (or molecular) heat flux
(—cpikrpdT /dz) in a stable region, which is upward directed, needs to be large
enough to more than cancel the downward eddy and convective heat fluxes so a net
upward heat flux is maintained.

12.1.5 Temperature as a Variable

Instead of choosing the entropy perturbation, S, to be one of the working thermody-
namic variables, one could choose, say, the temperature perturbation, 7. To do this
we start with the conservation of internal energy equation (1.6) but now work with
the internal energy and pressure work instead of the entropy. For a perfect gas, the
rate of change of the internal energy density is (again writing each thermodynamic
variable as the sum of its reference state value and its perturbation)

- d _ - d —
(.0+p);l;(e+e) =(p+p)ch(T+T) (12.35)

and for an anelastic fluid the rate pressure does work per volume is (using
Eq. 12.15)

(P+pVv=—(p+ Phyv;. (12.36)

Also, since we are usually simulating a turbulent fluid and using an eddy diffusivity,
we again describe the diffusive heat flux as being partly the traditional conductive
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ux driven by the reference state temperature gradient and 'paltly a turbulent
d-scale heat flux driven by the entropy gradient, i.e., the difference between
mperature gradient and the adiabatic temperature gradient. Therefore, we

—kV(T +7T)

_ _dT, Y T .
——cp/cRpEZ—z—cpr V(T+T)— e zZ1,
AD
re again i is the radiative (or molecular) thermal diffusiviFy an‘d i is the (much
1) turbulent thermal diffusivity. This makes the thermal diffusion term be

. 17___ @ Z2|+V. cp/ERﬁ?1—T2 . (12.37)
dz dz D dz

e second term in expression 12.37 either vanishes or is scaled .to orc'ier M3
thin the (adiabatic) convection zone. In a convectively stable region this term
presents the convergence of the downward turbulent heaE ﬂl'.IX (—cpicpldT jdz —
T )dz) 4p)Z) as does the convergence of (—kpTdS/dz Z) in Eq.'12.34 (see also

. 12.11). Setting expressions 12.35 plus 12.36 equal to expressions 12.37 plus
.31 gives the energy equation according to Eq. 1.6. When expanding the tern'ls
in this energy equation, using Eqs. 12.9-12.12 and noting that for a perfect gas in

hydrostatic equilibrium
(hop)/(cop) = (v —Dh,T,
two of the terms that independently are of order M are of order M® when combined:

T dT =
(Cud_T,5 — hpﬁ) V=00 {'J‘; —(y — l)hPT:I vz

dz
dT  [dT _—dS
_.5leL (el V= pT —v,.
cpp |: dZ ( dZ )AD:I dZ

Also, using Egs. 12.3 and 12.4, the terms with the perturbation density and pressure
are

= dT dT 0
dT — Py —_ — —_— _— - Uz .
(C%” - ”“”) E TR ((y Dl = [dz (dz >AD] p)

The term proportional to p/ is order M? smaller than the others and so is d.ropped.
Using these anelastic perfect-gas expressions in the conservation of 11.1terna1
energy equation gives us an equation for updating the temperature perturbation:

aT VT 4+ — D To— y [dT (dT) } ,
= WVT+(y— =y |55 2
9t L dz dz D

1 - o+ 12.38)
Ve(c,kpVT) + =—= (12.
+Cv,5 (kP VT) Cyp
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Therefore, our anelastic internal energy equation is

=38 = — dS = —
,oT—37 = —pTv.VS — ,oTsz + V. (IcpTVS) +0+ 0. (12.34

Now consider again a convectively stable (subadiabatic) reference state. Such g

region can be prescribed by defining S as an increasing function of z. If the domain

also has a convective region, both S and dS/dz need to be continuous at the inter-
face between the convective region, where dS/dz is zero or slightly negative, and
the subadiabatic region, where dS/dz > 0. The entropy perturbation, S(x, z, ¢),
is relative to this S(z) in both regions and the magnitude of this perturbation must
be much less than ¢ p (of order M2¢ p) for the anelastic approximation to be valid
because of Eq. 12.6 (Lantz & Fan, 1999; Berkoff et al., 2010).

Another consideration is that within a convectively stable (subadiabatic) region
the eddy diffusive heat flux (—ipT dS/dz) is directed downward. However, the
degree of turbulence there would likely be significantly less than it is in a cop-
vection zone and so i should be significantly less in a stable region. For a stable
region below a convection zone, & should be prescribed to decrease by orders of
magnitude within a short distance below the interface between the stable and un-
stable zones. The large-scale (resolved) convective heat flux at the top of the stable
region is also on average downward directed because convective plumes overshoot
into the stable region nearly adiabatically. This makes them become hotter than the
surrounding subadiabatic environment; therefore, when the overshooting plumes
deposit their heat in the upper part of the stable region they steepen the temperature
gradient there toward an adiabatic profile. Ideally the z-dependence of & should
evolve as a function of the vigor and extent of the resolved overshooting convec-
tion. In any case, however, the reference state radiative (or molecular) heat flux
(—cp/?RﬁdT/dz) in a stable region, which is upward directed, needs to be large
enough to more than cancel the downward eddy and convective heat fluxes so a net
upward heat flux is maintained.

12.1.5 Temperature as a Variable

Instead of choosing the entropy perturbation, S, to be one of the working thermody-
namic variables, one could choose, say, the temperature perturbation, 7'. To do this
we start with the conservation of internal energy equation (1.6) but now work with
the internal energy and pressure work instead of the entropy. For a perfect gas, the
rate of change of the internal energy density is (again writing each thermodynamic
variable as the sum of its reference state value and its perturbation)

d d —
(» +,0)§t-(é+e) =(p +p)ch(T +7) (12.35)

and for an anelastic fluid the rate pressure does work per volume is (using
Eq. 12.15)

P+pVv=—(p+ Dhyv;. (12.36)

Also, since we are usually simulating a turbulent fluid and using an eddy diffusivity,
we again describe the diffusive heat flux as being partly the traditional conductive
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at flux driven by the reference state temperature gradient and partly a turbulent
bgrid-scale heat flux driven by the entropy gradient, i.e., the difference between

—kV(T +T)

_ _dT, o = ary\ .
_cp/cRp—Ez —Cpkp (V(T +7)— (E) z) s
AD
where again i is the radiative (or molecular) thermal diffusivity and i is the (much
arger) turbulent thermal diffusivity. This makes the thermal diffusion term be

dT dT . _ .dT .,
V(c,icpVT)+V- <cp,z,a [E - (E) Jz)—}-V- (CPKR,O—EZ) . (12.37)
AD

The second term in expression 12.37 either vanishes or is scaled to order M3
within the (adiabatic) convection zone. In a convectively stable region this term
represents the convergence of the downward turbulent heat flux (—cpkpldT Jdz —
(dT/dz) 4p1%) as does the convergence of (—/?,ETdE/dZ Z) in Eq. 12.34 (see also
Eq. 12.11). Setting expressions 12.35 plus 12.36 equal to expressions 12.37 plus
12.31 gives the energy equation according to Eq. 1.6. When expanding the terms
in this energy equation, using Egs. 12.9-12.12 and noting that for a perfect gas in
hydrostatic equilibrium

(hoD)/(esp) = (v — DA, T,
two of the terms that independently are of order M are of order M3 when combined:

dT _ N | dT -
<cugz—p - hpp> V;=¢yp [E —(y - l)hpT:, vz

T\ 1 a3
(E) JUZ—,OTEUZ.
AD

Also, using Egs. 12.3 and 12.4, the terms with the perturbation density and pressure
are

dT - dT dT
(Cv;TZ‘P B hpP) e <(V B l)hpT 7 [Z - (E>ADJ ;

The term proportional to p/ is order M? smaller than the others and so is dropped.
Using these anelastic perfect-gas expressions in the conservation of internal
energy equation gives us an equation for updating the temperature perturbation:

T dT  (dT
5 =—v.VT -+ (}/ — l)hpTUz -y [E — <E)ADJ Vz

1 —
+—=V.(c,kpVT) + \Q +_ . (12.38)
P CyP
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The viscous and ohmic heating, O, is defined in Eq. 12.31 and, as we do fo

entropy version of the energy equation (Eq. 12.34), we combine all the purely
erence state terms into

— __|dT (4T dar
=Velcpicp| — — | — 4 | CokrO—— ) + -
Q (P p[dz <dZ)AD]z> +V (CPKdeZ> i

Also note that, using Eq. 12.15, the first two advection terms on the right
Eq. 12.38 can be written as

—VvVT + (v — Dh,Tv, = —-V.(Tv) + v =2h,Tv,,

which is usually _Inore accurate for numerical calculations,

Ref:all.that [dT/dz — (dT Jdz) 4 pl is set either to zero or to something slight
ne; & n zone. As discussed above, in a convectively stable regio
it 1;1 ll)osmve and could have a larger magnitude; but, where it is large, v, and i are’.
small.

Switching the working thermodynamic variable from S to T also requires new
thermodynamic derivatives for the perturbation equation of state. The density per-
turbation in terms of 7' and P, using Eq. 12.4, is now

— e

o p 8/)) dp
pP==p-—=T=|— ) T
e (Bp Tp+ BT)p (12.39)

and the entropy perturbation using Eq. 12.6 is

R c 08 as
¥4 = P Tp+ 3 pT. (12.40)

In addition, if using the Lantz-Braginsky-Roberts formulation, modified for a ref-
erence state that is not necessarily adiabatic (Rogers & Glatzmaier, 2005a), the

buoyancy term in Eq. 12.29 written in terms of 7 and p (using Eq. 12.11) would
be

1 fagp 148 )\
Cp & pdz" )~

where again C is the co-density and

(g)_dT dp\~' 4T 1
dp)  dz \ dz __ZI;E’ (1242)

which equals (y — DT/(y D) in a convection zone with an adiabatic reference state.
Therefore, the anelastic momentum equation (for constant 5v) is

(12.41)

—

(al) Srvi(vivsly
op )P ) 74 v( vt (V-v)).(12.43)

av
i —(v-V)v—VP4 (T -
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ver, as mentioned for Eq. 12.29 and discussed in Section 12.4.2, dropping the
contribution to buoyancy due to the pressure perturbation in Eq. 12.43, ie.,

(0T /3p) p term, improves energy conservation (Brown et al., 2012).
ther modifications, in addition to adding ohmic heating (Eq. 12.31), would be
fed if one were simulating magnetoconvection (Chapter 11). The Lorentz force
mass, JxB/p, would need to be added to the right sides of Eqgs. 12.29 and 12.43.
d, where we take the curl of the momentum equation to obtain a vorticity
tion, the dependence of 5 on z or » produces an additional magnetic term
does not exist in the Boussinesq magnetoconvection models. In addition, the
gnetic diffusivity, 7, which we assumed to be constant in our Boussinesq models,
ay need to depend on z or r. For example, the magnetic diffusivity, which is
versely proportional to the electrical conductivity (Section 11.1), decreases by
veral orders of magnetic with depth in the outer region of a gaseous giant planet
g., Jupiter or Saturn) as pressure ionization increases the number density of free
ctrons. In such a study one would need to account for this significant radial
pendence of 7 in the magnetic diffusion term of Eq. 11.13 and likewise the radial
dependence of the electrical conductivity, &, in the ohmic heating term of Eq. 12.31.
In summary, within the anelastic approximation, the equation of state is de-
scribed by Egs. 12.4 and 12.6 and mass conservation by Eq. 12.14. Internal energy
conservation is Eq. 12.34 if using S as a variable and 12.38 if using 7. Momentum
conservation is Eq. 12.29 if using § as a variable and 12.43 if using T'; however,
as suggested, one could drop the extra pressure perturbation contribution to co-
density in these two equations to improve energy conservation when employing the
Lantz-Braginsky-Roberts formulation of the anelastic approximation. This section
onsidered fluid in a cartesian box; but of course the equations apply as well for an

_annulus or sphere with a central gravity.

12.2 REFERENCE STATE: POLYTROPES

Before describing modifications to the numerical method that are required, we de-
scribe possible choices for a reference state. A convenient choice is a polytrope,
ie., one for which pressure and density satisfy hydrostatic equilibrium (Eq. 12.1)
and pressure is proportional to density to the power of (# + 1)/n:

NG
5=, (_) , (12.44)
2o

where here # is the polytropic index (not the horizontal mode number). The moti-
vation for this is that the density profiles for several types of steliar and planetary
interiors can be approximated with such a simple relationship when coupled with
hydrostatic equilibrium (Clayton, 1984). For example, the simplest case, an n = 0
polytrope, is a constant-density (incompressible liquid) body (Eq. 12.46), which
roughly approximates the mantles and cores of terrestrial planets. An n = 3/2
polytrope with the perfect gas equation of state has an adiabatic thermal stratifi-
cation, which is appropriate for a convection zone. An n = 3 /2 polytrope also
approximates an electron degenerate nonrelativistic gas, i.e., an ionized gas that
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derives most of its pressure from free electrons that are in their lowest energy sy
(and is not a strong function of temperature); this, for example, is appropriaté,

with mass just below the Chandrasekhar limit, 1.46 solar masses).
One-dimensional evolutionary models predict giant planets to be convectiy
hout their fluid interiors or in some regions possibly undergoing semico
vection (Chapter 7). However, the fluid within a giant planet transforms slow
with depth from a gas in the outer regions to a liquid in the deep interior where it
partially electron degenerate. Therefore, although the interior of a giant planet ma

be nearly adiabatic throughout, an # = | polytrope (instead of n = 3 /2) gives the

best overall fit for the interior of a gas giant like Jupiter (Hubbard, 1975).

12.2.1 2D Fluid Box

Consider_ first a cartesian box with a constant gravitational acceleration, —2,7. The
polytropic relationship between pand p (Bq. 12.44) is usually written as

P(2) = p,@"*(z), _ (12.45)
p(2) = p,®"(z), (12.46)
where p, and p, are the reference state pressure and density at the bottom boundary

.(z = 0), respectively, and O (z) is the nondimensional polytropic function, which
1s unity at z = Q. Substituting Eqs. 12.45 and 12.46 into Eq. 12.1 gives

O =1-2
Zo
where z, is

(n+ 1 p,
Zp = ——222 2.
’ 8oPo (1247
z, is greater than the depth of the box, D. The constants, # and z, determine the

z-dependent density scale height, —h;l (Eq. 12.16), where for this polytrope

_din(@)

dz Zo—2z
The number of density scale heights from the bottom boundary (z = 0) to the top

boundary (z = D) is
b z
N, =-/ hydz=nl .
P 0 P nn(%“D)

Oy T
pD) \z-D) "

80 as z, = 00, N, —> 0 (the Boussinesq limit) and as 2, = D, N, - oo (the
large stratification limit).

hp
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ddition, as in the previous section, we assume here a perfect gas (Eq. 12.3).

T= = T,0(z), (12.48)

L
Rp

Do
T, = Lo 12.49
°= o ( )

reference state temperature gradient is then

(12.50)

T,/2, equals g,/cp, the reference state is adiabatic and, by Eqs. 12.47 and 12.49,
= 1/(y — 1), where y = c,/c,. On the other hand, if T,/z, is less than &/Cp,
> 1/(y — 1) and the reference state is subadiabatic; or if 7, /z, is greater than
/¢py n < 1/(y — 1) and the reference state is superadiabatic. It follows from

Eq. 12.9 that the reference state entropy gradient for this polytropic perfect gas is
__er=D-De h,, (12.51)

dS  ((y —1)—1lyc,

dz y(z, — 2) - ny
which, if positive, becomes more subadiabatic with height z. Note that the value of
the ratio of specific heats, y, is determined by the composition of the gas and its
onization state. Knowing the value of y for a given (perfect) gas tells us what value
of the polytropic index, 7, is required for an adiabatic stratification. For example,
y for a monatomic perfect gas is 5/3; so, for such a gas, an n = 3 /2 would be an
adiabatic reference state and an n > 3/2 would be a subadiabatic reference state.

The negative of the inverse temperature scale height follows from Eqgs. 12.48 and

12.50:

_dlnT_ 1 _hp

hr = =— = .
dr Zy— 2 n

Thermodynamic derivatives would also be needed to calculate the temperature per-
turbation given the pressure and entropy perturbations:

aT aT
T=(_)s+(_)p. (12.52)
Y P ap S

For a perfect gas (Eq. 12.40)

(8T> 1
op/)s cpp

Therefore, for this plane-layer polytrope, one can define the reference state by
choosing, for example, 7, Ny, D, po, o, Cp» Cy, ¥, and £.
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12,2.2 2D Fluid Annulus |

qu consider the reference state for a density-stratified annulus or sphere. Subs
tuting the (spherical) expression for the gravitational acceleration (Eq. 10.9) in

the equation for hydrostatic equilibrium (Eq. 10.11), multiplying through by r2/

and then differentiating both sides with respect to » gives

1d (r?dp A7 Ga .
Ra\par) = oe, (12.53y

which is another version of hydrostatic equilibrium. Now assume a polytropic equa-
tion of state:

p=Kprthin, (12.54)

where

K = pop;(n+1)/n

and Po apd 0o are now the values of p and 5 at the center (r = 0), respectively.
Substituting Eq. 12.54 into Eq. 12.53 gives the spherically symmetric polytropic
equation for p(r):

(n—i—l)Kd( r2  dp _
> =—p. (12.55)

A Gnr? dr \ p@=V/n dr
Equgtion 12.55 is second order and so requires two boundary conditions; it is
convenient to apply both at the center ( = 0). One condition is that 2(0) = p,;
the t(_)p b01.1ndary radius is then defined to be where § first goes to zero. The second
condition is that the radial gradient of 5 needs to vanish at » = 0 because of the
spherical symmetry constraint.
Again we write p and p in terms of a polytropic function, ®, now a function of
radius:
p(r)=p,®"(r), (12.56)
() =p,®" (7). (12.57)
We also define a scaled radius
(12.58)

where

1/2
(n+ 1K (n+1)p,\ "
o <___(T)/) :<L)i> : (12.59)

47 Gpd 4 Gp2
Substituting Egs. 12.56, 12.58, and 12.59 into Eq. 12.55 gives the Lane-Emden

equation;
d do®
p (Ez_ds ) =—@"2. (12.60)

The central boundary conditions are now

O = = . (12.61)
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p boundary, &, = ryop/a, is chosen to be some value less than the smallest
¢ of & that makes © vanish; the closer &, is to this value the greater the density

alytic solutions exist for Eq. 12.60 with these boundary conditions for n = 0,
d 5. The polytropic function for n = 0 (the constant-density case) is

P
0@ =1-=

© vanishing at £ = /6. For n = 1 the function is

O) = Slgﬁ (12.62)

ith £ vanishing at 7. The » = 5 solution goes to zero at £ = oo and is usually
ot appropriate for planets and stars. For other values of z#, Eq. 12.60 needs to be
lved numerically, for which a generalized Newton-Raphson iteration method on
finite-difference representation of Eq. 12.60 works well.
Having obtained an analytic or numerical solution for the polytropic function,
, the gravitational acceleration can be obtained via Eq. 10.9, using Eq. 12.60:

~ 47 G (" _
g =—; f pridr
r 0
4nGp,a® [*
= b / O"E2de
r 0

(12.63)

- (12.64)
where T, = p,/Rp, . The reference state temperature gradient is therefore
dT _ T,d®
dr o d&
and, using Eqgs. 12.59 and 12.63-12.65, the reference state entropy gradient,
Eq. 12.9,is

(12.65)

dS _¢p|dT | &
E_T[dr_l_cp:l

ey =D =1 ( dhe

_ = ( = ) (12.66)

Note, (—d In ® /d§&) vanishes at the center (¢ = 0) and is positive out to &;,,. There-
fore, as is the case for the cartesian-box polytrope (Eq. 12.51), the reference state
is adiabatic if » = 1/(y — 1) and subadiabatic if n > 1/(y — 1).




We also need the inverse density scale height for a Lane-Emden polyt
which is :
hy= P _ndh®
P dr T o dE
therefore the entropy gradient for a hydrostatic perfect gas in an annulus or sphe;
Eq. 12.66, can also be written as

ds cpn(y —1)—1)

e h,,

7 ny o (126
which is identical to what it is for a cartesian-box polytrope (Eq. 12.51). The ny
ber of density scale heights spanning the depth of the annulus is

P ®(rbot))
N=—/ hdr:nln(h— X
? bot P @(Ftop)

That is,

Poo) _
P (r10p)
In addition, the inverse temperature scale height (which is also negative) is

_dlaT 1dme

h -
r dr d§

= P
n

12.2.3 2D Fluid Annulus: A Simpler Polytrope

As mentioned above, polytropes with » between 3/2 (fully convective) and 3 (fully
radiative) are most relevant for the interiors of stars; however, only numerical so-
lutions exist for these polytropic indices. If one is interested in simulating only the
outer portion of a star or planet that represents a small portion of the total mass of
the body, an approximation can be made that provides an analytic solution for any
value of the polytropic index. Consider our annulus, which represents the equa-
torial plane. Let M, represent the mass below the bottom radius, 7p,;. Then the
gravitational acceleration (Eq. 10.9) for r > Fpor 18

2r) = g (Mo +4x /r ﬁrzdr) . (12.68)

Tbot

If M, were much greater than the mass within Tbor = ¥ < Fyop, the gravitational
acceleration within the annulus could be approximated as

GM,
80y =—=. (12.69)

That is, the gravitational force due to the mass within the annulus is neglected. In
this case the Lane-Emden equation does not need to be solved. Instead, hydrostatic
equilibrium (Eq. 10.11) is now

db _ GM,

-7 12.70
dr 7z P (12.70)
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hen the polytropic profiles (Eqgs. 12.56 and 12.57) are sub'stituted iflto
70 and p, ®" (rs,) is the prescribed pp,;, We get a simple analytic expression
is (approximate) polytropic function:

Pbot tn 1 1) (1271)
80 = ( Po ) (n+1)p, (rbot r)’

decreases with radius as 1/ for any polytropic index. Since Eq. 12.71 is
d for r > #p,, it would be more convenient to use Opor, Ppors E}Hd Tror as
parameters instead of the central values, p,, p,, and T,. To do this, define a
dified polytropic function,
0 = 20 _ 1 _GMopro ( L 1) , (12.72)
T 00k 7+ D oot \Tbor 7
ch is unity at » = rp,,. Then Egs. 12.56, 12.57, and 12.64 become

p(r) = ppos O (1), (12.73)

)= pra®T (1), (12.74)

T(r)=T5001(r) - (12.75)
The number of density scale heights spanning the depth is now

Ny = —nIn @1 (ryp) (12.76)

d the (negative) inverse scale height for density is now
dIn®

ho(r) = nA_—d—}_’-_
and for temperature is
dln @1

hT(}") = dr .

The corresponding reference state entropy gradient is

dS _ c,(ny =1 —1) (1277
dr — a+ Dy -1 7
which has the same relationship (Egs. 12.51 and 12.67) betyveen the polytropi‘c
index, n, and the ratio of specific he.ats, y, that d'etgrglgnes if the atmosphere is
i ic (i.e., 1 i iabatic, or superadiabatic.
adl;}?;“;g;;;;i‘g;ggg ’12?1223 2s the refereﬁce state for the anelastic benchmark
described in Section 13.5.2.

12.2.4 Alternative Reference States

So far we have assumed one constant value of the polytropic inde{(, n, for the entire
domain. To be able to simulate a stellar interior with a convection zone abf)vle a
stable radiative interior, like the sun, or a convective core below a stable radiative
envelop, like a much more massive star, we would like to be able to use n = 3/2 for
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the convective zone and n = 3 for

transition between the two. This would require a modified numerical

solving Eq. 12.60 (e.g., Rappaport et al., 1983).
Instead of using a polytro

arbitrary p(r) profile or a

the radiative region with a smooth cont

Pbot

T¢) = Ty, ( @) "

if i
one had a reasonable estimate for a constant Griinejsen parameter,
>

y <8InT
G=
dlnp /.’

(7, ¢) annulus geometry (Section 10.3)
As with our cartesian B i .
. oussinesq models, w i
constrains the fluid velocities toe . oty e @ coneerva: V- ha

: verywhere satisfy mass i
for our anelastic models we define ¥ such that ’ oneration. However,

- o a ay
PV=Vxyy=——34 TV,
vy st 5t (12.80)
to satisfy the anelastic mass

co i . -
fore, now niservation constraint, V.gv = ( (Eq. 12.14). There-

(12.81a,b)
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' vorticity is @ = V xv = w}, the amplitude of vorticity in the y-direction
a 1 [8? 82 ]
b —f] S [—Y’- v "’] : (12.82)

5 axl -é?_ p?}?

(12.83)

(12.84a,b)

1T, ] 1[3%y (1 w18y
o=z [Py hgr| = [T (o) S ]
12.85)

ext consider the anelastic momentum conservation equation (12.29 or 12.43).
n our Boussinesq models, we take the curl of the momentum equation to obtain
e vorticity equation (here first for the cartesian box geometry):

o dv 4h, 3%y
oo dv . (1286
at dZ( * ) ( )

ere again C is co-density (Eq. 12.41), for which, as mentioned above, the extra

essure contribution (in either the entropy or temperature formulation) could be

opped to better conserve energy numerically. Also, Eq. 12.86 is for a constant

namic viscosity, pv. If, on the other hand, ¥ were an arbitrary function of z and
h, = 1/ dv/dz, the full viscous term in the vorticity equation 12.86 would be

h, v
— V2 hv VZ x__p._._{
l)l: w + ( U 3 ax)

oC
= V-Vt hyov, + Bo— + V20 +
X

0
+ (5(;[/) +hy) + k(R +hv)) <—Z

ey (22 2 (12.87)
pTI\S2 T axez 3 ox '

The additional terms, compared to the Boussinesq vorticity equation (2.4), are
due to the density stratification, which makes V-.v = ~h,v;, and due to the
z-dependence of the viscous diffusivity, ¥. Since we will assume ¥ is inversely pro-
portional to p, dv/dz = —vh,. To further simplify this model one could neglect
the dv/dz term since it could be argued that this traditional molecular viscosity
formulation is really not a correct model for turbulent “eddy” diffusion anyway.
However, the additional term, /,wv,, coming from the curl of advection cannot be
neglected. It represents the reduction of the amplitude of a fluid parcel’s vorticity
(angular velocity) as it rises (positive v,) and therefore expands due to the decrease
in the background density it experiences. Likewise, a sinking parcel contracts and
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therefore its vorticity increases in amplitude. This is a form of conservation of
gular momentum applied to a local fluid parcel. Note also that this term cap
combined with the advection term,

dw dw
—-V-Vo+h,0v, = — [vxa— + v, (—5 - h,,w)] = ~V-(wv),
which is a somewhat more accurate way to numerically calculate these nonlinegf
terms.
For the cylindrical annulus geometry and for a constant dynamic viscosity, 55,
the vorticity equation is
dw gac  _
3 =—v-Vo+h,0v, + ;@ +v (
dv (dw  4h, 32
V22 (G tip 2y

5

o 1w 1 3%w
FIZY P 3¢2)
dr  3r25 9¢p? (12388)
Again, the two advection terms could be combined as —V-(wv). Also, the di /dr
term could be neglected to simplify the model; however, it would be relatively easy
to include, especially if w, ¥, and S were solved simultaneously in a semi-implicit
matrix operation (Section 8.2).

Note that the curl operation on the gradient of the reduced pressure in Eqgs. 12.29
and 12.43 eliminates this term in Egs. 12.86 and 12.88. However, the horizontal
gradient of the pressure perturbation still exists, via the co-density (Eq. 12.41), un-
less one uses S, instead of T, for a working thermodynamic variable and prescribes
an adiabatic reference state. That is, the buoyancy torque in Eq. 12.86 is

€ _ (23T 1dTop\ _ ga's+
Eox = \Tox Tpdzox)  \c,dx ' c,pdzox
and in Eq. 12.88 the buoyancy torque is
gac gaT+ 1 dT dp _ g as
rop  \Trop ' Tpordrag) cpr 8¢ cpprdrdg )
One way to calculate the horizontal gradient of the pressure perturbation is to getit

from the horizontal component of the momentum equation (Rogers & Glatzmaier,

2005a). If simulating flows in a box (Eq. 12.29), it would be
1ap v - hy 9v,

if in an annulus, it would be

1 dp dvg s Vg 2 hy\ dv,
E%__W_[(V-V)V]‘ﬁ-l—v(v U¢~r~2+<ﬁ—§;) g) .
The time derivatives in these two expressions would be calculated from the previous
time step, (v, ; — Ur,r—Ar)/At. Also note, we have neglected the perturbation in the
gravitational potential energy in these pressure perturbation terms, which should
actually be included, and calculated via Eq. 12.19, if the bottom boundary is at or
close to the body’s center.
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wever, as mentioned above for Egs. 12.29 and 12.43, discussed in Section
2, and suggested by Brown et al. (2012), the extra horizontal pressure gra-
nt term in the buoyancy torque could be dropped because, within the anelastic
"roximation, it prevents exact energy conservation. Dropping this term simpli-
the code since then there is no need to solve the hori\zontal component of the
mentum equation.
Another modification to the vorticity equation would be needed if one were sim-
ting magnetoconvection (Chapter 11). The curl of the Lorentz force (per mass),

vx (59X B) = VXU X B+ V(h) x OB = 2 [@V) - )5,
' p P p p
yould appear on the right side in Eqgs. 12.86 and likewise for Eq. 12.88, now with

e additional term involving /.

Now consider what modifications are needed for the top and bottom boundary
onditions. If we use the entropy perturbation as one of the working thermodynamic
ariables, the top and bottom boundaries would be more conveniently chosen to be
entropic, i.e., constant entropy, instead of isothermal. In this case, for example,

we could set S = AS/2 on the bottom boundary and § = —AS/2 on the top
boundary for a convectively unstable regime or vice versa for a stable regime. If, on
the other hand, we use the temperature perturbation as a working variable, it would
be more convenient to force isothermal top and bottom boundaries, i.e., constant
temperature. In this case we could set 7 = AT/2 on the bottom boundary and
T = —AT/2 on the top boundary, or vice versa for a stable region. Recall that T
is relative to the vertically dependent 7, which has an adiabatic profile (or nearly
one) in the convection zone.

This choice also affects the definition of the Rayleigh number. If we choose to

use nondimensional variables, we could define the Rayleigh number as

. gmidAS D3 .

Ra ;o (12.89a)

Cp VmidKmid
or, if using temperature,

_ Emia@ AT D3

1_)mia'/?mid

Ra , (12.89b)

where the representative thermal expansion coefficient, o, could be set to 1 /T mia
for a perfect gas. As mentioned in Section 10.3, when simulating an annulus the
gravitational acceleration will be a function of radius and now also the viscous and
thermal diffusivities could be functions of radius, so we choose their mid-depth
values for the definition of the Rayleigh number. Likewise, if b and & have different
radial dependencies, the Prandt]l number could also be defined based on their mid-
depth values.
The impermeable boundary condition for the box geometry (at z = 0 and D) is

d
v,=0 so ¥y =0 and Ex—fzo
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and the stress-free condition is

dv 2
x o 310 810

For the annulus geometry the impermeable condition (at 7 = Phor and 7,,) is

2
v =0 so ¥ =0 and al:
2

and the stress-free condition is

3 rvg %y 1 oY
7 () =000 G- () 2 oo
Note that, like the Boussinesq annulus (Eq. 10.17), the vorticity on the imperme-

at rp; and Ttop -

Also, like the Boussinesq annulus (Section 10.3), the anelastic annulus requir
and ¥ to be solved simultaneously or via the method in Section 10.3.3 l;lci 2 all
boun_dary conditions on ¥ because w does not vanish on the boundélrie; preme sl
. With these boundary conditions the anelastic equations can be solve(.i using b
sically the same methods already described for the various Boussines mo%i Iaj
spectr'al or finite-difference spatial discretization, explicit or semi—implic(ilt timee' §
tegration, impermeable or periodic side boundaries, cartesian box or cylindrig;i
@nulus geometry. There is also a choice of convection (unstable thermal stratific
tion) ,or 1ntemal gravity waves (stable thermal stratification) or a combination: ar?c;
there sa choice of using the entropy perturbation or the temperature perturbati(’)n as
a working thermodynamic variable. Of course, the anelastic reference state densit
and temperature are functions of z or r and, if desired, also g S, D, and & coult}i]
be functions of z or 7. Nonlinear viscous heating and ohmic };ea’tin’g should als
be added to the internal energy equation to conserve total energy (Eq. 1.10) On0
also needs to choose to work with either dimensional variables as prese':nt-ed i;l th'e
chapter or pondimensional variables as presented in Part 1. °
Tl'le chc?lce of using entropy or temperature as one of the working thermody-
namic variables deserves some additional consideration. As shown, when usili,
enFropy with an adiabatic reference state and the Lantz-Braginsky—Rc;beIts form :
}atwn, the pressure perturbation does not contribute directly to the buoyanc ter?r;
in the. momentum equation (unless one chooses not to drop the extra pressurz term
resulting from a nonadiabatic reference state). This could result in a more accu-
rate sol‘utlop because of the role of the pressure perturbation within the anelastic
approximation. As mentioned above, filtering out sound waves effectively makes
the sound speed infinite by requiring the pressure perturbation at each time ste
to be whatever it needs to be throughout the domain to make the divergence 01;
the mome.ntum equation 12.17 vanish everywhere and so satisfy the anelastic mass
conservation equation 12.14. Consequently, this pressure perturbation could be rel-
atively large. However, if this pressure were needed to formulate the buoyancy
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s via the equation of state, it might, under certain extreme conditions, domi-
the entropy or temperature contributions to buoyancy. This would be noticed
diagnostic density (calculated via the equation of state) had a spatial pattern
more like the pressure perturbation than the entropy perturbation (or than the
perature perturbation if using temperature as a variable). Likewise, when using
py as a variable, if the diagnostic temperature perturbation, calculated from
12.52, had the same sign and pattern of the pressure perturbation instead of
entropy perturbation, there would be reason for concern. That is, the numerical
ssure may not be an accurate representation of the thermodynamic gas pressure.

4 LINEAR ANALYSES: ANELASTIC

2.4.1 Linear Stability: Anelastic

efore describing examples of nonlinear anelastic simulations we discuss some
near stability issues that are affected by density stratification. We have discussed
e critical Rayleigh number for thermal convection in a box with (Egs. 11.43 and
1.56) and without (Eq. 3.8) magnetic fields; however, these have been for the
nset of Boussinesq convection, the equations which have constant coefficients. If

‘we consider the linear anelastic equations and set the time derivatives to zero (as we

do for the Boussinesq stability problems in Sections 3.4 and 11.3), we would have
three coupled equations in terms of the z-dependent Fourier modes of S, w, and ¢
but now with coefficients that are arbitrary functions of z because g, p, «, and v are
z-dependent. Therefore, solving for the critical Rayleigh number and mode number
for a given set of linear equations with z-dependent coefficients usually requires a
numerical solution. Alternatively, one could use a linear code with time derivatives
to iterate on the Rayleigh number, as described in Section 3.3, to find the critical
Rayleigh number, for which the numerical solution neither increases nor decreases
exponentially with time.

Glatzmaier & Gilman (1981a,c) investigate the stability of anelastic thermal con-
vection within a 3D spherical fluid shell by expanding in spherical harmonics and
numerically solving the resulting eigenvalue problem using a generalized Newton-
Raphson relaxation method on a finite-difference grid in radius. They describe how
the structure of the most unstable cell at the onset of convection depends of the den-
sity stratification, rotation rate, boundary conditions, diffusivity profiles in radius,
and on the shell depth. For example, they find that prescribing a constant viscous
diffusivity results in larger fluid velocity amplitudes in the low-density upper region
of the convection zone, whereas a constant dynamic viscosity (i.e., a viscous diffu-
sivity inversely proportional to density) results in somewhat larger velocities in the
lower region; these effects increase as the density stratification increases. They also
find that increasing the density stratification increases the critical Rayleigh number
and the critical horizontal mode number, i.e., makes the system more stable and
reduces the size of the most unstable mode. A smaller horizontal size is preferred
because, since the convective cell tends to be concentrated in the upper region for
constant v and in the lower region for constant vp, the effective vertical extent of




g’ =

( p dz 3281‘) ' (12.91)
In Eq. 12.90 .

Eq, ?2'9 We used the streamfunction expression for

I we used the general expression for the co-d

v, (Egs. 12.81) and in
ensity (12.41) and the
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ponent of the momentum equation (12.17), neglecting viscosity and the per-
tion gravitational potential:
dp oy

ax  0zdr

wever, as pointed out by Brown et al. (2012), this system of equations leads to a
ersion relation that makes the frequency, @, complex; therefore, energy is not

g s
=—=— 12.92
ot cp 0x ( )
at is, we use the same vorticity equation in a stable (subadiabatic) reference state
that we would use in an adiabatic reference state. Note, the usual part of the pres-
sure contribution to buoyancy is still present within the gradient of the reduced pres-
sure, P, when employing the Lantz-Braginsky-Roberts formulation of the anelastic
equations.
Then, taking the time derivative of Eq. 12.92 and substituting in Eqs. 12.90 and
12.13 gives
0w _ N2 3%y )
a2~ 5 oax2’
taking the second derivative with respect to time of the streamfunction
equation (12.82) gives

8w 1 < 82 92 a) 8%y

(12.93)

—=—=|—=+—=—-h,— | —. 12.94
a2 p\dx2  9z2 Pz) a2 ( )

By combining Egs. 12.93 and 12.94 we have
02 02 3\ %y 0%y
Ntz —he— ) — =N>—2., 12.95
(8x2 Tk az> ar? dx?2 (1295
Now we again assume a planewave solution. However, here we need to account
for how the density stratification affects wave kinetic energy. To simplify this ex-

ample we assume %, the negative inverse density scale height, is a constant; so the
reference state density is simply

o= ,Ooeh”z .
Instead of using Eq. 6.6, here we need the velocity amplitude to depend on the
background density so the integrated wave kinetic energy is constant in the vertical,
Le., a constant pv?. Therefore, the velocity amplitude needs to be

v oo e he2

That is, the wave velocity amplitude increases with height as the density decreases.
Since the fluid velocity and streamfunction are related via Egs. 12.81, which involve
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£, We set

Y(x,z, 1) = %' el x+h,z—Gr)+h /2]
where &, and £, ar |

z are real constants. One could i i

; . c
a complex vertical wavenumber wi o o oo

. th the imagj ;
Eq. 12.96 into Eq. 12 i ginary part being —
relation: Q- 12.95 gives us the anelastic internal gravity

ulation ag hav
»/2. Substiny;

z

B2+

a given BI’unt— V disila y wav ‘
. ] SSIIICS

dispersion relation (E i
‘ g. 6.7) is recovered =
Equation 12.97 shows that this e 2

is conserved. If the extra pressur
Eq. 12.91, the frequency, &
the wave energy to chang

to the neglect of this pressure term.

Note that an alternative i l
. ' way to derive Eq. 12. i
sider a parcel displacement vector, &, deﬁngd ai 77 (Brown et 201D s 0 o

&

V= 5- s
where t

g_-(x’ z, l’) — So e[i(kxx—f—kzz—a_)t)—h,,z/Z]

The vertical ¢ is di
omponent of this displacement is related to our streamfunction via

_ P
v=-T¢

' , OV, in Eq. 6.8 and usin
defined in Egs. 12.81 shows that the fluid velocit;g/

direction of the phase propagation.

Fhe anelastic streamfunction
1s always perpendicular to the

12.5 NONLINEAR SIMULATIONS: ANELASTIC

12.5.1 2D Fluid Box Simulation

Now consider nonlinear anelag

. tic simulatio i
aompl, soase L ensiy ns of thermal convection. As a first ex-

stratified fluid in a box with an aspect ratio of 2 and
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ide boundaries. The Rayleigh and Prandtl numbers are Ra = 10 and
espectively. An adiabatic reference state is prescribed using a polytropic
. = 1.5 (Section 12.2.1) with density at the bottom boundary being 148
arger than that at the top boundary (N, = 5). The thermal and viscous dif-
es are constants. The solution is obtained with a Fourier spectral method in
zontal direction using 682 modes (2048 grid points) and a finite-difference
in the vertical direction on 2048 Chebyshev grid points (Section 9.1). The
integration employs a semi-implicit time integration scheme (Section 8.2) with
onlinear terms computed via a spectral-transform method (Section 10.4). The
was run in parallel using MPI (Section 9.5.2) on 512 processors.
spapshot of the entropy perturbation in this simulation is shown in Fig. 12.1.
arge vertical flow structure at middle is a downwelling, which is warmer than
o cells that straddle it in the lower part of the box. The centers of these cells
loser to the bottom boundary because of mass conservation as sinking gas
ntracts and rising gas expands. Much of the circulating fluid never reaches the
boundary during a convective turnover time and much of the fluid that does
ch the upper region does not have enough time to completely cool before being
ept downward. The small cold (blue) sinking plume that originates within the top
undary layer contracts significantly as it sinks and mixes into the warmer fluid.
is flow pattern is very different from the vertically symmetric patterns seen in
ussinesq convection.

The Reynolds number for this turbulent convection is Re &~ 5 x 10*. The flows,
driven within very superadiabatic boundary layers, maintain a roughly isentropic
mean thermal stratification within the bulk of the fluid. This is seen in Fig. 12.2,
which shows the nonlinearly maintained time-averaged mean entropy profile for
this case. The mean entropy gradient is actually slightly positive (subadiabatic) in
the bulk of the fluid because the convective heat flux is so efficient, causing the up-

er region to heat up and the lower region to cool. This increases the steepness of
the very negative (superadiabatic) entropy gradients in the shallow thermal bound-
ary layers, which is needed to maintain sufficient diffusive heat flux through the

oundaries. Note, the nondimensional entropy in this figure is one at the bottom
boundary (z = 0) and zero at the top boundary (z = 1); the thermal boundary lay-
ers are so shallow they are difficult to see in the figure. The high-order Chebyshev
grid is needed to resolve these boundary layers.

Also shown in Fig. 12.2 is the kinetic energy spectrum for this case (Fig. 12.1),
where the log of kinetic energy is plotted vs. the log of the mode number. This
volume-averaged kinetic energy is greatest for the large length scales (small hor-
izontal mode numbers) and decreases through a turbulent inertial subrange as the
scales decrease before reaching the viscous dissipation range at the smallest length
scales where kinetic energy deceases more rapidly with increasing mode number.
Kinetic energy in this plot drops 24 powers of 10 from mode 1 to 682.

12.5.2 2D Fluid Annulus Simulation

Next consider an example of anelastic convection in an annulus (Fig. 12.3) with a
less significant density stratification, N, = 3; so the density at the bottom




o =5, and an aspect ratio
figure). Reds represent hot
the volume-averaged mean

of 0.75 (see Color Plate 5 for a color version of this

fluid, yellows ) :
entropy. warm, and blues cold fluid relative to

boundary is now 20 times greater than that at the

top boundary (Fig. 12.4 Agai
ytrope for the reference State with indix n -i 1 g;l;:

(t)fllytrope.(Secti.on 12.2.2). Therefore, the reference state
olh vary in radius according to Eq. 12.62. The thermal
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now using a Lane-Emden p
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ure 12.2 (Left) The horizontally averaged and time-averaged entropy perturbation for
the case illustrated in Fig. 12.1. The entropy is scaled by AS and plotted as a
function of height. (Right) The kinetic energy spectrum. The log of the (scaled)
volume-averaged kinetic energy is plotted as a function of the log of the hori-
zontal mode number.

and viscous diffusivities are both set to be inversely proportional to the reference
state density. The bottom boundary radius is 20% of the top boundary radius and
he Rayleigh and Prandtl numbers are Ra = 1.3 x 100 and Pr = 1, respectively.
The solution is obtained with a Chebyshev-Fourier spectral method using 1366
Fourier modes (4096 longitudinal grid points) in the horizontal direction and 1537
Chebyshev modes in the vertical direction (Section 9.4). The time integration is
done using a semi-implicit time integration scheme that solves each Fourier mode
of the entropy, vorticity, and streamfunction simultaneously (Section 8.2); however,
to maintain stability without having to use a time step significantly smaller than the
CFL condition, the linear terms are treated fully implicitly (@ = 1). The nonlinear
terms are computed with a spectral-transform method (Section 10.4). The code was
run in parallel using MPI (Section 9.5.2) on 512 processors.

Figure 12.3 is a snapshot of the entropy perturbation from this anelastic sim-
ulation. Unlike the snapshot in the Boussinesq simulation seen in Fig. 10.4, this
one is taken well after the shear instabilities have destroyed the initial well-defined
single-plume dipolar flow pattern. However, even after many convective turnovers
(a million computational time steps), there tends to be no more than two main large-
scale downflows, composed of many small-scale turbulent eddies, and no more than
two main, but thin, upflow plumes. The most typical pattern is one large turbulent
downflow (like the one centered at “12 o’clock” in Fig. 12.3) and one thin, distorted
upflow (at “6 o’clock”), i.e., a turbulent dipolar flow. Unlike the Boussinesq case,
for which the size of an eddy remains relatively constant as it sinks or rises, here
boundary layer instabilities at the top boundary combine into a large downflow
plume that contracts as it falls through the density stratification. Likewise, small
boundary layer instabilities at the bottom boundary develop into an upflow plume
that expands and deforms as it rises.

Another clear difference between this anelastic convection compared to Boussi-
nesq convection is the mean entropy profile in radius, which is maintained by the




Figure 12.3 A snapshot of the entropy perturbation in an anelastic simulation of thermal
convection within a 2D annulus after a million computational time steps with
N, =3,Ra=1.3 x 10!, and Pr= 1 (see Color Plate 6 for a color version of
this figure). Reds represent hot fluid and blues represent cold fluid relative to

the constant reference state entropy, with the crossover from blue to yellow at
S = Sy + AS/2.

convergence of radial heat flux. Since 5k is a constant in this simulation, the diffu-
sive heat flux (—pTdS/dr) is proportional to 7', which is 20 times greater at the
bottom boundary than at the top. Therefore, the magnitude of the radial gradient
of the horizontally averaged (mean) entropy perturbation at the bottom is typically
20 times smaller than it is at the top boundary in order to maintain roughly the
same amount of heat flow through the top and bottom boundaries. Consequently,
since the depths of the two thermal boundary layers are comparable, the mean en-
tropy drops less through the bottom thermal boundary layer compared to that at the
top. This makes the mean entropy throughout the bulk of the domain (Fig. 12.4),
which is kept nearly constant in radius by the nonlinear convective heat flux, closer
to the bottom entropy boundary value instead of midway between the bottom and
top values, as is the case for Boussinesq convection. This is also seen in larger
stratifications as in Fig. 12.2, Note, this is also apparent in Fig. 12.3, where the

SITY STRATIFICATION

Density
/

Mean entropy

T T T T T T

gure 12.4 The prescribed reference state density and the evolved.mez.m entropy pertur-
bation maintained by the convection that is illustrated in Fig. 12.3. Both are
normalized and plotted vs. the normalized radius.

olor changes from blue to yellow wherever the normalized entropy perturbation
equals one half.
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EXERCISES

1. Adiabatic sound speed .
Verify Eq. 12.8 for the adiabatic sound speed in a perfect gas.
Viscous heating . .
Verify the viscous heating term for a 2D cartesian box (Eq. 12.32) starting
from its expression in Eq. 12.31.

. Polytropen =1 . ‘ .
Verify that the polytropic function for » = 1 (Section 12.2.2) is a solution to
the Lane-Emden equation (12.60). Verify that it satisfies the central t?oundary
conditions, Eq. 12.61, and that g, %, and d S/dr for a perfect gas Vam§h at the
center (§ = 0). Derive the central density, pressure, and temperatu‘re in terms
of the total mass (M,) and outer radius (R,) (where the polytropic functlf)n
vanishes) for a giant planet model approximated as a polytr‘ope ofn=1 Wth
a perfect gas equation of state and a mean mass per particle of 0.5 atomic
mass units.

Viscous torque o .

Verify the viscous torque term in Eq. 12.87, for which ¥ is an arbltrary func-
tion of z. Also verify the viscous torque term in Eq. 12.88, for which the
dynamic viscosity, pv, is constant.
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5. Anelastic Nusselt number
The turbulent diffusive heat flux is — ,5/273.5’/ 0z. Assume jf is constant
T = Tpot(1 — z/2,). Formulate areasonable Nusselt number (Section 5 35
an anelastic fluid in a cartesian box. T
6. Anelastic vorticity
Verify the expressions for vorticity in Eqs. 12.82 and 12.85.
7. Ane'lastic internal gravity wave dispersion relation.
Derive the anelastic dispersion relation (Eq. 12.97).

COMPUTATIONAL PROJECTS

L. Anelastic critical Rayleigh number for a cartesian box

Usir.lg a IineaF anelastic code for thermal convection of a polytropic perfect :
gas in a box, iterate on the Rayleigh number, as described in Section 3.3, to |

find the critical Rayleigh number as a function of the horizontal mode numbe;
for a few different Aaspect ratios, Prandtl numbers, polytropic indices, and A '
Let the 5V and pi T be constants. , o
. Anelastic critical Rayleigh number Jor an annulus
Repeat the Anelastic critical Rayleigh number for q cartesian box exercise
for an annulus with a few different ratios of top to bottom radii.
- Anelastic convection in an annulys '

Do the simulation described in Section 12.5.2 but at a lo i
. 5. wer Rayleigh
and with less spatial resolution. Y nmber

Chapter Thirteen

Rotation

effects of rotation on convection and gravity waves can be significant. Cer-
y flows in the atmospheres, oceans, and liquid cores of terrestrial planets are
ominated by the Coriolis forces, as are the interiors of giant planets and stars. The
im of centrifugal and gravitational forces can go to zero at the top boundary of a
pidly rotating star or accretion disk. Poincaré forces arise due to the time rate of
ange of the planetary rotation rate.
We begin this chapter with the derivation and discussion of parts of the inertial
rm in the momentum equation that exist due to the rotation of the body in the
ertial frame, which are usually called “forces” when solved in a rotating frame
of reference: the Coriolis, centrifugal, and Poincaré forces. We then describe the
modifications needed to add these effects of rotation to our previous models of
convection and gravity waves in 2D cartesian box and cylindrical annulus geome-
tries, both of which now lie within a rotating equatorial plane. We also describe
2.5 D rotating models, which represent axisymmetric simulations with flows and
fields varying within a meridian plane. Finally, we discuss 3D rotating spherical-
shell MHD dynamo models.

13.1 CORIOLIS, CENTRIFUGAL, AND POINCARE FORCES

For a rotating star or planet, it is usually much more convenient to solve for the fluid
flow and magnetic field in a frame of reference rotating relative to the inertial frame,
Le., relative to the universe or at least to the local neighborhood that has a negligible
angular velocity compared to that of the rotating body of interest. Precessional and
tidal torques due to neighboring bodies can cause the direction and/or amplitude of
the body’s rotation rate to change; in such a case the model’s rotating frame of ref-
erence could be designed to be time-dependent. If, on the other hand, there are no
external torques acting on the body, the frame’s rotation rate is usually made to be
constant and equal to the rate for which the total angular momentum of the body is,
and remains, zero. The amplitude of the frame’s rotation rate may also be designed
to vary space; for example, when simulating a planetary disk, one may choose to
use a radially dependent Keplerian rotating frame. However, here we assume that
the rotation rate is constant in space and time. Since Newton’s laws of motion
apply to the inertial frame, we need to account for the accelerations due to the ro-
tating frame and therefore need to mathematically describe the time rate of change
of a vector in the rotating frame relative to its time rate of change in the inertial -
frame.
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. Cc.msider a frame of reference rotating with angular velocity, 2, relative to th

1nerF1a1 frame. As mentioned,  is independent of space but its amplitude and

‘rectlon could depend on time (although we will typically assume it is also tim,

independent). We use subscripts 7 and R to distinguish between time derivatives

a Yector observed in the inertial and rotating frames, respectively. Note, time deriy
atives of scalars do not depend on the frame of reference and therefore do not have

these subscripts. Let X, J, and £ be the cartesian unit vectors describing a coord;
nate system fixed in the rotating frame with its rotation axis (relative to the inertiai
frame) passing through the origin of this cartesian coordinate system.

Now consider an arbitrary vector, A, observed in the rotating frame:

A=AX+ 4,5+ 4.2,

vyhere A‘x, A 3, and 42 are the three components of the vector. The full Lagrangian
time derivative of this vector A in the inertial frame is

dAT  dd,, di1  dd dj
—_— :___x+Ax RN ._'ZA _y_
[dtl dr [dt]l_'_ dty+Ay[dt],
d4, ., dz
t——z+ A4, |5
dt l:dt],

dA
= [EF} + A (R X E) + A, (R % §) + 4,(R x 5).
R

Here we make use of the fact that the time rate of change; as observed in the inertial
fratpe, of the umf vector X, which is rotating at a rate  relative to the inertial frame
is simply (£ x X) and likewise for the other two unit vectors. Therefore

[dA _[dA
i), = d—t]R—l-SZxA, (13.1)

Wthh.iS the .math.ematical relationship we need between time derivatives of a vector
taken in the inertia and rotating frames.
Next let the arbitrary vector, A, be the position vector, r, of a fluid parcel relative

to the qﬁgin of the rotating coordinate system, which as mentioned is on the axis
of rotation. We could also define

Y =xXr+ ¥+ 28

as bemg Fhe same position vector but measured in a cartesian coordinate system
fixed within the inertial frame. Then, at any moment in time, although the individual
components would not (usually) be equal, i.e., x # x;, y # yr, and z # z;, the
total vectors would be equal, i.e., r = r;. ’ "

Ijlovxfe\_/er, the time derivative of the position vector does depend on the frame in
which it is measured. The time derivative of r, according to Eq. 13.1, is

dr dr
E]I _ [EL +@xr. (132)

But.the Fime derivative on the left of Eq. 13.2 is the fluid velocity as observed in
the inertial frame, v;, and the time derivative on the right side is the fluid velocity

'TATION
observed in the rotating frame, vz. That is,
Vi=vp+RXxrT. (13.3)

Newton’s second law of motion, the basis for our momentum conservation equa-
n, says the (Net force per mass) = (Acceleration in the inertial frame), which,
using Egs. 13.1 and 13.3, is

=[i(vR+szxr>] LRx (et RxD . (134
dt R

The first term on the right of Eq. 13.4 equals

dVR d
vz as 2
[dt]R+[dz]er+ VR

and the second term on the right is
QxvVp+2x (R X71).

Therefore, after rearranging terms, an observer in the rotating frame measures the
fluid acceleration as

ds
[i‘g] =2Wp X 2+ (R XT) X 24T X [E] + Net force per mass. (13.5)
R

dt R

The first three terms on the right of Eq. 13.5 are accelerations relative to the
inertial frame but are called forces per mass in the rotating frame. The first one
is the Coriolis force per mass, which is always perpendicular to the velocity and
therefore does no work. That is, it does not change kinetic energy; it only changes
the direction of the flow.

The second term on the right of Eq. 13.5 is the centrifugal force per mass, which
is directed away from the rotation axis with an amplitude of Q?%r, where r is the
cylindrical radius. It can also be written as —V @, where the centrifugal potential
energy per mass, @, is —2?r?/2. This makes V2@, = —20. Usually, the grav-
itational (®) and centrifugal (®.) potentials are combined and called the “geopo-
tential”: ®, = ® + ®; and therefore V2®, = 4nGp — 2Q?, where here p is the
total mass density.

The third term on the right of Eq. 13.5 is the Poincaré force per mass. It occurs
when the amplitude or direction of the body’s angular velocity changes in time.
This is usually due to external gravitational forces that cause precession or tides.
Here we assume € is a constant and so there is no Poincaré force.

Now we drop the subscript R and let the fluid velocity, v (and the magnetic field,
B), be that observed in the rotating frame of reference. The Eulerian time derivative
of velocity is then

ov

E=_(v-V)v+2v><SZ—VJ.D+---, (13.6)
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where P is the reduced pressure (Eq. 12.25). Since the advection term can b
written as

—(vV)vV=(vx o - ;Vv?)

where the vector vorticity @ is V xv,

ov
3 = VX (@+29) -V (P+ L)+ ... (137

Note that 2@ = Vx(® x r) is called the “planetary vorticity” since (£ x r)is
the rotation velocity observed from the inertial frame; therefore the term (e -+ 29),
which equals Vx (v + £ x 1), is the fluid vorticity at position r as measured in the
inertial frame and (v + 2 x r) is the fluid velocity in the inertial frame.,

Our strategy has been to take the curl of the momentum equation (13.7) to get the
vorticity equation. As previously seen, this removes the gradient term and leayeg
the advection of vorticity; but now there are two additional Coriolis terms:

2—?} =—(v-Viw — (a)+2SZ)V-v+((a)+252)-V)V+--- . (13.8)

(Note, there would be two additional Coriolis terms if & were not constant in
space.) The second term on the right in Eq. 13.8 is called the compressional torque
because the vorticity of a fluid parcel increases as it sinks through a density strati-
fication and so contracts (i.e., Vv is negative) and likewise decreases as the parcel
rises. This term obviously vanishes for a Boussinesq model. The third term is called
the stretching torque because the vorticity of the parcel increases where there is a
gradient of its velocity parallel to its total vorticity. This term vanishes for strictly
2D convection because both ® and § are perpendicular to the plane of the fluid
flow.

If it can be argued that centrifugal, Poincaré, buoyancy, viscous, and nonlin-
ear forces are all negligible compared to Coriolis and pressure gradient forces in
Eq. 13.6 and if the fluid is incompressible and in steady state, the curl of the re-
maining Coriolis and pressure gradient terms would leave just

RR-Vyv=0, (13.9)

the classic Proudman-Taylor Theorem (Proudman, 1916; Taylor, 1917). This states
that in a geostrophic flow to first order there is no gradient parallel to the rotation
axis for the fluid velocity. If the boundaries containing the fluid were impermeable
(and preventing the identical nonzero fluid velocities on the northern and southern
boundaries), this theorem further implies that the velocity parallel to the rotating
axis also vanishes everywhere. Flows within a spherical shell would therefore be
only within planes parallel to the equatorial plane. The resulting columnar flow
patterns are called Taylor columns and are seen in both laboratory experiments and
3D numerical simulations for laminar flows dominated by Coriolis forces. Typi-
cally Taylor columns refer to nonaxisymmetric convective columns that encircle
the rotation axis and have alternating signs of local vorticity. However, a cylin-
drical column axisymmetric longitudinal flow centered on the rotation axis within
a sphere or spherical shell would also be called a Taylor column, one for which
the fluid parcels maintain a constant latitude and radius. The axisymmetric part of

233

2 2D ROTATING EQUATORIAL BOX

Again we assume that a 2D cartesian box represents a small region Within a star or
lanet. The problem discussed in this section is strictly two-dimensional, 1.e{.i, Illst
:nly are there no gradients in the y-direction but there are 3159 no flows or elds
n the y-direction, as we assumed in previous chapters. In this case the rota'tl?'n
axis needs to be in the y-direction; otherwise there would be unbalanc‘ed Corio 1cs1
orces in the y-direction. Therefore, we consider the plane of .the fluid ﬂot\;ll an
magnetic field, i.e., the x, z-coordinate plane,‘to be the equgtonal plane of‘f € 10~
ating body. We also assume the angular velocity of the rotating frame of re: ereélc:'ezi
©, is constant in space and time and that the total angl.llar momentum of the flui .
ox vanishes in this rotating frame. In addition, g(z) will now represpnt the sum 01
e gravitational acceleration and the centrifugal acce'lerauon; and, since our mo<.ie
s a cartesian box with this net geopotential acceleration everys.;vhere in thf.: negative
-direction, we are assuming the size of the box is small relative to the distance to

 the rotation axis.

13.2.1 2D Box: Equations
Since we are considering a strictly 2D case in this section, the \{orticity equAation
(in the y-direction), based on Eqgs. 12.15, 12.86, and 13.8, assuming 2 = Qy and
g=—g%,is

do 59C i d tic terms

— =—v-Vo+ (0 +2Q)h,v, + ga + Viscous and magne ,

at .
where here o is the amplitude of the y-component of Vorticity: As mentioned in
Section 12.3, the first two terms on the right can be combined, giving

B_a) = —V.(wv) +2Q~,v, + gg—c + Viscous and magnetic terms. (13.10)
Jt x

If the model uses nondimensional variables, as we do fOI'.mO.St of Part 1, and epl—
ploys a Fourier expansion with permeable and periodic side boundaries

(Section 10.2), the vorticity equation would be
dwy, 2mwim
at ap
where m is the horizontal mode number and Ek is the Ekman number:

_ Vmid (13.11)

Ek = 2QD?°
The Ekman number is a measure of the viscous effects relgtive tq the Cpriolis ef-
fects. Sometimes Ek is defined without the “2” in its denominator, in which case an

I

= —[V-(wV)],, + Bk 'Pr &, (
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additional factor of 2 would appear in equation. Also, sometimes the square rg
the Taylor number, Ta, is used instead of Ek~!, where
4Q2 p*
Ta = = .
Vinid
The Coriolis term in Eq. 13.10 is linear and can be treated explicitly with

buoyancy term each numerica] time step using Egs. 12.81b to calculate ;.

tively, if the complex Fourier coefficients of g and v are updated simultaneoyg ,

(Sections 10.3.2 and 10.3.3), this term could be treated implicitly.

gradients that exactly ¢
within a density-
sinks.

13.2.2 2D Box: Simulations

Now let’s examine some nonlinear simulations of anelastic rotating therma]
convection in a density-stratified fluid within a cartesian box with permeable pe-
tiodic side boundaries. To appreciate the effects of convective driving, rotation, and
background magnetic field Fig. 13.1 illustrates four cases as snapshots of entropy
perturbation (Glatzmaier, 2005a). All four cases employ an adiabatic (plane-layer)
polytropic reference state (Section 12.2.1) with a polytropic index n = 1, which
makes the ratio of specific heats y = 2 and approximates the deep interior of a
giant gas planet like Jupiter. However, we simulate here just a small region of the
interi cale heights spanning the box to N, =0.2,
i.e., the density at the bottom is 22% greater than that at the top. The viscous, ther-
mal, and magnetic diffusivities are equal (i.e., Pr = q = 1) and constant in radius
for all four cases. All four cases have an aspect ratio of g = 2. The bottom and top
boundaries are impermeable, stress-free, and constant entropy; the side boundaries
are permeable and periodic (Section 10.2). Also, the mean horizontal flow and field

are suppressed by maintaining Dm=05 Ym=0, Amg, and Jn=0 equal to zero at all z
and ¢.

complex Fourier modes, computing the nonlinear terms with a spectral-transform
method (Section 10.4) on 4001 horizontal grid points. In the vertical direction we
use a centered second-order finite-difference method on 2001 Chebyshev grid lev-
els (Section 9.1). These cases were run on parallel computers using 128
processors,

Case (a) has a relatively small Rayleigh number (Eq. 12.89a), Ra = 3 x 10%;
convection is driven a million times more strongly for the other cases with Ra
= 3 x 10" by using viscous and thermal diffusivities that are each a thousand
times smaller than those for case (a). All but case (b) are rotating. Case (a) is a

(a)
Rotating
magnetic
low Ra

(b)
Non-rotating
non-magnetic
high Ra

(e}

Rotating
non-magnetic
high Ra

(d)
Rotating
magnetic
high Ra

Figure 13.1 Snapshots of the entropy perturbation in four anel.astic simulations of thermal
convection in a 2D box with an adiabatic polytropic reference state c.leﬁned b.y
n=1,N,=0.2,and Pr=q =1 (see Color Plate 7 for a co}‘or version of this
figure). Case (a) has Ra = 3 x 10%, Ek = 10~ and Q =104 Tht? other three
cases have Ra = 3 x 102, Case (b) is nonrotating and nonmagnetic. Cases (c)
and (d) are rotating with Ek = 107°. Case (c) is nonmagnetic and case (d) h‘as
a vertical background magnetic field with Q = 108, Rt?ds 'represent hot fluid,
yellows warm fluid, and blues cold fluid. (This material is .reproduced from
Glatzmaier (2005a) with permission from Taylor and Francis Group, LLC, a

division of Informa plc.)
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relatively slow rotator with an Ekman number (Eq. 13.11) of Bk = 104; ¢4
(c) and (d) rotate a hundred thousand times faster with Bk = 107, Cases (b)
(¢) do not have background magnetic fields. Case (a) has a relatively weak verticy
background field with a Chandrasekhar number (Eq. 11.29) of Q = 10%; case (d
has a more intense vertical background field with Q = 106, ;
It is clear in Fig. 13.1 that, on the scale of the box, case (a) is laminar and thy
other three are turbulent. Case (a) is, however, time-dependent; but the upwelling
and downwelling thermal plumes are relatively large, typically spanning the entire
depth of the box. As is seen in Fig. 13.2, the kinetic energy drops about 25 orders o
magnitude from wavenumber 100 to 300. Since the effects of rotation and magnetic
field are relatively mild for case (a), the major difference between cases (a) and (b)
is the much larger Rayleigh number of case (b), which results in a much larger
Reynolds number (Eq. 5.3): Re for case (b) is 105; whereas it is 10° for case (a).
This puts much more kinetic energy into the smaller scales, which experience loca]
shear instabilities. However, since kinetic energy tends to cascade to larger scaleg

in 2D turbulence, there is also considerable energy in the large scales (small mode

numbers), as can be seen in part (b) of Fig. 13.2. (Note, both axes in Fig. 13.2 for
case (a) are very different from those for the other three cases.) The much smaller

viscous and thermal diffusivities of case (b) also cause the boundary layers to be

much more shallow than they are in case (a), which is easily seen in Fig. 13.3.

Case (c) is case (b) with rapid rotation. This produces turbulent boundary layers
because the plumes that develop from boundary layer instabilities generate vortic-
ity as they rise off the bottom and sink off the top due to the density stratification
and to the Coriolis torque in the vorticity equation 13.10. This effect is clearly
seen when comparing parts (b) and (¢) in Fig. 13.1. Physically, as a fluid par-
cel rises through density stratification it expands, producing Coriolis forces that
cause it to rotate in the opposite sense to the planetary rotation, €, i.e., it gener-
ates local negative vorticity. Likewise, a sinking fluid parcel contracts, generating
positive vorticity (Glatzmaier & Gilman, 1981b). This process removes some of
the large-scale kinetic energy by inhibiting plumes that span the entire box; the
change in the kinetic energy spectrum is seen when comparing parts (b) and (c)in
Fig. 13.2. This process also makes the convective heat transfer less efficient, which
therefore requires a superadiabatic temperature gradient (negative entropy gradi-
ent) in the bulk of the fluid box, as can be seen when comparing parts (b) and (c)in
Fig. 13.3.

Besides the Ekman number, the effect of Coriolis forces on the flow is measured
in terms of the Rossby number, Ro, the nondimensional ratio of advection effects
over Coriolis effects:

14
2QD°
where V' is a typical flow velocity. Note, Ro = Re Ek. Another convenient nondi-

mensional number is the convective Rossby number, Ro,, the ratio of buoyancy
effects over Coriolis effects:

AS 172
ROC = (f—l)-) /29,
p

Ro =

Figure 13.2
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The kinetic energy spectra for the four cases illustrated in Fig. 13.1. The log
of the volume-averaged kinetic energy is plotted as a function of the log of the
horizontal mode number. Note, the axes for case (a) differ from those for the

other three cases.




Rotating
magnetic
low Ra

(b)
Non-rotating
non-magnetic
high Ra

(c)

Rotating
non-magnetic
high Ra

bot

(d)
Rotating
magnetic
high Ra

bot

0
1

Mean entropy

Figure 13.3 The horizontally averaged and time-av

cases illustrated in Fig. 13.1. Entr
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equals (Ra/Pr)!/2 Ek. The ratio of magnetic field effects and Coriolis effects
e measured in terms of the magnetic Rossby number, Roy,:

B
(WD

ch equals the ratio of the Alfvén frequency over the Coriolis frequency or

rotational period over the Alfvén travel time across D. The Ro and Ro, for

e (a) are 0.1 and 0.2 and for case (c) are 4 X 10~* and 2 x 1073, respec-
vely, which indicates how much more dominant Coriolis effects are for
ase (C).

Case (d) is case (¢) with an intense vertical background magnetic field. This in-
ibits horizontal flows, which deform the background field. The resulting strong
orentz forces provide a restoring force that produces horizontal oscillations, i.e.,

fvén waves. The horizontal oscillation velocities for this case are comparable to

e vertical convective velocities. Turbulent boundary layers still exist; but the char-
cter of the plumes in case (d) differ from that in case (c) because of these magnetic

restoring forces. This is seen when comparing parts (c) and (d) of Fig. 13.2; a some-
-what higher kinetic energy is in the small scales for case (d). It is also seen when

comparing parts (c) and (d) of Fig. 13.3, with case (d) being a little more efficient
convecting heat and so having somewhat less steep entropy gradient in the bulk
of the fluid. That is, magnetic forces tend to offset the development of vortices by
Coriolis forces. The magnetic Rossby number, Ro,,, for case (d) is 10~%, compared
to 10~2 for case (a), indicating how much more dominant Coriolis effects are for
case (d).

These results are reflected in the values of the Nusselt number (Eq. 5.1a, but here
with ¢, p,v,T replaced by T pv,S). Case (a), with its smaller Ra, has the smallest
Nusselt number, Nu = 11; and case (b), with the large Ra and no rotation, has the
largest, Nu = 175. Adding rotation makes the convection less efficient; Nu = 98
for case (c). Adding magnetic field reduces the rotational hindrance; Nu = 120 for
case (d).

Now consider another anelastic polytropic rotating (but nonmagnetic)
case, one that has a much larger density stratification, N, = 5, and a polytropic
reference state with rn=1.5, ie., a perfect gas with y=5/3. The
Rayleigh, Prandtl, and Ekman numbers are Ra = 2 x 10'2, Pr = 0.1, and
Ek = 1079, respectively, which makes Ro, = 5 x 1073 (Glatzmaier, 2005a).
The resulting Reynolds and Rossby numbers are 3 x 10° and 3 x 1073, respec-
tively. This rapidly rotating case is illustrated in Fig. 13.4 with four snapshots
showing how the initial large-scale plumes break down into small-scale turbu-
lence because of shear instabilities. Small-scale but intense vortices, generated
by the Coriolis torque described above, slowly migrate through the turbulence.
They survive for a relatively long time because of the small viscous and ther-
mal diffusivities represented here by the large Rayleigh and Reynolds
numbers.




Figure 134 Four snapshots of entropy from an anelastic simulation of thermal convection
n a 2D box with Ra =2 x 10", Pr = 1/10, Bk = 107°, and N, = 5 (see Color
Plate. 8 for a color version of this figure). Here dark colors rep/;esent cold fluid
and light colors hot fluid. (This material is reproduced from Glatzmaier (2005a)

with permissi ; L
o) p ssion from Taylor and Francis Group, L1.C, a division of Informa

ﬁ/};}

2D ROTATING EQUATORIAL ANNULUS: DIFFERENTIAL

w we assume strictly 2D flow in an annulus rotating about an axis through its
ter and normal to its plane, the “equatorial plane.” We solve the equations in the
ame of reference rotating with a constant angular velocity & = Q7 in cylindrical
rdinates (r, ¢, z) with the coordinate axis being the rotation axis. The initial
dition is, as usual, no velocity relative to the frame of reference and therefore,
th our stress-free boundary conditions, the total integrated angular momentum
{ the fluid annulus continues to vanish in this rotating frame. We also let g2(»)
present the sum of the gravitational acceleration and the centrifugal acceleration

3.3.1 2D Annulus: Vorticity Waves and Differential Rotation

s discussed in Section 13.2.1, the only modification to the equations is the addition
of the Coriolis torque,

2Qh,v, ,

in the vorticity equation 12.88. The Fourier coefficient of this (dimensional) Cori-
olis torque in terms of the complex streamfunction for mode number m is
2Qhpimyy,
rp
As for the equatorial box geometry (Section 13.2.1), this term would vanish for this
equatorial annulus if the Boussinesq approximation (4, = 0) were made.

As discussed in Section 12.4.1, the critical Rayleigh number for thermal con-
vection in a density-stratified fluid depends on the vertical dependences of the ref-
erence state variables. Glatzmaier & Gilman (1981a,c) numerically solve for the
critical Rayleigh numbers and critical mode numbers for anelastic convection in
a 3D spherical shell and describe how the structure and phase propagation of the
most unstable mode depend on the chosen reference state and the rotation rate. For
the onset of Boussinesq convection in a rapidly rotating sphere the critical Rayleigh
number and critical wavenumber go as Ek~*/3 and Ek~'/3, respectively (Roberts,
1968; Busse, 1970); and both increase with Prandtl number (Jones et al., 2000).
Glatzmaier & Gilman (1981a,c) find that the critical Rayleigh number and critical
wavenumber also increase with density stratification. In addition, they describe how
convective cells at onset are tilted in a way that rising fluid has a prograde (i.e., east-
ward) component of velocity and sinking fluid has a retrograde (westward) compo-
nent, the opposite of what one might expect based only on the Coriolis forces due
to the vertical velocity. This tilt in the convecting flow maintains a perturbation an-
gular velocity relative to the rotating frame of reference, i.e., a differential rotation,
because of the convergence of Reynolds stress.

Convection in rotating laminar Boussinesq convection (Busse, 1983) is also tilted
and so also maintains differential rotation; but the mechanism is quite different
compared to that in a rotating density-stratified fluid (Glatzmaier et al., 2009).
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d deformation of small isolated plumes that gain and lose vorticity as they sink
d rise, respectively. The density stratification mechanism for maintaining dif-
erential rotation is based on the resulting tilted flow trajectories, which transport
gular momentum from one region to another. It involves a radially dependent
hase propagation in longitude of the vorticity pattern, which tilts the plume trajec-
ries in longitude and thus, by the convergence of the nonlinear Reynolds stress,
édistﬁbutes angular momentum in radius.
- How this happens is easier to understand by thinking of a simple series of laminar
pflows and downflows as convection cells within the equatorial plane. Positive
orticity peaks in the centers of counterclockwise circulating cells (cyclones) and
egative vorticity peaks in the centers of clockwise circulating cells (anticyclones),
hen viewed in the rotating frame from the north. However, the rate that vorticity
being generated peaks in the upflows and downflows between the cell centers,
90 degrees out of phase relative to the existing pattern of vorticity.

Since rising fluid generates anticyclonic vorticity on the prograde side of anticy-
clones and on the retrograde side of cyclones, the phase of this circulation pattern
propagates in the prograde direction (Glatzmaier & Gilman, 1981b). This Rossby-
like vorticity wave occurs because density decreases with radius. However, the
direction the convecting plumes tilt and the resulting type of differential rotation
depend on how the phase propagation in longitude varies in radius. The greater
the magnitude of the relative change in background density with radius (i.e., the
smaller the local density scale height), the greater the phase velocity at the given
radius.

Consider the usual case for which the density scale height decreases with ra-
dius. In this case, the pattern of circulation propagates eastward faster at greater
radii. This causes rising fluid to tilt eastward (i.e., prograde) and sinking fluid to
tilt westward (i.e., retrograde). That is, prograde angular momentum is transported
toward the top boundary and retrograde angular momentum is transported away
from the top boundary. The opposite occurs at the bottom boundary. This conver-
gence of Reynolds stress maintains prograde zonal flow (i.e., the axisymmetric part
of the longitudinal velocity) in the outer part of the convection zone and retrograde
zonal flow in the inner part. The robustness of this density stratification mechanism
for maintaining differential rotation is that it does not require thin straight vortex
columns that span from the northern to southern hemispheric boundaries in a lam-
inar environment, as does the Boussinesq Taylor-column mechanism. Instead, this
mechanism works locally and in a strongly turbulent environment.

Once this differential rotation is established it provides positive nonlinear feed-
back. That is, rising and sinking plumes are sheared by the existing differential
rotation, which increases the tilt and tightens the spiral flow structure to the degree
determined by the turbulent mixing, which attempts to smooth out the spiral shear.

13.3.2 2D Annulus: Simulations

For a simple demonstration of how effective the density stratification mechanism
is in maintaining differential rotation consider two cases of anelastic convection
in a 2D rotating equatorial annulus (Glatzmaier et al., 2009). Both cases have
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m these, the gravitational acceleration, g(r), for each case can be obtained via
10.9 and then T (r) by integrating the adiabatic temperature gradient, —g/c,,.
set 7, &, and c,, to constants.
The equations are solved using a Chebyshev-Fourier numerical method
ction 9.4) with a spectral-transform method to calculate the nonlinear terms
ection 10.4) and a second-order semi-implicit time integration scheme
ction 8.2). Both cases use 1365 complex Fourier modes on 4096 longitudinal
tid points and 1537 Chebyshev polynomials in radius. Each case was run for more
an 2,000,000 numerical time steps, which represents 1000 rotation periods. The
sulting fluid velocities correspond to a Reynolds number of about Re = 10° and
Rossby number of Ro = 0.01.
Since there is no flow parallel to the rotation axis, there is no stretching torque
q. 13.8); the only torque due to rotation is a compressional torque, the linear part
which is —2QV v = 2Q#h,v,. Recall that the local density scale height is —h;l;
erefore, for a given v,, the local vorticity generation rate is greatest for case (a)

5 near the top boundary and for case (b) near the bottom boundary. As discussed

in Section 13.3.1, this causes rising fluid in case (a) to have a prograde velocity
component and sinking fluid to have a retrograde component. The resulting tilt
transports prograde angular momentum into the region near the top boundary and
retrograde angular momentum near the bottom boundary. The convergence of these
nonlinear Reynolds stresses maintains a prograde angular velocity (i.e., eastward
zonal flow) in the outer region and a retrograde angular velocity in the inner region,
both relative to the rotating frame of reference. The opposite differential rotation is
maintained in case (b) as illustrated in Figs. 13.5 and 13.6. The perturbation angular
velocity in these two cases peaks near the boundaries at 3% to 4% of the angular
velocity of the rotating frame of reference, Q.

The convective velocities in these two simulations are typically a hundred times
less than the zonal winds that they maintain. The resulting superposition of nonax-
isymmetric convection and the axisymmetric zonal flow is not the typical cellular
convection pattern. Instead, as viewed in the rotating frame, the fluid trajectories
are wavelike flows in longitude because the fluid parcels move so much faster in
longitude than in radius. Since the total angular momentum of the annulus, mea-
sured in the rotating frame, remains zero (because of the stress-free boundaries),
the angular momentum of the inner region cancels the angular momentum of the
outer region. On average, the inner and outer parts of the spiral make one revolution
in opposite directions about every 50 planetary rotation periods.

As mentioned in Section 13.3.1, this mechanism has a positive feedback. That is,
the established differential rotation also tilts rising and sinking convective plumes,
which reinforces the transport of momentum that maintains the particular differ-
ential rotation that exists. This feedback mechanism may be even more important
than the density stratification mechanism just described since switching the refer-
ence state density profile, from case (a) to (b), after the differential rotation has been
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lished does not reverse the differential rotation. This feedback may be the rea-
differential rotation can be maintained in fairly turbulent rotating Boussinesq
svection, for which the Taylor columns are not continuous through the deep in-
ior, when the differential rotation has initially been established within a more
faminar convective flow.

This feedback mechanism may have played a role in the establishment of the

erent banded zonal wind patterns seen on Jupiter and Saturn because of differ-

t impact histories these giant gas planets may have experienced. Of course, the

erent zonal patterns may also be due to the different internal structures these
jant planets have and the different tides they experience.
" Now consider the 2D annulus case described in Section 12.5.2 and illustrated in
sigs. 12.3 and 12.4, which has a greater density stratification, N, = 3; but here we
ot Ra to 101", Pr to 0.5, and Ek to 2 X 1078, The lower Prandtl number usually
esults in a stronger zonal flow. The higher Rayleigh number here is chosen to drive
a comparably turbulent flow since the critical Rayleigh number increases with the
otation rate, €2, i.e., with decreasing Ekman number.

The results for this case are illustrated in Figs. 13.7 and 13.8. As in case (a)
of Figs. 13.5 and 13.6, which also has a density scale height that decreases with

adius, this case maintains a differential rotation with much of the inner region
being a retrograde zonal flow (blue) and the outer region a prograde flow (yellow).
Note, however, that for this case there is also a shallow layer adjacent to the bottom
boundary that has a strong prograde zonal flow, presumably due to local boundary
layer dynamics. The huge effect of rotation is clearly seen when comparing this
strong, persistent, differential rotation with the lack of any significant or persistent
differential rotation in the nonrotating case and by comparihg the spiral entropy
structure in Fig. 13.7 with the plume structure of the nonrotating case in Fig. 12.3.

Another effect of rotation is the enhanced depth of the thermal boundary lay-
ers, which is particularly obvious at the bottom boundary when comparing the
mean entropy profile in Fig. 13.8 with that of Fig. 12.4. Note that in both cases
the mean entropy equals 1 at the bottom boundary (+ = 0.2). The rotating case
(Fig. 13.8) maintains a deep turbulent boundary layer above the very shallow diffu-
sive boundary layer. A similar effect is seen for the 2D box simulations described in
Section 13.2.2.

Before moving to 2.5D models, we should mention that considerable progress
has been made using 2D anelastic rotating annulus models with a stable thermal
stratification to study the excitation of internal gravity waves by penetrating con-
vection and how they transport and deposit angular momentum within the stable ro-
tating region. In particular, simulations have been used to study the dynamics of the
sun’s stable radiative zone below the its convection zone {e.g., Rogers et al., 2008).

13.4 2.5D ROTATING SPHERICAL SHELL: INERTIAL OSCILLATIONS

Recall that a “2.5D spherical-shell model” means that fluid velocity and magnetic
field have vector components in all three coordinate directions, radius, colatitude,
and longitude; but these vectors and the thermodynamic scalars depend only on
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tigure 13.8 The prescribed reference state density and the evolved mean entropy pertur-
bation maintained by the convection that is illustrated in Fig. 13.7. Both are
normalized and plotted vs. the normalized radius.

adius and colatitude (and time). The equations and numerical method for a 2.5D
odel of convection in a spherical shell, with magnetic field, density stratification,
and rotation, are described in detail in Section 10.6.
Note that if here we let g represent the sum of the gravitational and centrifugal
ccelerations, as we do for strictly 2D convection in an equatorial plane (Section

513.3), this would be a function of both radius and colatitude, not just a function

of spherical radius, the requirement for our reference state. So here we assume
the centrifugal acceleration is small relative to the gravitational acceleration and
therefore add the centrifugal potential, &, = —(Q 7 sin6)?/2, to the definition of
the reduced pressure, P (Eq. 12.25). If there were a tidal potential, we could also
add that to P. If, on the other hand, the centrifugal acceleration were not small,
it should be included in the reference state hydrostatic balance (Eq. 12.22), which
would make the reference state pressure and density functions of both radius and
colatitude and would make the shape of the fluid domain be an oblate spheroid.
Here, however, we consider problems for which the centrifugal acceleration is rel-
atively small and therefore include the centrifugal potential in P. Note that the
gradient of P is multiplied by the reference state density, po; but to the next order it
would be multiplied by the density perturbation. The part of this that involves the
prescribed centrifugal and possibly tidal potentials could be included as additional
linear perturbation terms if these potentials were significant. These additional linear
terms would survive the radial component of the curl, and therefore would appear
in the toroidal mass flux equation in addition to the poloidal mass flux equation;
however, here we neglect these terms. We also assume £ is a constant; so there is
no Poincaré force.

13.4.1 2.5D Inertial Oscillations: Linear Analysis in Cartesian Geometry

Before describing nonlinear simulations of rotating convection and inertial oscilla-
tions in an axisymmetric spherical shell, we discuss 2.5D linear inertial oscillations
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ov
T =-"VPi2vyx Q.

OV = —2Qk,
and the y component gives
k.

CZ)'(ﬁ = —Zﬂk_gvy ,

vs{here /tt2 = k* = &2 + k2). Solving these
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two equations results in the following
ons:

b=120%
Ik|

=+2Qcos 9, (13.13)

wher i
vhere the_angle 0 is the angle between the direction of the vector wavenumber, k
phase Propagation), and the z-direction. The + sign mea,ns
in th§ positive z-direction if ¢ and £,
negative z-direction if not,
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y-directions, normal to the rotation axis, and therefore providing the maxi-
restoring Coriolis forces.
onsider a 2.5D mode for which £,, &, and & are all positive. Conservation of
(Eq. 6.8) then says, as it does for internal gravity waves, that when and where
positive v, is negative, and vice versa. The phase velocity is the velocity of
attern, and for inertial oscillations it is
w A
k|
2Qk,
kP

L=
(ke X + k.Z), (13.14)

ere k = k/|Kk|, the unit vector in the direction of the phase propagation. The
up velocity, at which the oscillation energy is transported by a superposition of
any waves with different frequencies and wavenumbers, is

X

282k,

omparing the vector components of Egs. 13.14 and 13.15, one can see that the
oup velocity is perpendicular to the phase velocity, as it is for internal gravity

iwaves (Section 6.1); however, the horizontal components of these two inertial os-

cillation velocities are in the opposite directions and the vertical components are in
the same direction, a relationship opposite to that of the phase and group velocities
of internal gravity waves.

Now add buoyancy due to temperature perturbations, i.e., consider a Boussinesq
fluid. Again we set & = QZ; but now the gravitational acceleration is g=—gz
and the reference state temperature gradient is d7 /dz > 0. The linear Boussinesq
nondiffusive momentum equation in the rotating frame is

v

57 = VP + el +20vx 2. (13.16)

The y component of this is
dv,

= —2Qu, 13.17
5 v (13.17)

and vorticity is

w=Vxy
A~ O0vy .  du,.
=—Vy5— ey TVrs (13.18)
9z dx
Taking the curl of Eq. 13.16 and using the Boussinesq mass conservation equation,
the vorticity equation is
0w oT av
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The y component of this is

b, T 3
—_— e —_— *y
ot Bops T 20,

which by Eq. 13.18 is also
(P 2y

9x29t + 3z29¢

temperature equation 6.1, an
spersion relation:

@ = (N2 + 29)%82) /42, (132
where N is the Brunt-Viisild frequency (Eq. 6.5). This dispersion relation nj
show§ hqw the buoyancy contribution to frequency is maximum and the Cm'Ce
contribution Yanishes for a purely horizontally propagating wave, for whigl? (;h :
transverse fluid motions are parallel to gravity and the rotation axi,s On the oth -
pand, the Corijolis contribution is maximum and the buoyancy con.tribution0 .
ishes fo1f a purely vertically propagating wave, for which the transverse moti ot
perpendicular to the rotation axis and gravity. e

We can also add a background magneti i i
' ‘ . guetic field, as discussed in Ch,
dispersion relation for a vertical background field (B,2) is pier 11, The

@ = (N2K2 + 2Q)%K2 + \F =V = (13.22)
and for a horizontal background field (B,x)itis
&" = (N2 + (2Q)%2 + VAR /12, (13.23)
where V 4 is the.AlfVén velocity, Eq. 11.35. Equations 13.22 and 13.23 show how
the Alfvén c'onmbution to frequency is maximum when the transverse. fluid motions
are Perpendlcular to the background magnetic field, which is the case for a purel
vertically prf)pagating wave when the background magnetic field is vertical aIr)ld foz
a purc.tly honzontally propagating wave when the background field is horizontal
T%ll's linear al'lalysis of magneto-rotational-gravity waves reveals an additioﬁal
§tab111ty constraint on the numerical time step for 2.5D (and 3D) simulations. That
1s, to be able to resolve such oscillations in time (within the rotating frame <;f reefl-

.

At K 1/MAX(N, 28, V4k),

where here £ is the largest resolved wavenumber.

As ment?oned at the end of Section 1 1.6, studies of magnetoconvection have also
beep done in .2.5D with a horizontal background magnetic field in the direction for
Wmch no variables depend. For example, an early study by Schubert (1968) ex
amines double-diffusive magnetoconvective instabilities in an axisymmetric s here:
with the background field in the ¢-direction; instabilities occur because buo;)ancy

is partly thermal and partly magnetic, with ic diffusivi i
ey the iy g ) magnetic diffusivity 5 being much less
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2.5D Inertial Oscillations: Nonlinear Simulations in
cal Geometry

- we describe two simulations of 2.5D anelastic convection in a spherical shell:
protating nonmagnetic case and a rotating magnetic case. Both have an adi-

¢ reference state with a polytropic index » = 1, the ratio of specific heats

2, and specific heat capacity at constant pressure ¢, = 3.0 x 108 ergs/(gmK).
bottom boundary radius is set to 1.4 x 10° cm and the top to 7.0 x 10° cm. The
ence state density at the bottom boundary is set to 2.541 gm/cm? and at the top
undary to 0.127 gm/cm?; that is, there are N, = 3 density scale heights spanning

@ convection zone. The Griineisen parameter (Eqs. 12.78 and 12.79) is assumed
nstant and is set to yg = (¥ — 1) = 1/n = 1. The reference state temperature
the bottom boundary is set to 3.868 x 10* K; therefore, with the chosen ye and

, the reference state temperature at the top boundary is 0.194 x 10* K. The mass
Jow the bottom boundary is prescribe to be 2.995 x 10?® gm. The viscous and
rmal diffusivities are chosen here to be inversely proportional to the reference

te density; this somewhat enhances the amplitude of the fluid velocities in the
deeper region where they would otherwise be smaller due to the greater density.
e top and bottom boundaries are impermeable (and fixed in space), stress-free,
and at constant entropy with the superadiabatic drop in the entropy perturbation

“across the convection zone set to 3.545 ergs/(gm K). Both cases use 129 Cheby-
_ shev levels in radius and 1024 Gaussian colatitudinal grid points with /., = 682.

The nonrotating nonmagnetic case has a viscous diffusivity at the bottom bound-
ary of 5 x 108 cm?/s and a bottom thermal diffusivity of 2 x 10° cm?/s, which
makes the Prandtl number 0.25 and the Rayleigh number (at mid-depth) 4.4 x 10°.
The numerical time step is set to 3 x 107 s. This case is run for about 500,000 time

teps, spanning about 50 simulated years. Fluid velocities get up to about 300 cm/s,
a Reynolds number, Re, of several thousand.

This nonrotating nonmagnetic case is illustrated in Fig. 13.9. Examination of the
meridional circulation and the entropy in this figure clearly shows a simple flow
pattern with cold fluid sinking near the axis in the northern hemisphere, heating up
as it flows around the hot bottom boundary, rising as hot fluid in the southern hemi-
sphere, and cooling off as it flows along the cold top boundary. This is the preferred
convective circulation pattern for a deep spherical shell (or full fluid sphere) that is
not rotating (and not strongly turbulent). The image on the right in this figure shows
the zonal flow (i.e., the longitudinal velocity), which is also advected by the merid-
ional circulation; but its kinetic energy decays by about six orders of magnitude
during the course of this simulation.

The rotating magnetic case is quite different. First of all, to obtain a similar
Reynolds number we need to significantly increase the Rayleigh number to counter
the stabilizing effects of rotation. We do this by prescribing much smaller viscous
and thermal diffusivities, both of which are inversely proportional to density, as in
the nonrotating case. This case has its viscous diffusivity at the bottom boundary set
to 2.5 x 10% cm?/s and its bottom thermal diffusivity set to 2 x 107 cm?/s, making
the Prandtl number 0.125 and the Rayleigh number (at mid-depth) 8.8 x 10°. The
magnetic diffusivity is constant and set to 7 x 107 cm?/s. The rotation rate for this
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Figure 13.9 A snapshot of a 2.5D simulation of thermal convection in a spherical shell that js
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case is 2 = 107°s~, which makes the Ekman number roughly 7 x 10-8 (at mid-
depth). The convective Rossby number is therefore abont Ro; = 0.02, indicating
that Coriolis effects dominate over buoyancy effects. This case has the time step set

to 6 x 10*s and is run for abou al steps, Spanning about 2000
simulated years, i

A snapshot of this case is illustrated in Figs. 13.10~-13.12. The north and south
8eographic poles are defined by the direction of the total angular momentum of the
body measured in the inertial frame; by definition, the tota] angular momentum of
the body vanishes in the rotating frame of reference, which is the frame in which
the equations are solved and the solution is viewed. The eastward, i.e., the prograde,
direction is into the meridian plane in these figures and is the direction of the mean
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Figure 13.12 The same snapshot as in Figs. 13.10 and 13.11, here showing the three com-
ponents of the magnetic field. (Left) Toroidal magnetic field, i.e., the ax-
isymmetric field directed normal to the meridian plane; solid contours rep-
resent eastward-directed field and broken contours westward-directed field.
(Right) Poloidal magnetic field, i.e., the axisymmetric field directed within the
meridian plane; solid field lines represent clockwise-directed field, broken are
counterclockwise directed.

these angles would be approximately equal since the spherical surfaces are locally
perpendicular to gravity; however, for global large-scale gravity waves the reflec-
tion of a planewave on a spherical surface alters the shape of the wave.) Instead,
the angle of incidence relative to the local direction of R for an inertial ray at a




boundary equals the angle of reflection relative to € as predicted for inertial oscilf

tions (Section 13.4.1). As described in that section, the higher the driving frequencj-,
for inertial oscillations, @ < 282, the closer the direction of the phase propagatim{é
k, is to being parallel to the axis of rotation, Z, and the closer the direction of th(;
group velocity (the rays in Fig. 13.10) is to being perpendicular to the rotation axis'
The angle also depends on the radius of the bottom boundary, as seen in Fig. 13.10.
A particular ray path is favored if it forms a closed circuit because it is reinforced by
the superposition of multiple transits (see Greenspan, 1969; Tilgner, 1999, 2007¢).
As seen in Figs. 13.10 and 13.11, both meridional and zonal flows are sheared on
these rays. Note that only the ray reflections that cause meridional flow along the
ray to reverse its direction in cylindrical radius cause the Coriolis force (and re-
sulting shear) in longitude to reverse; the reflections off the spherical boundaries
that do not reverse the component of the flow in cylindrical radius (those near the

poles on both boundaries) do not reverse the Coriolis force. The shear line tangent

with the inner-core equator (the “tangent cylinder”) is unique; any meridional flow
along this tangent cylinder is parallel to the rotation axis and therefore produces no
Coriolis force.

As mentioned, the restoring forces for these 2.5D inertial oscillations
(Section 13.4.1) are Coriolis forces. That is, flows normal to the axis of rotation
in a meridian plane produce Coriolis forces directed in longitude, which then turn
the flows into a longitudinal direction, which produce Coriolis forces in the merid-
ian plane that oppose the original meridional flow. At the time of the snapshot in
Figs. 13.10 and 13.11 the Coriolis forces resulting from the longitudinal velocity
are driving the meridional flow. This can be seen, for example, in the equatorial re-
gion where the large-scale eastward zonal flow produces a radially upward Coriolis
force that drives the large-scale upward meridional flow there (at this time). The
situation is similar at other latitudes. However, at other times the opposite occurs;
that is, radially upward flow in the equatorial region produces westward Coriolis
forces that drive westward zonal flow. Note, in both cases, the flow that is driven
produces Coriolis forces that are in the opposite direction of the original flow and
therefore act as restoring forces. However, the time dependence of these simulated
flows is not a simple sinusoidal time dependence as described in Section 13.4.1
because of additional forces (buoyancy, Lorentz, and viscous). Occasionally during
the simulation the large-scale pattern propagates parallel to the rotation axis on a
time scale of about 50 years (compared to the rotation period of 0.2 years) while
the pattern of the internal crisscrossed shear layers remains in place.

The magnetic field at this same time step is illustrated in Fig. 13.12: contours of
the toroidal field on the left and field lines of the poloidal field on the right. The
maximum magnetic field intensity at the time illustrated in Fig. 13.12 is about 15
gauss. Because this model is not fully 3D and because we are not maintaining a
constant magnetic flux through the boundaries (as we do for the magnetoconvec-
tion scenarios of Chapter 11), here the magnetic energy slowly decays (by about
30% during this simulation). Torsional oscillations—i.e., rotating cylindrical fluid
shells coaxial with the rotation axis (axisymmetric Taylor cylinders) linked together
with magnetic field that provides restoring forces—might occur if the driving fre-
quency of the inertial oscillations were close to the characteristic Alfvén frequency

(Section 12.4.2) of the torsional oscillations. However, for this case the Alfvén fre-
quency is about three orders of magnitude smaller than the characteristic inertial
oscillation frequency (2£2), so the internal shear flows here have little effect on the
magnetic field pattern.

An important point to make here is that a 2.5D model is a poor approximation for
the axisymmetric part of a 3D model, especially when there is rotation and magnetic
fields. The critical contribution to the axisymmetric part of the solution that is miss-
ing in a 2.5D model is the axisymmetric part of the nonlinear terms that involve the
product of longitudinal mode m > O with itself. Recall that the square of a Fourier
function of mode number m can be written as the sum of a Fourier function of mode
2m and one of mode 0 (Egs. 4.1a,b), where m = 0 is the axisymmetric contribution.
This contribution by nonlinear terms, including the convergences of the Reynolds
and Maxwell stresses, is typically the dominant effect maintaining the axisymmet-
ric part of a 3D solution but is missing in a 2.5D simulation (unless one adds ad hoc
forcing terms to the “mean equations”). For example, differential rotation in many

- cases, like for the sun and giant planets, is maintained rot by the Coriolis forces

due to meridional circulation but by the convergence of Reynolds stress due to the
products of nonaxisymmetric velocity components (Section 13.3). In these cases
the meridional circulation is mainly maintained by the Coriolis forces resulting
from this differential rotation. Also, as mentioned, Cowling’s theorem (Cowling,
1934) shows that a self-consistent dynamo necessarily produces fully 3D magnetic
fields. Therefore, in Sections 13.5 and 13.6 we briefly discuss 3D convection and
magnetic field generation in rotating, density-stratified, spherical shells.

13.5 3D ROTATING SPHERICAL SHELL: DYNAMO BENCHMARKS

An electrical conductor moving through a magnetic field generates its own mag-
netic field (Chapter 11). When the original magnetic field is also maintained by
the moving conductor the process is called a “dynamo.” When the conductor in a
dynamo is a fluid that flows due to gravitational and rotational forces it is called
a homogeneous self-sustaining MHD dynamo, or convective dynamo. See Roberts
(2007) for a review of the basic theory of convective dynamos. Before describing
examples of dynamo simulations, here we discuss two dynamo benchmarks, one
Boussinesq and one anelastic.

13.5.1 Boussinesq Dynamo Benchmark

The first benchmark of a convective dynamo for a Boussinesq fluid in a 3D spheri-
cal shell was published in 2001 (Christensen et al., 2001; see also Christensen et al.,
2009, for the correction of a minor typographical error). Six independently written
dynamo codes are compared using cases that have steady-state solutions when ob-
served in a “drifting” frame of reference rotating at a constant angular velocity
relative to the rotating frame of reference. Although this type of solution requires a
small Rayleigh number (only about a couple times critical), it provides a convenient
and precise way to make highly accurate comparisons between codes. All six of the
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radius and three use finite differences in radius. SR
Three cases are compared. Case 0 is nonmagnetic. Case 1 is ad
perfectly Insulating external regions below and above the convectin Zynamo
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aﬁd is set to IOQ for cases O and 1 and to 110 for case 2. The gravitational acceler-
; 12):11 is proponlgnal to radius (Eq. 10.10); g, is the value at the top boundary. The
: afl.nl.lmber is defisned as in Eq. 13.11 but without the factor of 2 in the der.lom—
11nator, 1t 1s set to 107 for all three cases. The Prandtl number (Eq. 1.19) is set to
. and for cases 1 and 2 t‘he Roberts number (Eq. 11.27) is set to 5. The radii of the
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tude less than that of the drifting frame. The solutions are symmetric with re-
to the equatorial plane; see the paper for a snapshot of the radial components
flow and field.
e (nondimensional) data compared are the volume-averaged kinetic and mag-
energy and the temperature, the longitudinal velocity, and the colatitudinal
gnetic field at mid-depth in the equatorial plane where the radial component of
elocity vanishes and its derivative with respect to longitude is positive. There
four points like this because of the m = 4 dominated solution. Calculating these
ties at one of these points can be done using Newton’s method to converge on it
4 time it is checked. In addition, the angular velocity of the drifting frame and,
case 2, of the solid inner core are also compared among the codes. Care needs to
taken when calculating the angular velocity of the drifting frame to avoid alias-
in the process of converging onto the vanishing radial velocity point mentioned
oVE.
The results of the six basic codes show good agreement. As expected, the fully
ectral codes converge onto the correct solution faster than those with finite dif-
erences in radius when comparing codes with a comparable number of finite-
difference grids and Chebyshev polynomials.

3.5.2 Anelastic Dynamo Benchmark

The first benchmark of a convective dynamo for an anelastic fluid in a 3D spherical

shell was published in 2011 (Jones et al., 2011). Four dynamo codes are com-

pared. However, three of the codes were designed or originated from Glatzmaier
(1984) and Glatzmaier & Roberts (1996a); these employ spherical harmonic and
Chebyshev polynomial expansions. Over the past decade or more these three have
been independently modified and parallelized. The fourth code (Jones & Kuzanyan,
2009) also uses spherical harmonic expansions but with a finite-difference method
in radius.

Three cases are compared. A hydrodynamic (nonmagnetic) benchmark is steady
in a frame drifting at a constant angular velocity in the prograde direction relative
to the rotating frame of reference. The other two cases are dynamos; one is a steady
dynamo benchmark that also drifts at a constant rate in the prograde direction and
the other is an unsteady dynamo benchmark at a higher Rayleigh number. The two
steady cases have Rayleigh numbers approximately 1.3 times their critical values;
the Rayleigh number for the unsteady dynamo case is roughly three hundred times
critical. The unsteady dynamo, the results for which are more difficult to compare
among the four codes, was chosen to better test the nonlinear terms, which make
greater relative contributions in this higher Rayleigh number case.

Since studies of dynamos within stars, like the sun, and giant gas planets, like
Jupiter, are the main motivation for these density-stratified codes, the chosen
boundary conditions are impermeable and stress-free. The bottom and top bound-
aries of the fluid are externally maintained at specific entropies that are constant
over each boundary and constant in time; A S is the drop in entropy across the depth,
D = rop — por- The regions above and below the convection zone are assumed to
be perfect insulators; therefore, the magnetic field is matched to a potential field
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(Section 10.6.4) at both boundaries at each time step for the dynamo cases. Visc
and ohmic heating are included; they are needed to maintain the same totg] h
flow through the bottom and top bou

for the two steady benchmarks,

The fluid is assumed to be a perfect gas (Egs. 12.3-12.7). The hydrostatic refer
ence ' state is isentropic and constructed using a simplified polytrope
(Section 12.2.3) with polytropic index n; the gravitational acceleration is assumed
to be due to only the mass, M,, below the bottom boundary. The specific heat ca-
;;?city at constant pressure, ¢ »» and the ratio of specific heats, y, are constants such
that

c n+1
Y= =

n
and the perfect gas constant is

R=2L _
pT  n+1°
The three diffusivities, v, «, and 1, are also assumed to be constants. Note, for thege
benchmark cases the gravitational constant, G, is defined with just three significant
places: 6.67 x 10~ ergs/(gm K).

Jones et al. (2011) express the reference state and perturbation equations in
nondimensional forms, using a choice of scaling that differs slightly from what
we have been using. Note how they define the Rayleigh and Ekman numbers; they
also define a magnetic Prandtl number Pm = Pr q. One could adopt their scaling
and the resulting nondimensional equations. If, on the other hand, their scaling is
not adopted, care needs to be taken to convert input parameters and output data
to the Jones et al. (201 1) format for comparison. Alternatively, Jones et al. (2011)
Provide input parameters and output data in dimensional units for a giant gas planet
like Jupiter. The dimensional reference state profiles can easily be calculated using
the modified polytropic function, ®, (7), defined in Section 12.2.3.

Here we review the dimensional specifications for the three anelastic benchmark
cases using CGS units. For all three cases the reference state polytropic index is set
o7 = 2 and therefore y = 3/2. (Note, n = 1 would have been more appropriate
for Jupiter.) In addition, for all cases

Thot =2.45%10°cm, 740, = 7.00 x 10° cm, ¢, =1.05090 x 10% ergs/(gmss) ,

Q=1.76 x 10”45”1, M, =109 x 103°gm, and pp, = 1.1gm.

For the magnetic cases, the magnetic permeability is u = 47 and the field is in
gauss. The reference state temperature at the bottom boundary for the hydrody-
namic benchmark is Thor = 3.48548 x 10°K and for the two dynamo benchmarks
itis Tpoy = 4.11829 x 10° K. The viscous, v, and thermal, «, diffusivities are both
equal to 3.64364 x 10'2cm?s~! for the hydrodynamic benchmark and are both
equal to 7.28728 x 1012 cm? 5! for the steady dynamo benchmark. For the unsteady
dynamo benchmark, v = 1.82182 x 10!! ¢m2 5-1 and = 0.91091 x 10! ¢m2 -1,

et equal to the thermal diffusivity, n = 0.91091 x 10! cm?s~!. The final para-
eter needed is the drop in entropy across the depth, which is set to 8.512257 x
0° ergs/(gms), 7.742683 x 10° ergs/(gms), and 0.756121 x 10 ergs/(gms) for
e hydrodynamic, steady dynamo, and unsteady dynamo benchmarks, respectively.

The number of density scale heights, N,, across depth D is found via Eq. 12.76;

is 5 for the hydrodynamic benchmark and 3 for the dynamo benchmarks. The

me step, At, chosen depends on the CFL stability condition, which depends on

e flow and field amplitudes and the spatial resolution. However, to obtain the
accuracy displayed in Jones et al. (2011), the actual time step (for second-order time
integration schemes) needs to be several times smaller than the CFL constraint. For
example, the time step for the hydrodynamic benchmark with a spatial resolution
of 121 radial x 512 colatitude x 1024 longitude levels is set to 33 s, for the steady
dynamo benchmark with 65 x 128 x 256 levels it is 300s, and for the unsteady
dynamo with 129 x 256 x 512 levels it is 100s.

Another accuracy issue is discussed in Jones et al. (2011). The total angular mo-
mentum of the convection zone should remain zero relative to the rotating frame
since it begins as zero and the boundaries are stress-free. However, as discussed in
Section 10.3.1 for a 2D annulus, a very slight nonzero value is added at each time
step due to numerical truncation, which can grow to a non-negligible value after a
million time steps if not corrected. A method suggested, which works well, is to
replace the stress-free boundary condition on the degree [ = 1 parts of the toroidal
mass flux scalar, Z' at, say, the top boundary, with a condition that forces the total
integrated angular momentum to vanish in the rotating frame of reference. The vol-
ume integral over the convection zone of the z component of angular momentum
density is proportional to the integral over radius from 7y, to F10p Of (Z?rz); the
volume integral of the x-component of angular momentum density is proportional
to the integral over radius of the real part of (Z1r?%); and the volume integral of the y
component of angular momentum density is proportional to the integral over radius
of the imaginary part of (Z!r?). Using the formula for the integral of a Chebyshev
polynomial over radius, Eq. 9.30, these integral conditions can easily be forced to
vanish (instead of the total stress at the top boundary) in the semi-implicit time inte-
gration scheme described in Section 8.2. The 2D annulus version of this condition
is Eq. 10.24.

Snapshots of the three benchmark solutions are illustrated in J ones et al. (2011).
The steady hydrodynamic solution is dominated by longitudinal mode number
m = 19 and the steady dynamo solution is dominated by m = 7, which illus-
trates how a strong magnetic field (i.e., one with total magnetic energy comparable
to total kinetic energy) can increase the dominant length scale relative to that for a
nonmagnetic case. The structures for both steady cases are symmetric with respect
to the equatorial plane and the patterns drift prograde relative to the rotating frame.

The unsteady benchmark is mildly turbulent. The Rayleigh and Ekman numbers,
as we define them (Eqgs. 12.89a and 13.11), are 2 x 107 and 2.5 x 10~5, respectively.




not extreme enough to produce the Reynolds stresses needed to maintain dom

and banded zonal winds as observed on the surfaces of gi anets 1
ant planet.
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For the steady benchmarks, the same

13.6.1 Geodynamo Simulations

The mechanism in the Earth’s fluid iron

field is called the “geodynamo.”

nism see, for example, Glatzmaier & 0]]

discussions see Gubbins & Herrero-Bervera 2007); Rob ; ;

Christensen & Wicht (2007); Glatzmaier & éoe (22)07). s (2007); Jones 2007
Here we describe an anelastic geodynamo model and simulation. The anelastic

reference state thermodynamic variables (Chapter 12) for the geodynamo model

are based on the 1D PREM model of the Earth’s interior (Dziewonski & Ander-

son, 1981). Realistic dimensional values are.prescribed for the dimensions of the

solid inner core, the fluid outer core, and the “solid” mantle. All three regimes

are free to rotate (according to the torques acting them) relative to the frame of

referencl:e, which rotates with a period of one day. Convection and magnetic field

generation take place within the i

the solid inner core, which also has a finite electrica] conductivity, and provides a
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gnetic torque at the inner-core boundary between the inner and outer cores. The
gnetic field and the tangential component of the electric field are continuous at
inner-core boundary because this interface is a nonslip impermeable boundary
oss which the magnetic permeability is continuous. This requires solving for the
lution of the field simultaneously within the fluid outer core and the solid in-
ér core, which at most can undergo “solid-body rotation” relative to the rotating
ame of reference (Section 10.6.4; Glatzmaier & Roberts, 1996a). The lower part
f the mantle is also electrically conducting, which provides a magnetic torque at
e core-mantle boundary. The rest of the mantle and the space out to infinity are
nsidered a perfect electrical insulator; therefore, the magnetic field is a potential

liquid iron onto the solid core and the accompanying release of latent heat and

_ lighter elements are modeled by defining a boundary condition that makes the lo-

cal (time-dependent) rate of cooling be proportional to the local diffusive heat and
compositional fluxes. This boundary condition is more realistic and less constrain-
ing than the traditional constant entropy or constant heat flux boundary conditions.
Test simulations (Ogden et al., 2006) attempting to shed light on the question of
radiogenic heating in the core have demonstrated that realistic estimates of the
amount that might be present produce no significant differences in the simulated

- magnetic field at the model’s surface. Therefore, the heat flow out of the Earth’s

core is usually assumed to be due to just the cooling of the core, with no radiogenic
heating.

Figure 13.13 is a snapshot of the radial component of the magnetic field at the
model’s core-mantle boundary and at what would be the Earth’s surface at two dif-
ferent spatial resolutions: a coarse resolution (up to spherical harmonic degree 12)
and a higher resolution (up to degree 95). These are compared to the Earth’s field in
the year 1980 on both surfaces up to degree 12, which is essentially all that can be
detected of the core field at the surface because of the more intense magnetic field
in the Earth’s crust at degrees higher than 12. The images at the surface are obvi-
ously more dipolar dominated and those at the core-mantle boundary have more
intense small scales because larger scales decay less with distance from the core
(Eq. 10.70). Although the degree-12 images at the core-mantle boundary for the
actual and simulated fields are qualitatively similar, the degree-95 simulated image
shows much more intense small-scale “core-spots,” which likely exist at the Earth’s
core-mantle boundary but are hidden at the surface due to the crustal magnetic field.

The differential rotation (i.e., zonal flow relative to the rotating frame) is main-
tained by the Coriolis forces resulting from meridional circulation driven by a
warmer region inside the tangent cylinder compared to outside. That is, in this
problem, the differential rotation is a thermal wind with the region outside the tan-
gent cylinder rotating slowly in retrograde relative to the rotating frame and the
region inside the tangent cylinder near the solid inner core rotating in the prograde
direction due to fluid sinking toward the rotation axis there. Closer to the surface
within the “tangent cylinder” (tangent to the inner-core boundary equator) the fluid




Radial component of the magnetic field

At surface At core-mantle boundary

Geomagnetic field (1980) up to degree 12

G-R simulation up to degree 95

Figure 13.13 A snapshot of the radial component of the magnetic field simulated with the
Glatzmaier-Roberts geodynamo model (see Color Plate 11 for a color version
of this figure). The fields are plotted on equal-area (Hammer) projections of
the entire core-mantle boundary and of what would be the Earth’s surface at
two different spatial resolutions: a coarse resolution (up to spherical harmonic
degree 12) and a higher resolution (up to degree 95). These are compared to
the Earth’s field in the year 1980 on both surfaces up to degree 12. Blue rep-
resents inward-directed field and yellows and reds outward-directed field. The
intensities (colors) are scaled the same, except that each of the three surface
images have been multiplied by 10 to produce color intensities similar to those
at the core-mantle boundary. (This materia] is reproduced from Roberts &
Glatzmaier (2000) with permission from the American Physical Society.)

diverges away from the rotation axis, resulting in retrograde zonal flow. In this
case the kinetic energy in the differentia] rotation is relatively small and the to-
tal kinetic energy of convection is about a couple thousand times smaller than the

Figure 13.14 A snapshot of the magnetic field maintained in a ge;)dynamlo sin;uizil(t;;)r(l) ;111}11:
‘ i i lor Plate 12 for a color ver
trated as magnetic field lines (see Co . ! :
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iaT is reproduced from Glatzmaier & Roberts (1996a) with permission fro

Elsevier Ltd.)
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equator, wrapping the poloidal field into toroidal field and thereby outlining ¢
tangent cylinder.

This field pattern is slowly time-dependent and, on an average of about a cgy
ple hundred thousand years, it experiences a spontaneous dipole polarity reversa}
that typically takes a few thousand years, similar to that seen in the paleomagnet;

record. However, the times between reversals vary significantly (unlike the nearly
periodic solar dynamo reversal period of 11 years). An example of a geodynamo

simulation is illustrated in Fig. 13.15 (Glatzmaier et al., 1999; Glatzmaier & Coe,
2007), showing the magnetic dipole polarity and intensity vs. time, including two
spontaneous dipole reversals during the 300,000-year simulation. As in actual pale-
omagnetic data, the intensity of the dipole decreases significantly during a reversal;
however, a reversal does not occur at every intensity minimum. Many spontaneous
dipole reversals have occurred in geodynamo simulations (e.g., Olson et al., 201 1);
each is unique in terms of the evolution of the field during the reversal transition,

The pattern of the fluid flow after the dipole reversal is qualitatively the same as it
was before the reversal, including its average direction; the pattern of the magnetic
field is also qualitatively the same, but its direction has completely reversed every-
where. The reason for this is that B appears in the momentum and energy equations
as a quadratic and in the magnetic induction equation as a linear term. Therefore,
if B at a given time for a given flow pattern satisfies these equations, so does —B.
That is, there are naturally two equally likely attracting polarity solutions. The sim-
ulations show that the system is constantly trying to reverse its polarity; only after
many attempts do perturbed flows successfully destroy the original field and replace
it with a reversed polarity field.

A sequence of four snapshots (a,b,c,d), each separated by 3000 years, during one
dipole reversal is illustrated in Fig. 13.16. The pattern of the radial component of the
field is shown both at the core-mantle boundary and at what would be the surface of
the Earth. The longitudinally averaged field inside the core is also shown, in terms
of field lines for the poloidal field (on the left sides of the images) and contours for
the toroidal field (on the right). Notice how the reversal appears complete at time
(c) when viewed above the core but that it takes another 3000 years for the original
field to decay out of the solid inner core and the new polarity to penetrate in.

Another interesting dynamic, but on a much shorter time scale, is the prediction
(based of these simulations) that the Earth’s solid inner core rotates on average
slightly faster than the mantle (Glatzmaier & Roberts, 1995a, 1996b). Simulations
that include the gravitational coupling between the inner core and mantle reduce the
predicted average rate of eastward drift of the solid inner core to about 0.02 degree
longitude per year (Buffett & Glatzmaier, 2000), putting it closer to some seismic
analyses of inner-core super rotation. However, this simulated instantaneous angu-
lar rotation rate of the inner core varies by typically 0.1 degrees longitude per year
with an average period of 75 years. "

13.6.2 Saturn Dynameo Simulations

For giant planet simulations we typically construct an adiabatic reference state
(Chapter 12) based on a 1D evolutionary model (e.g., Guillot, 1999, 2005) with

trajectory

Dipole
latitude

Dipole
moment

100
Time (kyrs)

Figure 13.15 A 300,000-year geodynamo simulation showing the evolution of the dipolar
part of the generated magnetic field at the surface of the modelec.l Earth (Top)
The trajectory of the magnetic south pole on an equal-area prOJec.tlon of the
entire surface. (Middle) The latitude of the magnetic south pole in degreés.
(Bottom) The magnetic dipole moment in units of 10% {sz. (This material
is reproduced from Glatzmaier et al. (1999) with permission from the Nature

Publishing Group.)




Figure 13.16 A sequc?nce of snapshots, displayed at 3000-year intervals during a s
neous sm?ulated magnetic dipole reversal (see Color Plate 13 for a col(l))roxr/lta-
sion qf t%us figure). (Bottom) The longitudinally averaged magnetic field Ief
ted within the core. The small circle represents the inner-core bound ; 0(;
the Iarge circle is the core-mantle boundary. The poloi'dal field is shzcl)rv}; '
magnetlc field lines on the lefi-hand sides of these plots (blue is clockwiser;r?;
red is counterclockwise). The toroidal field direction and intensity are repre
sented as contours (not magnetic field lines) on the right-hand sides (reg i-
castward and blue is westward). (Middle and Top) The radial component 01Sc

ted as describe.d in Fig. 13.13. (This material is reproduce
et al. (1999) with permission from the Nasure Publishing Group.)

larger than observed.

' An example of a dynamo simulation
ilar to that observed on Saturn’

thg rotating frame) up to 300 my/s; blues are westward up to 100 m/s. Thi 1
w1r'1d prqﬁle is very different from the westward thermal wind outside‘ angen
cylinder in the Earth’s fluid core (Section 13.6). The way it is maintained is also dif.
ferent; many small isolated vortices, generated by fluid moving through the densilt);

the tangent

Simulated banded zonal winds

Figure 13.17 A snapshot of the longitudinal flow from a Saturn dynamo simulation (see
Color Plate 14 for a color version of this figure). Reds and yellows are pro-
grade flow relative to the rotating frame and blues are retrograde. (This ma-
terial is reproduced from Stanley & Glatzmaier (2009) with permission from
Springer Science + Business Media BV.)

stratification (Section 13.3.2), fill the convection zone and maintain this differential
rotation pattern by the convergence of angular momentum flux (not as a thermal
wind).

The banded differential rotation pattern in this simulation is also illustrated in
Fig. 13.18. The “constant-on-cylinders” angular velocity below the surface is a
prediction; a shear flow well below the surface is critical for the maintenance of the
dynamo. Reducing the prescribed viscosity in the continuation of this simulation
makes the convection more turbulent and causes the high-latitude bands to decay
with depth below the surface; a strong shear flow well below the surface remains in
the equatorial region.

We have chosen to simulate only the outer 20% in radius in this scenario because
another simulation that includes the entire hydrogen-helium interior (Glatzmaier,
2005b) shows the largest kinetic and magnetic energy densities existing in the outer
region (Fig. 13.19). In that simulation, convective flows are greatest near the sur-
face where density is small; whereas magnetic induction is most efficient in a rela-
tively narrow layer at roughly 20% of the radius below the surface, where electrical
conductivity is large. Dynamo action requires both sufficiently vigorous fluid mo-
tions and sufficiently high electrical conductivity to balance the removal of field by
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Figure 13.18 A snapshot of a Saturn dynamo simulation
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as in Fig. 13.17 (see Color Plate

Kinetic energy density Magnetic energy density

Figure 13.19 A snapshot of the kinetic and magnetic energy densities in the equatorial plane
of a 3D dynamo simulation of a giant planet like Saturn (see Color Plate 16a
for a color version of this figure). The kinetic energy is greatest near the surface
and decays with depth; the magnetic energy peaks in a narrow layer at roughly
20% of the radius below the surface.

magnetic diffusion. That is, a high local magnetic Reynolds number, Rm, is re-
quired, which is the ratio of the RMS fluid velocity, V', at a given depth to the
magnetic diffusive velocity at that depth, using a representative length scale, D:

VD
= — =VD[,L&
n

Here, 1 is magnetic permeability (assumed constant), & is the electrical conductiv-
ity, and 7j = 1/(uc) is the magnetic diffusivity. Therefore, although kinetic energy
density peaks near the surface, magnetic energy density peaks deeper below the
surface in a high-Rm “sweet spot,” as seen in Fig. 13.19. The kinetic and magnetic
energy densities are both small below this layer.

Plots of the average kinetic and magnetic energy densities vs. radius for the dy-
namo simulated in just the outer 20% of the radius (as seen in Fig. 13.17) are
shown in Fig. 13.20. These show the kinetic energy peaking near the top boundary
and magnetic energy peaking near the bottom boundary. The kinetic energy density
is about three orders of magnitude greater than the magnetic energy density; so this
is a “weak field” dynamo.

Figure 13.18 also illustrates how the radial magnetic field at the surface has
a banded structure, especially at high latitude, due to the banded differential ro-
tation. It also shows considerable structure in radius and latitude of the longi-
tudinally averaged toroidal magnetic field, which is also more intense at high
latitude.

Besides having strong shear, the fluid flow in a convective dynamo also needs to
have sufficient helicity, i.e., the dot product of velocity and vorticity. Helical fluid
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Figure 13.20 Average kinetic and magnetic energy densities plotted vs. radins through the
convection zone for the simulated Saturn dynamo illustrated in Fig. 13.17.

motions twist toroidal (east-west) magnetic field into poloidal (meridional) mag-
netic field while differential rotation shears poloidal field into toroidal field. How-
ever, to limit the resulting ohmic dissipation due to this shear flow, poloidal field
tends to align parallel to surfaces of the constant-on-cylinders angular velocity, as
suggested by Ferraro’s isorotation law (Ferraro, 1937). This makes the radial field
at the surface significantly larger at high latitudes, as seen in Fig. 13.21. Saturn’s
observed surface magnetic field is also weaker in the equatorial region between
+45° latitude than expected for a pure dipole (Connerney, 1993), possibly for this
same reason.

This simulation maintains a magnetic dipole moment (Section 10.6.1) of 1.1 x
10 Tm?, somewhat less than Jupiter’s (1.5 x 10 Tm®) and larger than Saturn’s
(4.2x 108 Tm?). (Note, 1 Tm® = 1010 gauss cm’.) As mentioned in Section 10.6.1,
the structure of a potential planetary magnetic field at and beyond the
surface is traditionally described in terms of the gauss coefficients of a spherical
harmonic expansion. Currently, however, only a very small number of gauss co-
efficients (typically up to degree 4) have been estimated for the fields of Jupiter
and Saturn because the number of flybys is small and NASA’s Galileo and Cassini
missions to Jupiter and Saturn, respectively, have not orbited close enough to the
planetary surfaces. When better magnetic observations are obtained for Saturn dur-
ing the NASA Cassini Solstice mission and for Jupiter during the NASA Juno
mission starting in 2016, more detailed comparisons will be made with 3D simu-
lations. These comparisons will, in addition to providing much more detailed mea-
surements of the magnetic field, hopefully provide information, based on gravity
measurements, on the depth to which the zonal winds extend below the surface
as a function of latitude for these two giant gas planets. Evidence of deep zonal
winds would also be obtained if the magnetic fields that will be measured near the
surfaces of Jupiter and Saturn have a banded zonal structure correlated with the
banded zonal wind pattern (Fig. 13.18) since such a field pattern would need to be

maintained deep below the surface where the electrical conductivity is sufficiently
high.

Figure 13.21 A snapshot of the magnetic field, illustrated with ma(gneticc‘: tlieldP llintes,1 gtl’ai:g;
. ined i i ion (Fig. 13.17) (see Color Plate
tained in the Saturn dynamo simulation ( . '
aalclllor version of this figure). Gold field lines are directed ou.tward ?)r;d bl}iﬁ
inward. (This material is reproduced from Stanley & Glatzmaier (2009) wi
permission from Springer Science + Business Media BV.)

13.7 CONCLUDING REMARKS
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is test should be applied to all convective dynamo simulations as they become
tter resolved and more turbulent.
Here we end by listing some substantial improvements for planetary and
ellar convective dynamo models to which we look forward, many of which are
eady being developed. Subgrid-scale turbulence models should replace the en-
anced turbulent diffusivities by providing additional stresses (in the momentum,
ergy, and magnetic induction equations) that estimate how the unresolved tur-
ulence disperses (instead of diffuses) energy within the spectrum of length scales
(e.g., Buffett, 2003; Chen & Glatzmaier, 2005; Chen & Jones, 2008). The anelastic
approximation could be improved, for example, by making the low-Mach-
pumber approximation (e.g., Durran, 1989; Bell et al., 2004; Almgren et al., 2006a;
Zingale et al., 2009). Fully compressible global models are needed for problems
involving transonic flows like those in the surface layers of stars (where the tem-
perature, and therefore the sound speed, are less than in the deep interior) and in
the atmospheres of “hot Jupiters” (giant exoplanets orbiting so close to their stars
that the stellar luminosity drives supersonic atmospheric flows). The top boundary
in models of stars and giant planets should be extended closer to the visible sur-
face by adding at least a simple treatment of radiative transfer to replace the ther-
mal diffusion approximation there. The impermeable top boundary condition for
stars and giant planets should be replaced with a free surface boundary condition.
The impermeable bottom boundary should be removed for stars and giant planets
so the resulting “full-sphere” model could be used to study convective flow (e.g.,
Evonuk & Glatzmaier, 2007) or internal gravity wave propagation (e.g., Rogers &
Glatzmaier, 2005b) through the center and the resulting feedbacks on nuclear burn-
ing for stars (e.g., Almgren et al., 2008; Zingale et al., 2009) and on core erosion for
giant planets (e.g., Guillot et al., 2004). The effects of the hydrogen phase transition
and helium settling should be simulated in models of giant planets and, likewise,
the effects of hydrogen and helium ionization zones in stellar models. It will be in-
teresting to discover how precession of a body’s rotation axis (e.g., Tilgner, 2007a;
Wu & Roberts, 2009) and a tidal potential due to the body’s orbital eccentricity and
obliquity (e.g., Tilgner, 2007b; Noir et al., 2009) produce instabilities that modify
the way its turbulent convection maintains differential rotation and magnetic field.
These and other major model improvements will surely lead to exciting discoveries
and better understanding of the internal dynamics of planets and stars.
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OMPUTATIONAL PROJECTS

1. Thermal boundary layer thickness
Using plots of the mean entropy perturbation as a function of z for a simula-
tions of thermal convection in a box, check how the thickness of the thermal
boundary layer depends on Ek for a given Ra, Pr, aspect ratio, and N,,.

2. Anelastic convection in a 2D rotating annulus exciting internal gravity waves
in an adjacent stable region
Set up a stable thermal stratification below a convectively unstable outer con-
vection zone in a 2D rotating anelastic annulus model in the equatorial plane
(see Section 6.2.2 and, for example, Rogers et al. (2006)). This could serve as
a 2D simulation of the internal dynamics in a solar like star. Make a movie of
the upward propagating internal gravity waves in the stable interior, which are
excited by the penetrating convection above. Make another model that sim-
ulates a convectively stable outer region above a convectively unstable inner
region, which would be a 2D simulation of a star much more massive than the
sun.

3. 2D rotating convection in the equatorial plane with vorticity generated by
both the compressional torque and a modeled quasi-geostrophic stretching
torque
Set up a simple model of “‘quasi-geostrophic” convection starting with a 2D
rotating anelastic annulus model in the equatorial plane (Section 13.3). Add a
prescribed function of radius to 7, in the Coriolis term of the vorticity equa-
tion to simulate the additional expansion (contraction) normal to the rotation
axis that fluid in Taylor columns parallel to the rotating axis would experi-
ence as it moves from (toward) the rotation axis as the distance, H, between
the northern and southern boundaries changes, i.e., H = 2(rt20P — rHl2,
where r is cylindrical radius. That is, add a prescribed function of radius to
the compressional torque term that simulates a stretching torque due to the
deformation fluid would be forced to experience if it were circulating in 3D
Taylor columns. Compare the effect of this stretching term due to the curved
boundaries of a 3D spherical shell to that of the compressional term due to
the local density stratification. How many density scale heights spanning the
convection zone are needed to have the effect of the compressional torque be
comparable to that of the stretching torque?

4. Anelastic critical Rayleigh number as a function of the Ekman number for a
3D spherical shell
Using a linear anelastic code for thermal convection of a polytropic perfect
gas in a 3D rotating spherical shell, iterate on the Rayleigh number, as de-
scribed in Section 3.3, to find the critical Rayleigh number as a function of
the spherical harmonic order m (including all degrees /, which are coupled)
and a function of the Ekman number, Ek, for a given Prandtl number, Pr,
aspect ratio, 7por /710p, polytropic index, n, density stratification, % ,, and the
amplitude of the initial dipolar magnetic field. Let the 57 and gk T be con-
stants. Then run of few cases to find how Ra,,;; depends on Pr, 75,/ Trops M,
and the amplitude of the initial dipolar magnetic field for a given Ek.
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5. Inertial oscillations in a 2.5D spherical fluid shell driven by a time-depender;
rotation rate

Do a series of simulations with a 2.5D spherical-shell model for which the
amplitude of the rotation rate equals a constant plus a small, sinusoidally time.
dependent perturbation. Study how the amplitude of the inertial oscillation
depends on the prescribed frequency of the rotational perturbation (Tilgner,
1999).

- Inertial oscillations and internal gravity waves in a 2.5D spherical fluid shel]

Reverse the entropy boundary conditions in a 2.5D rotating spherical-shel]
model (i.e., make the top boundary hot and the bottom boundary cold) to
study how internal gravity waves interact with inertial oscillations when their
frequencies are comparable. Note, internal gravity waves reflect off imperme-
able boundaries with their angle of incidence relative to the local gravitational
acceleration being equal to the angle of reflection relative to gravity (Section
6.1); so, for spherical boundaries and a radially directed gravitational accel-
eration, the incident and reflected angles relative to the spherical boundaries
are equal. However, the rays of inertial oscillations reflect off impermeable
boundaries with their angle of incidence relative to the local direction of  at
a boundary equal to the angle of reflection relative to € (Section 13.4.1).

. 2.5D “intermediate dynamo” simulation

Produce a 2.5D convection simulation with rotation and magnetic field as de-
scribed in Section 13.4.2 with the parameters and resolution specified in that
section or, alternatively, with less extreme values. for the parameters and res-
olution. After confirming that the field decays (because it is axisymmetric),
continue the simulation as an intermediate dynamo by adding an “alpha ef-
fect” to the poloidal magnetic field equation, 10.77, as is done for kinematic
mean field dynamo models, to provide a source for the poloidal magnetic
field. This source term is supposed to represent the effect of the local 3D heli-
cal flow, which is missing in axisymmetric models but needed to twist toroidal
field into poloidal field. (Note that the axisymmetric toroidal field is naturally
maintained by differential rotation shearing axisymmetric poloidal field.) The
alpha effect is added to the nonlinear induction term in Eq. 10.77, which now
has the form

[(Vx(v x B+ aB¢q“s)) ]
Let o be defined as suggested by Braginsky & Roberts (1987):

1
([ 0)=0 for s < 0.8710p

6
a(r,0)= (2012%77) z (1 — <EZ—> ) sin (TL’ (9 - ;E))
Yiop 1 top

for 0.8710p < 5 < Frop,

and

where s = rsin, z = 7 cos8, z; = rp(l — (s/710p)*)"/%, and R, is
the prescribed nondimensjonal intensity of the alpha effect. See Fig. 2a in
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Glatzmaier & Roberts (1993) for a plot of this prescribed alpha function. Test
different values of R, from as low as 10 to as high as 10,000, to see wh_at the
critical value is for this form of alpha and the set of pa‘rameters (mentioned
above) you chose, i.e., what value of R, is needed to just Prevent the field
from decaying. Also, check how higher values affect the time depende?nce
and spatial structure of the field. Compare you results to those of various
cases described in Glatzmaier & Roberts (1993).

. Inertial oscillations in a 3D spherical fluid shell: nonlinear

Using a nonlinear version of the 3D spherical-shell m'odel, but with no mag-
netic field or gravitational acceleration, excite at one time s.tep one [/, m mode
of either W?" or ZI" with a smooth function in radius thgt sagsﬁes t?le bf)undgry
conditions. Compare the resulting frequency of the inertial 0801.11at10n w%th
that estimated from the Inertial oscillations in a 3D spherical fluid shell: lin-

ear exercise.

_ Inertial oscillations in a 3D spherical fluid shell: continuously excited

Repeat the Inertial oscillations in a 3D spherical ﬂuid shell: nonlinear
project but excite one W7" continuously with a presc1j1bed frequency. .Save
the time series of the amplitudes of all the W}* at mid-depth and, using a
Fourier analysis, plot the dispersion relation, i.e., the energy per mode on an
I vs. frequency plot for the m of the exciting mode.




Appendix A

A Tridiagonal Matrix Solver

This is a tridiagonal matrix solver written in Fortran based on LINPACK and
LAPACK routines. Note, in this routine the first index of the arrays is 1 and the last is
N,; if one wishes to start the atrays with index 0 and end with N, — 1, all index references
in this routine would need to be reduced by 1.

subroutine tridi(nz,rhs,sol,sub, dia, sup,wkl,wk2)

real, dimension (l:nz) :: rhs, sol, sub, dia, sup,wkl, wk2
integer :: i,nz

wkl(1)=1./dia(1)
wk2 (1) =sup (1) »wkl1 (1)
do i=2,nz-1
wkl (i)=1./(dia(i)-sub(i)*wk2(i-1))
wk2 (1) =sup (1) »wkl (1)
enddo
wkl(nz):l./(dia(nz)—sub(nz)*wk2(nz—1))

sol (1)=rhs (1) »wkl (1)

do i=2,nz
sol(i):(rhs(i)-sub(i)*sol(i—l))*wkl(i)

enddo

do i=nz-1,1,-1
sol(i)=sol(i)—wk2(i)*sol(i+l)

enddo

return
end
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A Tridiagonal Matrix Solver

This is a tridiagonal matrix solver written in Fortran based on LINPACK and
LAPACK routines. Note, in this routine the first index of the arrays is 1 and the last is
N;; if one wishes to start the arrays with index 0 and end with N, — 1, all index references
in this routine would need to be reduced by 1.

subroutine tridi(nz,rhs,sol,sub,dia,sup,wkl,wk2)

real, dimension (l:nz) :: rhs,sol,sub,dia, sup,wkl,wk2
integer :: i,nz

wkl(1l)=1./dia(1l)

wk2 (1) =sup (1) *wkl (1)

do i=2,nz-1
wkl(i)=1./(dia(i)-sub(i)*wk2 (i-1))
wk2 (i) =sup (i) +wkl (i)

enddo

wkl(nz)=1./(dia(nz)-sub(nz)*wk2 (nz-1))

sol (1l)=rhs(1)*wkl (1)

do i=2,nz
sol(i)=(rhs(i)-sub(i)*sol (i-1))*wkl (i)

enddo

do i=nz-1,1,-1
sol(i)=sol(i)-wk2(i)*sol (i+1)

enddo

return
end
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Making Computer—Graphical Movies

character movfile*lo,movstr*6

if((imovie.gt.O) .and. {(mod (istep
do i=1,nx ,
do k=1,nz
temmov (i, k)=0.
psimov (i, k) =0,
do n=0,nn
temmov(i,k)=temmov(i,k)+te
psimov(i,k):psimov(i,k)
enddo
enddo
enddo
write(movstr,"(i6)
do ii=1,¢
if(movstr(ii:ii) .eq.
enddo
movfile:movfileid//movstr(1:6)
open(2,file:movfile,form=’formatted’)
write(2,22) nx,nz,aspect,ra,pr
format(2i7,3(1x,1pe10.3))
do k=1,ngz
write(2,23) (temmov(i,k),i:l,nx)
format(7(1x,lpe10.3))
enddo
do k=1,nz
write(2,23) (psimov(i,k),i:l,nx)
enddo
close(2)
endif

imovie).eq.O)) then

m(k,n)*cosa(n,i)
+psi(k,n)*sina(n,i)

") istep/imovie+imovstart

") movstr(ii:ii)=/Q-
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This is an /DL program that reads a series of movie snapshot files produced as described
above and makes an mpeg movie of either the temperature perturbation or the
streamfunction.

pro loaddat, file

common movdat,nx,nz,aspect, tem,psi
if n_elements(file) eg 0 then return
openr,1l,file

nx=0L

nz=0L

aspect=0.

ra=0.

pr=0.

readf, 1,nx,nz, aspect, ra, pr
tem=fltarr (nx,nz)
psi=fltarr(nx,nz)

readf, 1, tem,psi

close, 1

free_lun,1

end

pro movie
common movdat,nx,nz,aspect, tem, psi
count=1
read, prompt=‘starting count number = ’,count
iftem=""
read, prompt='plot temperature ? ’,iftem
ifpsi=""
if (iftem ne 'y’) then read, prompt='plot streamfunction?’, $
ifpsi
file="mov.000000"
nfile=strlen(file)
file=strmid(file, 0,nfile-1-(count ge 10)- (count ge 100) -$
(count ge 1000)-(count ge 10000) - (count ge 100000))+ &
strtrim(count, 2)
loaddat, file
ans=""
if(iftem eq 'y’) then begin
amin=min (tem)
amax=max (tem)
read, prompt=‘'want min=min (tem) and max=max (tem)? ‘', ans
if(ans eq ’‘y’) then print, 'min and max tem=',amin, amax
if (ans ne ‘y’) then begin
read,prompt=‘'min tem = ’,amin
read,prompt='max tem = ’,amax
endif
endif
if(ifpsi eq ‘y’) then begin
amin=min (psi)
amax=max (psi)
read, prompt='want min=min (psi) and max=max{psi)? ’, ans
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if (ans eq 'y’) then print, 'min and max psi = ‘,amin, amax
if (ans ne ‘y') then begin
read, prompt='min psi = /,amin
read, prompt='max psi = /,amax
endif
nlevs=15
read, prompt="'how many contour levelg? ",nlevs
levs=amin+findgen(nlevs)/(nlevs—l)*(amax-amin)
endif
x=findgen(nx)/(nx—l)*aspect
z=findgen(nz)/(nz—l)
if(iftem ne ‘y’) then begin
nxwin=512
nywin=512
endif else begin
nxwin=480
nywin:round(nxwin/aspect)
loadct, 33
cr=bindgen (256)
cg=bindgen(256)
cb=bindgen(256)
tvlct,cr,cg,cb,/get
device,true_color=24
endelse
window,1,xsize:nxwin,ysize:nywin,retain=2;/pixmap
mpeg_id:mpeg_open([nxwin,nywin],filename:’mov.mpg’)
while file_test(file) do begin
loaddat, file
if(iftem ed ‘y’) then begin
t=congrid(tem,nxwin,nywin,cubic=—0.5,/minus_one)
t=bytscl(t,min:amin,max:amax)
t=reverse(t,2)
y=bytarr(3,nxwin,nywin)
Y(0, %, %)=cr(t(«,x))
Y1, %, %) =cg(t(x,+))
Y(2,*,*)=Cb(t(*,*))
tv,y, true=1, /order
write_ppm,file+’.ppm’,y
endif
if (ifpsi eq ‘v’) then &
contour,psi,x,z,thick=1.5,/isotropic,levels:levs, s
Cc_linestyle=2+ (levs 1t 0.),xmargin=[8,8], $
ymargin=[8,8],xticklen:0.000l,yticklen:0.000l, S
xminor=1
mpeg_put,mpeg_id,window:l,frame:count,/order
print,’count=’,count
count=count+1

KING COMPUTER-GRAPHICAL MOVIES

<peg_save,mpeg_i§
.peg_close,mpegwld
ff(iftem ne ‘y')

then begin

set_plot, ‘ps’ »

i ilename='snap.p ' _ ,
devtce,f;ii % z,thick=1.5,/isotropic, levels=levs, $
contour, X, Z,

i = r $
e e Y o mooer
margin=(8,8],xticklen=0.0001,
ymargin=[8, :
device, /close_file
set_plot, 'x’




EGENDRE FUNCTIONS AND THE GAUSSIAN QUADRATURE

} | subroutine gquad(N, colat, gauss)
Appendix C |

i e 122,13 ,k,1i

integer :: N,11,12, ,

real :: p,pi,pl,p2,del,co,s,tl,t2,theta
—_—__—_——_———__——__—_——_———————————_——*______—_—__——_—___—______§‘§§ real, dimension(N) :: colat,gauss

Legendre Functions and the Gaussian Quadrature

pi=4.+atan(1l.)
del=pi/real (4*N)
11=N+1
co=real (2xN+3) /real (11x+2)
p2=1.
: t2=-del
12=N/2
subroutine pbar(theta,l,m,p) k=1
realx8 :. theta,s,c,p,pl,p2 do i=1,12
integer . 1,m,mi,i,5 20 tl=t2
t2=tl+del
s=sin(theta) theta=t2
¢=cos (theta) call pbar(theta,N,Q,p)
p=l./sqrt(2.) : pl=p2
if(m .ne. 0) then p2=p
do i=1,m if ((k+p2) .gt. 0.) go to 20
p=sqrt(real(2*i+1)/real(2*i))*s*p ) k=-k
enddo s=(t2-tl)/(p2-pl)
endif tl=t2
if(1 -€J. m) return t2=t2-g+p2
pl=1. theta=t2
ml=m+1 call pbar(theta,N,0,p)
do j=mil,1 pl=p2
p2=pl D=
bl=p ?f(ibs(p) .le. l.e-15) go to 30
p=2.*sqrt((real(j**2)—0.25)/real(j**2—m**2))*c*pl— if (p2 .eq. pl) then o, v oat i o=
sqrt(real((2*j+1)*(j—m—1)*(j+m—1))/ write(6,*) ’sub gquad: zero = ’,p,
real((Z*j-3)*(j—m)*(j+m)))*p2 go to 30
enddo endif
: go to 40
return 30 colat(i)=theta
end call pbar{theta,ll,0,p)
gauss (i) =cox (sin(theta) /p) **2
This is a Fortran subroutine for computing the N, (“N”) roots of a Legendre polynomial, enddo
i.e., the colatitudes (colat) in-radians at which the Legendre polynomial of degree /| = N,

and order m = 0 vanigh, Also calculated are the corresponding N, Gaussian weights (gauss), 122=2%12
which can be used for a Gaussian quadrature in colatitude.

if (122 .eqg. N) go to 70
12=12+1

theta=pi/2.

colat (12)=theta

call pbar(theta,ll,0,p)
gauss (12)=co/p**2
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70 continue

13=12+1
do i=13,N
colat (i) =pi-colat (N-i+1)

gauss(i):gauss(N—i+l)
enddo

return
end

Appendix D

Parallel Processing: OpenMP

Here we illustrate the Open Multiprocessing (OpenMP) directives used to make a “do loop”
parallel (Section 9.5.1), in Fortran. The lines beginning with !$OMP are directives, which
would be ignored if the OpenMP library were not loaded with the compiled code.

nthreads=OMP_GET_MAX_THREADS () Inthreads =number of threads
write(6, ) nthreads,’ threads’ !prints number of threads

1$OMP PARALLEIL DO !'begins the parallel region within the code
! SOMP& SHARED(mat,w,wbot,wtop) !lists shared variables
I SOMP& PRIVATE(1,j,tmp) !lists private variables
do i=1,ni !starts loop over i, divided among threads
do j=1,nj !loop executed by all threads
tmp (F)=w(i,J)
enddo
if(i .eq. 1) then !if statement not done in parallel
!SOMP CRITICAL lonly main thread executes statements between
tmp(nj)=wtop ICRITCAL and END CRITICAL
tmp (1) =wbot
ISOMP END CRITICAL
endif
call mat (tmp,nj) !a subroutine call all threads execute
do j=1,nj !loop executed by all threads
w(i,J)=tmp(5)
enddo
enddo !ends the loop over i
!'$OMP END PARALLEL DO 'ends the parallel region

The parallelism here would work best if the total number of iterations for the parallel
loop, ni, were evenly divisible by the number of threads, nthreads. The subroutine, mat, the
variables, w, wbot, and wtop, and the parameters, ni and nj, were defined outside the paralle]
region. Each thread (i.e., process) has its own temporary variables, i, j, and tmp, the values
of which are not used outside the parallel region.




Appendix E

Parallel Processing: MP|

Here we briefly introduce a few Message Fassing Interface (MPI) subroutines (Section

o~ )s . 8 y
9 5 2 n I ortran Ihe same IWI I routines are aVallable m C and C++, Wlth Of course Sl] hﬂ

The following is the first MPI stateme i
nt that appear: ;i
that defines MPI parameters and routines, Ppeass s (Forran) code; i fouds a il
include mpif.h

Then an integer array,
receive commands.
integer istatus(MPI_STATUS_SIZE)

here called istatus, needs to be created because it is used by MPI

MP1 is initialized with the following subroutine cal].
call MPI_INIT (ierr)

The next subroutine call assi
gns an ID number to each process within the i
' oup b
;::gés:alleg) MPI_C(;MM_EVORLD, which can be the only group used. Ong(r)uql:ut egif
number, ere  called myid, will be i :
0 and the number of processes minus on i . Also, e error meen
e, dependin
here called ierr, should equal zero on output. " ¥ on the process. Als, the srron checks

call MPI_COMM_RANK(MPI_COMM;WORLD, myid, ierr)

?all MPI_COMM_SIZE(MPI_COMM_WORLD, mproc0, ierr)
if (mproc0 .ne. mproc) stop

One processor, say the one with myid=0, may be designated to do 10, If g «“
-€q. 0) then” statement should surround the read and write statements for oxam
process 0 reads n real words of input data (data(1) to data(n)) from the‘
it to all the other processors with the following command.

if(myid
If, for example, after
disk, it can broadcast

call MPI_BCAST(data(D,n,MPI_REAL,O,MPI_COMM_WORLD lerr)
Note, if the default word size were § bytes, MPI_REALS would be used instead of

MPI_REAL; or, if the words were inte.
- ; Or, gers, MPI_INTEGER i
words were complex, 2*n would be used instead of n. ould be used. Also, i the
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The following example illustrates how process 0 could receive data from all the other
0CESSES.

irecv=0
do iproc=1,mproc-1
isend=iproc
itag=iproc
if(myid .eqg. 0) then
call MPI_RECV{(rdata(l, iproc), n, MPI_REAL, isend, itag,
MPI_COMM_WORLD, istatus, ierr)
else if (myid .eg. iproc) then
call MPI_SEND(sdata(l), n, MPI_REAL, irecv, itag,
MPI_COMM_WORLD, ierr)
endif
enddo

This set of commands sends n real words located in memory from sdata(1) to sdata(n) on the
processes with myid equal to 1 through mproc-1 to the process with myid equal to 0. Here
itag can be any integer one assigns to identify each send. These are called blocking sends
and receives because the program does not proceed until the data has been copied from sdata

to rdata for each iteration count, iproc.
The next example illustrates how a process can send ns words in its array sdata to the
process with myid=irecv and receive nr words into its array rdata from the process with

myid=isend.
call MPI_SENDRECV (sdata, ns, MPI_REAL, irecv, itags, rdata,
S nr, MPI_REAL, isend, itagr, MPI_COMM_WORLD, istatus, ierr)
A global transpose of the data can be done using the following command, which causes

each process to send data to and receive data from all the other processes:

call MPI_ALLTOALL (sdata, ns, MPI_REAL, rdata, nr, MPI_REAL,
S MPI_COMM_WORLD, istatus, ierr)

In this case, sdata is dimensioned as (ns,mproc) and rdata as (nr,mproc), where usually ns=nr.

The following is another useful command that takes the maximum of n words in array
sdata on each process and sends the maximum of these to the one-word rdata on the process

with myid=irecv.

call MPI_REDUCE(sdata, rdata, n, MPI_REAL, MPI_MAX, irecv,
IS MPI_COMM_WORLD, ierr)

The operation, MPI_MAX, can be replaced with MPI_MIN, MPI_SUM, or
MPI_PROD.

Another issue is to keep all processes doing their computations at the right times without
some processes getting ahead or behind the others so the computations are done in the correct
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order. This typically requires the use of the followin,
all processes to “check in” at this point before any

call MPI_BARRTER (MPI_COMM_WORLD

& command each time step, which, for
can proceed.

, lerr)

MPI is terminated by the following command when

the job is com
call MPI_FINALIZE ! plete.
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2D annulus, 122, 210-212, 223, 241

2D box, 13, 173, 184, 187, 208, 222, 233

2.5D box, 133

2.5D spherical-shell, 135, 148, 159-161,
247, 280

3D box, 135

3D spherical-shell, 135, 136, 162, 210, 212,
259, 264

3D full sphere, 156, 157

Absorbing boundaries. See Boundary
conditions

Adams-Bashforth schemes. See Time
integration schemes

Adams-Moulton schemes. See Time
integration schemes

Adiabatic stratification. See Stratifications

Alfvén waves and velocity. See Waves

Aliasing. See Spectral aliasing

Angular momentum conservation, 126,
241, 263

Anelastic approximation. See Equation sets

Atmospheric convection. See Convection

Benchmarks: Anelastic 3D spherical shell
dynamo, 261-264; Boussinesq: 2D box
thermal convection, 44—46; 3D spherical
shell dynamo, 259-261; 3D spherical shell
mantle convection, 149

Boundary conditions: 3D spherical,
147-150,153-157; Absorbing (sponge
layer), 115-121; Anelastic, 217, 226;
Chebyshev, 106; Constant heat flux, 50, 94,
154; Coupled thermal and compositional,
265; Double-diffusive, 70,73; Ghost points,
96, 97, 100, 178, 179; Impermeable,
insulating, isothermal, stress-free, 13, 14,
19-21, 25, 28, 35, 100, 124-129, 134-136,
153, 154, 217, 218; Magnetic, 154-157,
161, 163, 173-179, 184-189, 260, 265,
270; Nonslip, 153; Periodic, 117, 165;
Permeable, 49, 14, 117, 165; Subadiabatic,
62; Time-dependent, 49, 50, 114,

164, 277
Boussinesq approximation. See Equation sets

Brunt-Viisili frequency. See Dispersion
relations
Buoyancy, 3-6

Centrifugal force, 231
CFL time step constraint. See Time step
constraints
Chandrasekhar number. See Nondimensional
numbers
Chebyshev collocation method. See Solution
methods
Chebyshev-Fourier method. See Solution
methods
Chebyshev grid, 97, 103, 223, 234
Chebyshev polynomials, 102-108, 112,
126
Chebyshev-spherical-harmonic method. See
Solution methods
Chebyshev transform, 104, 105, 112
Compositional contraction coefficient, 70
Compositional convection. See Convection
Compositional diffusivity. See Diffusivities
Compositional Rayleigh number. See
Nondimensional numbers
Compositionally stable stratification. See
Stratifications
Compositionally unstable stratification. See
Stratifications
Compressible equations. See Equation sets
Conductive heat flux. See Heat flux
Constant heat flux boundaries. See Boundary
conditions
Convection: Atmospheric, 3, 10, 91, 98, 115,
193, 229, 277; Compositional, 68-81, 260,
265; Double-diffusive, 68-81, 189, 252;
Giant planet, 10, 68, 115, 193, 229,
261-264, 268-277; Laboratory, 11, 77,
232, 264; Magma chamber and volcanic, 3,
68, 114, 91; Magnetoconvection, 169-192,
207, 217, 220, 252, 258, 259, 275; Mantle
(Infinite Prandt! number), 3, 6, 10, 12, 91,
92, 148, 149, 158, 193, 194, 214; Ocean, 3,
10, 68-81, 91, 98, 169, 229; Planetary
core, 3, 10, 68, 91, 229, 277;
Rayleigh-Bénard (thermal), 3-7, 11,
13-15, 31-34; Salt-fingering, 69-72, 76,
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Convection (cont.) 77; Semiconvection,
72-78; Solar, 3, 229, 277; Stellar, 10, 68
115, 193, 229, 277

Convective heat flux. See Heat flux

Convective Rossby number. See
Nondimensional numbers

Convectively stable stratification. See
Stratifications

Convectively unstable stratification. See
Stratifications

Coriolis force, 231

Courant-Friedrichs-Lewy. See Time step
constraints

Crank-Nicolson scheme. See Time integration
schemes

Critical Rayleigh number. See
Nondimensional numbers

Critical thermohaline Rayleigh number. See
Nondimensional numbers

’

Density scale height, 10, 142, 193, 198202,
208-213, 219-222, 241-243, 279

Density stratification. See Stratifications

Differential rotation, 159, 241-259, 265-267
270-272

Diffusive heat flux. See Heat flux

Diffusive time step constraints. See Time step
constraints

Diffusivities: Compositional, 68, 69, 265;
Magnetic (electrical conductivity), 148,
172, 264, 270; Thermal, 8, 12, 15, 68, 69,
91; Turbulent eddy (subgrid-scale), 33, 68,
201-203; Viscous, 7, 12, 15, 91, 116, 203,
219

Dipolar magnetic field, 161, 267, 270, 274,
275

Dipole moment. See Magnetic dipole

Dipole reversals. See Magnetic dipole
reversals

Direct coupled-equation matrix solution
method. See Solution methods

Dispersion relations, 59-62, 67, 74-76, 181,
191, 220-222, 249-252

Double-diffusive convection. See Convection

Double-diffusive numbers. See
Nondimensional numbers

Dynamos: Geodynamo, 156, 169, 259,
264-268; Giant planet, 169, 268-277;
Intermediate (2.5D), 161, 280;
Magnetohydrodynamic, 148, 169; Solar,
264, 275; Stellar, 194

’

Ekman number. See Nondimensional
numbers

Electrical conductivity. See Diffusivities

Elsisser variables, 190

Energy: Internal, 56, 57, 158, 201-207;
Kinetic, 9, 10, 55, 56, 62, 77, 78, 158, 159,

INDEX

182, 183, 192, 221-223, 231, 236-239,
261, 263, 271-274; Magnetic, 158, 159,
172, 173, 182, 191, 192, 239, 261, 263,
271-274; Potential, 9, 10, 62, 77, 78, 199,
200, 231

Energy conservation, 8-10, 12, 56, 201-207,
220-222

Equation sets: Anelastic, 10, 140, 145-147,
160, 193-228, 261-264, 279; Boussinesq,
10-12, 259-161; Compressible, 7-10, 193;
Infinite Prandtl number, 91, 92; Liquid
anelastic, 149, 193; Low Mach number
(Pseudo-incompressible), 193, 194;
Magnetohydrodynamic, 170-174;
Maxwell’s, 170

Equations of state: Anelastic, 193-198;
Boussinesq, 11; Perfect gas (ideal gas), 16,
195-197, 207-214; Polytropic, 207-213

Eulerian time derivative, 7, 8, 230232

Fast Chebyshev transform. See Solvers

Fast Fourier transform (FFT). See Solvers

Finite-difference methods. See Solution
methods

Fourier spectral method. See Solution
methods

Fourier transform. See Solvers

Galerkin method. See Solution methods
Gauss coefficients, 143

Gaussian quadrature. See Solvers
Geodynamo. See Dynamos

Ghost points. See Boundary conditions
Giant planet convection. See Convection
Giant planet dynamos. See Dynamos
Graphics. See Postprocessing
Gravitational potential energy. See Energy
Gravity waves. See Waves

Heat flux: Convective (advective), 3-6, 33,
54,57, 58,76, 77, 78, 204, 239; Diffusive
(conductive), 8, 10, 33, 57, 58, 63, 65, 203,
204, 277; Radiative, 6, 8, 10, 63, 65,
202-204, 277

Hydrostatic equilibrium, 4, 12, 68, 123, 195,
207, 210, 249

Ideal gas. See Equations of state

Impermeable boundary conditions. See
Boundary conditions

Implicit vs. explicit time integration. See
Time integration schemes

Inertial oscillations. See Waves

Infinite Prandtl number approximation. See
Equation sets

Infinite Prandtl number convection. See
Convection

INDEX

Influence matrix method. See Solution
methods .

Initial conditions, 28, 29, 38, 62, 79, 161,
164,173, 176, 184, 241, 260

Inner core. See Solid inner core

Insulating magnetic boundary conditions. See
Boundary conditions

Insulating thermal boundary conditions. See
Boundary conditions

Intermediate dynamo. See Dynamos

Internal energy. See Energy

Internal gravity waves. See Waves

Isothermal boundary conditions. See
Boundary conditions

Kelvin-Helmholtz instability, 121
Kinetic energy. See Energy

Laboratory convection. See Convection

Lagrangian time derivative, 7, 8, 230-232

Lantz-Braginsky-Roberts simplification,
199-201, 206, 207, 218, 221, 222

Ledoux criterion. See Stratifications

Legendre functions. See Solvers

Liquid anelastic approximation. See Equation
sets

Local thermodynamic equilibrium (LTE), 8,
9,195

Lorentz force, 172

Low Mach number approximation. See
Equation sets

Mach number. See Nondimensional numbers

Magma chamber convection. See Convection

Magnetic boundary conditions. See Boundary
conditions

Magnetic buoyancy, 220

Magnetic diffusivity. See Diffusivities

Magnetic dipole, 143, 161, 267, 274

Magnetic dipole reversals, 268-270

Magnetic energy. See Energy

Magnetic flux expulsion, 182, 187

Magnetic induction equation, 172, 174

Magnetic permeability, 142, 143, 155, 170,
171, 262, 263, 265, 273

Magnetic pressure, 172, 189, 190, 220

Magnetic Reynolds number. See
Nondimensional numbers

Magnetic Rossby number. See
Nondimensional numbers

Magnetoconvection . See Convection

Magneto-gravity waves. See Waves

Magnetohydrodynamic dynamo. See
Dynamos

Magnetohydrodynamics. See Equation sets

Magneto-rotational-gravity waves. See Waves

Mantle convection. See Convection

Mass conservation, 7, 11, 140, 198

Mass flux, 7, 8, 160, 198

Maxwell equations. See Equation sets

Maxwell stress, 161, 172, 259

Meridional circulation, 159, 160, 163,
253-259, 265-267

Message Passing Interface (MPI). See Parallel
processing

Momentum conservation, 7, 12, 146, 199-201

Momentum density. See Mass flux

Momentum flux, 8, 12

Movies. See Postprocessing

Navier-Stokes equation. See Momentum
conservation

Newtonian fluid, 7

Nondimensional numbers: Chandrasekhar,
176; Compositional Rayleigh, 71;
Convective Rossby, 236; Critical Rayleigh,
30-34, 162, 180, 219, 220, 228, 241, 279;
Critical thermohaline Rayleigh, 71-74;
Double-diffusive, 69; Ekman, 233; Mach,
194; Magnetic Reynolds, 273; Magnetic
Rossby, 239; Nusselt, 54, 58, 228, 239;
Prandtl, 15, 91; Rayleigh, 15, 58, 217, 260;
Reynolds, 55, 58; Roberts, 175; Rossby,
236; Taylor, 234

Nonslip boundary conditions. See Boundary
conditions

Nonuniform grid, 95-97

Nusselt number. See Nondimensional
numbers

Ocean convection. See Convection

Ohmic (Joule) heating, 8, 145, 151, 172, 173,
179, 203, 218, 276, 277

Opacity, 6, 63, 65

Open Multiprocessing (OpenMP). See
Parallel processing

Parallel processing, 98, 108-111, 157, 162,
261, 276, 291-294

Perfect gas. See Equations of state

Periodic boundaries. See Boundary conditions

Permeable boundaries. See Boundary
conditions

Permittivity, 155, 170, 171

Planetary core convection. See Convection

Poincaré force, 231

Poisson solver. See Solvers

Pole problem, 157

Poloidal-toroidal decomposition. See Solution
methods

Polytropes. See Equations of state

Postprocessing, 39, 40, 43, 51-58, 97,
284-287

Potential energy. See Energy

Potential magnetic field, 154, 155

Poynting flux, 173
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Prandtl number. See Nondimensional
numbers

Predictor-corrector schemes. See Time
integration schemes

Proudman-Taylor Theorem, 232, 242,279

Pseudo-incompressible approximation. See
Equation sets

Pseudo-spectral method. See Solution
methods

Radiative heat flux. See Heat flux

Rayleigh-Bénard convection. See Convection

Rayleigh damping, 65, 116

Rayleigh number. See Nondimensional
numbers

Rayleigh-Taylor instability, 81

Reynolds number. See Nondimensional
numbers

Reynolds stress, 8, 121, 161, 241, 243,259

Roberts number. See Nondimensional
numbers

Rossby number. See Nondimensional
numbers

Rotation, 229-281

Runge-Kutta schemes. See Time integration
schemes

Salt-fingering. See Convection

Schwarzschild criterion. See Stratifications

Self-gravity, 199

Semiconvection. See Convection

Semi-implicit schemes. See Time integration
schemes

Solar convection. See Convection

Solar dynamo. See Dynamos

Solid inner core: Finitely conducting, 155,
156, 260, 265; Insulating, 155, 161, 260;
Latent heat, 265; Perfectly conducting,
155; Rotating, 156, 260, 265

Solution methods: Chebyshev collocation,
102-108, 119, 126, 127, 149-153;
Chebyshev-Fourier, 102-108, 119, 129,
245; Chebyshev-spherical-harmonic, 135,
149, 152, 153, 157-159, 162, 259-277;
Direct coupled-equation matrix, 107,
125-127, 152, 153; Finite-difference,
21-23, 43, 112; Fourier spectral, 19-29,
71, 117-119, 124-126; Galerkin, 35-39,
177-179, 185, 186; Influence matrix,
127-129, 152, 153; Poloidal-toroidal
decomposition, 140149, 159;
Pseudo-spectral, 131; Spectral-transform,
130-132, 139145, 149153, 162;
Vorticity-streamfunction decomposition,
28,59, 176, 181, 214-216, 220, 221, 232,
233, 250-252

Solvers: Fast Chebyshev transform, 108; Fast
Fourier transform (FFT), 108, 111, 131,
139, 151, 163; Fourier transform, 19, 40,

INDEX

51, 67, 131, 132; Gaussian quadrature, 139,
140, 151, 289, 290; Legendre functions,
137-143, 288; Poisson, 24, 25, 88, 92, 101,
107; Tridiagonal, 24, 25, 86, 88, 92, 99,
283

Sound waves. See Waves

Spectral aliasing, 132, 140

Spectral-transform method. See Solution
methods

Spherical harmonic divergence and curl, 144

Spherical harmonic expansions, 136-145,
158-159

Spherical harmonic truncations, 140, 144, 145

Staircase profiles, 76-78

Stellar convection. See Convection

Stellar dynamos. See Dynamos

Stratifications: Adiabatic, 197;
Compositionally stable, 68, 72-74;
Compositionally unstable, 68-72, 265;
Convectively stable, 3-5, 48, 59-66,
68-80, 197; Convectively unstable, 3-5,
43-48; Density, 193-228; Ledoux
criterion, 73; Schwarzschild criterion, 4-6,
73; Subadiabatic, 4, 5, 59-66, 69~72,
76-71, 197, 202, 220-222: Superadiabatic,
5, 6,72-74,77-78

Stress-free boundary conditions. See
Boundary conditions

Subadiabatic stratification. See Stratifications

Subgrid-scale turbulence. See Diffusivities

Sunspots, 169, 187

Superadiabatic stratification. See
Stratifications

Taylor columns, 232, 242, 247, 279

Taylor number. See Nondimensional numbers

Taylor-Proudman Theorem. See
Proudman-Taylor Theorem

Thermal convection. See Convection

Thermal diffusivity. See Diffusivities

Time integration schemes: Adams-Bashforth,
23, 85, 90, 91; Adams-Moulton, 90, 91;
Crank-Nicolson, 87-91; Implicit vs.
explicit, 22; Predictor-corrector, 89, 90;
Runge-Kutta, 52, 53, 79, 85, 86;
Semi-implicit, 87-91

Time step constraints: CFL, 4042, 62, 87,
88,91, 97,157, 177, 193, 194, 263;
Diffusive, 23, 42, 62, 71, 87, 88, 97

Torsional oscillations. See Waves

Tridiagonal solver. See Solvers

Verification and validation, 276

Viscous diffusivity. See Diffusivities

Viscous heating, 8, 9, 12, 92, 145, 151, 179,
203, 218

Viscous stress, 7, 8, 12, 199

Visualization. See Postprocessing

INDEX

Vorticity-streamfunction decomposition. See
Solution methods
Vorticity waves. See Waves

Waves: Alfvén, 177, 181-183; Inertial )
oscillations, 247-259, 278; Internal gravity,

3-5, 59-66, 68-78, 115, 197, 202,
220-222, 247; Magneto-gravity,
181-183; Magneto-rotational-gravity,
252; Sound, 10, 193-198; Torsional
oscillations, 258, 259; Vorticity,
241-243
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