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The onset of convection in a rotating cylindrical annulus filled with a compressible fluid
is studied in the anelastic approximation. Thermal Rossby waves propagating in the az-
imuthal direction are found as solutions. The analogy to the case of Boussinesq convec-
tion in the presence of conical end surfaces of the annular region is emphasized. As in the
latter case the results can be applied as an approximation for the description of the on-
set of anelastic convection in rotating spherical fluid shells. Reasonable agreement with
three-dimensional numerical results for the latter problem is found.

1. Summary

• Rotating ANNULUS WITH CONICAL CAPS see figure 1.

• Significant BACKGROUND DENSITY VARIATION with depth

described in within the anelastic approximation.

• ANALYTICAL RESULTS on the LINEAR ONSET of con-

vection, e.g. expressions for the critical Rayleigh number Rc,

critical mode n, and drift frequency ω.

• COMPARISON of the annulus results with linear onset in

SPHERICAL SHELLS.

2. Introduction

The tendency of fluid motions in rapidly rotating systems to develop nearly two-
dimensional structures has often been exploited to simplify the theoretical analysis. The
description of convection flows in systems where gravity vector and rotation axis are
not parallel provides typical examples (Busse, 1970, 2002). In applications of convec-
tion problems to rotating planets and stars the tendency towards two-dimensionality
is partly obscured by the strong variation of fluid density as function of radius in the
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FIGURE 1. Sketch of the rotating cylindrical annulus with conical end caps. Note that the sketch is
not to scale with the limits of a small gap and a small angle of inclination of the conical caps.

nearly spherical systems. It is thus of interest to investigate the extent to which the
two-dimensional description can still provide an approximation for three-dimensional
convection in rapidly rotating systems with strong variations of density.

In the case of the Boussinesq approximation in which the density is regarded as con-
stant except in connection with the gravity term the results derived from the approximate
two-dimensional analysis of the onset of convection in rotating spherical fluid shells com-
pares well with the results of the three-dimensional numerical analysis (Simitev and
Busse, 2003). Here the two-dimensional model was based on the problem of convection
in a rotating cylindrical annulus with conical end boundaries (Busse, 1970, 1986).

In recent years the anelastic approximation (Gough, 1966) has been widely used to
obtain more realistic descriptions of convection in the atmospheres of planets and stars
with strong variations of density. In the paper by Busse (1986, which will be referred to
by B86 in the following) the analogy between the effect of changing height induced by
the conical boundaries and the effect of a radial variation of density had already been
pointed out. In the present paper we intent to demonstrate quantitatively that the two-
dimensional analysis provides a reasonable approximation for the onset of convection in
the presence of strong anelastic density variations in rotating spherical fluid shells.

The main purpose of this paper is not the demonstration of a high accuracy of the two-
dimensional approximation. Instead we wish to emphasize the insights into anelastic
convection in rotating spheres gained from the analytical model. In the following section
we first introduce the narrow-gap cylindrical annulus and derive the two-dimensional
solution describing convection. In section 3 the model is modified for applications to the
onset of anelastic convection in rotating spherical shells. Comparisons with numerical
solutions are evaluated in section 4. Some nonlinear problems are discussed in the final
section of the paper.

3. Mathematical description of two-dimensional anelastic convection

We consider a cylindrical annulus rotating about its axis with the angular velocity Ω.
The gap width d in the radial direction of the annular region is small in comparison with
its inner radius ri such that a cartesian system of dimensionless coordinates x, y, z in the
radial, azimuthal, and axial direction, respectively, can be used for a local description
of convection. The corresponding unit vectors are i, j, and k. The annular gap is filled
with an ideal gas the state of which differs little from an isentropic reference state in
the presence of gravity pointing in the negative x-direction. The small deviation from the
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isentropic state is described by the small positive excess entropy ∆s by which the entropy
at the inner cylinder exceeds the entropy at the outer cylindrical boundary. In experimen-
tal realizations gravity could be replaced by the centrifugal force. The dynamical problem
would then be identical when a negative value of ∆s is assumed.

Using d as length scale, d2/κ as time scale and ∆s as scale of the entropy we obtain
the dimensionless form of the anelastic equations as introduced in the benchmark paper
(Jones et al., 2011),

∂

∂t
u + u · ∇u + τk × u = −∇π − R

Pr
is+ F , (3.1a)

∇ · u = ρ̄u · ∇1

ρ̄
, (3.1b)

Pr(
∂

∂t
s+ u · ∇s) = ∇2s+ ∇s · 1

κρ̄T̄
∇κρ̄T̄ + Q̂, (3.1c)

The Rayleigh number R, the Prandtl number Pr and the Coriolis number τ are defined
by

R =
gd3∆s

κνcp
, P r =

ν

κ
, τ = 2Ω

d2

ν
, (3.2)

Here κ is the entropy diffusivity and ν is the kinematic viscosity. For simplicity we have
assumed that the material properties are constant except for ρ̄ which represents the x-
dependent density of the isentropic reference state made dimensionless through division
by its average value. The constant gravity vector is given by g = −gi and s can be
separated into two parts,

s = −x+ s̃, (3.3)

such that the boundary condition s̃ = 0 holds at x = ±1/2. We thus arrive at the same
equations as in the case of Boussinesq convection in the annulus with conical end bound-
aries with the only difference that the equation of continuity is modified and the second
and third term on the right side of equation (2.1c) are missing in the latter case.

We now consider two-dimensional solutions of eqs. (2.1) which are independent of z
and thus satisfy the Proudman-Taylor condition. Assuming u = (1/ρ̄)∇ψ(x, y, t) × k we
obtain for the z−component of the vorticity of eq. (2.1a)

∂

∂t
ζ +

1

ρ̄

( ∂

∂x
ζ
∂

∂y
ψ − ∂

∂y
ζ
∂

∂x
ψ − 1

ρ̄
(τ + ζ)(

d

dx
ρ̄)
∂

∂y
ψ

)

= − R

Pr

∂

∂y
s̃+ ∆2ζ, (3.4)

where ζ = k ·∇× ((∇ψ×k)/ρ̄) is the z-component of the vorticity and ∂2/∂x2 +∂2/∂y2

has been denoted by ∆2. Following Evonuk and Glatzmaier (2004) the friction term has
been reduced to its main contributor. Assuming that ρ̄ varies slowly such that the absolute
value of

ηρ ≡ −1

ρ̄

d

dx
ρ̄ (3.5)

is a small constant we find that the absolute value of

η∗ρ ≡ ηρτ (3.6)

is a parameter of the order unity or larger for τ ≫ 1.
The linearized versions of equations (2.1c) and (2.4) assume the form

∂

∂t
ζ +

η∗ρ
ρ̄

∂

∂y
ψ = − R

Pr

∂

∂y
s̃+ ∆2ζ, (3.7a)
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Pr
∂

∂t
s̃− Pr

ρ̄

∂

∂y
ψ = ∆2s̃. (3.7b)

After elimination of s̃, neglect of terms of the order η, and multiplication of the equa-
tion of motion by ρ̄ we obtain

(Pr
∂

∂t
− ∆2)[(

∂

∂t
− ∆2)∆2 − η∗ρ

∂

∂y
]ψ) = Ra

∂2

∂y2
ψ. (3.8)

This equation is easily solved when stress-free conditions at the boundaries x = ±1/2
are assumed,

ψ = sinπ(x+ 1/2) exp{iαy + iωt}, s̃ =
−iαψ

iωPr + α2 + π2
. (3.9)

This solution yields the dispersion relation

Roα
2 = (iωPr + α2 + π2)[(iω + α2 + π2)(α2 + π2) + iαη∗ρ]. (3.10)

Real and imaginary parts of this equation determine the neutral curve Rao(α) and the
frequency of the thermal Rossby wave,

ωo =
−αη∗ρ

(1 + Pr)(α2 + π2)
, Ro = (α2 + π2)3α−2 +

(

η∗ρPr

1 + Pr

)2

/(α2 + π2). (3.11)

The angular frequency ωo resembles that of ordinary Rossby waves from which it dif-
fers only through the appearance of Pr in the denominator. The Rayleigh number is
determined by two terms. The first is the familiar expression from Rayleigh-Bénard con-
vection which is independent of the Coriolis number. The second term is introduced by
the density variation caused by the compressibility.

The critical value Rac and the corresponding wavenumber αc are obtained through
minimizing Rao(α) which yields in the limit of high values of |η∗ρ|

αc = η
1/3

P (1 − 7

12
π2η

−2/3

P + ...), Rc = η
4/3

P (3 + π2η
−2/3

P + ...), (3.12)

where ηP is defined by

ηP ≡
|η∗ρ|Pr√
2(1 + Pr)

. (3.13)

As in the Boussinesq case of the cylindrical annulus with conical axial boundaries, the
onset of convection becomes independent of the gap width d in the limit of high |η∗| and
the Rayleigh numbers for modes with sin lπ(x + 1/2) with l = 2, 3, 4 etc hardly differ
from that for l = 1. The neglected second term on the right hand side of equation (11c)
would contribute only a negligible amount in the limit of high αc. The other neglected
term Q̂ does not enter the linear problem, of course.

4. Application to three-dimensional geometries

In applying the two-dimensional solution to a three-dimensional configuration we fol-
low the corresponding analysis in the case of Boussinesq convection. In particular we
shall consider the case of a rotating spherical fluid shell of thickness d such that the inner
and outer radii, ri and ro, are given by β/(1 − β) and 1/(1 − β), respectively, where β is
defined by β = ri/ro. Simitev & Busse (2003) have demonstrated that a good approxima-
tion for the onset of convection in rotating spherical shells can be obtained by solutions
of the form (2.8) through (2.10) as described in B86. In this case the parameter η∗ is
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TABLE 1. Comparison in the case τ = 10
5, β = 0.5, N = 2 and n = 2.

P = 1 , x = 1.43 P = 0.1, x = 1.6

Approximate Numerical Approximate Numerical

η∗ 3.89 · 10
4

4.17 · 10
4

η∗ρ 2.40 · 10
5

2.79 · 10
5

η∗P 9.864 · 10
4

2.062 · 10
4

α 46.2 38.5 27.4 18.1

R 13.67 · 10
6

1.696 · 10
6

Ra 3.569 · 10
7

3.3262 · 10
7

4.191 · 10
6

4.685 · 10
6

ω 3019 1844 10643 6901

defined by

η∗ ≡ τ tan θ

cos θro
. (4.14)

where θ is the colatitude on the spherical surface with respect to the axis of rotation and
ro sin θ represents the distance from the axis at which convection sets.

In the presence of density variation the contribution η∗ρ as defined in the preceding
section must be added. Since the density in the spherical configuration varies not only
with distance from the axis, but parallel to the axis as well an average over the latter
dimension must be taken. The same procedure must be applied to the gravity. Following
the example of the benchmark case (Jones et al., 2011) we shall use

ρ̄ ≡ ξn with ξ = c0 + c1/r (4.15)

and with c0 =
2ξo − β − 1

1 − β
, c1 =

(1 + β)(1 − ξo)

(1 − β)2
(4.16)

where ξo =
β + 1

β exp(Nρ/n) + 1
, ξi =

β + 1 − ξo
β

(4.17)

where ξi and ξo are the values of ξ at the inner and the outer boundary and where Nρ is
the number of density scale heights, Nρ = n ln(ξi/ξo).

The definition (2.5) thus becomes modified

ηρ =
n

√

r2o − x2

∫

√
r2

o
−x2

0

c1xdz

(c0
√
x2 + z2 + c1)(x2 + z2)

, (4.18)

where x denotes the distance from the axis of rotation. An analytical expression for
this integral can be obtained, but it is lengthy and will not be given here. In a similar
fashion the variation of gravity together with the r.derivative of basic entropy must be
accommodated through an average,

R

Ra
=

nc1x
√

r2o − x2

∫

√
r2

o
−x2

0

dz
√

(x2 + z2)5(c0 + c1/
√
x2 + z2)(ξ−n

o − ξ−n
i )

, (4.19)

where Ra is the Rayleigh number as used in the benchmark (Jones et al., 2011).
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