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1. Summary

• Non-magnetic convection in the buoyancy dominated-regime

has been studied but DYNAMO SOLUTIONS HAVE NOT.

• In the Buoyancy-dominated regime differential rotation

naturally decreases towards the surface. This may pro-

duce dynamo waves propagating TOWARD THE EQUA-

TOR.

• Are the convective columns still HIDING beneath the cel-

lular convection.
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2. Introduction

2.1. Motivation

• Dynamo action in the transition from rotation-dominated regime to buoyancy-
dominated regime has not been previously studied. This transition has been inves-
tigated but only in non-magnetic convection by Arnou et al using the Boussinesq
approximation and by Gastine et all (2012) using the anelastic approximation. The
rotation-dominated is characterised with prograde differential rotation, while the
buoyancy-dominated regime is characterised with retrograde differential rotation
due to vigorous mixing of angular momentum.

• The results may be relevant to Neptune and Uranus. There is evidence that the
magnetic field of Uranus is non-dipolar (provide references) and that the differen-
tial rotation is retrograde at the equator. Retrograde differential rotation naturally
develops in the buoyancy-dominated regime and it is of interest whether the mag-
netic fields that are generated resemble that of Neptune and Uranus.

• The results may be relevant as a model of Solar magnetic field oscillations, structure
of the Solar convection zone, and differential rotation.

– Solar cycle – The direction of dynamo waves in self-consistent simulations
with prograde differential rotation is always from equator to poles in contrast
to observations. We wish to check whether retrograde differential rotation
generated in the buoyancy-dominated regime may reverse the direction of
dynamo waves so that they propagate from poles to equator in agreement
with observations.

– Structure of convection zone – It will be of interest to find whether different
regimes of convection may develop in the inner and at the outer part of the
shell simultaneously so that organised geostrophic convection is hidden be-
low a near-surface layer of well-mixed (“turbulent”) convection. We believe
that such a configuration is similar to the structure of the Solar convection
zone. Indeed, it is well established by observation of the surface velocities
and magnetic fields that buoyancy effects dominate near the surface. As a
result the near-surface flows and magnetic fields are strongly turbulent and
lack any global organization. On the other hand, the regularity of the 11-
year Solar cycle is also well established and the regular reversals cannot be
achieved without large-scale organized field and flow. We would like to argue
that the organized columnar structures that are characteristic in the rotation-
dominated regime will play this role.

Variation in density is a necessary ingredient in this scenario. Indeed, in the
Boussinesq approximation, the rotation parameter τ and the critical Rayleigh
number Rc are constant throughout the shell. This means that the entire
volume of the shell will be either in the rotation-dominated or the buoyancy-
dominated regime. In contrast, the anelastic approximation allows for radial
variation in density, viscosity and entropy diffusivity so that τ and Rc vary with
radius. In this way, one may hope to achieve a configuration where the inner
part of the shell is in the rotation-dominated regime and the outer part is in
the buoyancy-dominated regime.
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– Solar differential rotation – Finally, differential rotation may also assume
more Solar-like profile.

• In fact, variation in density only may not be sufficient to produce Solar-like differ-
ential rotation as indicated by Gastine et al. In this case convection flows in the
rotation-dominated region are relatively weaker by comparison with flows in the
buoyancy-dominated near-surface layer. A stronger organized flow is likely needed
to produce the solar-lice cyclic oscillations and differential rotation profile.

3. Mathematical model and numerical method

3.1. Anelastic equations

We consider an electrically conducting perfect gas confined to a spherical shell. The
shell rotates with a fixed angular velocity Ωk̂ about the vertical axis and an entropy
contrast ∆S is imposed between its inner and outer surfaces. Assuming a gravity field
proportional to 1/r2, we find a hydrostatic polytropic reference state of the form

ρ̄ = ρcζ
n, T̄ = Tcζ, P̄ = Pcζ

n+1, ζ = c0 + c1d/r, (1)

with parameters c0 = (2ζo−η−1)/(1−η), c1 = (1+η)(1−ζo)/(1−η)2, ζo = (η+1)/(ηexp(Nρ/n)+
1). The parameters ρc, Pc and Tc are reference values of density, pressure and tempera-
ture at the middle of the shell, and n, Nρ and η are defined further below. Convection and
magnetic field generation set in for sufficiently large values of the entropy contrast, ∆S ,
and can be described by the equations of continuity, momentum, energy and magnetic
flux. In the annelastic approximation (Gough, 1969; Jones et al., 2011) these equations
take the form

∇ · ρ̄u = 0, ∇ · B = 0, (2a)

∂tu + (∇ × u) × u (2b)

= −∇Π − τ( k̂ × u) +
R
Pr

S
r2

r̂ + Fν +
1
ρ̄

(∇ × B) × B,

∂tS + u · ∇S (2c)

=
1

Prρ̄T̄
∇ · κ̄ρ̄T̄∇S +

c1Pr

RT̄

(

Qν +
1

Pmρ̄
Q j

)

∂t B = ∇ × (u × B) + Pm−1∇2B, (2d)

where u is the velocity, B is the magnetic flux density, S is the entropy and ∇Π includes
all terms that can be written as gradients. The viscous force, and the viscous and Joule
heating,

Fν = ζ−n∇ · S, Qν = S : e, Q j = (∇ × B)2, (3)

are defined in terms of the deviatoric stress tensor

S i j = 2ν̄ρ̄(ei j − ekkδi j/3), ei j = (∂iu j + ∂ jui)/2,

where double-dots (:) denotes the Frobenius inner product. We assume that the viscos-
ity and the entropy diffusivity vary in radius as ν̄(r) = νcρ̄k and κ̄(r) = κcρ̄k with some
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negative power k < 0, where νc and κc are their reference values at midshell. We nondi-
mensionalise the governing equations using the thickness of the shell d = ro − ri as a unit
of length, d2/νc as a unit of time, ∆S as a unit of entropy, νc

√
µ0ρc/d as a unit of magnetic

induction, ρc as a unit of density and Tc as a unit of temperature. Here, ri and ro are
the inner and the outer radius, λ and µ0 are the magnetic diffusivity and permiability,
respectively. The system is then characterized by eight dimensionless parameters: the ra-
dius ratio, the polytropic index, the density scale number, the radial dependence power,
the Rayleigh number, the ordinary and the magnetic Prandtl numbers and the Coriolis
number, defined as

η = ri/ro, n, Nρ = ln
(

ρ̄(ri)/ρ̄(ro)
)

, k,

R =
c1Tcd2

∆S
νcκc

, Pr=
νc

κc
, Pm=

νc

λ
, τ =

2Ωd2

νc
, (4)

respectively.
Since the mass flux ρ̄u, and the magnetic flux density B are solenoidal vector fields,

it is advantageous to employ a decomposition in poloidal and toroidal components,

ρ̄u = ∇ × (∇ × r̂rv) + ∇ × r̂r2w, (5a)

B = ∇ × (∇ × r̂h) + ∇ × r̂g. (5b)

Equations (2a) are then satisfied by construction. Scalar equations for v and w are ob-
tained, and effective pressure gradients are eliminated by taking r̂ · ∇ × ∇× and r̂ · ∇×
of equation (2b). Similarly, equations for h and g are obtained by taking r̂ · ∇× and r̂·
of equation (2d). The resulting poloidal-toroidal equations are somewhat lengthy and
will not be listed here (or may be listed in an appendix). A minor disadvantage of this
representation is that a fourth-order poloidal equation is obtained.

3.2. Boundary conditions

We explore various assumptions for the boundary conditions imposed on velocity, en-
tropy and magnetic flux at the surface of the shell. The alternatives are listed below and
the particular choice will be specified in each individual case. On a no-slip, impenetrable
boundary we impose

v = 0, ∂rv = 0, w = 0. (6)

On a stress-free, impenetrable boundary we require

v = 0, ∂2
r v − ρ̄

′

ρ̄r
∂r(rv) = 0, ∂rw −

ρ̄′

ρ̄
w = 0. (7)

Values of the entropy may be fixed at the boundaries, then

S = 1 at r = ri, S = 0 at r = ro. (8)

Alternatively, the entropy flux may be specified at the top,

∂rS = 0 at r = ro. (9)
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Boundary conditions for the magnetic field may be derived from the assumption of an
electrically insulating external region, then the poloidal function h is matched to a func-
tion h(e), which describes an external potential field,

g = 0, h − h(e)
= 0, ∂r(h − h(e)) = 0. (10)

Alternatively, a perfectly conducting external region may be assumed, then

∂rg = 0, h = 0. (11)

The, so-called, “pseudo-vacuum” condition offers a third choice,

g = 0, ∂rh = 0. (12)

3.3. Numerical method

For the numerical solution of the problem we have adapted the pseudo-spectral
method described by Tilgner (1999). The scalar unknowns v, w, h, g and S , are expanded
in Chebychev polynomials Tp in the radial direction r, and in spherical harmonics in the
angular directions (θ, ϕ) e.g.,

v =
Nl
∑

l=1

l
∑

m=−l

Nr
∑

p=0

Vm
lp(t) Tp

(

x(r)
)

Pm
l (cosθ) exp(imϕ), (13)

where Pm
l denotes the associated Legendre functions, x(r) = 2(r − ri) − 1, and Nr and Nr

are truncation parameters. A system of equations for the coefficients in these expansions
is obtained by a combination of a Galerkin spectral projection of the governing equa-
tions in the angular directions and a collocation constraint in radius. Computation of
nonlinear terms in spectral space is expensive, so nonlinear products and the Coriolis
term are computed in physical space and then projected to spectral space at every time
step. A standard 3/2-dealiasing in θ and ϕ is used at this stage. A hybrid of a Crank-
Nicolson scheme for the diffusion terms and a second order Adams-Bashforth scheme for
the nonlinear terms is used for integration in time.

A range of numerical resolutions has been used in this study varying from (Nr = 61,
Nl = 96) in less demanding cases to (Nr = 121, Nl = 144) in more stratified or turbulent
runs. Correspondingly, the physical gridpoints on which non-linear terms are evaluated
have been varied up to Nr = 121, Nθ = 216, Nϕ = 437.

3.4. Diagnostic output quantities

Our numerical convection and dynamo solutions are characterized by their kinetic
and magnetic energy and heat transport given by a Nusselt number. The energies can
be conveniently split into mean and fluctuating components, into poloidal and toroidal
components and further into equatorially-symmetric and -antisymmetric components,
thus giving a rather complete description of the scales of the convective flow and the
multipole structure of dynamos. The mean and fluctuating toroidal and poloidal compo-
nents of the kinetic energy are defined as

Ēp = 〈
(

∇ × (∇v̄ × r)
)2
/(2ρ̄)〉, Ēt = 〈

(

∇rw̄ × r
)2
/(2ρ̄)〉, (14a)
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Ěp = 〈
(

∇ × (∇v̌ × r)
)2
/(2ρ̄)〉, Ět = 〈

(

∇rw̌ × r
)2
/(2ρ̄)〉, (14b)

where angular brackets 〈〉 denote averages over the spherical volume of the shell. Mag-
netic energy components are defined analogously with h and g replacing v and w and
without the factor ρ̄−1 within the angular brackets. The total energies are, of course, the
sum of all components. The Nusselt number is defined as the ratio between the values
of the luminosity of the convective state and of the basic conduction state,

Nu = −
exp(Nρ) − 1

4πnc1ρ̄(ri)n

∫

∂V
κρ̄T̄ (∂rS )r2 sinθdθdϕ,

with the integral taken over the top surface ∂V. Apart from quantifying the heat transport
of convection, the value of the Nusselt serves as a convenient proxy for the supercritical-
lity of the solution.

Other diagnostic quantities that are sometimes used to quantify convective and dy-
namo solutions can be derived from these quantities. For example, a non-dimensional
magnetic Reynolds number, Rossby number and Lorentz number are given by

Rm = Pm
√

2Ekin, Ro =
2
τ

√

2Ekin, Lo =
2
τ

√

2Emag,

respectively.

4. Benchmarking and validation

To perform the numerical simulations of this study, we have extended our mature
Boussinesq code (Tilgner and Busse, 1997; Simitev and Busse, 2005; Busse and Simitev,
2006, 2008; Simitev and Busse, 2009, 2012) to solve the anelastic problem described in
section 3. Despite similarities with the Boussinesq code, this extension has proven to be
a major modification both in terms of the mathematical model and the numerical code.
In order to validate the new code, here we wish to report a comparison with the anelas-
tic dynamo benchmarks recently proposed by Jones et al. (2011). To aid comparison
with the latter paper in this section only we employ the alternative nondimensionalisa-
tion used in (Jones et al., 2011) where the magnetic diffusion timescale rather that the
viscous diffusion scale is employed. Our output results from the three benchmark cases
defined in (Jones et al., 2011) are summarized in table 1, and selected components of
the solution are plotted in ??. We achieve near exact agreement with the results reported
in (Jones et al., 2011) for the hydrodynamic case and the steady dynamo case, labeled
B1 and B2 in table 1. Our results for the unsteady dynamo case labeled B3 in table 1
show some insignificant differences from the values reported in (Jones et al., 2011). The
mean zonal flow we obtain in this case is 33% larger than that reported in the benchmark
paper even though the angular momentum of our run remains smaller than 10−3. This
somewhat larger differential rotation gives rise to a magnetic field with energy 6% larger
than that reported in the benchmark paper. The reasons for the discrepancy are that the
length of our run is only 0.3 ohmic diffusion times, and that we have imposed a two-fold
azimuthal symmetry in this case to reduce computing time.

5. Transition from rotation-dominated regime to buoyancy-dominated regime

Question: Is the transition abrupt?
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Transition to buoyancy-dominated regime
a.e065p03t02r...m1N3.sf.vr

R = 50000

R = 100000

R = 200000

R = 250000

R = 300000

R = 500000

R = 100000

Figure 1: Something like this.
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B1 - Hydrodyn. B2 - Steady B3 - Unsteady

convection dynamo dynamo

η 0.35 0.35 0.35

n 2 2 2

Nρ 5 3 3

P 1 1 2

Pm 1 50 2

τ 2000 1000 40000

R 351806 80000 2.5e7

Nr / Nr 129 / 129 129 / 129 111 / 111

Nl / Nθ 128 / 128 128 / 128 120 / 144

Nm / Nϕ 129 / 257 129 / 257 121 / 145

Timestep 4e-6 1e-6 1e-7

E 81.87991 4.19405e5 2.32730e5

Ep 0.02201 53.0100 100.40

Et 9.37598 6.01725e4 1.81399e4

M – 3.20172e5 2.58012e5

Mp – 1.69650e4 2.91155e4

Mt – 2.41185e5 1.17292e4

Luminosity 4.19886 11.50302 42.50992

Period to be inserted –

Frequency ω to be inserted –

uφ at ur = 0 to be inserted –

S at ur = 0 to be inserted –

Table 1: Comparison with the benchmark solutions proposed in Jones et al. (2011).

Figure 2: Plots of magnetic structures of dynamos as a function of R across the transition.

6. Dynamos in the transition regime

Question: How does the magnetic field shift the transition? - Probably happens at
lower R?

7. Evidence of two-layered convection and dynamos

Question: How solar-like are the differential rotation profiles?
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Figure 3: Magnetic and kinetic energies as a function of R across the transition.

Figure 4: Poloidal field lines of best case.
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Figure 5: Differenial rotation of best case.
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