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Abstract

We present a set of convective dynamo simulations in rotating spherical fluid shells based on an anelastic approximation
of compressible fluids. The simulations extend into a “buoyancy-dominated” regime where the buoyancy forcing is
dominant while the Coriolis force is no longer balanced by pressure gradients and strong retrograde differential rotation
develops as a result. Dynamos in this regime are strongly dominated by dipole components but at the same time
their magnetic energies are relatively small compared to the corresponding kinetic energies of the flow. Despite being
relatively weak the self-sustained magnetic fields are able to reverse the direction of differential rotation to prograde and
give rise to some similarities with Solar convection.
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1. Introduction

Motivation and hypotheses. The following facts about the
Solar structure and dynamics are established from obser-
vations or are well-accepted assumptions in the research
community. (a) Solar convection is very vigorous and tur-
bulent with characteristic surface velocities of the order ...
[? ]; (b) Solar rotation is nonuniform but relatively slow
at an average of 27 days per revolution, e.g. []; (c) Molec-
ular viscosity of Solar plasma is nearly negligible with a
characteristic value of the order of ... [? ]; (d) The en-
ergy of the global magnetic field of the Sun is small com-
pared to the kinetic energy of plasma motions and differ-
ential rotation does not vary much with the Solar cycle [?
]. This suggests that Solar convection is in a “buoyancy-
dominated regime” where buoyancy forces dominate over
viscous, Lorentz and Coriolis forces in the momentum bal-
ance. Thus, it is of interest to study convection and dy-
namo action in the buoyancy-dominated regime.

In fact, non-magnetic convection in the buoyancy- dom-
inated regime has already attracted attention. The regime
was first identified by Fokal [? ] and Gilman [6] and more
recently it was studied by Aurnou et al. [1] and Gastine et
al. [5]. Bousinesq models were used in [6] and [1] and
an anelastic model was used in [5]. These studies con-
sistently found that due to vigorous mixing angular mo-
mentum is homogenized within the whole volume of the
shell and this leads to strong retrograde zonal flow in the
equatorial region. Retrograde differential rotation in the
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equatorial region is antisolar. So the question arises how
can the Solar convection zone be in a buoyancy-dominated
regime and at the same time sustain prograde equatorial
rotation. This is the question we attempt to address in this
paper. To this end, we demonstrate that demonstrate that
relatively weak self-sustained field will act to reverse the
retrograte differential rotation thus achieving a buoyancy-
dominated regime with a solar-like zonal flow.

It is well-established [2, 10] that the main effect of
self-sustained magnetic field on convection is to suppress
differential rotation. Dynamo action beyond the transition
from rotation-dominated regime to buoyancy-dominated
regime has not been previously studied.

Buoyancy-dominated regime of convection may be rel-
evant to Neptune and Uranus. There is evidence that the
magnetic field of Uranus is non-dipolar (provide references)
and that the differential rotation is retrograde at the equa-
tor. Retrograde differential rotation naturally develops
in the buoyancy-dominated regime and it is of interest
whether the magnetic fields that are generated resemble
that of Neptune and Uranus.

Aims and plan of paper. In section 2 we introduce the
mathematical model based on the anelastic approxima-
tion and briefly touch on some of the numerical imple-
mentation details. In this paper we present first results
from a new anelastic code. For this reason, we include
in section 3 a brief validation test against the benchmark
solutions recently presented in [8]. In secion 4 we com-
ment in passing on some similarities between Boussinesq
and anelastic convection. Section 5 is the focus of the
paper. Here we discuss the properties of dynamos in the
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buoyancy-dominated regime of convection. We conclude
in section 6 with a summary of our main results and dis-
cussion of their implications. We also outline questions for
future research.

2. Mathematical model and numerical method

2.1. Anelastic equations

We consider an electrically conducting, self-gravitating,
perfect gas confined to a spherical shell. The shell rotates
with a fixed angular velocity Ωk̂ about the vertical axis
and an entropy contrast ∆S is imposed between its inner
and outer surfaces.

Assuming a gravity field proportional to 1/r2, a hydro-
static polytropic reference state exists of the form

ρ̄ = ρcζ
n, T̄ = Tcζ, P̄ = Pcζ

n+1, ζ = c0 + c1d/r, (1)

with parameters c0 = (2ζo − η − 1)/(1− η), c1 = (1+ η)(1−
ζo)/(1 − η)2, ζo = (η + 1)/(ηexp(Nρ/n) + 1). The parame-
ters ρc, Pc and Tc are reference values of density, pres-
sure and temperature at the middle of the shell, and the
gas polytropic index n, the density scale height Nρ and the
shell thickness ratio η are defined further below. Convec-
tion and magnetic field generation set in for sufficiently
large values of the entropy contrast, ∆S , and can be de-
scribed by the equations of continuity, momentum, energy
and magnetic flux. In the anelastic approximation [7, 8]
these equations take the form

∇ · ρ̄u = 0, ∇ · B = 0, (2a)

∂tu + (∇ × u) × u (2b)

= −∇Π − τ( k̂ × u) +
R
Pr

S
r2

r̂ + Fν +
1
ρ̄

(∇ × B) × B,

∂tS + u · ∇S (2c)

=
1

Prρ̄T̄
∇ · κ̄ρ̄T̄∇S +

c1Pr

RT̄

(
Qν +

1
Pmρ̄

Q j

)

∂t B = ∇ × (u × B) + Pm−1∇2B, (2d)

where u is the velocity, B is the magnetic flux density, S is
the entropy and ∇Π includes all terms that can be written
as gradients. The viscous force, and the viscous and Joule
heating,

Fν =
ρc

ρ̄
∇ · Ŝ, Qν = Ŝ : e, Q j = (∇ × B)2, (3)

are defined in terms of the deviatoric stress tensor

Ŝ i j = 2ν̄ρ̄(ei j − ekkδi j/3), ei j = (∂iu j + ∂ jui)/2,

where double-dots (:) denotes the Frobenius inner prod-
uct. We assume that the viscosity and the entropy diffu-
sivity vary in radius as ν̄(r) = νcρ̄k and κ̄(r) = κcρ̄k with
some negative power k ≤ 0, where νc and κc are their ref-
erence values at midshell. The governing equations have
been nondimensionalised using the thickness of the shell

d = ro − ri as a unit of length, d2/νc as a unit of time, ∆S
as a unit of entropy, νc

√
µ0ρc/d as a unit of magnetic in-

duction, ρc as a unit of density and Tc as a unit of temper-
ature. Here, ri and ro are the inner and the outer radius,
λ and µ0 are the magnetic diffusivity and permeability, re-
spectively. The system is then characterized by eight di-
mensionless parameters: the radius ratio, the polytropic
index of the gas, the density scale number, the radial de-
pendence power, the Rayleigh number, the ordinary and
the magnetic Prandtl numbers and the Coriolis number,
defined as

η = ri/ro, n, Nρ = ln
(
ρ̄(ri)/ρ̄(ro)

)
, k,

R =
c1Tcd2

∆S
νcκc

, Pr=
νc

κc
, Pm=

νc

λ
, τ =

2Ωd2

νc
, (4)

respectively.
Since the mass flux ρ̄u, and the magnetic flux density B

are solenoidal vector fields, it is advantageous to employ
a decomposition in poloidal and toroidal components,

ρ̄u = ∇ × (∇ × r̂rv) + ∇ × r̂r2w, (5a)

B = ∇ × (∇ × r̂h) + ∇ × r̂g, (5b)

where r̂ is the radial unit vector, r is its length, v, w, h and
g are the poloidal and toroidal scalars of the momentum
and magnetic field, respectively. Equations (2a) are then
satisfied by construction. Scalar equations for v and w are
obtained, and effective pressure gradients are eliminated
by taking r̂ · ∇ × ∇× and r̂ · ∇× of equation (2b). Similarly,
equations for h and g are obtained by taking r̂ ·∇× and r̂· of
equation (2d). The resulting poloidal-toroidal equations
are somewhat lengthy and will not be listed here (or may
be listed in an appendix). A minor disadvantage of this
representation is that a fourth-order poloidal equation is
obtained.

2.2. Boundary conditions

We explore various assumptions for the boundary con-
ditions imposed on velocity, entropy and magnetic flux at
the surface of the shell. The alternatives are listed below
and the particular choice will be specified in each individ-
ual case. At a no-slip, impenetrable boundary we impose

v = 0, ∂rv = 0, w = 0. (6)

At a stress-free, impenetrable boundary we require

v = 0, ∂2
r v − ρ̄

′

ρ̄r
∂r(rv) = 0, ∂rw −

ρ̄′

ρ̄
w = 0. (7)

Values of the entropy may be fixed at the boundaries, then

S = 1 at r = ri, S = 0 at r = ro. (8)

Alternatively, the entropy flux may be specified at the top,

∂rS = 0 at r = ro. (9)
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Boundary conditions for the magnetic field may be derived
from the assumption of an electrically insulating external
region. The poloidal function h is then matched to a func-
tion h(e), which describes an external potential field,

g = 0, h − h(e)
= 0, ∂r(h − h(e)) = 0. (10)

Alternatively, a perfectly conducting external region may
be assumed, requiring

∂rg = 0, h = 0. (11)

Finally, the, so-called, “pseudo-vacuum” condition offers
another choice,

g = 0, ∂rh = 0. (12)

2.3. Numerical method

For the numerical solution of the problem we have
adapted the pseudo-spectral method described by [13].
The scalar unknowns v, w, h, g and S , are expanded in
Chebychev polynomials Tp in the radial direction r, and in
spherical harmonics in the angular directions (θ, ϕ) e.g.,

v =
Nl∑

l=1

l∑

m=−l

Nr∑

p=0

Vm
lp(t) Tp

(
x(r)

)
Pm

l (cosθ) exp(imϕ), (13)

where Pm
l denotes the associated Legendre functions, x(r) =

2(r − ri) − 1, and Nl and Nr are truncation parameters. A
system of equations for the coefficients in these expan-
sions is obtained by a combination of a Galerkin spectral
projection of the governing equations in the angular di-
rections and a collocation constraint in radius. Computa-
tion of nonlinear terms in spectral space is expensive, so
nonlinear products and the Coriolis term are computed in
physical space and then projected to spectral space at ev-
ery time step. A standard 3/2-dealiasing in θ and ϕ is used
at this stage. A hybrid of a Crank-Nicolson scheme for
the diffusion terms and a second order Adams-Bashforth
scheme for the nonlinear terms is used for integration in
time.

A range of numerical resolutions has been used in this
study varying from (Nr = 61, Nl = 96) in less demanding
cases to (Nr = 121, Nl = 144) in more strongly stratified or
turbulent runs. Correspondingly, the physical gridpoints
on which non-linear terms are evaluated have been varied
up to Nr = 121, Nθ = 216, Nϕ = 437.

2.4. Diagnostic output quantities

Our numerical convection and dynamo solutions are
characterized by their kinetic and magnetic energy and
heat transport given by a Nusselt number. The energies
can be conveniently split into mean and fluctuating com-
ponents, into poloidal and toroidal components and fur-
ther into equatorially-symmetric and -antisymmetric com-
ponents, thus giving a rather complete description of the
scales of the convective flow and the multipole structure of

Benchmark 1: Benchmark 2: Benchmark 3:

Hydrodyn. Steady Unsteady

convection dynamo dynamo

η 0.35 0.35 0.35

n 2 2 2

Nρ 5 3 3

P 1 1 2

Pm 1 50 2

τ 2000 1000 40000

R 351806 80000 2.5e7

Nr / Nr 129 / 129 129 / 129 111 / 111

Nl / Nθ 128 / 128 128 / 128 120 / 144

Nm / Nϕ 129 / 257 129 / 257 121 / 145

Timestep 4e-6 1e-6 1e-7

E 81.87991 4.19405e5 2.32730e5

Ep 0.02201 53.0100 100.40

Et 9.37598 6.01725e4 1.81399e4

M – 3.20172e5 2.58012e5

Mp – 1.69650e4 2.91155e4

Mt – 2.41185e5 1.17292e4

Luminosity 4.19886 11.50302 42.50992

Table 1: Comparison with the benchmark solutions proposed in [8].

Benchmark 1: Benchmark 2: Benchmark 3:

–

Figure 1: Solutions structures of benchmark cases 1, 2 and 3 (left to
right). The first plot in each column shows azimuthally-averaged iso-
contours of uϕ (left half) and of the streamlines r sinθ(∂θv) (right half)
in the meridional plane. The second plot in each column shows isocon-
tours of ur in the equatorial plane. The third plot in each column shows
isocontours of Br at r = ro.

dynamos. The mean and fluctuating toroidal and poloidal
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Figure 2: (a) The critical Rayleigh number Rc, (b) the critical wave number mcrit and (c) the critical frequency for onset of convection as functions of
the Prandtl number P for η = 0.65, τ = 100,200,300,500,1000,2000,3000, n = 2, (red dashed lines) and Nρ = 0.1,1,2,3,4,5,6 (black solid lines) both
increasing from bottom to top. The values are calculated using the quasi-geostrophic approximation of Busse and Simitev (2013).

components of the kinetic energy are defined as

Ēp = 〈
(
∇ × (∇v̄ × r)

)2
/(2ρ̄)〉, Ēt = 〈

(
∇rw̄ × r

)2
/(2ρ̄)〉, (14a)

Ěp = 〈
(
∇ × (∇v̌ × r)

)2
/(2ρ̄)〉, Ět = 〈

(
∇rw̌ × r

)2
/(2ρ̄)〉, (14b)

where angular brackets 〈〉 denote averages over the spher-
ical volume of the shell. Magnetic energy components are
defined analogously with h and g replacing v and w and
without the factor ρ̄−1 within the angular brackets. The
total energies are, of course, the sum of all components.
The Nusselt number is defined as the ratio between the
values of the luminosity of the convective state and of the
basic conduction state,

Nu = −
exp(Nρ) − 1

4πnc1ρ̄(ri)n

∫

∂V
κρ̄T̄ (∂rS )r2 sinθdθdϕ,

with the integral taken over the top surface ∂V. Apart from
quantifying the heat transport of convection, the value of
the Nusselt serves as a convenient proxy for the supercrit-
icallity of the solution.

Other diagnostic quantities that are sometimes used to
quantify convective and dynamo solutions can be derived
from these quantities. For example, a non-dimensional
magnetic Reynolds number, Rossby number and Lorentz
number are given by

Rm = Pm
√

2Ekin, Ro =
2
τ

√
2Ekin, Lo =

2
τ

√
2Emag,

respectively.

3. Benchmarking and validation

To perform the numerical simulations of this study, we
have extended our mature Boussinesq code [14, 2, 10, 3,
4, 11, 12] to solve the anelastic problem described in sec-
tion ??. Despite similarities with the Boussinesq code, this
extension has proven to be a major modification both in
terms of the mathematical model and the numerical code.

In order to validate the new code, we wish to report here
a comparison with the anelastic dynamo benchmarks re-
cently published by [8]. To aid comparison with the lat-
ter paper in this section only we employ the alternative
nondimensionalisation used in [8] where the magnetic dif-
fusion timescale rather that the viscous diffusion scale is
employed. Our output results from the three benchmark
cases defined in [8] are summarized in table 1, and se-
lected components of the solution are plotted in figure x1.
We achieve near exact agreement with the results reported
in [8] for the hydrodynamic case and the steady dynamo
case, labeled B1 and B2 in table 1. Our results for the
unsteady dynamo case labeled B3 in table 1 show some
insignificant differences from the values reported in [8].
The mean zonal flow we obtain in this case is 33% larger
than that reported in the benchmark paper even though
the angular momentum of our run remains smaller than
10−3. This somewhat larger differential rotation gives rise
to a magnetic field with energy 6% larger than that re-
ported in the benchmark paper. The reasons for the dis-
crepancy are that the length of our run is only 0.3 ohmic
diffusion times, and that we have imposed a two-fold az-
imuthal symmetry in this case to reduce computing time.

4. Similarities of anelastic and Boussinesq spherical
convection and dynamos

Some linear results

These results are not intended to be comprehensive.
Since the anelastic and the Boussinesq models are essen-
tially different it is no obvious how to compare results di-
rectly. We will introduce a “supercriticallity” criterion –
two cases with the same values of all basic parameters (4)
apart from the Rayleigh number R are directly compara-
ble if they have equal values of the ratio R/Rc, where Rc is
the corresponding critical Rayleigh number for the onset
of convection.
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Figure 3:

For this purpose, here we present Rc curves of typical
cases we explore.

The main difference with Boussinesq convection is that
onset of convection moves closer to the outer boundary -
make new plot of position. Illustrate with case:

a.mv.e065p1t2r2500000m1p4N4.

Relaxation oscillations in anelastic convection

It is interesting that relaxation oscillations that have
been found in Boussinesq simulations also appear in anelas-
tic convection as seen in figures 4 and 5 for the case

ae035p1t40r20000000m4n2N3.
Another, case is
ae035p1t40r15000000m4n2N3.
In the presence of magnetic field relaxation oscillations

disappear. However, the dynamic balance between diff ro-
tation and magnetic fields produces oscillating dynamos.
Here is a typical oscillation hemispherical dynamo, as shown
in figures 6 and 7

(ae035p1t40r10000000m4p2n2N3).
This case is also interesting because the mean poloidal

magnetic energy is dominant (both dipole and quadrupole)
so it is a MD dynamo but the dynamo is oscillating as if it
was and FD dynamo. The oscillations of the magnetic field
are very regular with similar period twice as large as the
period of the relaxation oscillations that have died out.

Increasing Rayleigh number we get slightly more dipo-
lar oscillations as in the case

(ae035p1t40r15000000m4p2n2N3).
This case is not plotted as it is not significantly different

from the previous case shown in 6 and 7.
Increasing both the Rayleigh number and the magnetic

Prandtl number leads to much more dipolar oscillating
case with APERIODIC reversals

(ae035p1t40r15000000m4p4n2N3)
as shown in figures 8 and 9. Aperiodic reversals are in-

teresting as a model of the geodynamo polarity reversals.

Figure 4: (ae035p1t40r20000000m4n2N3) A period of relaxation oscil-
lations of convection in the case η = 0.35, P = 1, τ = 4× 104, R = 2× 107,
n = 2, Nρ = 3, and four-fold azimuthal symmetry. The left halves of each
plot show lines of constant uϕ in a meridional cut and the right halves
streamlines, r∂ϕv = constant, in the equatorial plane. The separation in
time is 0.02.

3.5 3.6 3.7 3.8
0

30000

60000

E

t

Figure 5: (ae035p1t40r20000000m4n2N3) Time series of energy den-
sities of convection in the case plotted in 4. Red, blue and green lines
indicate Et, Et, Ẽp, respectively. Ep smaller by more than an order of
magnitude than the other energy densities and has not been plotted for
this reason. The three dotted vertical lines indicate the time instances
where the snapshots in figure 4 are taken.

Dipolar Oscillations and benchmarks

The benchmark case is oscillatory and shows nice dipo-
lar oscillations as illustrated in figure 10

(ben3.ae035p2t40r25000000m2p2n2N3)
Dipolar oscillations in thin shells
a.mv.e065p1t2r1200000m1p5N2 – Plot a sequence near

t=85.

Magnetic field produces Solar-like differential rotation

A sufficiently strong magnetic field may counterbal-
ance the geostrophic constraint and produce conical pro-
file of the differential rotation with contours that are aligned
in radial direction as shown in figure 11. This is reminis-
cent of the profile of the Solar differential rotation mea-
sured by helioseismology e.g. [9].

Comment that this is why Brandenburg and Jorg ob-
serve solar like diff rot in their coronal mass ejections -
Jorg’s thesis. http://arxiv.org/pdf/1301.2248.pdf

Banded differential rotation like Jupiter

See figure 12.
-ae035p1t40r10000000m4p2n2N3/um.59.pdf
-Magnetic field is important - see the effect of hemi-

spherical dynamo - this case is good to use as figs of magn
field already included 6 & 7. — Perhaps no evidence for
this.
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Figure 6: (ae035p1t40r10000000m4p2n2N3) Time series of energy den-
sities of a hemispherical dynamo in the case η = 0.35, P = 1, τ = 4× 104,
R = 107, Pm = 2, n = 2, Nρ = 3, and four-fold azimuthal symmetry.
The upper panel shows kinetic energy densities of the velocity field. The
second panel shows energy densities of dipolar components (thin solid
lines) and quadrupolar components (thick brocken lines) of the magnetic
field. The mean toroidal components are represented by red lines, the
fluctuating toroidal – by blue lines, the mean poloidal – by black lines
and the fluctuating poloidal – by green lines. The lowest panel shows
the coefficient of the axial dipole component H0

1 (red line) and the coef-
ficient of the axial quadrupole component (blue line) at r = ri + 0.5.

Figure 7: (ae035p1t40r10000000m4p2n2N3) A period of hemispherical
dynamo oscillations in the case shown in figure 6. The left half of each
plot shows lines of constant Bϕ and the right half shows meridional field

lines r sinθ∂θh = const. Plots are arranged row-by-row and the separation
in time is 0.08.

At stronger magnetic fields band structure does not
persist and radially-constant conical Solar profiles of diff
rot emerge as in figure 10.

Subsurface decrease of differential rotation

This is very interesting, see cases
a.e065p1t2r2000000m1p6N3.mv.vc (time 18 to 20)
and

2.5 3.0 3.5 4.0 4.5 5.0

-30

-15

0

15

30

H
0 1,

2

t

Figure 8: (ae035p1t40r15000000m4p4n2N3) Aperiodicaly reversing dy-
namo. Shown are time series of coefficient of the axial dipole component
H0

1 (red line) and the coefficient of the axial quadrupole component (blue

line) at r = ri + 0.5 in the case η = 0.35, P = 1, τ = 4× 104, R = 1.5× 107,
Pm = 4, n = 2, Nρ = 3, and four-fold azimuthal symmetry. One rever-
sal happens within the shaded area when the dipole component changes
sign.

Figure 9: (ae035p1t40r15000000m4p4n2N3) An apperiodic reversal of
the dynamo shown in figure 8. The left half of each plot shows lines of
constant Bϕ and the right half shows meridional field lines r sinθ∂θh =
const. Plots are arranged row-by-row and the separation in time is 0.04
falling in the shaded area of figure 8.

(a.e065p1t2r1800000m1p8N3.mv.vc) and
(a.e065p1t2r1800000m1p8N3.mv.vc.per).
— Do these oscillate?
— Can we find equatorward propagation?
Oscillating cases:
a.mv.e065p1t2r2000000m1p4N3
a.e065p1t2r2000000m1p6N3.mv.vc
a.mv.e065p1t2r2000000m1p6N3
a.mv.e065p1t2r2000000m1p4N3-sequence
a.mv.e065p1t2r2500000m1p4N3
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Figure 10: (ben3.ae035p2t40r25000000m2p2n2N3) A period of dipolar
dynamo oscillations in the benchmark case η = 0.35, P = 2, τ = 4× 104,
R = 2.5× 107, Pm = 2, n = 2, Nρ = 3, and two-fold azimuthal symmetry.

The left half of each plot shows lines of constant Bϕ and the right half

shows meridional field lines r sinθ∂θh = const. Plots are arranged row-
by-row and the separation in time is 0.015.

Figure 11: (ben3.ae035p2t40r25000000m2p2n2N3) Solar-like differen-
tial rotation uϕ = const. in the left halves of the plot and azymuthally-
averaged meridional circulation in the right halves in the case shown in
figure 10. The plots are time averaged over a period of 0.005.

High Prandtl number convection looks very solar like

a.e075p5t05r800000m1N3.sf.vc.Di0.plt.22.pdf
Note the double-cell meridional circulation and the ten-

dency towards conical profiles of diff rotation.

Variable viscosity

Thin downwelling and thick upwelling
a.e065p04t04r300000m1p2.sf.vr4
a.e065p06t06r600000m1p2.sf.vr4.plt.11.pdf
Compare cases with otherwise fixed parameters:
a.e075p5t05r800000m1N3.sf.vr.plt.28.pdf
a.e075p5t05r800000m1N3.sf.vc.plt.16.pdf
Cases with fixed params:
a.e065p05t03r300000m1N3.sf.vc,
a.e065p05t03r300000m1N3.sf.vr,
a.e065p05t03r300000m1N3.sf.vrkr
a.e065p1t1r800000m1N3.sf.vc,
a.e065p1t1r800000m1N3.sf.vr,
a.e065p1t1r800000m1N3.sf.vrkr

Figure 12: (ae035p2t40r15000000m4p2n2Nrho3a) Jupiter-like banded
differential rotation uϕ = const. in the left halves of the plot and
azymuthally-averaged meridional circulation in the right halves in the
case η = 0.35, P = 2, τ = 4× 104, R = 1.5× 107, Pm = 2, n = 2, Nρ = 3, and
four-fold azimuthal symmetry.
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Figure 14: (a.mv.e065p1t2r2500000m1p4N3) Dipolar oscillations
shown in the timeseries of the the axisymmetric toroidal coefficients G1

0
(red) and G2

0 (blue) and the axisymmetric poloidal coefficients H1
0 (red)

and H2
0 (blue) describing the main dipolar and poloidal contributions

in the spherical harmonics expansion of the magnetic field in the case
η = 0.65, P = 1, τ = 2× 103, R = 2.5× 106, Pm = 4, n = 2, Nρ = 3 shown in
figure 13.

5. Buoyancy-dominated convection

Discussion of case (a.e065p1t2r10000000m1p2N3n2.sf.vc)

shown in figures 17 and 18. The influence of the magnetic
field is quite remarkable. Consider the following observa-
tions illustrated in figures 17 and 18:

• pure convection - diff rot is monotonously increas-
ing/decreasing towards the outer surface in the pro-
grade/retrograde case.

• pure convection in the buoyancy-dominated regime
is retrograde.

• pure convection - does not show columnar structure
at depth.

• dynamo - the energy of the self-sustained magnetic
field is an order of magnitude smaller that the kinetic
energy.
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Figure 13: (a.mv.e065p1t2r2500000m1p4N3) One period of dipolar oscillations.
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Figure 15: (a.e065p1t2r1800000m1p8N3.mv.vc) Solar like (sub-surface
decrease) differential rotation uϕ = const. in the left halves of the plot
and azymuthally-averaged meridional circulation in the right halves in
the case η = 0.65, P = 1, τ = 2× 103, R = 1.8× 106, Pm = 8, n = 2, Nρ = 3.
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Figure 16: (a,b) Equatorial zonal flow at the equator uϕ(ro, π/2). (c,d)
Average kinetic energy densities and (e,f) average magnetic energy den-
sities as functions of the Rayleigh number R in the cases (a,c,e) η = 0.65,
P = 1, τ = 2000, n = 2, Nρ = 3, and (b,d,f), η = 0.65, P = 0.5, τ = 300,
n = 2, Nρ = 3 Nonmagnetic convection cases are denoted by thin symbols
in (a,b,c,d). Dynamo cases are denoted by thick symbols in all panels and
have Pm = 2 in (a,c,e) and Pm = 6 in (b,d,f). Black circles, red squares,
green pluses and blue crosses denote Xp, Xt, X̃p, X̃t, with X = E,M.
Vertical dash-dotted lines denote the transition to buoyancy-dominated
regime.

• dynamo - diff rotation is reversed from retrograde to
prograde by even by such relatively weak magnetic

field.

• dynamo - differential rotation has a maximum inside
the shell and then shows a subsurface decrease.

• dynamo - convective columns are visible in depth.

• dynamo - has a strong dipolar symmetry because
of the strong polar convection. Unfortunately this
dipole does not oscillate.

Question - Is there a transition from multipolar to dipo-
lar dynamos with the increase of R? There must be -
in the prograde regime at low R thin shell dynamos are
mixed multipolar; in the retrograde regime at high R dipo-
lar dynamos are found as figure 18 demonstrates. There
must be a transition in between - look at newly started
sequences.

5.1. Interesting Boussinesq cases

a.mv.e065p1.2t2r500000m1p4.5N001 - maybe we should
start cases with slowly increasing Nρ to follow transitions.
What will quadrupolar dynamos become?

Effects of radial variations of viscosity and diffusivity

Evidence of localized convection or spotty convection

• I have also thinking about your paper. It could be
interesting to plot wavenumber m (number of equa-
torial cells) as function of tau and Pr, 0.1¡Pr¡2 for
convenient value of r and N3 because there is this
remarkable transition from low m to high m as func-
tion of mainly Pr. I am wondering whether this tran-
sition may be hysteretic. Yours,F.

Thank you for the suggestion. Few questions, that
will help a lot: - Why do you think this is remark-
ablle? In Boussinesq linear analysis it is not un-
common to see a jump in wavenumber, even a large
jumps say fig 1 from our paper in GAFD-2005.

Here we have a much more dramatic phenomenon. I
GAFD m changed from 2 at Pr=0.2 to 3 for Pr=2 and
similar changes with higher m at at higher tau. In
the a-case it changes from m=7 at Pr=0.3 to m=20
at Pr=1.

- How will we select comparable cases when we vary
Pr? Clearly this will be only a rough comparison, but
we need to achive approx the same supercriticallity
as Pr is varied. This question is actually worrying
me.

At fixed t the critical R should not vary that much. It
seems to me that there could be substantial hystere-
sis.

It would be nice to have a liner code so we can find
critical R.

Apparently Wicht used one supplied by Chris Jones.
It will be important to use a case of nu(r) which
has a reasonable deviation of s from the S-reference
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Transition to buoyancy-dominated regime
a.e065p03t02r...m1N3.sf.vr

R = 50000

R = 100000

R = 200000

R = 250000

R = 300000

R = 500000

R = 100000

Figure 19: A figure like this but from the sequences in figure 16.

throughout the layer such the influence of convec-
tion filling only part of the layer is minimized.

• Neat separation between convection in the tangent
cylinder and convection in the polar regions

• Asymmetry of descending and ascending flows - this
is visible in most cases at small Pr and τ. - include a
characteristic plot, say,

a.e065p05t03r300000m1N3.sf.vr

and similar.

• Transition to retrograde differential rotation. - Many
cases, most accessible for low values of τ. Can we

reach beyond this regime? What are dynamos like in
the regime of retrograde diff rotation. In this regime
diff rotation is substantially decreasing towards the
surface, so according to Yoshimura dynamo waves
should travel towards the equator.

• Spread of convection throughout the layer - in mod-
els with variable viscosity (when ν = ρ̄−1 is constant
DYNAMIC viscosity).

• In models with variable viscosity (when ν = ρ̄−1 is
constant DYNAMIC viscosity) convection spreads through-
out the layer and not only near the surface as in the
simulations of Whicht and of Jones. So each time
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Figure 17: (a.e065p1t2r10000000m1p2N3n2.sf.vc and
a.e065p1t2r10000000m1N3n2.sf.vc) Left column: dynamo case
a.e065p1t2r10000000m1p2N3n2.sf.vc; Right column: convection only
case a.e065p1t2r10000000m1N3n2.sf.vc. Row one: ur at r = 0.95+ ri;
Row two: ur at r = 0.3 + ri; Row 3: pol streamlines in the equatorial
plane; Row 4: uϕ and mer streamlines average over a period of 0.025.

when they claim that a particular mechanism is due
to this effect they may not be right.

• Double-cell meridional circulation as per Junwei Zhao,
poleward flow near surface.

6. Conclusion

Summary of results.

• We have shown that even a rather small increase of
the value of the Prandtl number above unity can pro-
duce profiles of the differential rotation that deviate
significantly from geostrophy even in rather laminar
solutions. When such differential rotation profiles

Figure 18: (a.e065p1t2r10000000m1p2N3n2.sf.vc) Magnetic compo-
nents of the same case as in the left column of figure 17. Left plot: Br at
r = 1.13+ ri; Right plot:: Bϕ and mer fieldlines average over a period of
0.025.

are further affected by self-sustained magnetic field
differential rotation not unlike the one inferred from
helioseismological observations can be found.

Discussion and implications.

• The results may be relevant as a model of Solar mag-
netic field oscillations, structure of the Solar convec-
tion zone, and differential rotation.

– Solar cycle – The direction of dynamo waves
in self-consistent simulations with prograde dif-
ferential rotation is always from equator to poles
in contrast to observations. We wish to check
whether retrograde differential rotation gener-
ated in the buoyancy-dominated regime may
reverse the direction of dynamo waves so that
they propagate from poles to equator in agree-
ment with observations.

– Structure of convection zone – It will be of in-
terest to find whether different regimes of con-
vection may develop in the inner and at the
outer part of the shell simultaneously so that
organised geostrophic convection is hidden be-
low a near-surface layer of well-mixed (“turbu-
lent”) convection. We believe that such a con-
figuration is similar to the structure of the So-
lar convection zone. Indeed, it is well estab-
lished by observation of the surface velocities
and magnetic fields that buoyancy effects dom-
inate near the surface. As a result the near-
surface flows and magnetic fields are strongly
turbulent and lack any global organization. On
the other hand, the regularity of the 11-year So-
lar cycle is also well established and the regu-
lar reversals cannot be achieved without large-
scale organized field and flow. We would like to
argue that the organized columnar structures
that are characteristic in the rotation-dominated
regime will play this role.

Variation in density is a necessary ingredient
in this scenario. Indeed, in the Boussinesq ap-
proximation, the rotation parameter τ and the
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critical Rayleigh number Rc are constant through-
out the shell. This means that the entire vol-
ume of the shell will be either in the rotation-
dominated or the buoyancy-dominated regime.
In contrast, the anelastic approximation allows
for radial variation in density, viscosity and en-
tropy diffusivity so that τ and Rc vary with ra-
dius. In this way, one may hope to achieve a
configuration where the inner part of the shell
is in the rotation-dominated regime and the outer
part is in the buoyancy-dominated regime.

– Solar differential rotation – Finally, differen-
tial rotation may also assume more Solar-like
profile.

• In fact, variation in density only may not be suffi-
cient to produce Solar-like differential rotation as
indicated by Gastine et al. In this case convection
flows in the rotation-dominated region are relatively
weaker by comparison with flows in the buoyancy-
dominated near-surface layer. A stronger organized
flow is likely needed to produce the solar-lice cyclic
oscillations and differential rotation profile.

Future directions. – Include radial variation of viscosity
and entropy diffusivity.

– Go beyond the buoyancy-dominated regime into regime
III.

– Explore parameter regime so as to find periodic re-
versals. Will they propagate equator-wise?
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