
The Astrophysical Journal, 798:51 (15pp), 2015 January 1 doi:10.1088/0004-637X/798/1/51
C© 2015. The American Astronomical Society. All rights reserved.

HIGH-RESOLUTION CALCULATION OF THE SOLAR GLOBAL CONVECTION WITH THE REDUCED
SPEED OF SOUND TECHNIQUE. II. NEAR SURFACE SHEAR LAYER WITH THE ROTATION

H. Hotta1,2, M. Rempel1, and T. Yokoyama2
1 High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA; hotta@ucar.edu

2 Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Received 2014 February 27; accepted 2014 October 26; published 2014 December 19

ABSTRACT

We present a high-resolution, highly stratified numerical simulation of rotating thermal convection in a spherical
shell. Our aim is to study in detail the processes that can maintain a near surface shear layer (NSSL) as inferred from
helioseismology. Using the reduced speed of sound technique, we can extend our global convection simulation
to 0.99 R� and include, near the top of our domain, small-scale convection with short timescales that is only
weakly influenced by rotation. We find the formation of an NSSL preferentially in high latitudes in the depth range
of r = 0.95–0.975 R�. The maintenance mechanisms are summarized as follows. Convection under the weak
influence of rotation leads to Reynolds stresses that transport angular momentum radially inward in all latitudes.
This leads to the formation of a strong poleward-directed meridional flow and an NSSL, which is balanced in the
meridional plane by forces resulting from the 〈v′

rv
′
θ 〉 correlation of turbulent velocities. The origin of the required

correlations depends to some degree on latitude. In high latitudes, a positive correlation 〈v′
rv

′
θ 〉 is induced in the

NSSL by the poleward meridional flow whose amplitude increases with the radius, while a negative correlation
is generated by the Coriolis force in bulk of the convection zone. In low latitudes, a positive correlation 〈v′

rv
′
θ 〉

results from rotationally aligned convection cells (“banana cells”). The force caused by these Reynolds stresses is
in balance with the Coriolis force in the NSSL.
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1. INTRODUCTION

The Sun is rotating differentially, and the detailed distri-
bution of the angular velocity is revealed by helioseismology
(Thompson et al. 2003; Howe 2009; Howe et al. 2011; Barekat
et al. 2014; see Figure 1). Three important findings by helio-
seismology include the tachocline, the conical profile in the
middle of the convection zone, and the near surface shear layer
(NSSL). In the next section, the physical mechanism underlying
these features is discussed. The three features show a significant
deviation from the expected Taylor–Proudman state where the
angular velocity does not change along the rotational axis. The
strongest deviations from the Taylor–Proudman state are found
in the two boundary layers: the tachocline and the NSSL. As
shown in Figure 1, the thickness of the NSSL is about 0.04 R�,
where R� is the solar radius. The difference of the angular veloc-
ity (Ω/(2π )) in the region is 10–20 nHz. The variation in latitude
is not significant in the NSSL (Figure 1(b)). The existence of the
NSSL was already inferred before the advent of helioseismol-
ogy. Foukal & Jokipii (1975) pointed out that magnetic struc-
tures rotate 5% faster than surrounding gas. Then Howard et al.
(1984) compared the rotation rate estimated from the Doppler
velocity measurement and the tracking of the sunspots. It was
found that the rotation rate of the sunspots is consistently faster
than the Doppler velocity. This was interpreted as an indication
that the sunspots are anchored in a faster-rotating deeper layer.

1.1. Maintenance of the Differential Rotation

Differential rotation has been studied through mean field
models (e.g., Kichatinov & Rüdiger 1993; Küker & Stix 2001)
and 3D simulations (e.g., Gilman 1979; Miesch et al. 2000,
2008; Brun & Toomre 2002; Brun et al. 2011; Käpylä et al.
2011). While some mean field models are able to repro-

duce a near-surface shear layer (Rempel 2005; Kitchatinov &
Olemskoy 2011), this has remained a major challenge in 3D
simulations. Recent attempts have been made by De Rosa
et al. (2002), Brandenburg (2007), Guerrero et al. (2013), and
Warnecke et al. (2013).

According to Miesch & Hindman (2011), the mean flows in
the convection zone are described by the two equations, which
are the gyroscopic pumping and the meridional force balance.
The discussion below is in the spherical geometry (r, θ, φ).
The gyroscopic pumping is derived from the zonal component
of the equation of motion with the anelastic approximation
(∇ · (ρ0v) = 0) as

ρ0
∂〈L〉
∂t

= −ρ0〈vm〉 · ∇〈L〉 + FR, (1)

where ρ0, vm, andL = r sin θuφ specify the background density,
the meridional flow, and the specific angular momentum. v and u
specify the fluid velocities at the rotating system and the inertial
reference system, respectively, i.e., u = v + r sin θΩ0eφ , where
Ω0 and eφ are the rotation rate of the system and the zonal unit
vector. The bracket 〈〉 indicates the average in time and zonal
direction. In this discussion, the magnetic field and the viscosity
are neglected. Then the term FR is expressed as

FR = −∇ · (ρ0r sin θ〈v′
mv′

φ〉), (2)

where the prime indicates the deviation from the axisymmetric
temporally averaged value, i.e., a value is divided as Q =
〈Q〉 + Q′. FR expresses the angular momentum transport by the
Reynolds stress, i.e., the nonlinear coupling of the convective
flow components. The gyroscopic pumping equation indicates
that when the correlation of the convection flow is determined,
the mean meridional flow is determined accordingly in the
steady state (∂/∂t = 0).
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(a) (b)

Figure 1. Inversion of the helioseismology from HMI data about the angular velocity (Ω/2π ) in the unit of nHz (Howe et al. 2011) (a) on the meridional plane and
(b) along the selected colatitude. The dashed line in panel (b) roughly shows the bottom of the NSSL.

Figure 2. Schematic of the inward angular momentum transport by the radial
velocity under the weak influence from the rotation.

The detailed derivation of the meridional force balance is
found in Appendix C.

∂〈ωφ〉
∂t

= [〈∇ × (v × ω)〉]φ + 2r sin θΩ0
∂〈Ω1〉

∂z

+
g

ρ0r

(
∂ρ

∂s

)
p

∂〈s1〉
∂θ

, (3)

where ω = ∇ × v, Ω1 = vφ/(r sin θ ), g, and s are the
vorticity, the angular velocity, the gravitational acceleration,
and the entropy, respectively. The subscripts 0 and 1 show
the background and perturbed values, respectively. z means
the direction of the rotational axis. The first term expresses the
transport and the stretching, which includes both contributions
of mean flow and turbulent flow (we call it the transport term).
The second term shows the Coriolis force on the meridional
plane and the third is the baroclinic term.

We discuss the NSSL with these two equations. Foukal
& Jokipii (1975) suggest that when the convection is not
influenced much by the rotation, the radial velocity in the
thermal convection transports the angular momentum radially
inward (Figure 2). When the influence from the rotation is weak
and the radial motion conserves the angular momentum, the
correlation 〈v′

rv
′
φ〉 is negative and transports angular momentum

radially inward. Foukal & Jokipii (1975) argued that this is the
process for the generation and maintenance of the NSSL (see
also Gilman & Foukal 1979). There have been several attempts
to reproduce the NSSL based on this assumption (De Rosa et al.
2002; Rempel 2005; Brandenburg 2007; Guerrero et al. 2013).

Miesch & Hindman (2011), however, showed that the radially
inward angular momentum transport by the Reynolds stress
is only a necessary condition and that the force balance in
the meridional plane must be considered in addition. When
the transport term and the baroclinic term in Equation (3) are
neglected, the meridional force balance equation becomes

∂〈ωφ〉
∂t

= 2r sin θΩ0
∂〈Ω1〉

∂z
. (4)

This means that when the radially inward angular momentum
transport generates the NSSL, especially from mid to high
latitudes, i.e., negative ∂〈Ω1〉/∂z, it creates an anti-clockwise
meridional flow. This meridional flow continues to be accel-
erated and transport the angular momentum, until ∂〈Ω1〉/∂z
becomes zero. Thus, in order to obtain a meridional force bal-
ance that breaks the Taylor–Proudman constraint, other terms
are necessary to compensate for the Coriolis force. For instance,
it is thought that the baroclinic term balances the Coriolis force
within the bulk of the convection zone, which may lead to the
conical profile of the solar differential rotation and the structure
of the tachocline observed there (Rempel 2005; Miesch et al.
2006; Brun et al. 2011; Hotta & Yokoyama 2011). Balbus (2009)
obtained the solar-like differential rotation with this idea and the
assumption that isentropic and isorotational surfaces coincide.
Regarding the NSSL, it is unlikely that the baroclinic term is
larger than that in the middle of the convection zone. Even if it
is, the expected temperature would be 10 K at the surface, which
is not seen in observations (e.g., Rast et al. 2008). The transport
term could play an essential role in maintaining the NSSL. In
the near surface layer, the convection speed increases and the
spatial scale decreases. Indeed, it is expected that the ratio of
the rotational period to the convective dynamical timescale (i.e.,
the Rossby number Ro) should grow larger in the NSSL relative
to the low Rossby number (Ro < 1) convection of the deep
interior due to the decreasingly small overturning time of con-
vection near the surface. Thus, the reproduction of the NSSL in
the numerical calculation requires a wide range of spatial and
temporal scales, which must include giant cells down to scales
smaller than supergranulation. Our previous study of nonrotat-
ing global convection was successful in capturing convective
scales smaller than supergranulation in the near surface layer
using the reduced speed of sound technique (Hotta et al. 2014,
hereafter Paper I). In this study, we include the rotation to repro-
duce the NSSL in the global convection calculation. The main
focus of this paper is to clarify the generation and maintenance
mechanism of the NSSL in the view of the dynamical balance on
the meridional plane as well as the angular momentum transport.
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2. MODEL

We solve three-dimensional hydrodynamic equations in the
spherical geometry (r, θ, φ):

∂

∂t
(ξ 2ρ1) = −∇ · (ρv) , (5)

ρ
∂v
∂t

= −ρ(v · ∇)v − ∇p1 − ρ1ger + 2ρv × �0, (6)

ρT
∂s1

∂t
= −ρT (v · ∇)s1 +

1

r2

d

dr

(
r2κrρ0cp

dT0

dr

)
+ Γ, (7)

p1 =
(

∂p

∂ρ

)
s

ρ1 +

(
∂p

∂s

)
ρ

s1, (8)

where ρ = ρ0 + ξ 2ρ1. The numerical model is similar to
Paper I. We adopt the new expression of the reduced speed
of sound technique (Hotta et al. 2012b; see also Appendix A)
and the equation of state including the partial ionization effect
for the Sun. Γ is the cooling term, which is effective only near
the surface. We include the effect of rotation with a rate of
Ω0/(2π ) = 413 nHz, which is the solar rotation rate. We adopt
the same artificial viscosity as Rempel (2014). The details are
shown in Appendix B. The same distribution of ξ is used as in
Paper I, which is defined as

ξ (r) = ξ0
cs

cs(rmin)
, (9)

where the adiabatic speed of sound is defined as cs = √
(∂p/∂ρ)s

and ξ0 = 200 is adopted. Using this, the reduced speed of sound
is 1.13 km s−1 at all depths. The distribution of ξ is shown in
Figure 3. The initial stratification is adiabatic ds0/dr = 0 and
a small perturbation is added to the entropy in order to start
convection. The radiative diffusivity is 18 times smaller than
that calculated in the Model S (Christensen-Dalsgaard et al.
1996); thus the imposed luminosity is also 18 times smaller
than the solar luminosity. When we use the low viscosity in
combination with the solar rotation rate and luminosity, the
polar region is accelerated rather than the equator (Fan et al.
2013). There have been some systematic investigations on the
relation between the Rossby number and the rotation profile
(Käpylä et al. 2011; Matt et al. 2011; Gastine et al. 2014; Käpylä
et al. 2014). The formation of the NSSL, however, requires
the small-scale convection pattern, which can be achieved only
with low viscosity. Thus, we use the radiative diffusivity to
decrease the Rossby number in the convection zone until an
acceleration of the equator is reproduced. We implicitly assume
that the numerically unresolved thermal convection transports
substantial energy in the real Sun. We note that both high
resolution and higher position of the top boundary make it
difficult to obtain the accelerated equator, since both increase
the Rossby number and are likely breaking coherent rotationally
aligned flows (“banana cells”). Thus, a rather severe measure
is required, i.e., 18 times smaller luminosity, for achieving a
faster rotating equator in this study. While our setup allows
us to self-consistently generate a solar-like differential rotation
and an NSSL, we have to be careful when applying our result to
the Sun. The resolution is 384(Nr ) × 648(Nθ ) × 1944(Nφ) × 2
in the Yin–Yang grid, which is fairly high compared to other
calculations (e.g., Miesch et al. 2008), except for that in Paper I.
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Figure 3. Distribution of ξ .

The top and bottom boundaries are at 0.99 R� and 0.715 R�,
respectively. Both boundaries are impenetrable and stress free,
i.e., vr = ∂(vθ/r)/∂r = ∂(vφ/r)/∂r = 0. A free boundary
condition (zero gradient) is adopted for the density and entropy
perturbation (∂ρ1/∂r = ∂s1/∂r = 0).

3. RESULT

We use previously calculated data using higher artificial
viscosity and an old expression of the RSST, i.e., using ρ0
instead of ρ, for 4500 days as an initial condition. Then, we
switch the expression to current equations (Equations (5)–(7))
and reduce the artificial viscosity and calculate it for 200 days.
Since the changes of differential rotation and meridional flow are
not very significant, 200 days of calculations are enough for the
differential rotation and the meridional flow to reach a steady
state in which the time derivative of these large-scale flows
are small compared with the other terms. In order to analyze
the data, we continue the simulation for another 200 days.
Figure 4(a) shows the temporal evolution of the total energy
of the differential rotation (〈vφ〉: black) and the meridional
flow (〈vr〉: blue and 〈vθ 〉: red). The temporal evolution of total
kinetic energy (black) and total energy from t = 0 are shown in
Figure 4(b). Since the plots of the energy (Figure 4(b)) indicate
long-term evolution, we also consider the influence of this
evolution by estimating ∂〈L〉/∂t and ∂〈ωφ〉/∂t in the following
analyses. Rather large time evolution is seen in the total energy
ρe1 +ρv2/2 (red line in Figure 4). We confirmed that this can be
mostly explained with the imbalance of the energy flux between
the bottom and the top boundaries caused by artificial viscosity
on the entropy and the radiative diffusion. This can be fixed
in a future study. This imbalance corresponds to about 3% of
the convective energy flux through the system and potentially
influences results on this level. The conservation of the angular
momentum is reasonably confirmed in this period (Figure 4(c)).
rms values of the density, pressure, and entropy are shown
in Figure 5. These values are normalized by the background
values in order to show the validity of the linearized equation
of state (Equation (8)). The dotted line shows the distribution of
ξ 2[ρ1/ρ0]rms. Since ξ 2ρ1/ρ0 is 0.023 at maximum, it does not
influence our analyses by taking ρ0 instead of ρ = ρ0 + ξ 2ρ1,
and we mention this issue again in the following analyses. We
note that since we do not use ξ 2ρ1, but ρ1 for the equation
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Figure 4. (a) Temporal evolution of total kinetic energy of mean velocity. The blue, red, and black lines show the total kinetic energy of 〈vr 〉, 〈vθ 〉, and 〈vφ〉,
respectively. (b) Temporal evolution of the difference of total kinetic energy including differential rotation, meridional flow, and nonaxisymmetric flow (black), and
the total energy including internal energy ρe1 + ρv2/2 (red) from the value at t = 0 normalized by the background internal energy, i.e., the initial total energy. (c)
Temporal evolution of the deviation of the angular momentum conservation using the ratio of the total angular momentum.
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Figure 5. Radial distribution of rms values of ρ1/ρ0 (black), p1/p0 (blue), and
s1/cp (red). The dashed line shows the rms value of ξ2ρ1/ρ0.

of state, the linearization of the equation of state is valid. To
increase the statistical validity, we average the north and south
hemispheres considering the symmetry. Figure 6 shows the
snapshot of the radial velocity vr at t = 200 day at selected
depth, where t = 0 is the start of the analysis. (See also the
corresponding animation.) The white lines show the location of
the tangential cylinder r sin θ = rmin. We can reproduce 10 Mm
scale convection at r = 0.99 R� without any influence on the
rotation in which we cannot see any clear alignment of the
convection pattern along the rotational axis (the banana cell).
At r = 0.92 R�, the banana-cell-like feature begins to appear
and, at r = 0.85 R�, we can see a clear banana cell pattern. In
addition, the banana cell pattern is seen outside the tangential
cylinder. This dependence of the convection pattern on depth
is basically determined by the Rossby number. Figures 7(a)
and (b) show the radial profile of rms velocity and the Rossby
number defined here by Ro = vrms/(2Ω0Hp), respectively.
Three components of the rms velocity monotonically increase
along with radius, whereas vr monotonically decreases above
0.975 R� due to the top boundary condition. The Mach number
defined with rms velocity and the reduced speed of sound is
0.12 at maximum. This satisfies the criterion obtained in Hotta
et al. (2012b). This along with the decrease in the pressure scale
height Hp cause a significant increase of the Rossby number
around the surface. Especially above r = 0.93 R�, the Rossby
number exceeds unity indicating a weak rotational influence on
the convective flow.

Figure 8 shows the distribution of the angular velocity
(〈Ω〉/(2π )), where Ω = Ω0 + Ω1 and Ω1 = vφ/(r sin θ ). The

NSSL’s features are clearly seen, especially in the low colatitude
(θ > 45◦) and high colatitude (θ < 30◦). We note that mid-
colatitude is where poleward meridional flow is most efficient at
maintaining the Taylor–Proudman state, i.e., hardest to maintain
NSSL (see also Guerrero et al. 2013). In the convection zone
at the low to mid latitude, the differential rotation is almost
in the Taylor–Proudman state (∂〈Ω〉/∂z ∼ 0). Note that the
angular velocity has similar values to the solar one, i.e., 460 nHz
and 340 nHz at the equator and the polar regions, respectively.
Figure 9 shows the radial profile of the angular velocity at
selected colatitude. At low colatitude (θ = 30◦ and 45◦),
we can clearly see the decrease of the angular velocity from
r = 0.95 R� to 0.975 R�, which is the feature of the NSSL. At
the mid colatitude θ = 60◦ the tendency is reversed. The angular
velocity increases more steeply than that in the deep convection
zone. At the high colatitude, the decrease from r = 0.92 R� to
0.99 R� is seen. The sign change of ∂Ω/∂r above 0.975 R� is
related to the influence from the top boundary, causing the rms
value of vr to drop significantly.

Figure 10 shows the mean meridional flow. Figure 10(b)
clearly shows that in the near surface area (>0.9 R�), there
is a prominent poleward flow, which is caused by the radially
inward angular momentum transport. An equatorward directed
meridional flow is found near the base of the convection zone
and also in a thin layer around 0.85–0.9 R� below 45◦ latitude.
In the convection zone, the multi-cell structure of the meridional
flow is generated, which is similar on a qualitative level to the
recent finding by the local helioseismology (Zhao et al. 2013).

From our equation of motion, the balance equation for the
specific angular momentum is expressed as

∂〈L〉
∂t

= − 〈vm〉 · ∇〈L〉 − 〈(v′
m · ∇)L′〉

− r sin θ

〈∇ · Fvφ

ρ

〉
, (10)

where the final term shows the artificial viscosity (see
Appendix B). Figures 11(a)–(d) show ρ0∂〈L〉/∂t , ρ0〈vm〉 · 〈L〉,
−ρ0〈(v′

m · ∇)L′〉 and (d) −ρ0r sin θ
〈∇ · Fvφ

/ρ
〉
, respectively.

The background density ρ0 is multiplied to see the balance
in the convection zone and the near surface area simultaneously.
The balance between angular momentum transports by the mean
flow (panel (b)) and turbulence (panel (c)) is fairly good. Since
the term ρ0∂〈L〉/∂t is small compared to other terms, the distri-
bution of angular momentum is almost in a steady state. The L2
norm of ∂〈L〉/∂t is 0.04% of the sum of the L2 norm of the terms
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(a) (b)

(c) (d)

Figure 6. Contour of the radial velocity vr at (a) r = 0.99 R� (b) r = 0.92 R�, (c) r = 0.85 R�, (d) r = 0.72 R�. The white lines show the tangential cylinder
r sin θ = rmin, where rmin = 0.715 R�.

(An animation of this figure is available.)
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Figure 7. Radial profile of (a) the rms velocity and (b) vrms/(2Ω0Hp). The black, blue, and red lines show the radial (vr), the latitudinal (vθ ), and the zonal (vφ ) values,
respectively. The dashed line in the panel (b) indicates the values at unity.

in the right hand of Equation (10). The effect of the artificial
viscosity is seen only around the bottom boundary. This would
be caused by the thin fast down flow crashing into the bottom
wall boundary. In order to have a discussion of the Reynolds
stress, we consider the relation

ρ(v · ∇)L = L∇ · (ρv) + ∇ · (ρvL). (11)

Figures 12(a) and (b) show 〈L∇ · (ρv)〉 and −∇ · (ρ0〈v′
mL′〉),

respectively. The contribution related to ∇ · (ρv) is very small
and the values −ρ0〈(v′

m · ∇)L′〉 and −∇ · (ρ0〈v′
mL′〉) are almost

equivalent. Thus, we can use the Reynolds stress, i.e., the cor-
relation of velocities, to understand the balance of angular mo-
mentum. We confirmed the relations of ξ 2〈ρ ′v′

mL′〉 � ρ0〈v′
mL′〉

and ξ 2〈ρ ′v′
m〉 � ρ0〈vm〉, where ρ ′ = ρ1 − 〈ρ1〉. Figures 13(a)

and (b) show the correlations between the velocities, which are
〈v′

rv
′
φ〉 and 〈v′

θ v
′
φ〉. We note that these correlations are not nor-

malized by the rms velocity (different from the definition in
Paper I). The negative correlation of 〈v′

rv
′
φ〉 that is speculated by

Figure 2 is reproduced, which causes the radially inward angular
momentum transport. This negative correlation is not confined
to the NSSL. In contrast, at low latitudes, a positive correlation
of 〈v′

θ v
′
φ〉 is realized, and is likely due to the banana-cell-like

features (Miesch 2005).
As introduced in Section 1.1, the discussion regarding the

meridional force balance is required to understand the main-
tenance mechanism of the NSSL in addition to the angular
momentum transport shown in Figure 13. We discuss the dy-
namical balance by using the correlation of velocities. Thus, we
check the relation of

∇ × (〈v × ω〉) = −∇ ×
[〈

1

ρ
(〈∇ · (ρvv) − v∇ · (ρv))

〉]
. (12)
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Figure 8. Averaged angular velocity (〈Ω〉/(2π )) over 200 days in units of nHz.
The black dashed lines show the selected colatitude in Figure 9.

Figures 14(a) and (c) show the first term of the left-hand side and
the second term of the right-hand side, respectively. Figure 14(b)
shows the value C = −∇ × [∇ · (ρ0〈vv〉)/ρ0]. Figures 14(a)
and (b) are almost equivalent and the value related to ∇ · (ρv)
is negligible. Thus, we use C as the transport term instead of
∇ × (〈v × ω〉). We divide the contribution of the dynamical
balance on the meridional plane as

W − T = B + C̃ + C′ + V, (13)

where

W = ∂〈ωφ〉
∂t

, (14)

T = r sin θ
∂〈Ω〉2

∂z
, (15)

B = −
[
∇ ×

(∇p1 + ρ1ger

ρ

)]
φ

. (16)

The term T is caused by the Coriolis force on the merid-
ional plane, which contributes to the balance when the dif-
ferential rotation deviates from the Taylor–Proudman state
(∂〈Ω〉/∂z �= 0). The term B is caused by the pressure gradi-
ent and the buoyancy (baroclinic term) and requires a latitudinal
entropy gradient to be present. The detailed form of C′ and C̃ are
found in Appendix C. These two are caused by the momentum
transport within the meridional plane. C′ and C̃ are contributions
by the mean meridional flow (〈vr〉 and 〈vθ 〉) and the nonaxisym-
metric flow (v′

r and v′
θ ), respectively. V is a contribution from

the artificial viscosity (see Appendices B and C). Figure 15
shows the distribution of (a) W , (b) −T , (c) B, (d) C̃, (e) C′, and
(f) V . According to the distribution of the −T , we divide the
meridional plane to four regions (I, II, III, and IV as shown in
Figure 15(b)). Region I is maintained by the latitudinal entropy
gradient B from the middle to the bottom of the convection
zone. In the other regions (II, III, and IV), the deviation from
the Taylor–Proudman state cannot be explained by the entropy
gradient alone. The contributions from time evolution W (panel
(a)), mean flow C̃ (panel (d)), and artificial viscosity V (panel
(f)) have negligible roles even in the NSSL. Then we see that the
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Figure 9. Radial profile of the angular velocity on the selected colatitudes. The
dotted lines show r = 0.95 R� and 0.975 R�, which is roughly the NSSL.

contribution from the nonaxisymmetric flow (C′: Figure 15(d))
almost totally compensates the term −T in regions II, III, and
IV. To investigate the origin of the distribution of C′, which
can maintain the NSSL, we divide the term C′ into three as
C′ = C′

d +C′
θ +C′

r . Their detailed forms are found in Appendix C.
The term C′

d is caused by the diagonal momentum fluxes F ′
rr ,

F ′
θθ , and F ′

φφ , where F ′
ij = ρ0〈v′

iv
′
j 〉 (see Appendix C). The

terms C′
θ and C′

r are caused by the nondiagonal momentum flux
F ′

rθ . The difference of these two terms is explained as the term
C′

θ (C′
r ) that is caused by the transport of the latitudinal mo-

mentum ρ0v
′
θ (radial momentum ρ0v

′
r ) in the radial (latitudinal)

direction. We note that C′
r and C′

θ can act as turbulent diffusivity
on the meridional flow. Figure 16 shows the distribution of (a)
C′

d, (b) C′
θ , and (c) C′

r . The diagonal term C′
d contributes to some

degree and the contribution from the term C′
r is negligible. The

essential contribution is by the term C′
θ , i.e., the transport of the

latitudinal momentum in the radial direction.
Next, we investigate the origin of C′

θ by estimating the quantity
D′

θ(n), which is a latitudinal force arising from momentum
transport (see Appendix C for a more complete definition of
D). This force is defined as

D′
θ(n) = − 1

ρ0

[
1

r2

∂

∂r
(r2F ′

rθ ) − F ′
θr

r

]
, (17)

which is related to C′
θ

C′
θ = 1

r

∂

∂r
(rD′

θ(n)), (18)

and where the subscript θ (n) refers to the inertial force in the lat-
itudinal direction arising from the nondiagonal Reynolds stress
F ′

rθ = 〈v′
rv

′
θ 〉. Figure 17 shows (a) D′

θ(n) and (b) 〈v′
rv

′
θ 〉, where

in (a) it is evident that the direction of the inertial force is equa-
torward (poleward) at the top (bottom) of the NSSL at high
latitudes (i.e., Region II). In this region, the inertial force tends
to balance the Coriolis force. The origin of this inertial force is
the Reynolds stress 〈v′

rv
′
θ 〉, as can be deduced from the corre-

lation of Figure 17(b). In the high-latitude NSSL, the positive
correlation 〈v′

rv
′
θ 〉 > 0 leads to the upward transport of lati-

tudinal momentum. In contrast, in the high-latitude deep con-
vection zone, the correlation is negative. This arrangement of
momentum flux increases (decreases) the latitudinal momen-
tum in the upper (lower) part of the NSSL (Figure 17(a)).
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(a) (b)

Figure 10. Radial and latitudinal mass fluxes averaged in time and zonal direction over 200 days. (a) ρ0〈vr 〉 and (b) ρ0〈vθ 〉 in the unit of g cm−2 s−1.

(c) (d)

(a) (b)

Figure 11. Values (a) ρ0∂〈L〉/∂t , (b) ρ0〈vm〉 · 〈L〉, (c) −ρ0〈(v′
m · ∇)L′〉, and (d) −ρ0r sin θ

〈∇ · Fvφ
/ρ

〉
in the unit of 106 g cm−1 s−2 are shown on the meridional

plane. The white lines show the location of the tangential cylinder.

(a) (b)

Figure 12. Values (a) 〈L∇ · (ρv)〉 and (b) −∇ · (ρ0〈v′
mL′〉), in units of 106 g cm−1 s−2 are shown on the meridional plane. The white lines show the location of the

tangential cylinder.

7
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(a) (b)

Figure 13. Values (a) 〈v′
r v

′
φ〉 and (b) 〈v′

θ v
′
φ〉 in units of 106 cm2 s−2 in units of 106 g cm−1 s−2 are shown on the meridional plane. The white lines show the location

of the tangential cylinder.

(a) (b) (c)

Figure 14. Values (a) ∇ × (〈v × ω〉), (b) C = −∇ × [∇ · (ρ0〈vv〉)/ρ0], and (c) ∇ × [〈v∇ · (ρv)/ρ〉], in units of 10−12 s−2, are shown on the meridional plane. The
white lines show the location of the tangential cylinder.

These correlations are the essential ingredients that maintain
the meridional flow within the NSSL at high latitudes.

The following discussion is centered around the origin of
velocity correlations generated from a combination of rotation
and large-scale shear. We retain the dominant terms that can
generate a positive or negative correlation as

∂v′
r

∂t
= − v′

θ

r

∂〈vr〉
∂θ

+ 2v′
φ〈Ω〉 sin θ + [. . .], (19)

∂v′
θ

∂t
= − v′

r

∂〈vθ 〉
∂r

+ 2v′
φ〈Ω〉 cos θ + [. . .], (20)

∂v′
φ

∂t
= − 2v′

r〈Ω〉 sin θ − 2v′
θ 〈Ω〉 cos θ + [. . .]. (21)

The sign of the velocity correlation significantly depends on
whether v′

r and v′
θ are generated by v′

φ (Situation 1), or v′
φ is

generated by v′
r and v′

θ (Situation 2). The signs of 〈v′
rv

′
φ〉 and

〈v′
θ v

′
φ〉 are the direct consequence of these situations. When

the Situation 1 is achieved, positive correlations (〈v′
rv

′
φ〉 and

〈v′
θ v

′
φ〉) are generated through Equations (19) and (20). On

the other hand, under Situation 2, negative correlations are
generated through Equation (21). Figures 13(a) and (b) indicate
that Situation 1 requires both the low Rossby number and
the banana cell, i.e., a deeper layer and outside the tangential
cylinder, since the positive correlations (〈v′

rv
′
φ〉 and 〈v′

θ v
′
φ〉) are

especially seen there. Outside the tangential cylinder with a low
Rossby number, the zonal flow v′

φ is dominant due to coherent
banana cell structure with weak influence from the bottom
boundary (Gilman 1979; Miesch et al. 2000; Miesch 2005; Brun
et al. 2011). Thus, v′

φ generates v′
r and v′

θ there. In contrast to
Situation 1, Situation 2 is realized even with a high Rossby
number. The role of the meridional flow, however, becomes
large in a high Rossby number situation (see the following
discussion).

Before discussing the origin of the correlation 〈v′
rv

′
θ 〉 in the

high-latitude NSSL, we first describe the feature found in low
latitudes. From the high to the mid latitudes, we find a negative
correlation in the near surface layer, while a positive correlation
is generated in the lower latitude from the surface to the middle
of the convection zone. This positive correlation is generated by
the banana cells. When both the radial and latitudinal velocities
are generated by the Coriolis force, the correlation 〈v′

rv
′
θ 〉 can

be positive (see also Equations (19) and (20)). In the NSSL,
however, the Rossby number is large and banana cells do not
exist. This means that the positive correlation 〈v′

rv
′
θ 〉 in the

high latitude NSSL is generated by different mechanism(s).
The first term in each of Equations (19) and (20) is that due to
the mean meridional flow, which is the most important element
in this discussion. In this discussion, we focus on the correlation
between v′

r and v′
θ . When the typical timescale is estimated as

τ = Hp/vrms, we obtain the relation

v′
φ ∼ −2τv′

r〈Ω〉 sin θ − 2τv′
θ 〈Ω〉 cos θ, (22)

8
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(a) (b) (c)

(d) (e) (f)

Figure 15. Values (a) W , (b) −T , (c) B, (d) C̃, (e) C′, and (f) V in units of 10−12 s−2 are shown on the meridional plane. The white lines show the location of the
tangential cylinder. The indicated regions I–IV refer to different balances achieved. I: −T = B, II, III, and IV: −T = C′.

(a) (b) (c)

Figure 16. Values (a) C′
d (b) C′

θ , and (c) C′
r in units of 10−12 s−2. are shown on the meridional plane. The white lines show the location of the tangential cylinder.

(a) (b)

Figure 17. Values (a) Dθ(n) in units of 10−3 cm s−2 and (b) 〈v′
r v

′
θ 〉 in units of 106 cm2 s−2 are shown on the meridional plane. The white lines show the location of

the tangential cylinder. The dashed circle shows the boundary of the effective and ineffective area of the banana cell.

9
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(a) (b)

Figure 18. Values (a) ∂〈vr 〉/(r∂θ ) and (b) ∂〈vθ 〉/∂r in units of 10−7 s−1 are shown on the meridional plane. The white lines show the location of the tangential
cylinder.

from Equation (21). Note that we can use this transformation,
since the region is inside the tangential cylinder where no
banana cell exists and v′

φ is generated by v′
r and v′

θ (see the
discussion in the previous paragraph). We substitute this relation
with Equations (19) and (20) and only retain the terms that can
generate the nonzero correlation between v′

r and v′
θ :

∂v′
r

∂t
= [. . .] − v′

θ

r

∂〈vr〉
∂θ

− 2v′
θ τ 〈Ω〉2 sin(2θ ), (23)

∂v′
θ

∂t
= [. . .] − v′

r

∂〈vθ 〉
∂r

− 2v′
r τ 〈Ω〉2 sin(2θ ). (24)

This means that the terms from the Coriolis force (i.e., the last
term in each equation) generates a negative correlation between
v′

r and v′
θ . This is expected since a strong Coriolis force leads to

fluid motions preferentially aligned with the axis of rotation. The
sign of the correlation by the mean flow depends on the signs of
∂〈vr〉/(r∂θ ) and ∂〈vθ 〉/∂r . Figure 18 shows the distribution of
(a) ∂〈vr〉/(r∂θ ), and (b) ∂〈vθ 〉/∂r . It is clear that the contribution
from the term related to ∂〈vr〉/(r∂θ ) is small compared to the
term of ∂〈vθ 〉/∂r . Interestingly, we find a negative value of
∂〈vθ 〉/∂r in region II and a positive value in region IV. Only
when ∂〈vθ 〉/∂r is negative can the correlation 〈v′

rv
′
θ 〉 have a

positive value. On the contrary, there is negative 〈v′
rv

′
θ 〉 in region

IV with positive ∂〈vθ 〉/∂θ (see Figure 18(b)).
The effectiveness of the generation of the positive correlation

by the mean meridional flow can be estimated as follows:

M = − ∂〈vθ 〉/∂r

2τ 〈Ω〉2 sin(2θ )
∼ − 1

sin(2θ )〈Ω〉
∂〈vθ 〉
∂r

Ro, (25)

where Ro = vrms/(2〈Ω〉Hp). When M is larger than unity,
the meridional flow is effective in generating the correlation
〈v′

rv
′
θ 〉. We note that the mathematical form of M indicates that

it is most difficult to achieve this balance in mid-latitude due
to the factor of 1/ sin(2θ ), assuming the meridional flow is the
same at all latitudes. Since the positive correlation is found in
between θ = 20◦ and 40◦, we estimate sin(2θ ) ∼ 0.5. Using
the values 〈Ω〉/(2π ) = 380 nHz, Ro = vrms/(2〈Ω〉Hp) ∼ 3
(which is taken from Figure 7 at the base of the NSSL) and
∂〈vθ 〉/∂r ∼ −4 × 10−7 s−1 (around r = 0.95 R�), leads to
a value of M at the base of the NSSL of 1. This shows that
the generation of the positive correlation by the mean poleward

flow begins to be effective in the base of the NSSL. When
the value ∂〈vθ 〉/∂r is positive, both terms of the meridional
flow and the Coriolis force generate a negative correlation. This
cannot generate the solar-like NSSL even under the large Rossby
number situation (region IV).

In the low-latitude NSSL (region III), the positive correlation
〈v′

rv
′
θ 〉 is mostly generated by the banana cell convection with

some contribution from the poleward meridional flow, where
∂〈vθ 〉/∂r < 0 (Figure 17(b)). Around the tangential cylinder
(white line), the effect of the banana cells and the meridional
flow is ineffective and the correlation 〈v′

rv
′
θ 〉 is negative. In

the boundary of the effective and ineffective layer of these
mechanisms, i.e., the boundary of the positive and negative
correlation 〈v′

rv
′
θ 〉, the fluid is accelerated poleward due to

inertial force, which compensates the Coriolis force in the low-
latitude NSSL. The circle in Figure 17 indicates the boundary
area that has poleward acceleration.

In this study, the equatorward meridional flow in the very near
surface is generated. Although the origin of the equatorward
meridional flow is unknown, this type of feature is seen in
the previous study (Miesch et al. 2008). We find that the
equatorward meridional flow is generated in the region where
the inward directed transport stops. This means the angular
momentum is deposited in this region by the Reynolds stress,
which will be transported by the equatorward meridional flow.
Although, in current global calculation we must have thick
cooling layer (∼4000 km) in which the radial velocity and its
radially inward angular momentum transport decrease, the real
Sun has a much thinner one (∼100 km) in the photosphere. The
real solar situation might not cause a sign change of d〈vθ 〉/dr
in the real Sun. The distribution of the NSSL, especially in the
low latitude, should be confirmed with higher resolution in the
future.

4. SUMMARY AND DISCUSSION

We presented a high-resolution, highly stratified numerical
simulation of rotating thermal convection in a spherical shell.
We find the self-consistent generation of an NSSL mostly in high
latitudes and analyze in detail the underlying angular momentum
transport terms and meridional force balance.

With regard to the angular momentum transport, the main-
tenance mechanism is the same as that suggested by Foukal &
Jokipii (1975) and Gilman & Foukal (1979). Convection with
small rotational influence leads to the radially inward transport
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Direction of Coriolis force

Direction of force by 
momentum transport

(a) (b)

Figure 19. Summary of our findings in the schematic picture. In this figure, we only discuss Reynolds-stress related balances, i.e., we do not show the thermal wind
balance in the bulk of the convection zone. Panel (a) shows the distribution of the correlation 〈v′

r v
′
θ 〉. The gray area indicates the strong influence of the rotation.

Panel (b) shows the force balance on the meridional plane. The gray and red arrows show the direction of the Coriolis force and the force by the momentum transport.
Regarding the Coriolis force, the latitudinal component is shown. The dashed lines are the contour lines of the angular velocity.

(a) (b)

Figure 20. (a) Quantity −vrmsHpr∂(〈vθ 〉/r)/∂r/3 is shown, which indicates stress by the turbulent viscosity and (b) 〈v′
r v

′
θ 〉 for an easy comparison in units of

106 cm2 s−2.

of angular momentum. Since the NSSL deviates significantly
from the Taylor–Proudman state (∂〈Ω1〉/∂z �= 0), mechanisms
are required to balance the Coriolis force, which tends to drive
the NSSL toward the Taylor–Proudman state. These are related
to velocity correlations (Reynolds stresses) within the merid-
ional plane.

Figure 19(a) summarizes the distribution of the correlations.
In the high latitude NSSL, a positive correlation 〈v′

rv
′
θ 〉 is

generated by the poleward meridional with a negative radial
gradient (∂〈vθ 〉/∂r < 0). This can be interpreted as a turbulent
viscous stress −νtr∂(〈vθ 〉/r)/∂r in the near-surface layer. The
distribution of estimated turbulent viscosity stress is shown
in Figure 20, where the turbulent viscosity is estimated as
νt = vrmsHp/3 (Rüdiger 1989; Hotta et al. 2012a).

Figure 19(b) summarizes the dynamical balance on the
meridional plane. The poleward meridional flow is generated
due to the inward angular momentum transport. This flow grows
until a combination of turbulent viscous stress and acceleration
forces can balance the Coriolis force. The reason this works
in the NSSL is that the radial gradient of the meridional flow
(d〈vθ 〉/dr) is strong and the rms velocity is large.

We note that there were some studies that tried to ex-
plain differential rotation through turbulent viscous stresses.
This, however, requires a significantly larger Rossby number,

i.e., smaller Taylor number, than that expected in the solar con-
vection zone (Brandenburg et al. 1990; Kitchatinov & Rüdiger
1995; Williams 2006), which was phrased the “Taylor-number
puzzle” in the literature. In this study, this balance between the
Coriolis force and the inertial force is well achieved in the high
latitude. In the low latitude, the banana cell generates the positive
correlation, which increases along the radius and accelerates the
fluid poleward (region III: around the tangential cylinder, which
is highlighted by circle in Figure 17). When the equatorward
meridional flow with increasing amplitude (∂〈vθ 〉/∂r > 0) is
effective, i.e., the large Rossby number, the correlation 〈v′

rv
′
θ 〉

becomes negative (region IV). At the layer where this effect
begins to occur, the fluid is accelerated equatorward. Then, the
negative correlation becomes zero and approaches the bound-
ary, which then accelerates the fluid poleward again. This com-
plicated transport of momentum governs the meridional force
balance of the NSSL at low latitudes.

In this study, we reduced the solar luminosity to obtain the
accelerated equator. This reduces the convective velocity and
the Rossby number. Thus, the profile of the NSSL may also
be influenced by the small Rossby number compared with the
actual Sun.

The most important findings in this study are that the angular
momentum is transported radially inward in the NSSL and that
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the turbulent viscous stress resulting from the radial gradient
of the latitudinal meridional flow, i.e., νt r∂(〈vθ 〉/r)∂r , plays an
essential role in the maintenance of the NSSL.

Our difficulties in obtaining a solar-like profile of the NSSL
in the very-near-surface layer are possibly related to the top
boundary condition that forces vr to go to zero. Observations
(Zhao et al. 2013) indicate a poleward flow with increasing
amplitude in radius, which would lead to the proper positive
correlation 〈v′

rv
′
θ 〉 required for a solar-like NSSL.
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APPENDIX A

NEW EXPRESSION OF RSST

As explained in Paper I, using the original RSST, the values
from the momentum and the total energy are not conserved.
In this paper, we adopt a new expression of the RSST in which
these values are mathematically conserved. The conserved value
related to the total energy is ρT s1+ρv2/2, and this requires linear
approximation. Our approach is summarized by the following.
(1) The total density is expressed as ρ = ρ0 + ρ̃1, (2) using the
ordinary linearized equations of continuity, motion, and state
with reducing the adiabatic speed of sound and the buoyancy
term as

∂ρ̃1

∂t
= − ∇ · (ρv), (A1)

ρ
∂v
∂t

= − ρ(v · ∇)v − ∇p1 − ρ̃1

ξ 2
ger + [. . .], (A2)

p1 =
(

∂p

∂ρ

)
s

ρ̃1

ξ 2
+

(
∂p

∂s

)
ρ

s1. (A3)

Following this idea, we simply reduce the adiabatic speed of
sound (∂p/∂ρ)s by a factor of ξ 2 with Equation (A3). The
balance in the equation of motion makes the perturbation of
the pressure same. This causes the increase of the density
perturbation ρ̃1 by the factor of ξ 2. In order to avoid the increase
of the buoyancy, i.e., to keep the proper balance between
pressure gradient and buoyancy, the density perturbation for
the buoyancy is divided by ξ 2 (Equation (A2)). We tested the
validity of this method using a similar method as Hotta et al.
(2012b), i.e., a Cartesian box test problem. We confirm that the
reduction of the adiabatic speed of sound scales up the density
perturbation by a factor of ξ 2 while maintaining the shape of the
rms and mean density. Tilde is used, since ρ̃1 is increased from
the ordinary density perturbation ρ1 by a factor of ξ 2.

Since the quantity ρ̃1/ξ
2 remains invariant in leading order

when changing ξ , it is more convenient to write ρ = ρ0 + ξ 2ρ1.
Using this expression for the density, we can derive a form of
the RSST that is similar to (Hotta et al. 2012b),

∂ρ

∂t
= −∇ · (ρv) → ∂ρ1

∂t
= − 1

ξ 2
∇ · (ρv). (A4)

We note that we use ρ instead of ρ0 on the right-hand side. In
addition, we also use ρ for the equation of motion and entropy as

ρ
∂v
∂t

= − ρ(v · ∇)v − ∇p1 − ρ1ger + [. . .], (A5)

ρT
∂s1

∂t
= − ρT (v · ∇)s1 + [. . .]. (A6)

The equation of state is expressed as

p1 =
(

∂p

∂s

)
s

ρ1 +

(
∂p

∂ρ

)
ρ

s1. (A7)

Then the variable ρ is conserved mathematically. We again note
that in this discussion, ρ = ρ0+ξ 2ρ1. In addition, the expressions

ρ
∂v
∂t

+ ρ(v · ∇)v, (A8)

and

∂

∂t
(ρv) + ∇ · (ρvv), (A9)

are identical. This means that the angular momentum ρL is
conserved with this form mathematically.

Next, we derive the conservation of total energy under the
linear approximation, i.e., we ignore the second order term.
From the hydrostatic equilibrium, the relation

g = − 1

ρ0

dp0

dr

= − 1

ρ0vr

Dp0

Dt
, (A10)

is obtained, where D/Dt = ∂/∂t + v · ∇ is the Lagrangian
derivative. The equation of the kinetic energy is written as

ρ
D

Dt

(
1

2
v2

)
+ (v · ∇)p1 + vrρ1g = ρ

D

Dt

(
1

2
v2

)

+ ∇ · (vp1) +
p1

ρ

Dρ

Dt
− ρ1

ρ0

Dp0

Dt
= 0. (A11)

Our background temperature gradient is adiabatic:

s1
DT

Dt
∼ s1

DT0

Dt
= s1

(
∂T

∂ρ

)
s

Dρ0

Dt
(A12)

= s1

(
∂T

∂p

)
s

Dp0

Dt
. (A13)
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Then, the equation of entropy (ρT Ds1/Dt = Q, where
Q includes radiative diffusion and surface cooling), is
transformed as

ρ
D

Dt
(T s1) − ρs1

DT

Dt
∼ ρ

D

Dt
(T s1)

− ρ

[(
∂s

∂ρ

)
p

ρ1 +

(
∂s

∂p

)
ρ

p1

]
DT0

Dt

= ρ
D

Dt
(T s1) − ρ

[ (
∂s

∂ρ

)
p

(
∂T

∂p

)
s

ρ1
Dp0

Dt

+

(
∂s

∂p

)
ρ

(
∂T

∂ρ

)
s

p1
Dρ0

Dt

]

= ρ
D

Dt
(T s1) − ρ

[ (
− cp

βρ0T0

)(
βT0

cpρ0

)
ρ1

Dp0

Dt

+

(
κTcv

βT0

) (
βT0

cvκTρ2
0

)
p1

Dρ0

Dt

]

= ρ
D

Dt
(T s1) − ρ

(
−ρ1

ρ2
0

Dp0

Dt
+

p1

ρ2
0

Dρ0

Dt

)
= Q, (A14)

where β and κT are the coefficient of thermal expansion and the
coefficient of isothermal compressibility, respectively (Hotta
et al. 2014; Mihalas & Mihalas 1984). Thus. the equation of the
total energy is expressed using the linear approximation

ρ
D

Dt

(
T s1 +

1

2
v2

)
+ ∇ · (vp1) = Q. (A15)

The value ρT s1 + ρv2/2 is conserved. We note the deviation is
mainly caused by the value ξ 2ρ1/ρ0. Using the equation of state
for the perfect gas, the value is transformed as ρT s1 ∼ ρcvT1 −
p0ρ1/ρ0, which means the internal energy and contribution of
the buoyancy. We note that using the anelastic approximation
(0 = ∇ · (ρ0v)), the value ρ0T0s1 + ρ0v

2/2 is conserved without
any linear approximation. The above derivation assumes the
adiabatic background stratification. Some additional terms and
assumptions would be required when we have nonadiabatic
background stratification

APPENDIX B

ARTIFICIAL VISCOSITY

The same artificial viscosity as MuRAM code (Rempel 2014)
is added on all the variables as

∂

∂t
(ρ1ξ

2) = −∇ · Fρ, (B1)

ρ
∂vr

∂t
= −∇ · Fvr , (B2)

ρ
∂vθ

∂t
= −∇ · Fvθ

, (B3)

ρ
∂vφ

∂t
= −∇ · Fvφ

, (B4)

ρT
∂s1

∂t
= −∇ · Fs. (B5)

Fi+1/2 = −1

2
ci+1/2φi+1/2 (ur − ul, ui+1 − ui) (ur − ul) , (B6)

φ =
⎧⎨
⎩max

[
0, 1 + h

(
ur − ul

ui+1 − ui

− 1

)]
for (ur − ul) · (ui+1 − ui ) > 0,

0 for (ur − ul) · (ui+1 − ui ) � 0,

(B7)

where ci+1/2 = 0.3cs + v is the characteristic velocity, which
is the sum of the speed of sound (cs) and fluid velocity (v).
To decrease the effect of viscosity, a multiplier 0.3 is used and
h = 0.75 is adopted. In the code, the physical variables ui are
defined at the center of the cell. To calculate the diffusive flux,
the variables ur and ul at a boundary of the cells are defined as

ul = ui +
1

2
Δui, (B8)

ur = ui+1 − 1

2
Δui+1, (B9)

where the tilt of the variable (Δui) is defined as

Δui = minimod

(
ε(ui+1 − ui),

ui+1 − ui−1

2
, ε(ui − ui−1)

)
,

(B10)

where ε is the factor for the minimod function (1 < ε < 2), in
this study ε = 1.4 is used. To conserve total energy, the heat
from the dissipated kinetic energy is treated accordingly. The
heat caused by the artificial viscosity is estimated and added in
the equation of entropy as

ρT
∂s1

∂t
= −(Fr · ∇)vr − (Fθ · ∇)vθ − (Fφ · ∇)vφ. (B11)

APPENDIX C

DYNAMICAL BALANCE ON THE MERIDIONAL PLANE

In this appendix, we derive the equations for the dynamical
balance on the meridional plane. We start with the hydrodynamic
equation with the Coriolis force used in this paper (Equation (6))

∂v
∂t

= −(v · ∇)v − ∇p1 + ρ1ger

ρ
+ 2v × �0 + G, (C1)

where the final term shows the artificial viscosity G = −(∇ ·
Fvr )er−(∇·Fvθ

)eθ −(∇·Fvφ
)eφ (see Appendix B). The curl of the

first term in the right-hand side of Equation (C1) is transformed
as ∇ × (v × ω) using the vector formula

(v · ∇)v = ∇
(

v2

2

)
− v × (∇ × v). (C2)

Although, in this paper, we directly take the curl of the second
term, it is useful to show the zonal component of the curl of the
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second term in the right-hand side of Equation (C1) using ρ0
instead of ρ as[

∇ ×
(

−∇p1 + ρ1ger

ρ0

)]
φ

= 1

ρ2
0r

dρ0

dr

∂p1

∂θ
+

g

ρ0r

∂ρ1

∂θ

= − g

ρ0r

[(
∂ρ

∂p

)
s

∂p1

∂θ
− ∂ρ1

∂θ

]

= g

ρ0r

(
∂ρ

∂s

)
p

∂s1

∂θ
, (C3)

We note that for the perfect gas the value (∂ρ/∂s)p = −ρ0/cp,
where cp is the heat capacity at constant volume. Next, the zonal
component of the curl of the third term on the left-hand side of
Equation (C1) is transformed as

T0 = [∇ × (2v × �0)]φ = [2(�0 · ∇)vr − 2(v · ∇)�0]φ

= 2(�0 · ∇)vφ = 2r sin θΩ0
∂Ω1

∂z
,

(C4)

where Ω1 = vφ/(r sin θ ). In the transformation, the formula-
tions ∇ ·�0 = 0, �0 ·eφ = 0, are used. Figure 14 shows that the
values [∇×(〈v × ω〉)]φ and −(∇×[∇·(ρ0〈vv〉)/ρ0])φ are almost
equivalent, and 〈∇ × (v/ρ∇ · (ρv))〉 is fairly small compared to
the other terms. Thus, it is valid to use −(∇×[∇·(ρ0〈vv〉)/ρ0])φ
instead of [∇×(〈v × ω〉)]φ . Then, we define the momentum flux
on the meridional plane as

〈Fij 〉 = F̃ij + F ′
ij (C5)

F̃ij = ρ0〈vi〉〈vj 〉, (C6)

F ′
ij = ρ0〈v′

iv
′
j 〉, (C7)

where i and j correspond to r, θ , and φ. For this definition, we
divide the velocity as vi = 〈vi〉 + v′

i . Then, the divergence of the
fluxes are divided into several terms as

D = − 1

ρ0
∇ · F = Drer + Dθeθ , (C8)

Dr = Dr(d) + Dr(n), (C9)

Dθ = Dθ(d) + Dθ(n), (C10)

Dr(d) = − 1

ρ0

[
1

r2

∂

∂r
(r2Frr ) − Fθθ

r

]
, (C11)

Dr(n) = − 1

ρ0r sin θ

∂

∂θ
(sin θFθr ), (C12)

Dθ(d) = − 1

ρ0

1

r sin θ

∂

∂θ
(sin θFθθ ), (C13)

Dθ(n) = − 1

ρ0

[
1

r2

∂

∂r
(r2Frθ ) +

Fθr

r

]
, (C14)

Drφ = Fφφ

rρ0
, (C15)

Dθφ = cot θ
Fφφ

rρ0
, (C16)

We use the notation of D̃ = D(F̃ ) and D′ = D(F ′). Then, the
zonal component of the curl of the 〈D〉 is also divided to several
terms as

C = (∇ × 〈D〉)φ = Cr + Cθ + Cd. (C17)

Then each term is divided Ci = C̃i + C′
i , where i corresponds to

r, θ , d. The terms are

C̃r = − 1

r

∂D̃r(n)

∂θ
, C′

r = −1

r

∂D′
r(n)

∂θ
, (C18)

C̃θ = 1

r

∂

∂r

(
rD̃θ(n)

)
, C′

θ = 1

r

∂

∂r

(
rD′

θ(n)

)
, (C19)

C̃d = 1

r

∂

∂r
(rD̃θ(d)) − 1

r

∂D̃r(d)

∂θ
, (C20)

C′
d = 1

r

∂

∂r

[
r(D′

θ(d) + D′
θφ)

] − 1

r

∂

∂θ

(
D′

r(d) + D′
rφ

)
, (C21)

T1 = 1

r

∂

∂r
(rD̃θφ) − 1

r

∂D̃rφ

∂θ
,

= sin θ cos θ

r

∂

∂r

(
r2〈Ω1〉2

) − ∂

∂θ

(
sin2 θ〈Ω1〉2

)
= r sin θ

∂〈Ω1〉2

∂z
. (C22)

We note that the contribution of the mean differential rotation
〈Ω1〉 is separated using the term T1. Then Equation (C1) is
averaged in time and zonal direction. The equation of the balance
is obtained as

W − T = B + C + V, (C23)

where

W = ∂〈ωφ〉
∂t

, (C24)

T = T0 + T1,

= r sin θ
∂〈Ω〉2

∂z
, (C25)

B = −
[
∇ ×

(∇p1 + ρ1ger

ρ

)]
φ

, (C26)

V = [〈∇ × G〉]φ. (C27)
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