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ABSTRACT

We present results from four convectively driven stellar dynamo simulations in spherical wedge geometry. All of
these simulations produce cyclic and migrating mean magnetic fields. Through detailed comparisons, we show
that the migration direction can be explained by an αΩ dynamo wave following the Parker–Yoshimura rule. We
conclude that the equatorward migration in this and previous work is due to a positive (negative) α effect in the
northern (southern) hemisphere and a negative radial gradient of Ω outside the inner tangent cylinder of these
models. This idea is supported by a strong correlation between negative radial shear and toroidal field strength in
the region of equatorward propagation.
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1. INTRODUCTION

Just over 50 yr after the paper by Maunder (1904), in which
he showed for the first time the equatorward migration (EM) of
sunspot activity in a time–latitude (or butterfly) diagram, Parker
(1955) proposed a possible solution: migration of an αΩ dynamo
wave along lines of constant angular velocity Ω (Yoshimura
1975). Here, α is related to kinetic helicity and is positive
(negative) in the northern (southern) hemisphere (Steenbeck
et al. 1966). To explain EM, ∇Ω must point in the negative radial
direction. However, application to the Sun became problematic
with the advent of helioseismology showing that ∇rΩ is actually
positive at low latitudes where sunspots occur (Schou et al.
1998), implying poleward migration (PM). This ignores the
near-surface shear layer where a negative ∇rΩ (Thompson et al.
1996) could cause EM (Brandenburg 2005). An alternative
solution was offered by Choudhuri et al. (1995), who found that
in αΩ dynamo models with spatially separated induction layers
the direction of migration can also be controlled by the direction
of meridional circulation at the bottom of the convection zone,
where the observed poleward flow at the surface must lead to an
equatorward return flow. Finally, even with just uniform rotation,
i.e., in an α2 dynamo as opposed to the aforementioned αΩ
dynamos, it may be possible to obtain EM due to the fact that
α changes sign at the equator (Baryshnikova & Shukurov 1987;
Rädler & Bräuer 1987; Mitra et al. 2010; Warnecke et al. 2011).

Meanwhile, global dynamo simulations driven by rotating
convection in spherical shells have demonstrated not only the
production of large-scale magnetic fields, but, in some cases,
also EM (Käpylä et al. 2012, 2013; Warnecke et al. 2013b;
Augustson et al. 2013). Although this seemed to be successful in
reproducing Maunder’s observation of EM, the reason remained
unclear. Noting the agreement between their simulation and the
α2 dynamo of Mitra et al. (2010) in terms of the π/2 phase shift
between poloidal and toroidal fields near the surface, as well
as their similar amplitudes, Käpylä et al. (2013) suggested such
an α2 dynamo as a possible underlying mechanism. Yet another

possibility is that α can change sign if the second term in the
estimate for α (Pouquet et al. 1976),

α = τc

3

(
−ω · u +

j · b
ρ

)
, (1)

becomes dominant near the surface, where the mean density ρ
becomes small. Here, ω = ∇× u is the vorticity, u is the small-
scale velocity, j = ∇ × b/μ0 is the current density, b is the
small-scale magnetic field, μ0 is the vacuum permeability, τc
is the correlation time of the turbulence, and overbars denote
suitable (e.g., longitudinal) averaging. However, an earlier
examination by Warnecke et al. (2013a) showed that the data do
not support this idea, i.e., the contribution from the second term
is not large enough. Furthermore, the theoretical justification for
Equation (1) is questionable (Brandenburg et al. 2008).

A potentially important difference between the models of
Käpylä et al. (2012, 2013) and those of other groups (Ghizaru
et al. 2010; Racine et al. 2011; Brown et al. 2011; Augustson
et al. 2012, 2013; Nelson et al. 2013) is the use of a blackbody
condition for the entropy and a radial magnetic field on the outer
radial boundary. The latter may be more realistic for the solar
surface (Cameron et al. 2012).

It should be noted that a near-surface negative shear layer
similar to the Sun was either not resolved in the simulations of
Käpylä et al. (2012, 2013), or, in the case of Warnecke et al.
(2013b), such a layer did not coincide with the location of EM.
Instead, most of these simulations show a strong tendency for
the contours of angular velocity to be constant on cylinders.
Some of them even show a local minimum of angular velocity
at mid-latitudes. Indeed, Augustson et al. (2013) identified EM
with the location of the greatest latitudinal shear at a given
point in the cycle and find that weak negative radial shear also
plays a role.

In this Letter, we show through detailed comparison among
four models that it is this local minimum, where ∇rΩ < 0
and α > 0, which explains the EM as a Parker dynamo
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wave traveling equatorward. While we do not expect this
to apply to Maunder’s observed EM in the Sun, it does
clarify the outstanding question regarding the origin of EM
in the simulations. A clear understanding of these numerical
experiments is a prerequisite for a better understanding of the
processes causing EM in the Sun.

2. STRATEGY

To isolate effects arising from changes in the α effect and the
differential rotation, we consider four models. Our reference
model, Run I, is the same model presented in Käpylä et al.
(2012) as their Run B4m and in Käpylä et al. (2013) as their
Run C1. Run II is a run in which the subgrid scale (SGS) Prandtl
number, PrSGS = ν/χSGS, is reduced from 2.5 to 0.5, and the
magnetic Prandtl number, PrM = ν/η, is reduced from 1 to 0.5.
Here ν is the viscosity, η is the magnetic diffusivity, and χSGS
is the mean SGS heat diffusivity. We keep ν fixed so the effect
of lowering PrSGS is that the SGS diffusion is more efficiently
smoothing out entropy variations. For stars, the relevant value
of PrSGS is well below unity, but such cases are difficult to
simulate numerically. In Runs III and IV, we have replaced
the outer radiative boundary condition by a cooling layer (see
Warnecke et al. 2013b, for the implementation and the profile)
above fractional radii r/R = 0.985 and 1.0, respectively; see
Figures 1(a) and (b) for the radial temperature and density
profiles. Here, R is the solar radius. The cooling profile of
Run III leads to a stronger density decrease and suppression of
urms than in the other runs; see Figures 1(b) and (c). Besides the
differences in the fluid and magnetic Prandtl numbers (Run II)
and in the upper thermal boundary condition (Runs III and IV),
the setups are equal. We can therefore isolate the origin of the
difference in the migration pattern of the toroidal field.

Our simulations are done in a wedge |90◦ − θ | � 75◦,
0 < φ < 90◦, and R−ΔR � r � R+δRC , where θ is colatitude,
φ is longitude, r is radius, ΔR = 0.3R, and δRC = 0.01R is the
extension by the cooling layer in Runs III and IV. We solve
the equations of compressible magnetohydrodynamics using
the Pencil Code.6 The basic setup of these four models is
identical to previous work; the details can be found in Käpylä
et al. (2013) and Warnecke et al. (2013b). We scale our results to
physical units following Käpylä et al. (2013, 2014) and choose
a rotation rate of Ω0 = 5Ω�, where Ω� = 2.7 × 10−6 s is the
solar value.

3. RESULTS

We begin by comparing the evolution of the mean toroidal
field Bφ using time–latitude and time–depth diagrams; see
Figure 2. In Run I, Bφ migrates equatorward between ±10◦
and ±40◦ latitude, and becomes strongly concentrated around
r = 0.8–0.9 R. The cycle period is around five years.7 In Run
IV, the evolution of Bφ is similar to Run I. Therefore, the
blackbody boundary condition is not a necessity for EM. In
both runs, a poleward migrating high-frequency dynamo wave
is superimposed on the EM, as already seen in Käpylä et al.
(2012, 2013). By contrast, in Run II, Bφ migrates poleward
between ±10◦ and ±45◦ latitude. The field is strongest at
r = 0.85–0.98 R and the cycle period is about 1.5 yr. This is

6 http://pencil-code.google.com/
7 This agrees with the normalization of Käpylä et al. (2014). The difference
to the 33 yr period reported in Käpylä et al. (2012) is explained by a missing
2π factor.

Figure 1. Radial profiles of azimuthally and latitudinally averaged temperature
〈T 〉θφ (a), density 〈ρ〉θφ (b), and rms velocity urms (c) near the surface,
normalized by their values at the bottom of the domain T0, ρ0, or in m/s
respectively. The inlays show the entire radial extent. The solid black lines
indicate Run I, red dotted Run II, purple dashed Run III, and blue dash-dotted
Run IV. The thin black lines represent the surface (r = R).

(A color version of this figure is available in the online journal.)

clearly shorter than the cycle in Runs I and IV, but significantly
longer than the superimposed poleward dynamo wave in those
runs. In Run III, Bφ has two superimposed field patterns: one
with PM similar in frequency and location to that of Runs I and
IV, and a quasi-stationary pattern with unchanged field polarity
for roughly 20 yr. The poleward migrating field appears in the
upper 10% of the convection zone, whereas the non-migrating
field is dominant in the lower half of the convection zone.

The distribution of Bφ in the meridional plane can be seen
in the top row of Figure 3, where we plot the rms of the mean
toroidal magnetic field, time-averaged over the saturated stage,

B
rms
φ ≡ 〈B2

φ〉1/2
t . In Run I, it reaches 4 kG and is concentrated at
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Figure 2. Time evolution of the mean toroidal magnetic field Bφ in the convection zone for Runs I, II, III, and IV, from top to bottom. In the left column, the radial
cut is shown at r = 0.98 R, and, in the right column, the latitudinal cut at 90−θ = 25◦. The dashed horizontal lines show the location of the equator at θ = π/2 (left)
and the radii r = R, r = 0.98 R and r = 0.85 R (right).

(A color version of this figure is available in the online journal.)

mid-latitudes and mid-depths. The field structures are aligned
with the rotation axis. Additionally, there is a slightly weaker
(≈3 kG) field concentration closer to the equator and surface.
A similar field pattern can be found in Run IV, but the
field concentrations are somewhat weaker. In Run II, B

rms
φ is

concentrated closer to the surface with a larger latitudinal extent
than in Run I. The shape of the field structure is predominantly
aligned with the latitudinal direction. In Run III, there is some
near-surface field enhancement similar to Run I, but closer to
the equator. However, the maximum of B

rms
φ is near the bottom
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Figure 3. Top row: color coded B
rms
φ during the saturated stage for Runs I–IV (left to right). White arrows show the direction of migration ξmig(r, θ ) = −α êφ × ∇Ω;

see Equation (3). The black solid lines indicate isocontours of Bφ at 2.5 kG. Bottom row: Ω(r, θ )/Ω0 for the same runs. The dashed lines indicate the surface (r = R).

(A color version of this figure is available in the online journal.)

of the convection zone, although at higher latitudes it occupies
nearly the entire convection zone.

Next, we compare the differential rotation profiles of the runs;
see the bottom row of Figure 3. All runs develop cylindrical
contours of constant rotation as a dominant pattern. However,
Runs I, III, and IV possess a local minimum of angular velocity,
implying the existence of a negative ∇rΩ, between ±15◦ and
±40◦ latitude, which is the same latitude range where EM was
found in Runs I and IV. In Run II, the contours of constant
angular velocity are nearly cylindrical, but with a slight radial
inclination, which is more than in Run I. This is expected due
to the enhanced diffusive heat transport and is also seen in other
global simulations (e.g., Brun & Toomre 2002; Brown et al.
2008), where PrSGS is closer to or below unity. Unlike in Runs I,
III, and IV, there is no local minimum of Ω. This can be attributed
to the higher value of the SGS heat diffusivity in Run II, which
smoothes out entropy variations, leading to a smoother rotation
profile via the baroclinic term in the thermal wind balance (see
corresponding plots and discussion in Warnecke et al. 2013b).

Furthermore, we calculate the local dynamo numbers

Cα = α ΔR

ηt0
, CΩ = ∇rΩ ΔR3

ηt0
, (2)

where ηt0 = αMLTHpurms(r, θ )/3 is the estimated turbulent
diffusivity with the mixing length parameter αMLT = 5/3, the
pressure scale height Hp, the turbulent rms velocity urms(r, θ ),
and α(r, θ ) is estimated using Equation (1); see also Käpylä
et al. (2013). In Figure 4, we plot Cα and CΩ as functions of
radius for 25◦ latitude for Runs I–IV. The Cα profiles in all the
runs are similar: the quantity is almost always positive, except
for a narrow and weak dip to negative values at the very bottom
of the simulation domain. The only two exceptions are Runs III
and IV, where the cooling layer causes Cα to decrease already
below (Run III) or just above (Run IV) the surface, becoming

even weakly negative there. The reason is a sign change of the
kinetic helicity caused by the sign change of entropy gradient.
The CΩ profiles are similar for Runs I, III, and IV. There
are two regions of negative values in the lower and middle part
of the convection zone, with positive values near the surface.
In the middle of the convection zone, these profiles coincide
with clearly positive values of Cα , as required for EM. For
Run II, the profiles of CΩ are markedly different: despite the
negative dip at the bottom of the convection zone, the values
of CΩ are generally positive and larger in magnitude than for
Runs I, III, and IV. This suggests PM throughout most of the
convection zone.

To investigate this in more detail, we calculate the migration
direction ξmig as (Yoshimura 1975)

ξmig(r, θ ) = −α êφ × ∇Ω, (3)

where êφ is the unit vector in the φ-direction. Note that
this and our estimated α(r, θ ) using Equation (1) is a strong
amplification, in general, of the tensorial properties. In all of
our runs, α is on average positive (negative) in the northern
(southern) hemisphere.

The migration direction ξmig is plotted in the top row of
Figure 3 for the northern hemispheres of Runs I–IV. The white
arrows show the calculated normalized migration direction on
top of the color coded B

rms
φ with black contours indicating

B
rms
φ = 2.5 kG. In Runs I and IV, Equation (3) predicts EM

in the region where the mean toroidal field is the strongest. This
is exactly how the toroidal field is observed to behave in the
simulation at these latitudes and depths, as seen from Figure 2.
The predicted EM in this region is due to α > 0 and ∇rΩ < 0.
Additionally, in a smaller region of strong field closer to the
surface and at lower latitudes, the calculated migration direction
is poleward. This coincides with the high-frequency poleward
migrating field shown in Figure 2. In Run II, due to the absence
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Figure 4. Local dynamo parameters Cα and CΩ for Runs I–IV. Cα (solid black line) and CΩ (dashed red line) for 25◦ latitude in the northern hemisphere as a
function of r.

(A color version of this figure is available in the online journal.)

of a negative ∇rΩ (see the bottom row of Figure 3), ξmig points
toward the poles in most of the convection zone, in particular
in the region where the field is strongest; see the top row of
Figure 3. Here the calculated migration direction agrees with the
actual migration in the simulation; see Figure 2. In Run III, there
exists a negative ∇rΩ, but in the region where the toroidal field
is strongest, the calculated migration direction is inconclusive.
There are parts with equatorward, poleward, and even radial
migration. This can be related to the quasi-stationary toroidal
field seen in Figure 2. However, in the smaller field concentration
closer to the surface and at lower latitudes, the calculated
migration direction is also poleward, which seems to explain
the rapidly poleward migrating Bφ of Run III (Figure 2). This
agreement between calculated and actual migration directions
of the toroidal field implies that the EM in the runs of Käpylä
et al. (2012, 2013) and in Runs I and IV can be ascribed to an
αΩ dynamo wave traveling equatorward due to a local minimum
of Ω.

To support our case, we compute a two-dimensional his-
togram of |Bφ| and ∇rΩ in a band from ±15◦ to ±40◦ latitude
for Runs I and II; see Figures 5(a)–(b). For Run I, the strong
(>5 kG) fields correlate markedly with negative ∇rΩ < 0. For
Run II, the strong fields are clearly correlated with positive
∇rΩ < 0. These correlations have two implications: first, strong
fields in these latitudes are related to and most likely gener-
ated by radial shear rather than an α effect. Second, the negative
shear in Run I is related to and probably the cause of the toroidal
field migrating equatorward and the positive shear in Run II is
responsible for PM.

These indications resulting from the comparison of four dif-
ferent simulation models lead us to conclude that the dominant
dynamo mode of all models is of αΩ type, and not, as suggested
by Käpylä et al. (2013), an oscillatory α2 dynamo. They based
their conclusion on the following three indications. (1) The two
local dynamo numbers, Cα and CΩ, had similar values; see

Figure 5. Panels (a) and (b): correlation of |Bφ | from the latitudinal band
±15◦ − ±40◦ and the logarithmic gradient of Ω for Runs I (a) and II (b).
Overplotted are the mean (white) and the zero lines (white-black dashed). (c)
and (d): phase relation between Bφ (black) and Br (red) at 25◦ latitude and
r = 0.98 R (c) and at r = 0.84 R (d) for Run I. (e): Time-averaged radial
dependence of B

rms
φ (black) and B

rms
r (red) at 25◦ latitude for Run I.

(A color version of this figure is available in the online journal.)

Figures 11 and 12 of Käpylä et al. (2013). However, due to an
error, a one-third factor was missing in the calculation of Cα ,
so our values are now three times smaller; see Figure 4. (2) The
phase difference of ≈ π/2 between Bφ and Br was observed,
which agrees with that of an α2 dynamo, as demonstrated in
Figure 15 of Käpylä et al. (2013). As shown in Figures 5(c)
and (d), this is only true close to the surface (r = 0.98 R). At
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mid-depth (r = 0.84 R), where B
rms
φ is strong, the phase dif-

ference is close to 3π/4, as expected for an αΩ dynamo with
negative shear; see Figure 15(e) of Käpylä et al. (2013). (3)
Poloidal and toroidal fields had similar strengths, as was shown
in Figures 15(a) and (b) of Käpylä et al. (2013). Again, how-
ever, this is only true near the surface (r = 0.98 R), where Bφ

has to decrease due to the radial field boundary condition. As
shown in Figure 5(e), B

rms
φ and B

rms
r are comparable only near

r = 0.98 R, whereas in the rest of the convection zone, B
rms
φ is

around five times larger than B
rms
r . It is still possible that there is

a subdominant α2 dynamo operating close the surface causing
the phase and strength relation found in Käpylä et al. (2013).

Comparing our results with Augustson et al. (2013), their
differential rotation profile possesses a similar local minimum of
Ω as our Runs I, III, and IV; see their Figure 2(b). This supports
the interpretation that an αΩ dynamo wave is the cause of EM
also in their case.

Even though the input parameters are similar to those of
Runs I and IV, in Run III Bφ does not migrate toward the equator.
The only difference between Runs III and IV is the higher
surface temperature in the former (Figure 1(a)). As seen from
Figure 1(c), this leads to a suppression of turbulent velocities
and a sign change of α close to the surface in those latitudes,
where EM occurs in Runs I and IV; see also Figure 4. One of the
reasons might be the fact that the sign changes. This suppresses
the dynamo cycle and causes a quasi-stationary field. Another
reason could be CΩ in Run III being stronger at the bottom of
the convection zone than in the middle (in contrast to Runs I
and IV; see Figure 4), which implies a preferred toroidal field
generation near the bottom, where the migration direction is not
equatorward; see the top row of Figure 3.

4. CONCLUSIONS

By comparing four models of convectively driven dynamos,
we have shown that the EM found in the work of Käpylä
et al. (2012) and in Run IV of this Letter as well as the PM
in Runs II and III can be explained by the Parker–Yoshimura
rule. Using the estimated α and determined Ω profiles to
compute the migration direction predicted by this rule, we obtain
qualitative agreement with the actual simulation in the regions
where the toroidal magnetic field is strongest. This result and
the phase difference between the toroidal and poloidal fields
imply that the mean field evolution in these global convective
dynamo simulations can well be described by an αΩ dynamo
with a propagating dynamo wave. We found that the radiative
blackbody boundary condition is not necessary for obtaining
an equatorward propagating field. Even though the parameter
regime of our simulations might be far away from the real Sun,

analyzing these simulations, and comparing them with, e.g.,
mean-field dynamo models, will lead to a better understanding
of solar and stellar dynamos and their cycles.
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