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a b s t r a c t

Numerical simulations of convection driven rotating spherical shell dynamos have often been performed
with rigid boundary conditions, as is appropriate for the metallic cores of terrestrial planets. Free-slip
boundaries are more appropriate for dynamos in other astrophysical objects, such as gas-giants or stars.
Using a set of 57 direct numerical simulations, we investigate the effect of free-slip boundary conditions
on the scaling properties of heat flow, flow velocity and magnetic field strength and compare it with ear-
lier results for rigid boundaries. We find that the nature of the mechanical boundary condition has only a
minor influence on the scaling laws. We also find that although dipolar and multipolar dynamos exhibit
approximately the same scaling exponents, there is an offset in the scaling pre-factors for velocity and
magnetic field strength. We argue that the offset can be attributed to the differences in the zonal flow
contribution between dipolar and multipolar dynamos.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Numerical simulations of dynamos in geometries appropriate
for the cores of terrestrial planets have greatly enhanced our
understanding of the complex magnetic field behavior observed
in these objects, with possible implications for a broader class of
dynamos in astrophysical objects (Jones, 2011). One of the major
drawbacks of such simulations is that there is order of magnitude
disagreement between the natural and the numerically accessible
values of several control parameters. For instance, in numerical
simulations of the geodynamo, the Ekman number—a nondimen-
sional measure of the importance of viscous effects as compared
to the Coriolis effects—is usually five to ten orders of magnitude
larger than the expected realistic values.

One way to tackle this disparity is to infer asymptotic scaling
laws from a sufficient number of numerical results. Such numerical
scaling laws can then be extrapolated to realistic parameter re-
gimes and compared with the observational data. Christensen
and Aubert (2006) (hereafter ‘‘CA6’’) used a battery of numerical
simulation results to derive scaling relations for heat transfer, con-
vective velocity, and magnetic field strength. Their scaling rela-
tions hold over several orders of magnitude of the relevant
control parameter. Using these scaling relations, CA6 predicted
ll rights reserved.
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magnetic field strengths inside the Earth’s and Jupiter’s core and
found reasonable agreement with observationally constrained val-
ues. Later, Christensen et al. (2009) showed that these scaling laws
are also in good agreement with magnetic fields observed in fast
rotating low-mass stars. Takahashi et al. (2008) and Aubert et al.
(2009) independently reinforced the scaling laws put forth by
CA6. Olson and Christensen (2006) derived scaling laws specifically
for the dipole moment of planetary dynamos which show an order-
of-magnitude agreement with the observed dipole moments of So-
lar System planets. Christensen (2010) reviews earlier scaling laws
for planetary magnetic field based on heuristic arguments and
compares them with the numerically established scaling relations.

The mechanical boundary conditions may play an important
role in the dynamo mechanism. Dynamos which operate in planets
with a solid mantle are usually modeled with rigid boundaries
(Kageyama and Sato, 1995; Glatzmaier and Roberts, 1995a,b).
While a true free surface is difficult to model, a free-slip condition
(i.e. assuming zero shear stress at an undeformable spherical
boundary) is a much better approximation than a no-slip condition
for the surface of gas- and ice-giant planets or stellar convection
zones. Rigid boundaries are associated with viscous (Ekman)
boundary layers, which have a damping influence on the develop-
ment of strong axisymmetric flows that are found in free surface
flows. Kuang and Bloxham (1997, 1999) argued that even for the
geodynamo a free-slip condition may be a better choice, because
the Ekman layers in the models are much thicker than the very thin
layers in the Earth’s core. Aubert et al. (2001) demonstrated in
rotating liquid Gallium experiments that at small Prandtl
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numbers—the ratio of kinematic viscosity to thermal diffusivity—
flows with rigid boundaries show features similar to those with
free-slip boundaries, i.e. dominant zonal flows. Miyagoshi et al.
(2010) also found strong zonal flows in low Ekman number
(�10�7) rigid boundary geodynamo simulations. Hence, studies
of dynamos with free-slip boundaries have wide ranging applica-
tions. Following these arguments, researchers have modeled
Uranus’ and Neptune’s multipolar magnetic field (Stanley and
Bloxham, 2004, 2006), Mercury’s weak magnetic field (Stanley
et al., 2005), and Saturn’s unusually axisymmetric magnetic field
(Stanley, 2010) using free-slip boundaries.

Dynamos with free-slip boundaries also exhibit bistability: the
morphology of the dynamo generated magnetic field depends on
the initial magnetic field configuration (Simitev and Busse, 2009,
2012; Sasaki et al., 2011; Schrinner et al., 2012; Gastine et al.,
2012). Recently, Gastine et al. (2013) found evidence of bistability
in M dwarfs. Grote and co-workers (Grote et al., 1999, 2000; Grote
and Busse, 2000) have employed free-slip boundaries in their dy-
namo models, and found a wider spectrum of magnetic field geom-
etries than what has been reported for rigid boundaries.

A direct comparison of the effects of different mechanical
boundary conditions on the dynamo has rarely been made. Chris-
tensen et al. (1999) reported results for both kinds of boundary
conditions for a limited number of cases and found that the large
scale magnetic field is similar for both cases. Recently, Schrinner
et al. (2012) have analyzed many dynamo simulations with rigid,
free-slip and mixed (rigid at inner and free-slip at outer boundary)
boundary conditions and report a difference in magnetic field
amplitude of dipolar and multipolar dynamos. Following this
study, we specifically focus here on deriving scaling properties
for heat transport, velocity, and magnetic field strength. We com-
pare our findings with earlier rigid boundary systems for which
extensive modeling results are available in a broad range of control
parameters (CA6). This exercise helps us in isolating the effect of
mechanical boundary condition.

2. Dynamo model

2.1. MHD equations

Our numerical set-up consists of a spherical shell which rotates
along the ẑ-axis and which is bounded by inner radius ri and outer
radius ro. The aspect ratio ri/ro is 0.35. A linear variation of gravity
with radius is assumed. Following CA6, we non-dimensionalize the
magnetohydrodynamic (MHD) equations by using the shell thick-
ness ro � ri = D as the reference length scale and 1/X, where X is
the rotation rate, as the time unit. The magnetic field B is scaled
by XD

ffiffiffiffiffiffiffiqlp
, where q is the constant fluid density and l is the mag-

netic permeability. Note that all of the above non-dimensional
scales are free from any diffusion parameters. The temporal evolu-
tion of velocity u, temperature T, and magnetic field B is governed
by the MHD equations under the Boussinesq approximation

@u
@t
þ u � ruþ 2ẑ� uþrP ¼ Ra�

rT
ro
þ ðr� BÞ � Bþ Er2u; ð1Þ

@T
@t
þ u � rT ¼ E

Pr
r2T; ð2Þ

@B
@t
¼ r� ðu� BÞ þ E

Pm
r2B; ð3Þ

r � u ¼ 0; ð4Þ
r � B ¼ 0: ð5Þ

This system of equations is governed by several nondimensional
control-parameters: Ekman number E = m/Xd2, m being the fluid vis-
cosity; the modified Rayleigh number Ra⁄ = agoDT/X2D, where go is
gravity at the outer boundary and a is the thermal expansivity;
magnetic Prandtl number Pm = m/g, g being the magnetic diffusiv-
ity; Prandtl number Pr = m/j, j being the thermal conductivity.
Ra⁄ is related to the conventional Rayleigh number Ra through
Ra⁄ = RaE2/Pr.

We assume free-slip mechanical boundaries at both inner and
outer radius. The magnetic field matches a potential field at both
boundaries. A fixed temperature contrast DT is maintained be-
tween the top and the bottom.
2.2. Numerical method

Eqs. (1)–(5) are numerically solved using the MagIC code
(Wicht, 2002). Velocity and magnetic field are first separated into
toroidal and poloidal components as

u ¼ r� uT r̂ þr�r� uPr̂;

B ¼ r� BT r̂ þr�r� BPr̂:

The scalar potentials uT,P and BT,P, along with temperature T and
pressure P, are further expanded using spherical harmonics in
the h and / directions and the Chebyshev polynomials in the ra-
dial direction. Nr and lmax are the maximum degree of the Cheby-
shev polynomials and the spherical harmonic functions used in
this expansion. For all the simulations considered here, 41 6 Nr -
6 73 and 64 6 lmax 6 170. The simulations are run for at least
one magnetic diffusion time (D2/g) to ensure a statistically station-
ary state.

2.3. Diagnostic parameters

We employ several diagnostic parameters to analyze our simu-
lations results. The Rossby number Ro is the volume averaged non-
dimensional rms velocity. Following CA6, we also introduce the lo-
cal Rossby number Rol which is a more appropriate measure than
Ro to characterize the ratio of the inertial and the Coriolis forces.
A typical flow length scale can be calculated based on the mean
spherical harmonic degree l

�lu ¼
X

l
l
hul � uli
hu � ui ;

where h� � �i denotes time average and ul is velocity component at
degree l. The local Rossby number is then defined as
Rol ¼ Ro p=�lu.

The volume averaged non-dimensional rms magnetic field
strength is called Lorentz number Lo. The field geometry at the out-
er boundary surface is characterized by its dipolarity fdip. It is de-
fined as the ratio of the magnetic energy of the dipole to the
total magnetic energy at the outer boundary surface.

The Nusselt number Nu is a ratio of total heat transported from
the inner shell to the outer shell to the conducted heat. It is ex-
pected that different diffusivities play a minimal role in determin-
ing the large scale properties of the dynamo systems. This
motivated CA6 to define a modified Nusselt number Nu⁄ which
does not involve j. Nu⁄ is related to the conventional Nusselt num-
ber Nu via Nu⁄ = (Nu � 1)E/Pr. In addition, the heat flux from sur-
faces of astrophysical objects is a much more meaningful and
accessible quantity than the temperature difference between the
inner and outer boundary of the convection zone. CA6 defined a
heat flux based Rayleigh number Ra�Q which incorporates the ad-
vected heat flux rather than the temperature contrast. Ra�Q is re-
lated to Ra through Ra�Q ¼ RaðNu� 1ÞE3=Pr2.

The reported numerical values of the diagnostic parameters Ro,
Rol, Lo, Nu⁄, and fdip are time averaged values excluding the initial
transients.
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3. Results

We have built up a data set of 57 dynamo simulations with free-
slip boundaries: 40 cases by us (see Table A.2 and 17 cases adopted
from Schrinner et al. (2012). All of the cases in this data set have
the same physical set-up as described above. Also, following CA6,
we report and analyze only those dynamo simulations which have
Nu > 2 to ensure a vigorous enough convection that fills the full
volume of the spherical shell.
3.1. Bistability

Bistability is a phenomenon in which a system shows two dif-
ferent dynamo solutions, i.e. dipolar and multipolar, for the same
set of control parameters, but with different initial conditions for
the magnetic field. For dynamos with free-slip boundaries, Simitev
and Busse (2009) found two distinct dipolar and multipolar dyna-
mo branches, at least in some parameter range. Sasaki et al. (2011),
Schrinner et al. (2012), and Gastine et al. (2012) have also observed
bistability in their dynamo simulations with free-slip boundaries.
Dynamos in box geometry with periodic boundaries also show
bistability (Yadav et al., 2012); in fact, even tristable and quadsta-
ble solutions were observed in such simulations. Bistable dynamo
solutions have rarely been observed in dynamos with rigid bound-
aries, e.g. CA6 reported a single case in which they found bistable
states. In dynamos with rigid boundaries, the dipolar branch col-
lapses around Rol � 0.1, which CA6 argue is due to inertial forces
dominating over Coriolis force at larger Rol, while Soderlund
et al. (2012) argue that the dipole collapse is due to helicity degra-
dation related to the competition of inertial and viscous forces.
Soderlund et al. (2012) also hypothesize that current numerical
planetary dynamo models are viscously controlled.

We plot in Fig. 1 the dipolarity fdip at the outer surface (r = ro)
versus the local Rossby number Rol (for our simulations). In the
dipolar branch (filled data points) the magnetic field is dominated
by the dipole (fdip > 0.4) and in the multipolar branch (empty data
points) the dipole is much weaker (fdip < 0.05). The dipole branch is
limited to cases with Rol [ 0.2. However, the multipolar branch
Fig. 1. Dipolarity at the outer boundary versus the local Rossby number. The data
points carrying ‘‘+’’ marker are bistable states. Filled (empty) symbols are dipolar
(multipolar) dynamos. The symbol shapes represent the Ekman number and the
corresponding value is given in the upper-right-corner box.
exists for a broad range of Rol. The highly supercritical dipolar case
at Rol � 0.2 (E = 1 � 10�4, Pm = 0.5 and Ra = 4 � 107) was run for
three magnetic diffusion times without an indication of a dipole
collapse, although we cannot exclude that the field could change
to multipolar in the long run. Dipolar dynamos at such high Rol

have not been reported yet. Simulations that settle down to differ-
ent dynamo states depending on the initial magnetic field are
marked with a ‘‘+’’ in Fig. 1 (difficult to discern on the multipolar
branch due of clustering). Note that other dipolar dynamos could
show bistability but we did not explore all of our dipolar cases
for such behavior.

For rigid boundary dynamos, CA6 reported that multipolar dy-
namo solutions are not observed for Rol < 0.1. But results from
Schrinner et al. (2012) and our findings suggest that this is not
the case for free-slip boundaries. We also found a few dynamo
solutions, which have Rol < 0.1, but settle to a multipolar solution
despite having initial dipolar magnetic field. For example, we only
found multipolar solutions for E = 3 � 10�4 and Pm 6 1.5. This
demonstrates that, depending on the control parameters, only
the multipolar dynamo branch can be stable in some situations.
This is in agreement with earlier results (Simitev and Busse,
2009, 2012) which showed that bistability is in fact a function of
P, Pm and E. They used volumetric heating while we use a fixed
temperature contrast to drive convection. The bistable behavior
we observed generalizes their findings.

One of the characteristic features of rotating spherical shell con-
vection with free-slip boundaries is the development of strong axi-
symmetric zonal flows. In rigid boundary systems, the Reynolds
stresses, which arise due to a statistical correlation between the ra-
dial and azimuthal flow component (in cylindrical co-ordinates),
are balanced by the bulk viscosity and the Ekman layer friction
near the outer boundary. In the case of free-slip boundaries, the Ek-
man layers are absent and zonal flows can thus saturate at much
higher vigor. In dynamo models, Maxwell stresses also affect the
zonal flows; these stresses are potentially higher in dipolar dyna-
mos that have higher magnetic field strength than multipolar ones
at the same control parameter values (Browning, 2008). One argu-
ment for the essential role of zonal flows for bistability is that an
initial dipolar magnetic field inhibits the growth of zonal flows
via Maxwell stresses. In the case of a multipolar initial condition,
strong zonal flows can develop, which in turn suppress the devel-
opment of dipolar magnetic fields. This mechanism allows multi-
polar magnetic fields even for Rol smaller than 0.1.

The zonal flow structure of a bistable state is shown in Fig. 2. It
portrays a weak thermal wind driven zonal flow in the dipolar case
and a nearly three times stronger and more geostrophic zonal flow
in the multipolar case. Note that the magnetic field of the multipo-
lar solution has a quadrupolar symmetry, but this is not generally
the case. In particular in strongly driven cases the magnetic field
has a smaller length scale and does not have any preferred symme-
try. Aubert (2005) found that the thermal wind driven zonal flow
topology is in agreement with Ferraro’s law of co-rotation (Ferraro,
1937), i.e. the shearing of the axisymmetric poloidal magnetic field
by the zonal flow is minimal. The non-geostrophy of the flow in
case of the dipolar dynamo emphasizes that the zonal flow
quenching by the Lorentz force is rather large in dipolar dynamos
as compared to that in the multipolar dynamo cases, as also
pointed out before by Schrinner et al. (2012).
3.2. Nusselt number scaling

Fig. 3 shows that the modified Nusselt number Nu⁄ scales very
well with the flux-based Rayleigh number Ra�Q in the same way
irrespective of whether the dynamo is dipolar (filled symbols) or
multipolar (empty symbols). A best-fit line to this data set reveals



Fig. 2. A snapshot of the nondimensional radial magnetic field at outer boundary and zonal flow (azimuthally averaged) in a meridional section for a dipolar (top row) and a
multipolar (bottom row) dynamo. These states are obtained at E = 3 � 10�5, Pm = 0.5, and Ra = 3 � 107. The radial magnetic field is truncated at 50% of the maximum in order
to highlight the magnetic field structures.

Fig. 3. Modified Nusselt number versus heat flux based Rayleigh number. The data
symbols carrying a thick black dot are adopted from Schrinner et al. (2012). The
solid-line is a line-fit to data and the dashed-line is the scaling reported by CA6 for
dipolar rigid boundary dynamos.

Fig. 4. Rossby number versus the heat flux based Rayleigh number. The two solid
lines are best-fitting lines to dipolar and multipolar dynamos. The dashed-line
represent the scaling reported by CA6 for dipolar rigid boundary dynamos.
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a relation Nu� ¼ 0:061Ra�Q
0:52, which agrees well with the scaling

Nu� ¼ 0:076Ra�Q
0:53 (dashed line) found by CA6 for dipolar dynamos

with rigid boundaries. For hydrodynamic convection with free-slip
boundaries, Christensen (2002) suggested a possible asymptotic

scaling Nu� ¼ 0:077Ra�Q
5=9 in the limiting case of E ? 0. In relatively

thinner shells (ri/ro = 0.6), Gastine and Wicht (2012) report

Nu� ¼ 0:086 Ra�Q
D E

q

� �0:53

, where h� � �iq designates mass-averaged

quantities, for density stratified anelastic hydrodynamic convec-
tion simulations with free-slip boundaries. All these scaling rela-
tions are very close to each other, which suggests that magnetic
field, mechanical boundary conditions or density stratification
have no substantial effect on the scaling behavior of heat transport
in rotating spherical shell convection. However, we note that for
larger values of the Rossby number than the ones considered here,
in a regime where inertia dominates over the Coriolis force, the
power-law scaling between Nu⁄ and Ra�Q breaks down (King
et al., 2009, 2010; Schmitz and Tilgner, 2010).
3.3. Rossby number scaling

In Fig. 4 we plot Ro as a function of Ra�Q . The data points are
slightly more scattered as compared to Fig. 3, but a consistent scal-
ing is nonetheless evident. Moreover, a somewhat different scaling
for dipolar and multipolar dynamos is visible as demonstrated by
the two different solid lines. These lines are Ro ¼ 0:73Ra�Q

0:39 (dipo-
lar) and Ro ¼ 1:79Ra�Q

0:44 (multipolar). The scaling reported by CA6
for dipolar rigid boundary dynamos is Ro ¼ 0:85Ra�Q

0:41 (dashed-
line), which agrees with our dipolar dynamo scaling.

Similar to CA6, the scatter in Fig. 4 can be reduced to some ex-
tent by assuming an additional Pm dependence. A two-parameter

least-square-optimized fit provides Ro ¼ 0:99Ra�Q
0:41Pm�0:1 (dipo-

lar) and Ro ¼ 2:44Ra�Q
0:47Pm�0:14 (multipolar). This optimization re-

duces the standard error by almost 48% in the dipolar scaling and
20% in the multipolar scaling (see Table 1). We also considered the
Ekman number as additional parameter for improving the fit, but,
as observed by CA6, the resulting exponents are rather small as



Table 1
The various scaling laws inferred from our study, along with the cross-correlation
coefficient R and the standard error (standard deviation divided by square-root of
number of data points).

Scaling R Standard-error

Nu� ¼ 0:061Ra�Q
0:52 0.9987 0.0036

Ronon�zonal ¼ 1:37Ra�Q
0:44 0.9924 0.0089

Ronon�zonal ¼ 1:99 Ra�Q Pm�1=3
� �0:47 0.9937 0.0086

Dipolar

Ro ¼ 0:73Ra�Q
0:39 0.9903 0.0128

Ro ¼ 0:99Ra�Q
0:41Pm�0:1 0.9976 0.0067

Ro ¼ 1:07 Ra�Q Pm�1=3
� �0:42 0.9966 0.0082

Rozonal ¼ 0:32Ra�Q
0:44 0.9873 0.0198

Rozonal ¼ 0:47 Ra�Q Pm�1=3
� �0:48 0.9896 0.0192

Lo=f 1=2
ohm ¼ 1:08Ra�Q

0:37 0.9820 0.0167

Lo=f 1=2
ohm ¼ 0:71Ra�Q

0:33Pm0:14 0.9972 0.0059

Lo=f 1=2
ohm ¼ 0:78 Ra�Q Pm1=3

� �0:34 0.9967 0.0066

Multipolar

Ro ¼ 1:79Ra�Q
0:44 0.9916 0.0098

Ro ¼ 2:44Ra�Q
0:47Pm�0:14 0.9954 0.0078

Ro ¼ 2:49 Ra�Q Pm�1=3
� �0:47 0.9952 0.0078

Rozonal ¼ 0:73Ra�Q
0:4 0.9553 0.0259

Rozonal ¼ 1:05 Ra�Q Pm�1=3
� �0:43 0.9699 0.0226

Lo=f 1=2
ohm ¼ 0:65Ra�Q

0:35 0.9941 0.0064

Lo=f 1=2
ohm ¼ 0:51Ra�Q

0:33Pm0:11 0.9975 0.0039

Fig. 5. Rossby number scaling incorporating a Pm dependence.

(a)

(b)

Fig. 6. Non-zonal Rossby number in (a) and zonal Rossby number in (b) versus the
heat flux based Rayleigh number. The gray filled data points are simulation results
(Nu > 2) of hydrodynamic free-slip convection from Christensen (2002).
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compared to Ro and Pm exponents. Hence, we discard a depen-
dence on E in our scaling analysis. The Pm exponent is small and
appears to depend on the nature of the magnetic field. The latter
could be an artifact of the relatively small size of the data set, espe-
cially for dipolar dynamos. In fact, similar to CA6, assuming a scal-

ing of the form Ro / Ra�Q Pm�1=3
� �a

, a good fit is obtained for both

dipolar and multipolar cases, with somewhat different values for
a (see Table 1); this form is shown in Fig. 5.

As described in Section 3.1, zonal flows are stronger in rotating
convective shells with free-slip mechanical boundaries. In the cor-
responding MHD systems, dynamos with multipolar magnetic
fields will have stronger zonal flows as compared to those with
dipolar magnetic fields. This effect is visible in Fig. 6 whose top pa-
nel shows Ronon�zonal versus Ra�Q , and the bottom panel shows
Rozonal versus Ra�Q . Ronon�zonal and Rozonal are calculated by consider-
ing the rms velocity excluding the axisymmetric zonal-flow com-
ponent and the rms velocity of only the axisymmetric zonal flow,
respectively. The scaling in Fig. 6a is Ronon�zonal ¼ 1:37Ra�Q

0:44 and
in Fig. 6b is Rozonal ¼ 0:32Ra�Q

0:44 (dipolar) and Rozonal ¼ 0:73Ra�Q
0:4

(multipolar). We also considered Pm as an additional scaling
parameter (see Table 1). The resulting scaling is marginally better,
but the improvement is not as remarkable as it is in Fig. 5.

As illustrated in Fig. 6a the non-zonal flow component is unaf-
fected by magnetic field geometry as both dipolar and multipolar
dynamos follow the same Ronon�zonal scaling. To further investigate
the effect of magnetic field on the flow, Fig. 6 also incorporates re-
sults (gray filled symbols) of hydrodynamic convection in spherical
shells with free-slip boundaries from Christensen (2002). This re-
veals that magnetic field itself does not affect the scaling behavior
of Ronon�zonal. Coupled with our earlier observation that Nu⁄ scaling
is effectively same in hydrodynamic and magnetohydrodynamic
convection in spherical shells, we can conjecture that the scaling
of flow component which is responsible for heat transfer is unaf-
fected by the presence of magnetic field.

Unlike the non-zonal Rossby number, the zonal Rossby number
of dipolar dynamos is consistently lower than that of correspond-
ing multipolar dynamos (Fig. 6b). This difference in zonal flows ex-
plains the offset in the Rossby number scaling in dipolar and
multipolar dynamos seen in Figs. 4 and 5. Note that as compared
to the dipolar branch the scatter in the multipolar branch of
Fig. 6b is large. This could be due to the fact that unlike the dipolar
branch the multipolar branch is a blend of dynamos which have
quadrupolar, octupolar, and sometimes even higher order modes
as the most dominating magnetic mode. Since the Maxwell stres-
ses are dependent on the magnetic field geometry, the zonal flows
saturate at many different levels. The hydrodynamic zonal flow is
consistently higher than both dipolar and multipolar cases. For
dipolar dynamos with rigid boundaries, Aubert (2005) argued that
Lorentz forces are essential to saturate the zonal flow and bring it
into a thermal wind balance, rather than the boundary friction. In
purely hydrodynamic cases with free-slip boundaries, it must be
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viscous friction in the bulk volume that limits the amplitude of the
zonal flow. Even for our multipolar dynamos, the zonal flow ampli-
tude is smaller than in the hydrodynamic cases (Fig. 6b), which
indicates that Lorentz forces play an important role for saturating
the flow. For the dipolar dynamos with stronger magnetic fields
the damping effect is more pronounced.
Fig. 8. Lorentz number versus the heat flux based Rayleigh number. The two solid
lines are best-fitting lines to dipolar and multipolar dynamos. The dashed-line
represent the scaling reported by CA6 for dipolar rigid boundary dynamos.
3.4. Magnetic field scaling

The Ohmic dissipation time smag, which is the ratio of magnetic
energy and Ohmic dissipation, is a function of the typical length
scale of the magnetic field. As the magnetic Reynolds number is in-
creased, the magnetic field becomes smaller scaled, and, since
small scales are associated with faster time scales, the Ohmic dis-
sipation time scale decreases. This qualitative argument was veri-
fied by Christensen and Tilgner (2004) in rigid boundary spherical
shell dynamos. They showed that smag (normalized with magnetic
diffusion time) is approximately inversely proportional to the mag-
netic Reynolds number Rm. When s0mag is the Ohmic dissipation
time expressed in units of rotation period of the spherical shell,
this inverse relation translates to s0mag / 1=Ro. In Fig. 7 we plot
s0mag versus Ro. A best-fit line to this data set suggests
s0mag / 1=Ro0:8. Since the scatter in Fig. 7 is substantial, the differ-
ence between the exponents �0.8 and �1 may not be very signif-
icant. Christensen (2010) have discussed a more complex scaling
for smag and report a marginal improvement in the quality of the
fit. Although the inset figure shows a small decrease in s0mag for
bistable states when the magnetic field is multipolar, the scalings
for dipolar and multipolar dynamos appear to follow the same
trend. Moreover, if we plot s0mag versus Rozonal or Ronon�zonal (not
shown), then the scatter is increased as compared to Fig. 7. It high-
lights that the important parameter in the context of ohmic dissi-
pation is the total Rossby number, which incorporates the zonal-
flow contribution.

CA6 argue that the magnetic field strength might be determined
by the power available to balance the Ohmic dissipation. Following
this argument, the Lorentz number should be accordingly cor-
rected by the Ohmic fraction fohm which is the ratio of Ohmic dis-
sipation and the power generated via buoyancy forces. In Fig. 8,
we plot the corrected Lorentz number versus the flux-based Ray-
Fig. 7. Ohmic dissipation time versus the Rossby number. Solid line represents a
best fit line, while the dashed line represents s0mag / 1=Ro. The inset-figure contains
bistable pairs connected by solid lines.

Fig. 9. Lorentz number scaling incorporating a Pm dependence.
leigh number Ra�Q , which is a non-dimensional measure for the
power generated by the action of buoyancy forces (CA6). A best

fit is obtained by Lo=f 1=2
ohm ¼ 1:08Ra�Q

0:37 (dipolar) and

Lo=f 1=2
ohm ¼ 0:65Ra�Q

0:35 (multipolar). The dipolar scaling in Fig. 8 is

close to the rigid boundary dipolar scaling Lo=f 1=2
ohm ¼ 0:92Ra�Q

0:34

(dashed line) reported by CA6. Furthermore, a two-parameter opti-

mized fit for dipolar dynamos is Lo=f 1=2
ohm ¼ 0:72Ra�Q

0:33Pm0:14 and for

multipolar dynamos is Lo=f 1=2
ohm ¼ 0:51Ra�Q

0:33Pm0:11. The inclusion of
Pm reduces the standard error by almost 67% (dipolar) and 39%
(multipolar). Again, assuming a simplified form

Lo=f 1=2
ohm / Ra�Q Pm1=3

� �b
, the quality of the fit is hardly reduced

(Table 1, Fig. 9). A cursory inspection of Figs. 8 and 9 suggests that
the dipolar and multipolar scalings are almost the same except for
an offset in the pre-factor by �8/5.
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An inverse relation of s0mag and Ro translates to
Lo=f 1=2

ohm /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra�Q=Ro

q
. If we now substitute the Ro scaling from

Fig. 4 in the previous relation, then an offset of �8/5 is indeed ex-
pected for dipolar and multipolar scaling. The s0mag / 1=Ro argu-
ment therefore supports the offset in the scaling observed in
Fig. 8 to a good extent. Schrinner et al. (2012) have also reported
a similar shift in their free-slip dynamo simulations; they qualita-
tively argue that the offset in the scaling is due to decrease in the
fohm in multipolar dynamo cases. In the case of rigid boundaries,
Christensen (2010) also reported a smaller scaling pre-factor of
the Lorentz number for multipolar dynamos compared to dipolar
ones. Our inspection of data from earlier spherical shell dynamos
with rigid boundaries reveals that Ro for both dipolar and multipo-
lar dynamos follows same scaling relation, unlike what we ob-
served. Clearly, more analysis is required to conclusively
demonstrate the reason for such an offset.

4. Discussion and conclusions

In this article we investigated the effect of free-slip mechanical
boundaries on various scaling laws in spherical shell dynamos. We
compared the inferred scaling laws with earlier reported scalings
for rigid boundary dynamos.

We observed bistability, i.e. dipolar and multipolar dynamos
coexisting for same control parameters. This agrees with the earlier
Table A.2
Results for Prandtl number Pr = 1 dynamo simulations. The Pm values of bistable multipo
convection is first excited are: 4.99 � 104 (E = 1 � 10�3), 1.86 � 105 (E = 3 � 10�4), 6.51 �

E Pm Ra/Rac Nu Rm

10�3 5 10.02 2.42 322.14
5 20.04 4.12 515.39
5 30.06 5.21 701.42
5 40.08 6.68 1223.29
5 50.10 7.23 1412.75
2 40.08 7.03 635.74
2 50.10 7.57 685.70

3 � 10�4 10 6.99 2.18 376.64
5 8.06 2.27 230.73
5⁄ 8.06 2.14 297.35
5 10.75 2.86 324.21
5 13.44 3.41 489.15
5 16.13 3.94 562.90
3 8.06 2.20 142.04
3⁄ 8.06 2.09 185.08
3 11.29 2.86 270.97
3 14.52 3.57 335.20
1.5 8.60 2.02 110.82
1.5 9.14 2.20 116.79
1.5 9.68 2.37 121.74
1.5 10.22 2.52 129.47
1.5 10.75 2.60 138.66
1 10.75 2.32 103.27
1 13.44 3.12 119.57
0.5 18.82 3.99 89.35

10�4 1 7.68 2.09 62.39
1 8.45 2.26 69.76
1 9.22 2.42 75.82
1⁄ 9.22 2.28 96.80
1 12.29 2.99 98.48
1⁄ 12.29 3.11 130.97
0.5 15.36 3.60 64.81
0.5⁄ 15.36 3.74 84.98
0.5 30.72 5.91 109.98
0.5 61.44 10.28 203.61

3 � 10�5 1 9.33 2.41 104.84
0.5 9.33 2.37 53.38
0.5 11.19 2.81 65.25
0.5⁄ 11.19 2.78 80.30

10�5 0.2 14.56 3.44 49.68
findings (Simitev and Busse, 2009, 2012; Sasaki et al., 2011; Schr-
inner et al., 2012; Gastine et al., 2012) and reinforces the impor-
tance of free-slip boundaries and zonal flows for this
phenomenon. Our Solar System giant planets are expected to have
low local Rossby numbers (Rol < 0.1) (Olson and Christensen,
2006). Noting that free-slip boundaries are more appropriate for
modeling these giant planets, bistability could be the reason why
Jupiter and Saturn have dipole dominated magnetic fields while
Uranus and Neptune have multipolar magnetic fields.

The modified Nusselt number scales as Nu� ¼ 0:061Ra�Q
0:52

which is very close to the scaling for rigid boundary dynamos
(Christensen and Aubert, 2006) and non-magnetic convection in
spherical shell with free-slip boundaries (Christensen, 2002). At
values of the Rayleigh number that are higher than in our simula-
tions, a gradual transition to a weaker dependence of the Nusselt
number on the Rayleigh number in expected (King et al., 2009,
2010; Schmitz and Tilgner, 2010), which can be associated with a
change from a rotationally-dominated regime to a non-rotating re-
gime. A matter of debate is whether the relative thickness of Ek-
man-layer and thermal boundary layer plays a role in this
transition (King et al., 2009). Schmitz and Tilgner (2010) dispute
this boundary layer hypothesis because they observe that the
transition occurs similarly for both rigid and free-slip boundaries.
Because our simulations do not reach the transition point, they
cannot contribute to this ongoing discussion.
lar dynamos are marked with ‘‘⁄’’. The critical Rayleigh numbers Rac at which fluid
105 (E = 1 � 10�4), 2.68 � 106 (E = 3 � 10�5), 1.03 � 107 (E = 1 � 10�5).

Rol Rozonal Lo fdip fohm

0.116 0.0477 0.0210 0.0078 0.15
0.253 0.0540 0.0454 0.0050 0.21
0.353 0.0540 0.0603 0.0030 0.24
0.375 0.0966 0.0744 0.0120 0.26
0.411 0.1253 0.0819 0.0055 0.25
0.388 0.1866 0.0190 0.0070 0.03
0.442 0.1971 0.0329 0.0064 0.07

0.038 0.0033 0.0302 0.4193 0.61
0.048 0.0041 0.0253 0.6320 0.57
0.057 0.0099 0.0115 0.0151 0.25
0.080 0.0041 0.0265 0.4800 0.48
0.108 0.0138 0.0203 0.0036 0.31
0.128 0.0151 0.0238 0.0050 0.34
0.051 0.0037 0.0212 0.7620 0.50
0.053 0.0117 0.0103 0.0121 0.23
0.080 0.0167 0.0156 0.0130 0.28
0.108 0.0206 0.0197 0.0127 0.31
0.046 0.0177 0.0086 0.0180 0.19
0.053 0.0179 0.0101 0.0240 0.21
0.060 0.0180 0.0114 0.0210 0.23
0.065 0.0189 0.0123 0.0270 0.24
0.067 0.0206 0.0128 0.0120 0.25
0.054 0.0265 0.0099 0.0068 0.20
0.082 0.0277 0.0155 0.0173 0.27
0.106 0.0451 0.0178 0.0188 0.24

0.034 0.0013 0.0079 0.8741 0.42
0.038 0.0015 0.0087 0.8329 0.43
0.042 0.0017 0.0096 0.8004 0.43
0.036 0.0062 0.0058 0.0086 0.29
0.058 0.0023 0.0123 0.7786 0.46
0.057 0.0076 0.0079 0.0180 0.32
0.078 0.0028 0.0126 0.8891 0.41
0.066 0.0111 0.0092 0.0115 0.34
0.131 0.0056 0.0210 0.7598 0.46
0.234 0.0137 0.0294 0.5634 0.43

0.025 0.0007 0.0046 0.6392 0.49
0.027 0.0006 0.0039 0.9071 0.39
0.035 0.0008 0.0047 0.8317 0.40
0.032 0.0026 0.0030 0.0001 0.32

0.032 0.0006 0.0023 0.9088 0.31
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The Rossby number scales as Ro ¼ 0:73Ra�Q
0:39 for dipolar and as

Ro ¼ 1:79Ra�Q
0:44 for multipolar dynamos. The offset in the scaling

of dipolar and multipolar dynamos can be attributed to different
zonal flow characteristics: zonal flow quenching is stronger in a
dipolar magnetic field configuration as compared to a multipolar
configuration. This results in a smaller pre-factor in the Rossby
number scaling for dipolar dynamos. We also used earlier numer-
ical results of hydrodynamic convection in spherical shells with
free-slip boundaries (Christensen, 2002) and observed that the
non-zonal flow scaling (Ronon�zonal) is unaffected by the presence
of magnetic field while the zonal flow scaling (Rozonal) is effectively
quenched by magnetic field.

The corrected Lorentz number scales as Lo=f 1=2
ohm ¼ 1:08Ra�Q

0:37 for
dipolar dynamos and Lo=f 1=2

ohm ¼ 0:65Ra�Q
0:35 for multipolar dyna-

mos. The exponents are almost identical but the pre-factors differ.
We investigated the origin of such shifted scaling and found that,
using the scalings for Rossby number (inferred from our data-set)
and an inverse relationship between ohmic dissipation time and
magnetic Reynolds number, parallel and shifted scalings for
Lo=f 1=2

ohm are indeed expected. The observed and the expected ratio
of dipolar and multipolar Lo=f 1=2

ohm scalings agreed quite well. This
agreement suggests that zonal flow amplitude controls the final
mean magnetic field strength of the dynamos with free-slip
boundaries.

Similar to Christensen and Tilgner (2004) and Christensen and
Aubert (2006), we also observed that a small dependence on the
magnetic Prandtl number improves the quality of the scalings,
especially in the dipolar dynamo cases. However, results form
the Karlsruhe laboratory dynamo experiment motivated Christen-
sen and Tilgner (2004) to conjecture that such small Pm depen-
dence might disappear when Pm� 1. The lowest Pm in our study
is of order unity, which makes it difficult to ascertain this conjec-
ture. So far, our free-slip simulations and the rigid boundary simu-
lation results of Christensen and Aubert (2006) support scalings
which have some Pm contribution. Simulations which attain
Pm� 1 will shed more light on this issue.

Objects such as stars and giant planets have free-surface flows,
very high density stratification, and probably fully convective
interiors. Nonetheless, scaling laws inferred from Boussinesq
dynamo models with rigid boundaries that have been tailored to
model the geodynamo, have been applied with some success also
to giant planets and rapidly rotating stars (Christensen et al.,
2009; Christensen, 2010). Similar scaling of physical properties
despite such drastic physical differences is puzzling. As a first step
toward testing the scaling laws for conditions that are more appli-
cable to giant planets and stars, we studied here the influence of
the mechanical boundary conditions. Our analysis shows that the
boundary conditions do not substantially affect the scaling behav-
ior of the rms velocity and the magnetic field strength, which sup-
ports the validity of the original scaling laws for a broader class of
objects. Future simulations of dynamos with density stratification
and fully convective interiors will address the remaining critical
factors.
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