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ABSTRACT

When our Sun was young it rotated much more rapidly than nolase®ations of young, rapidly rotating
stars indicate that many possess substantial magnetityethd strong axisymmetric magnetic fields. We
conduct simulations of dynamo action in rapidly rotatingswith the 3-D MHD anelastic spherical harmonic
(ASH) code to explore the complex coupling between rotata@mvection and magnetism. Here we study
dynamo action realized in the bulk of the convection zonefsystem rotating at three times the current solar
rotation rate. We find that substantial organized globalesmagnetic fields are achieved by dynamo action in
this system. Striking wreaths of magnetism are built in theéstnof the convection zone, coexisting with the
turbulent convection. This is a surprise, for it has beeralyitelieved that such magnetic structures should be
disrupted by magnetic buoyancy or turbulent pumping. Tmay solar dynamo theories have suggested that
a tachocline of penetration and shear at the base of the ctimweone is a crucial ingredient for organized
dynamo action, whereas these simulations do not include taotoclines. We examine how these persistent
magnetic wreaths are maintained by dynamo processes afmtexyhether a classical mean-fieldeffect
explains the regeneration of poloidal field. We find that tledgl-scale toroidal magnetic fields are maintained
by anQ-effect arising from the differential rotation, while théobal-scale poloidal fields arise from turbulent
correlations between the convective flows and magneticsfiditiese correlations are not well represented by
ana-effect that is based on the kinetic and magnetic helicities
Subject headings: convection — MHD — stars:interiors — stars:rotation — staragnetic fields — Sun:interior

1. STELLAR MAGNETISM AND ROTATION gular momentum loss of a few billion years. Thus the Sun
Most stars are born rotating quite rapidly. They can ar- glgzl}sf trgégtyed significantly more rapidly in its youth than i

rive on the main sequence with rotational velocities as high
as 200 kmds (Bouvieretal.[ 1997). Stars with convec- . o :
tion zones at their surfaces, like the Sun, slowly spin down ) 1.1 Rotat|on-,.0\ct|V|t.y Relatpns

as they shed angular momentum through their magnetized Rotation appears to be inextricably linked to stellar mag-
stellar winds (e.gl, Weber & DaVis 196[7; Skumahich 1972; netic activity. Observations indicate that in stars with ex
MacGregor & Brennér 1991). The time needed for signifi- tensive convective envelopes, chromospheric and coreral a
cant spindown appears to be a strong function of stellar masgivity — which partly trace magnetic heating of stellar atmo
(e.g.[Barnes 2003; West ef al. 2004): solar-mass stars slowspheres — first rise with increasing rotation rate, then even
less rapidly than somewnhat less massive G and K-type starstually level off at a constant value for rotation rates abave
but still appear to lose much of their angular momentum by mass-dependent threshold velocity (e.g.. Noyes|etal.;1984
the time they are as old as the Sun. Present day observationgatten & Simon_1996; Delfosse et al._1998; Pizzolato et al.
of the solar wind likewise indicate that the current angular 2003). Activity may even decline somewhat in the most rapid
momentum flux from the Sun is a few times*#@yn cm (e.g., rotators (e.g.,_James et al. 2000). Similar correspondence

Pizzo et all 1983), suggesting a time scale for substartial a iS observed between rotation rate and estimates of the un-
signed surface magnetic flux (Saar 1996, 2001; Reiners et al.

bpbrown@solarz.colorado.edu 2009). This “rotation-activity” relationship is tightedevhen
Lpresent address: Dept. Astronomy, University of Wiscandi@i5 stellar rotation is given in terms of the Rossby number
N. Charter St, Madison, W1 53706 Ro ~ P/7,, with P the rotation period and; an estimate
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of the convective overturning time (e.q., Noyes et al. 1984) toroidal fields. Both of these effects are, in mean-field tieo
Expressed in this fashion, a common rotation-activity cor- sensitive to rotation: tha-effect because it is proportional to
relation appears to span spectral types ranging from latethe kinetic helicity of the convective flows, which sense the
F to late M (e.g., Mohanty & Basii_2003; Pizzolato et al. overall rotation rate, and th@-effect because more rapidly
2003; Reiners & Basti 2007). Magnetic fields can likewise rotating stars are generally expected to have strongegrdiff
feed back upon stellar rotation by modifying the rate at ential rotation. But the detailed nature of these effecthén
which angular momentum is lost through a stellar wind (e.g., solar dynamo and the appropriate scaling with rotation has
Weber & Davis| 1967| Matt & Pudritz 2008). Analyses of been very difficult to elucidate.
stellar spindown as a function of age and mass have thus pro- Simulations of the global-scale solar dynamo have gener-
vided further constraints on stellar magnetism and its eonn  ally affirmed the view that the tachocline may play a central
tions to rotation. There are also indications that the pkrio role in building the globally-ordered magnetism in the Sun.
of the activity cycle itself may depend on the stellar rota- Recent three-dimensional (3D) simulations of solar convec
tion rate (e.g.,_Saar & Brandenblirg 1999). Recent observa+tion without a tachocline at the base of the convection zone
tions of solar-type stars may indicate that even the topolog achieved dynamo action and produced magnetic fields which
of the global-scale fields changes with rotation rate, with t  were strongly dominated by fluctuating components with lit-
rapid rotators having substantial global-scale toroidagm  tle global-scale order (Brun etlal. 2004). When a tachodine
netic fields at their surfaces (Petit etlal. 2008). The oVeral penetration and shear was included, remarkable glob#-sca
picture that emerges from these observations is that rapid r magnetic structures were realized in the tachocline region
tation, as realized in the younger Sun and in a host of otherwhile the convection zone remained dominated by fluctuating
stars, can aid in the generation of strong magnetic fields andfields {Browning et al. 2006). These simulations are making
that young stars tend to be rapidly rotating and magneticall good progress toward clarifying the elements at work in the
active, whereas older ones are slower and less active (e.ggoperation of the solar global-scale dynamo, but for othamsst
Barnes 2003; West etlal. 2004, 2008). many questions remain. In particular, observations ofdarg

A full theoretical understanding of the rotation-activigr scale magnetism in fully convective M-stars (Donati et al.
lationship, and likewise of stellar spindown, has remained2006), along with the persistence of a rotation-activity-co
elusive. Some aspects of these phenomena probably derelation in such low-mass stars, hint that perhaps taahesli
pend upon the details of magnetic flux emergence, chro-may not be essential for the generation of global-scale mag-
mospheric and coronal heating, and mass loss mechanismsetic fields. This view is partly borne out by simulations of M
— but the basiexistence of a rotation-activity relationship  dwarfs under strong rotational constraints (Browhning 2008
is widely thought to reflect some underlying rotational de- where strong longitudinal mean fields were realized despite
pendence of the dynamo process itself (e¢.g., Knobloch et althe lack of either substantial differential rotation orade in-
19871 Noves et al. 1934; Baliunas et al. 1996). terior and thus no classical tachocline. Major puzzles iema
1.2. Elements of Global Dynamo Action :/cittr?gtgllljaersgot& t?(?r:j.erstand stellar magnetism and its scaling

In stars like the Sun, the global-scale dynamo is gener- . : . .
ally thought to be seated in the tachocline, an interface of 1-3- Convection and Dynamosin Rapidly Rotating Systems
shear between the differentially rotating convection zane We began our study of rapidly rotating suns by carrying
the radiative interior which is in solid body rotation (g.g. out a suite of 3D hydrodynamic simulations in full spherical
Parker 1993; Charbonneau & MacGregor 1997; Ossendrijvershells that explored the coupling of rotation and convectio
2003). Helioseismology revealed the internal rotatiorfifgo  in these younger solar-type stars (Brown et al. 2008). Those
of the Sun and the presence of this important shear layer (e.g simulations studied the influence of rotation on the pastein
Thompson et al. 2003). The stably stratified tachocline may convection and the nature of global-scale flows in such stars
provide a region for storing and amplifying coherent tubes The shearing flows of differential rotation generally grow i
of magnetic field which may eventually rise to the surface of amplitude with more rapid rotation, possessing rapid exsat
the Sun as sunspots. Others have suggested that the latitand slower poles, while the meridional circulations weaken
dinal and radial gradients of angular velocity in the bulk of and break up into multiple cells in radius and latitude. More
the convection zone may be sufficient for global dynamo ac- rapid rotation can also substantially modify the patterfis o
tion (e.g., Dikpati & Charbonneau 1999; Brandenburg 2005; convection in a surprising fashion. With more rapid rotatio
Guerrero & de Gouveia Dal Pino 2007). However, it has gen- localized states begin to appear in which the convection at
erally been believed that magnetic buoyancy instabilitiey low latitudes is modulated in its strength with longitudet A
preventfields from being strongly amplified within the bufk 0  the highest rotation rates, the convection can become @ahfin
the convection zone itself (Parker 1975). In the now presale to active nests which propagate at distinct rates and péosis
“interface dynamo” model, solar magnetic fields are partly long epochs.
generated in the convection zone by helical convectiom the  Motivated by these discoveries, we turn here to exploration
transported downward into the tachocline where they are or-of the possible dynamo action achieved in a solar-type star r
ganized and amplified by the shear. Ultimately the fields may tating at three times the current solar rate. These 3D magnet
become unstable and rise to the surface. hydrodynamic (MHD) simulations span the convection zone

Although the rotational dependence of this process is notalone, as the nature of tachoclines in more rapidly rotating
well understood, some guidance may come from mean-fieldsuns is at present unclear. We find that a variety of dynamos
dynamo theory. In such theories, the solar dynamo is oftencan be excited, including steady and oscillating stated, an
referred to as and’—Q” dynamo, with then-effect character-  that dynamo action is substantially easier to achieve &gthe
izing the twisting of fields by helical convection (e.g., Naif faster rotation rates than in the solar simulations. Magnet
1978;/ Steenbeck etlal. 1966), and thesffect representing leads to strong feedbacks on the flows, particularly modify-
the shearing of poloidal fields by differential rotation torh ing the differential rotation and its scaling with the oJéera
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rotation rate€)sp. The magnetic fields which form in these filters out the fast magneto-acoustic modes while retaitfing
dynamos have prominent global-scale organization withént  slow modes and Alfvén waves. Under the anelastic approxi-
convection zone, in contrast to previous solar dynamo simu-mation the thermodynamic fluctuating variables are lirmsati
lations (Brun et al. 2004; Browning et/al. 2006). about their spherically symmetric and evolving mean state,

Quite strikingly, we find that coherent global magnetic with radially varying density, pressuré, temperaturd and
structures arise naturally in the midst of the turbulentvean specific entropys. The fluctuations about this mean state are
tion zone. These wreath-like structures are regions ohgtro denoted ap, P, T andS. In the reference frame of the star,
longitudinal fieldB, organized loosely into tubes, with fields rotating at average rotation rafk, the resulting MHD equa-
wandering in and out of the surrounding convection. Thesetions are:

wreaths of magnetism differ substantially from the idesdiz V- (pv) =0, (1)
flux tubes supposed in many dynamo theories, though they
may be related to coherent structures achieved in local sim- V-B=0, 2)
ulations of dynamo action in shear flows (Cline et al. 2003;
Vasil & Brummell2008] 2009). _ . 5 [@ (0 V)0 +2% X 0| =-V(P+P)
Here we explore the nature of persistent magnetic wreaths ot 3)
realized in a global simulation rotating at three times the s B 1
lar rotation rate, and discuss how they are maintained amids +(p+p)g+ an (VXB)xB-V-D,
turbulent convection. In many of our other rapidly rotat- 0B
ing suns, the dynamos become time dependent and undergo _
semi-regular changes of global-scale polarity. Those ohosa ot VXX B)=V x {1V x B), 4)
will be explored in an upcoming paper. We additionally find
that magnetic wreaths survive in the presence of a model T 8—S+U-V(S+S) -
tachocline, and those simulations will be reported on sepa- P ot
rately. V- [kepepV(T+T) +ropTVS+rpTVS  (5)

We outline in & the 3D MHD anelastic spherical shell
model and the parameter space explored by these simulations 4y 1 )
We then examine in §83 afd 4 the structure of magnetic fields =z +2pv {Qjaj - §(V "v) } ;
found in our rapidly rotating dynamo at three times the so-
lar rate, which builds persistent global-scale ordereddi@h wherewv = (V,Vg,V,) is the local velocity in the stellar ref-
the form of wreaths in the midst of its convection zone. In erence frameB = (Br,By,By) is the magnetic field; is the
g5 we examine how such global-scale fields are created andector current density; is the gravitational acceleratiogy, is
maintained by dynamo processes. [ §6 we explore whethethe specific heat at constant pressugds the radiative diffu-
a classical mean-field-effect reproduces our observed pro- sivity andD is the viscous stress tensor, given by
duction of poloidal field. We reflect on our findings inl 87.

1
2. GLOBAL MODELLING APPROACH Dyj =—2pv [Gj - é(V : v)%} , (6)

To study the coupling between rotation, magnetism and
the large-scale flows achieved in stellar convection zomes, ~Wheree; is the strain rate tensor. Herex andr are the dif-
must employ a global model which simultaneously captures fusivities for vorticity, entropy and magnetic field. We asse
the spherical shell geometry and admits the possibility of an ideal gas law B B
zonal jets and large eddy vortices, and of convective plumes P=RpT, @)

that may span the depth of the convection zone. The solar . . .
convection zone is intensely turbulent and microscopiceml ~ WhereR is the gas constant, and close this set of equations

of viscosity and magnetic and thermal diffusivities in thenS using the linearized relations for the thermodynamic flaetu

are estimated to be very small. Numerical simulations canno t0ns of PT P S
hope to resolve all scales of motion presentin real stetiar ¢ @ = ——=_-= (8)
vection and must instead strike a compromise between resolv p P T AP ¢

ing dynamics on small scales and capturing the connectivity - : ; ;
and geometry of the global scales. Here we focus on the IatterThe mean state thermodynamic variables that vary with eadiu

: g . are evolved with the fluctuations, thus allowing the convsct
by studying a full spherical shell of convection. to modify the entropy gradients which drive it.
2.1. Andlastic MHD Formulation The mass flux and the magnetic field are represented with a

. L toroidal-poloidal decomposition as
Our tool for exploring MHD stellar convection is the P P

anelastic spherical harmonic (ASH) code, which is desdribe pv =V X V x (Wf)+V X (Zf), 9

in detail in Clune et al. (1999). The implementation of mag- — ¢ ¢

netism is discussed in Brun et al. (2004). ASH solves the 3D B= VXV x(@n+vx(n, (10)
MHD anelastic equations of motion in a rotating spherical with streamfunctiond¥ and Z and magnetic potential§
shell using the pseudo-spectral method and runs efficiently and (. This approach ensures that both quantities remain
massively parallel architectures. We use the anelastimapp  divergence-free to machine precision throughout the simul
imation to capture the effects of density stratificationhwit  tion. The velocity, magnetic and thermodynamic variables
out having to resolve sound waves which have short periodsare all expanded in spherical harmonics for their horizon-
(about 5 minutes) relative to the dynamical time scales ef th tal structure and in Chebyshev polynomials for their radial
global scale convection (weeks to months) or possible sycle structure. The solution is time evolved with a second-order
of stellar activity (years to decades). This criteria effesdy Adams-Bashforth/Crank-Nicolson technique.



4 Brown, Browning, Brun, Miesch & Toomre

TABLE 1
PARAMETERS FORPRIMARY SIMULATIONS
Case Nr,Ng,Ng Ra Ta Re Re Rm Rnf Ro Roc v n Qo/Q0
D3 96x256x512 3.2%10° 1.22x10° 173 105 86 52 0.378 0.311 1.32 264 3
H3 96x256x512 4.10<10° 1.22x10° 335 105 — — 0.427 0.353 132 — 3
NoTeE. — Dynamo simulation at three times the solar rotation rateaise D3, and the hydrodynamic (non-magnetic)

companion is H3. Both simulations have inner radigs = 5.0 x 10%m and outer radius afop = 6.72 x 10'%m, with
L = (rop—Trbot) = 1.72 x 10'%m the thickness of the spherical shell. Evaluated at mjttdere the Rayleigh number
Ra = (9p/99)(dS/dr)gL*/pvk, the Taylor number Ta =@2L*/12, the rms Reynolds number RevimsL /v and fluctu-
ating Reynolds number Re v;,L/v, the magnetic Reynolds number Rm/msL /5 and fluctuating magnetic Reynolds

number Rm = V/,,.L/n, the Rossby number Ro&/2( , and the convective Rossby number Roc =/(RePr}/2. Here
the fluctuating velocity’ has the axisymmetric component removeti= v—(v), with angle brackets denoting an average
in longitude. For both simulations, the Prandtl number R/ is 0.25 and in the dynamo simulation the magnetic Prandtl

number Pm =//n is 0.5. The viscous and magnetic diffusivity,andn, are quoted at mid-depth (in units of #an?s™).
The rotation raté2g of each reference frame is in multiples of the solar fate= 2.6 x 1076 rad s or 414 nHz. The viscous
time scale at mid-depth, = L?/v is about 2600 days for case D3 and the resistive time scaleist 4300 days, while the
rotation period is 9.3 days.

ASH is a large-eddy simulation (LES) code, with subgrid- from 0.72R, to 0.97R., thus spanning 172 Mm in radius.
scale (SGS) treatments for scales of motion which fall be- The total density contrast across the shell is about 25. The
low the spatial resolution in our simulations. We treat ¢hes reference or mean state of our thermodynamic variables is de
scales with effective eddy diffusivities;, ~ andn, which rived from a 1D solar structure model (Brun etlal. 2002) and
represent the transport of momentum, entropy and magnetids continuously updated with the spherically symmetric eom
field by unresolved motions in the simulations. These sim- ponents of the thermodynamic fluctuations as the simulgtion
ulations are based on the hydrodynamic studies reported irproceed. The reference state in all of these simulationmis s
Brown et al. [(2008), and as there x andn are taken for ilar to that shown in_Brown et al. (2008). We avoid regions
simplicity as functions of radius alone and proportional to near the stellar surface where hydrogen ionization andradi
p Y2, This adopted SGS variation, aslin Brun €t al. (2004) tive losses drive intense convection (like granulationyery
and Browning et al/ (2006), yields lower diffusivities nélae small scales that we cannot resolve, and thus position the up
bottom of the layer and thus higher Reynolds numbers. Act-per boundary slightly below this region. Our lower boundary
ing on the mean entropy gradient is the eddy thermal diffusio is positioned near the base of the convection zone, thus omit
ko Which is treated separately and occupies a narrow regionting the stably stratified radiative interior and the shagel at
in the upper convection zone. Its purpose is to transport en-the base of the convection zone known as the tachocline. The

tropy through the outer surface where radial convective mo-fundamental characteristics of our simulations and patame

tions vanish. definitions are summarized in Talple 1.
The boundary conditions imposed at the top and bottom of ~ The dynamo simulation was initiated from a mature hydro-
the convective unstable shell are: dynamic progenitor which had been evolved for more than
5000 days and was well equilibrated. The progenitor case H3
1. Impenetrable top and bottom: =0, is very similar to case G3 reported in Brown et al. (2008), but
] here we chose a functional form for the SGS entropy diffusion
2. Stress-free top and bottom: ko that is more confined to the upper 10% of the convection
(8/0r)(vg/r) = (8/0r)(vy/r) =0, zone; the unresolved flux here does not vary as much with
rotation rate. The effects of this change are subtle, riagult
3. Constant entropy gradient at top and bottom: primarily in slightly stronger latitudinal gradients offféiren-
_ tial rotation and temperature in the uppermost regions ®f th
9(S+9)/0r = const (11)  shell. The patterns of convection are very similar to those
L found in case G3, though here they are slightly more complex
4. Match to external potential field at top: near the top of the shell, and the Reynolds number remains
_ 24 _ high throughout the convection zone. Case H3 possesses in-
B=V® and V'é= 0|f=nop’ tricate convective patterns and a solar-like differemttion
profile, with fast zonal flow at the equator and slower flows at
5. Perfect conductor at bottom: the poles.
B, = (3/0r)(rBy) = (9/0r)(rBy) = 0. To initiate our dynamo case, a small seed dipole magnetic

field was introduced and evolved via the induction equation.
The energy in the magnetic fields is initially many orders of
2.2. Posing the Dynamo Problem magnitude smaller than the energy contained in the comeecti
. . LT . motions, but these fields are amplified by shear and grow to
Our simulations are a simplified picture of the vastly tur- become comparable in energy to the convective motions.

t)uklent ?tellarl con\f/ec'ilr(])n.zon?s ptreser}'lt in G-type sté;lrs. d_We Stellar dynamo simulations are computationally intensive
ae solar values for the input entropy lux, mass and radius,.eqyiring both high resolutions to correctly representitbe

and explore simulations of a star rotating at three times thelocity fields and long time evolution to capture the equili-

current solar rotation rate. We focus here on the bulk of the brated dynamo behavior, which may include cyclic variagion
convection zone, with our computational domain extending '
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FIG. 1.— Convective structures and mean flows in cases D3 and &3Rgdial velocityv; in dynamo case D3, shown in global Mollweide projection at
0.95R, with upflows light and downflows dark. Poles are at top andobotand the equator is the thick dashed line. The stellasserétR is indicated by
the thin surrounding line b Profiles of mean angular velocify(r, #), accompanied indj by radial cuts of2 at selected latitudes. A strong differential rotation
is established by the convectiord) (Profiles of meridional circulation, with sense of circidat indicated by color (red counter-clockwise, blue clodey and
streamlines of mass flux overlaice{h) Companion presentation of fields for hydrodynamic progeriase H3. The patterns of radial velocity are very similar
in both cases. The differential rotation is much strongethi hydrodynamic case and the meridional circulationsetlzee somewhat weaker, though their
structure remains similar.

on time scales of several years. The strong magnetic fietds ca Pm dynamos can still achieve large magnetic Reynolds num-
produce rapidly moving Alfvén waves which seriously retri  bers based on this zonal flow. Lastly, the critical magnetic
the Courant-Friedrichs-Lewy (CFL) timestep limits intigu ~ Reynolds number for dynamo action likely decreases with in-
per portions of the convection zone. Case D3, rotating threecreasing kinetic helicity (e.g., Leorat et al. 1981), antidae
times faster than the current Sun, has been evolved for oveity generally increases with rotation rate (elg.. Kapylalet
7000 days (or over 2 million timesteps). We plan to report 2009). Indeed there are even suggestions that the presence
on a variety of other dynamo cases, some at higher turbulencef a mean shearing flow may lower the critical magnetic
levels and rotation rates, in subsequent papers. Reynolds number_(Hughes & Proclor 2009), and the strong
This dynamo simulation was conducted at magnetic Prandtldifferential rotation present in these rapidly rotatingsmay
number Pm =//n = 0.5, a value significantly lower than serve to lower this threshold for dynamo action. We find that
employed in our previous solar simulations. In partic- the rapidly rotating flows considered here achieve dynamo ac
ular, |Brun et al. [(2004) explored Pm 525 and 4, and tion at somewhat lower Rm than the models_of Brun et al.
Browning et al. [(2006) studied Pm = 8. The high magnetic (2004), which rotated at the solar rate.
Prandtl numbers were required in the solar simulations to
reach sufficiently high magnetic Reynolds numbers to drive 3. DYNAMOS WITH PERSISTENT MAGNETIC WREATHS
sustained dynamo action. In the simulations of Brunktal. We here explore case D3 which yields fairly persistent
(2004) only the simulations with Pm 2.5 and Rm > 300 wreaths of magnetism in its two hemispheres, though these
achieved sustained dynamo action, where’ Rmhe fluctu- do wax and wane somewhat in strength once established. Ex-
ating magnetic Reynolds number. We are here able to useamining the properties of this dynamo solution should help t
a lower magnetic Prandtl number for three reasons. Firstly,provide a perspective for the greater variations realinealir
more rapid rotation tends to stabilize convection and lower time-dependent dynamos which will be discussed in a follow-
values ofv andn are required to drive the convection. Once Ing paper.
convective motions begin, they become quite vigorous and .
the fluctuating velocitieg satura)t/e at value;JI compa?ratrlmto 3.1. Patterns of Convection
solar cases. Thus the Reynolds numbers achieved are fairly The complex and evolving convective structures in our dy-
large and we can achieve modestly high magnetic Reynoldshamo cases are substantially similar to the patterns of con-
numbers even at low Pm. Secondly, the differential rotation vection found in our hydrodynamic simulations. Our dynamo
becomes substantially stronger with both more rapid mtati ~ solution rotating at three times the solar rate, case D3gis p
Qo and with lower diffusivities, andn. This global-scale flow  sented in Figur€ll, along with its hydrodynamic progenitor,
is an important ingredient and reservoir of energy for these case H3. The radial velocities shown near the top of the sim-
dynamos, and the increase in its amplitude means that lowulated domain (Fig$.H €) have broad upflows and narrow
downflows as a consequence of the compressible motions.
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FiG. 2.— Magnetic wreaths and convective flows sampled at the sastant in case D3aj Longitudinal magnetic fiel@, near the top of the shell @5R:)
and ) at mid-depth (B5R). Strong flux structures with opposite polarity lie above &elow the equator and span the convection zoniel) {Veaker radial
magnetic fieldB; permeates and encircles each wreaghf ) Strong convective upflows and downflows showrnvpyass through and around the wreaths. The
regions of strong magnetism tend to disrupt the convectaxgsfiwhile the strongest downflows serve to pump the wreathestater depths.

Near the equator the convectionis aligned largely in thémor  in part to the thermal structure of the solar tachocline,ras fi
south direction, and these broad fronts sweep through the dofound in the mean-field models p105i and then
main in a prograde fashion. The strongest downflows pene-in 3D simulations of global-scale convectionlby Miesch et al
trate to the bottom of the convection zone; the weaker flows (2006). In those computations, it was realized that intoadu
are partially truncated by the strong zonal flows of difféi@n  ing a weak latitudinal gradient of entropy at the base of the
rotation. In the polar regions the convection is more iguto  convection zone, consistent with a thermal wind balance in
and cyclonic. There the networks of downflow lanes surrounda tachocline of shear, can serve to tilt thecontours to-
upflows and both propagate in a retrograde fashion. ward a more radial alignment without significantly chang-

The convection establishes a prominent differential rota- ing either the overalf2 contrast with latitude or the convec-
tion profile by redistributing angular momentum and entropy tive patterns. Ballot et all (2007) explored the consegesnc
building gradients in latitude of angular velocity and tesrge of such a boundary condition in one of their simulations of
ture. Figure§h, f show the mean angular velocir, #) for young, rapidly rotating suns with deep convection zones and
cases D3 and H3, revealing a solar-like structure with a pro-found that the effects on the differential rotation wereisim
grade (fast) equator and retrograde (slow) pole. Fidureg 1 lar to those found in_Miesch etlal. (2006). We expect similar
present in turn radial cuts d? at selected latitudes, which behavior here, but at present observations of rapidlyirgat
are useful as we consider the angular velocity patterns real stars only measure differential rotation at the surfacedmd
ized here with faster rotation. The€¥r, #) profiles are aver-  not offer constraints on either the existence of tachosline
aged in azimuth (longitude) and time over a period of roughly young suns or the nature of their internal differential tiota
200 days. Contours of constant angular velocity are alignedprofiles. As such, we have neglected the possible tachacline
nearly on cylinders, influenced by the Taylor-Proudmantheo of penetration and shear entirely in these models and istea
rem. adopt the simplification of imposing a constant radial epyro

In the Sun, helioseismology has revealed that the contourgradient at the bottom of the convection zone.
of angular velocity are aligned almost on radial lines rathe  The differential rotation achieved is stronger in our hydro
than on cylinders. Thetilt d® contoursinthe Sun may be due dynamic case H3 than in our dynamo case D3. This can be
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FiG. 3.— Field line tracings of magnetic wreaths in case 23.Snapshot of two wreaths in full volume at same instant asgriZ Lines trace the magnetic
fields, color denoting the amplitude and polarity of the litindjnal field By, (red, positive; blue, negative). Magnetic field threadsrid aut of the wreaths,
connecting the two opposite polarity structures acrosethumtor (i.e., region A) and to the polar regions where thgmatic field is wound up by the cyclonic
convection. ) Same snapshot showing south polar regiahZpom in on region A showing the complex interconnection®sg the equator between the two
wreaths and to high latitudes. Convective flows create thindiive waviness visible in all three images.

to weakly couple the polar regions to the equatorial convec-
tion. Flows of meridional circulation are slightly strorrige
in the dynamo cases than in the purely hydrodynamic cases,
though both cases have weaker flows than are found in simula-
Case Al A% Af/Oeq Epoch tions rotating at the solar rate. Thus, as found in Brownlet al
(2008), the flows of meridional circulation appear to weaken
with more rapid rotation. The multi-celled nature of these
meridional circulations may hold implications for flux t&an

TABLE 2
NEAR-SURFACEAQ

D3 118 0.71 0.137 2010-6980
H3 222 094 0.246 -

NOTE. — Angular velocity shear in units of

prads™, with AQy measured near the surface port dynamo models (e.bMﬂMuZDOY). Recent mea.”
(0.97R») and AQr measured across the full shell at field dynamo models are also beginning to explore the impli-
the equator. The relative latitudinal shefa1/Qeq cations of weaker and multi-celled meridional circulatsdor

is also measured at the same point near the surface. dynamo action in more rapidly rotating suns (et a
For the dynamo case, these measurements are taken )

over the indicated range of days. Case D3 shows slow :

variations inAQ5 over periods of about 2000 days.
The hydrodynamic case is averaged for roughly 300
days and shows no systematic variation on longer
timescales.

quantified by measurements of the latitudinal angular vloc 3.2 Kineti d Maanetic E .
shearAQy,. Here, as in Brown et al. (2008), we defidd,; - INElC and Magnetic Energies

as the shear near the surface between the equator and a hig}h Convectionin these rapidly rotating dynamos is respoasibl
latitude, say:60° or building the differential rotation and the magnetic die!

In a volume averaged sense, the energy contained in the mag-
Aat = Qeq= oo, (12) netic fields in case D3 is about 10% of the kinetic energy.

. . About 35% of this kinetic energy is contained in the fluc-
and the radial shedk(}, as the angular velocity shear between tuating convection (CKE) and about 65% in the differential

the surface and bottom of the convection zone near the equatorotation (DRKE), whereas the weaker meridional circulasio

AQ = Qoomr, ~ Q7R - (13) contain only a small portion (MCKE). The magnetic energy is

split between the contributions from fluctuating fields (FME
We further define the relative shear A$)ai/(2eq. In both involving roughly 53% of the total magnetic energy, and the
definitions, we average the measurement&@fin the north-  energy of the mean toroidal fields (TME) that are 43% of the

ern and southern hemispheres, as the rotation profile is ofte total. The energy contained in the mean poloidal fields (PME)

slightly asymmetric about the equator. Case H3 achieves arls only 4% of the total magnetic energy. These energies are

absolute contragkQ; of 2.22y rads* (352 nHz) and arela-  defined as

tive contrast of 0.247. The strong global-scale magnetidgie

realized in the dynamo case D3 serve to diminish the differen

tial rotation. As such, thi? case achieves an absolute asintr

A of only 1.18, rad s* (188 nHz) and a relative contrast 1 2 2

of 0.137. This results from both a slowing of the equatorial CKE‘QP[(Vr = (V) "+ (Vo = (vo)) "+

rotation rate and an increase in the rotation rate in therpola 2

regions. These results are quoted in Table 2. (Vo = (vs)) } , (14)
The meridional circulations realized in the dynamo case D3

are very similar to those found in its hydrodynamic progeni- DRKE == 5(v,)?, (15)

are multi-celled in radius and latitude. The cells are sitpn -( 2, 2)

aligned with the rotation axis, though some flows along the in MCKE=Zp( ()" + (V)" (16)

tor (case H3). As illustrated in Figuresl h, the circulations
ner and outer boundaries cross the tangent cylinder and serv a7

NI~ NI
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case D3 at two depths in the convection zone in Fifllire 2. The

TABLE 3 dominant component of the magnetic wreaths is the strong
ENERGIES . . . . . .
longitudinal fieldB,, with each wreath possessing its own po-
Case CKE DRKE MCKE FEME TME PME larity. The average strength of the longitudinal field at mid

convection zone ig-7 kG and peak field strengths there reach
roughly+26 kG. Threaded throughout the wreaths are weaker
radial and latitudinal magnetic fields, which connect the tw
structures across the equator and also to the high-latierde

D3 231 435 0010 Q36 029 0029
H3 256 222 0.012 - -

NoTE. — Volume-averaged energy densities relative to the

rotating coordinate system. Kinetic energies are shown for gions. . . . .

convection (CKE), differential rotation (DRKE) and merid- These wreaths of magnetism survive despite being embed-
ional circulations (MCKE). Magnetic energies are shown for ded in vigorous convective upflows and downflows. The
fluctuating magnetic fields (FME), mean toroidal fields (TME) convective flows leave their imprint on the magnetic struc-
and mean poloidal fields (PME). All energy densities are re- t ith individual d fl | trainina th imet
ported in units of 10erg cnt® and are averaged over 1000 day .ures' Wi In. IVI. ualdownriow anes en .I‘a_lnlng .e magne
periods. field, advecting it away, and stretching it inB while leav-

ing regions of locally reduceB,. The slower upflows carry
strongerB, up from the depths. Where the magnetism is
particularly strong the convective flows are disrupted. Mea

FME = 1 [(Br - <B,>)2 +(By— (Be>)2 + while, where the convective flows are strongest, the lorgitu
8 dinal magnetic field is weakened and appears to vanish. In
(By- <B¢>)2} 7 (18) reality, the magnetic wreaths here are diving deeper belew t
L mldl_-conve_cuonfztﬁne, appa(;entl);lpumped down by the pum-
_ 2 meling action of the strong downflows.
TME= 8r (By)", (19) The deep structure of these wreaths is revealed by field line
1 tracings throughout the volume, shown in Figlie 3 for the
PMEZS—(<Br>2+<Ba>2)- (20)  same instant in time. The wreaths are topologically leaky
7T . . . . A .
) ) structures, with magnetic field lines threading in and out of
where angle brackets denote an average in longitude. the surrounding convection. The wreaths are connecteeto th

These results are in contrast to our previous simulations ofhigh-latitude (polar) convection, and on the poleward sdge
the solar dynamo, where the mean fields contained only abouthey show substantial winding from the highly vortical con-
2% of the magnetic energy and the fluctuating fields containedvection found there. This occurs in both the northern and
nearly 98%|(Brun et al. 2004). In simulations of the solar dy- southern hemispheres, as shown in two views at the same in-
namo that included a stable tachocline at the base of the constant (north, Figll8 and south, Figi}9). It is here that the
vection zonel(Browning et £l. 2006), the energy of the mean global-scale poloidal field is being regenerated by the cou-
fields in the tachocline can exceed the energy of the fluctuat-pling of fluctuating velocities and fluctuating fields. Mag-
ing fields there by about a factor of three, though the fluetuat netic fields cross the equator, tying the two wreaths togethe
ing fields still dominate the magnetic energy budgetwithent  at many locations (Figk3. The strongest convective down-
convection zone itself. Simulations of dynamo activitylet  flows leave their imprint on the wreaths as regions where the
convecting cores of A-type stars (Brun etlal. 2005) achievedfield lines are dragged down deeper into the convection zone,

similar results. There in the stable radiative zone thegiasr ielding a wavy appearance to the wreaths as a whole.
of the mean fields were able to exceed the energy containea/

in the fluctuating fields, but in the convecting core the fluc- 4.1. Wreaths Persist for Long Epochs

tuating fields contained roughly 95% of the magnetic energy. The wreaths of magnetism built in case D3 persist for long
Simulations of dynamo action in fully-convective M-stas d  periods of time, with little change in strength and no rever-
however show high levels of magnetic energy in the meansals in global-scale polarity for as long as we have pursued
fields (Browning 2008). In those simulations the fluctuating these calculations. The long-term stability of the wreahs
fields still contain much of the magnetic energy, but the meanalized by the dynamo of case D3 is shown in Fiddre 4. Here
toroidal fields possess about 18% of the total throughout mos the azimuthally-averaged longitudinal figl;) and colatitu-
of the stellar interior. In our rapidly rotating suns, theane  dinal field (By) are shown at mid-convection zone at a point
fields comprise a significant portion of the magnetic energy after the dynamo has equilibrated and for a period of roughly
in the convection zone and are as important as the fluctuatings000 days (i.e., several ohmic diffusion times). During thi
fields. terval there is little change in either the amplitude orctinee
Convection is similarly strong in both rapidly rotating of the mean fields. This is despite the short overturn times of
cases, and CKE is similar in magnitude. The differentiadfot  the convection (10-30 days) or the rotation period of the sta
tion in the dynamo case is much weaker than in the hydrody-(~ 9 days). The ohmic diffusion time at mid-convection zone
namic progenitor, and DRKE has decreased by about a factois approximately 1300 days.
of five. Meridional circulations are comparably weak in both  Though the mean (global-scale) fields are roughly steady in
cases. nature (Figd. |, b), the magnetic field interacts strongly with
the convection on smaller scales. Several samples of longit
4. WREATHS OF MAGNETISM dinal fieldB,, are shown in full Mollweide projection at mid-
These rapidly rotating dynamos produce striking magnetic convection zone (Fid.Jg}. The magnetic fields are clearly
structures in the midst of their turbulent convection zones reacting on short time scales to the convection but the Wseat
The magnetic field is organized into large banded, wreath-maintain their coherence.
like structures positioned near the equator and spannimg th There are also some small but repeated variations in the
depth of the convection zone. These wreaths are shown foiglobal-scale magnetic fields. Visible in Figurb dre events
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+6.1/-6.1 kG SN A S +6.2/-5.8 kG

FIG. 4.— Persistent wreaths of magnetism in case BBTime-latitude plots of azimuthally-averaged longitualifield (B ) at mid-convection zone (85R)
in a view spanning latitudes from:70°, with scaling values indicated. The two wreaths of oppopitéarity persist f%r more than 4000 daysb) Mean
colatitudinal magnetic fieldBy) at mid-convection zone over same intervad) $napshots oB,, in Mollweide projection at mid-convection zone, shown for
three times indicated ia,b. The wreaths maintain constant polarity over long timerirgks, but still show variation as they interact with the wection. Time

t2 corresponds to the snapshot in [Fib. 2

where propagating structures @) reach toward higher lat-  tle variation in time. To understand the physical processes
itudes over periods of about 1000 days (i.e., from day 3700responsible for maintaining these magnetic wreaths, we ex-
to day 4500 and from day 5600 to day 6400). These are ac-amine the terms arising in the time- and azimuth-averaged in
companied by slight variations in the volume-averaged mag-duction equation for case D3.

netic energy densities and the comparable kinetic energy of

the differential rotation. These variations are also Vésin 5.1. Maintaining Wreaths of Toroidal Field

the differential rotation itself, as shown in Figlm_e 5. Thed We begin our analysis by exploring the maintenance of the
ferential rotation is fairly stable, though some time vioia mean toroidal fieldB,). Here it is helpful to break the in-

is visible at high latitudes. This is better revealed (Fig) 5 ; ; ; it
by subtracting the time-averaged profile{dft each latitude, ggsgg{?gﬁrg:]gr(c):gnmegrléz;tsl?ol’u}i);mglsontrlbut|0ns from shea

revealing the temporal variations about this mean. In the po

lar regions above-40° latitude, speedup features move pole- VXx(@wxB)=

ward over 500 day periods. These features track similac-stru B-VYu-(v-VYB- B(V-v) . 21
tures visible in the mean magnetic fields (Ffib).4The bands L,_”i &)—/ w D)
of velocity speedup bear some resemblance to the poleward shear advection compression

branch of torsional oscillations observed in the solar eahv Details of this d . . in the A di
tion zone over the course of a solar magnetic activity cycle DEtalls of this decomposition are given in the Appendix.

e.g.. Thompson et &1, 2003; Halve 2009), though here they, 1he evolution of the mean longitudinal (toroidal) fiel;)
E)rogpagate to higher latitudes on a shorter)time sgale. is described symbolically in equation (A8), with individua
The temporal variations of the angular velocity contrast in terms defined in equation (A9). When we analyze these terms
latitude A are shown for this period in Figui&bAt mid-  In case D3, we find thaB,) is produced by the shear of dif-
convection zone (sampled by red line) the variationdin, ~ ferential rotation and is dissipated by a combination of tur
are modest, varying by roughly 8%. Near the surface (greenbUIem induction and ohmic diffusion. This balance can be
line) AQi; shows similar variations with amplitudes of about restated as
6%. The near-surface valuesAf,; are reported in Tablg 2, 0(By)
averaged over this entire period. gt~ Pust (Pes*Pea+Pup) ~ 0, (22)
These evolving structures of magnetism and faster and i ) )
slower differential rotation appear to be the first indicai ~ With Pus representing production by the mean shearing flow
of behavior where the mean fields themselves begin to waxOf differential rotationPes by fluctuating sheaixa by fluc-
and wane substantially in strength. As the magnetic Renold tuating advection, anByp by mean ohmic diffusion. Those
number is increased, by either decreasing the magnetig diff €rmsare inturn

sivity n or by increasing the rotation rate of the sf&y, this — .

time varying behavior becomes more prominent and can even P (<B> V) v>|¢’ (23)

result in organized changes in the global-scale polaritgzhS Pes= ((B'-V)v')l,, (24)

behavior is evident in a number of our dynamo simulations i ,

and will be reported on in a subsequent paper. Pra= <(U ' V) B > |¢v’ (25)
5. CREATING MAGNETIC WREATHS Pup ==V XV X (B)],, (26)

The magnetic wreaths formed in case D3 are dominatedwhere brackets again indicate an azimuthal average and
by strong mean longitudinal field components and show lit- primes indicate fluctuating terms’ = v - (v). The detailed
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FiG. 5.— Differential rotation in case D3a) Angular velocity2 at mid-
convection zone (85R ), with ranges in both nHz angrads*. The equator
is fast while the poles rotate more slowl) Temporal variations are empha-
sized by subtracting the time-averaged profil&Xf, #), revealing speedup
structures at high latitudes and pulses of fast and slowamatear the equa-
tor. () Angular velocity shean\Q4 (eq.[12) near the surface (upper curve,
green) and at mid-convection zone (lower, red).

implementation of these terms is presented for our spHerica

geometry in equationE (AI0-AlL5). These terms are illusttat

in Figurd® for case D3, averaged over a 450 day interval from

day 6450 to 6900.

The structure ofB,) is shown in Figur€ld. The shearing
flows of differential rotatiorPys (Fig.[8) act almost every-
where to reinforce the mean toroidal field. Thus the polanfity
this production term generally matches that®f). This pro-

duction is balanced by destruction of mean field arising from

both turbulent induction and ohmic diffusion (sum shown in
Fig.[6&). The individual profiles ofrs, Pra andPyp are pre-
sented in turn in Figurdsdbe, f. The terms from turbulent
induction P=s andPea) contribute to roughly half of the to-
tal balance, with the remainder carried by ohmic diffusién o
the mean fieldsHyp). In the core of the wreaths, removal of
mean toroidal field is largely accomplished by fluctuating ad
vectionPra (Fig.[6e) and mean ohmic diffusioRyp (Fig.[8f),
with the latter also important near the upper boundary. durb

Brown, Browning, Brun, Miesch & Toomre

roughly the same region.

In the analysis presented in Figlile 6 we have neglected the
advection of(B,) by the meridional circulations (shown in
the Appendix a$ya), which we find plays a very small role
in the overall balance. We have also neglected the amplifi-
cation of (B, ) by compressibility effects (the AppendiRuc
andP:c), though it does contribute slightly to reinforcing the
underlying mean fields within the wreaths.

To summarize, the mean toroidal fields are built through
an Q-effect, where production by the mean shearing flow of
differential rotation Pus) builds the underlyingB,). In the
statistically steady state achieved, this production iarxzed
by a combination of turbulent inductioR{s+P-a) and ohmic
diffusion of the mean fieldHp).

5.2. Maintaining the Poloidal Field

The production of mean poloidal field is achieved through a
slightly different balance, with turbulent induction prazing
poloidal field and ohmic diffusion acting to dissipate it. €Th
mean flows play little role in the overall balance. This bakan
is clarified if we represent the mean poloidal field by its wect
potential(A;), where

(Bpol) = (B)i+ (B)0 =V x (Ash).

as discussed in the Appendix. We recast the induction equa-
tion (4) in terms of the poloidal vector potential by uncogi
the equation once, obtaining

O] = (o x B) |, =1 x (B)],,

which is also equatioi (A29) in the Appendix. The first term
is the electromotive force (emf) arising from the couplirfg o
flows and magnetic fields, and the second term is the ohmic
diffusion. These can be decomposed into contributions from
mean and fluctuating components, as shown symbolically in
equation[(A3D).

In case D3 we find that the mean poloidal vector potential
(Ag) is produced by the fluctuating (turbulent) emf and is dis-
sipated by ohmic diffusion

(Ay)
ot

with Eg, the emf arising from fluctuating flows and fluctuating
fields, and contributing to the mean induction. Hg is the
emf arising from mean ohmic diffusion. These terms are

Er=(v" x B')|, = (viBy) ~ (V% By), (30)
Ewp =-nV X (B)|,. (31)

(27)

(28)

~ Er+Evp =~ 0. (29)

The contribution arising from the omitted ternky,
(see eqCA31), related to the emf of mean flows and mean
fields, is smaller than these first two by more than an order of
magnitude. AdditionallyEy, has a complicated spatial struc-
ture which does not appear to act in a coherent fashion within
the wreaths to either build or destroy mean poloidal field.
The mean vector potentiéh,) is shown in FigurgH, with
poloidalfield lines represented by the overlying contolife

lent shear becomes strongest near the bottom of the conveanean radial magnetic fielB, ) is aboutt1 kG in the cores of

tion zone and in the regions near the high-latitude side dfea

the wreaths, whereas the mean colatitudinal fi{@g has an

wreath. Thud$xs (Fig.[8d) becomes the dominant member of amplitude of roughly-2 kG (thus directed northward in both
the triad of terms seeking to diminish the mean toroidal field hemispheres), concentrated near the bottom of the conwvecti
there. We find that the mean poloidal field is regenerated inzone.
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FIG. 6.— Generation of mean toroidal magnetic field in case D& Vibw is from=+45° latitude to emphasize the equatorial regior@.Mean toroidal field

(By) with wreaths strongly evidentb) Production byPys serves to buildB, ). This rate term generally matches the sens

, thus being negative (blue

in colorbar, with ranges indicated) in the core of the narthereath and positive (red) in that of the southern wreathDgstruction of mean toroidal field is
achieved by the sum of the two fluctuating (turbulent) ingucterms and the ohmic diffusiof{s+ Pra +Pyp). This sum clearly has opposite sense and similar
magnitude tdPys. We break out these three destruction terms in the follovpiagels. @) Fluctuating (turbulent) shedd:s is strongest near the high-latitude
side of each wreath, an@)(fluctuating (turbulent) advectioRea is strongest in the cores of the wreaths. The sum of theses t@g+ P=a) is responsible for
about half the destructive balance, with the remainder ngrfrom (f) the mean ohmic diffusiofyp. Some differences arise in the boundary layers at top and

bottom.
a c
7.99E+12 6.53E+5
-2.28E+12 -2.18E+6
Gcm Gems®

FiG. 7.— Production of mean poloidal vector potent{a,) in case D3,
with view restricted to+45° latitude. @) Mean poloidal vector potential
(A4), with sense denoted by color (red, clockwise; blue, courltErkwise).
(b) The fluctuating (turbulent) enfig, acts to build the vector potential. This
term is strongest near the bottom of the convection zonetenpidleward side
of the wreaths. d) Mean ohmic diffusiorEyp acts everywhere in opposition
to Er. The cores of the wreaths are positioned at roughls° latitude

(Fig.[G).

The production of A;) by the fluctuating (turbulent) emf
Er is shown in Figuréld. Here too we average over the same
450 day interval. This term generally acts to reinforce the

field is here being converted into mean poloidal field by the
fluctuating flows.

There are two terms that contribute Eg,, as shown in
equation[(3D). Much of that fluctuating emf arises from corre
lations between fluctuating latitudinal flows and radialdtel
(-v;,By), which follows the structure dEg (Fig.[d) closely.
The contribution from fluctuating radial flows and colatitud
nal fields (v/Bj) is more complex in structure. Near2(°
latitude, this term reinforce$-v;B;), but acts against it at
higher latitudes and thus diminishes the overall amplitoide
Er. The mean ohmic diffusioByp (Fig.[Z), almost entirely
balances the production ¢A,) by Eg,.

This shows that our mean poloidal magnetic field is main-
tained by the fluctuating (turbulent) emf and is destroyed by
ohmic diffusion. In mean-field dynamo theory, this is often
parametrized by ant-effect.” Now we turn to interpretations
within that framework.

6. EXPLORING MEAN-FIELD INTERPRETATIONS

Many mean-field theories assert that the production of mean
poloidal field is likely to arise from the fluctuating emf. Ehi
process is often approximated with areffect, where it is
proposed that the sense and amplitude of the emf scales with
the mean toroidal field

(v' x B") = a(B), (32)

wherea can be either a simple scalar or may be related to
the kinetic and magnetic (current) helicities. In isotfBut

not reflectionally symmetric), homogeneous, incompréssib
MHD turbulence

existing poloidal field, having the same sense as the under-

lying vector potential in most regions. It is strongest ribar
bottom of the convection zone and is concentrated at the pole
ward side of each wreath. This is similar, though not identi-
cal, to the structure of destruction of mean toroidal field by
fluctuating sheaP:s (Fig.[6d). It suggests that mean toroidal

a= %(ak+am), (33)
a=-v"- (V xv'), (34)
am= B (VX B, (35)

4rp
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FIG. 9.— Comparison of emfs in case D3a) (Profile of proposed mean-
field emf given bya(Bg). (b) Actual turbulent emfEr; measured in the
dynamo. €) Variation of hemisphere-averaged emfs with fractionaiua.
The mean-field approximated emf is shown in blue, &pdin red. The
average over the northern hemisphere is shown solid, titbesouis dashed.

FiG. 8.— Estimating the mean-field-effect from case D3. Shown are
the @) kinetic and b) magnetic contributions to the-effect as defined in

egs. [34-3b). @ Mean-fielda, constructed by combiningy andam with a tion terms and would yield a distinctly different mean pdiamli
turbulent correlation time. magnetic field.

To assess whether better agreement may be achieved with
as discussed in Pouguet et al. (21976) and a latitude-averaged emf, we average the mean-field emf and
Brandenburg & Subramanian_(2005). Hereis the life- Er separately over the northern and southern hemispheres
time or correlation time of a typical turbulent eddy. In and plot these quantities in Figure.9Though both have a
mean-field theory, these fluctuating helicities are tyfycal similar positive sense near the base of the convection zone,
not solved directly and are instead solved through auyiliar the hemisphere-averagést; becomes small above.8R;
equations for the total magnetic helicity or are prescribed whereas the averaged mean-field en8,) is large and neg-
Here we can directly measure our fluctuating helicities and ative there. Thus even the averaged emfs are not in accord.
examine whether they approximate our fluctuating emf. In summary, it is evident that a simple scataeffect will

To assess the possible role of@effect in our simulation,  predict the wrong sign for the fluctuating emf in the two
we show in FigureB& b the fluctuating kinetic and current hemispheres, aéB,) is anti-symmetric across the equator
helicities ax andam realized in our case D3, averaged over while (A,) is symmetric. Ana-effect based on the kinetic
the same 450 day analysis interval. To make an estimate of théelicity and magnetic helicity may capture some sense of

a-effect, we approximate the correlation timéy defining the fluctuating emf, as those quantities are themselves anti
H symmetric across the equator. Yet Figure 9 suggests that the

=P (36) are significant discrepancies between this particularagpr
Vv mation and our turbulent emf. In particular, this mean-field

whereHp is the local pressure scale height ands the local ~ a-effect misses the offset between the generation regians fo
fluctuating rms velocity, which are functions of radius only mean toroidal and mean poloidal field. This offset in lati-
Estimated by this method, the turnover timdias a smooth ™ tude of the generation regions may be important for avoid-
radial profile and is roughly 10 days near the bottom of the ing the a-quenching problems encountered in many mean-
convection zone, 3 days at mid-convection zone, and sfight! field theories. A more complex mean-field model, which
less near the upper boundary. If we use the fast peak upflonfakes spatial gradients dBy) into account, may do bet-
or downflow velocities instead of the rms velocities, our es- ter. In particular, the® x J-effect (e.g.. Moffatt & Proctor
timate ofr is about a factor of 4 smaller. Our mean-field ~ [1982;/Rogachevskii & Kleeorin _2003) may be at work in
(eq.33) is shown in Figufes In the upper convection zone, these systems, and preliminary explorations indicatettisit
this is dominated by the fluctuating kinetic helicity whileet ~ term matches the spatial structure of & better than the
fluctuating magnetic (current) helicity becomes importint ~ abovea-effect. A tensor representation of theeffect may
depth. also do much better at approximatiBig, and test-field tech-

We form a mean-field emf (right-hand side of Egl 32) by hiques could be employed to measure this_guantity (e.g.,
multiplying our deriveda (Fig.[8c) with our (By) (Fig.[6a), Schrinner et al. 2005, and recently reviewed in Brandenburg
and show this in Figurigk® The turbulent emEg, whichis ~ 12009). As with our analysis of dynamo production terms pre-
the left-hand side of equatioR {32), can be measured in oursented in[85, this comparative studycofB,) andEg is con-
simulations and is shown again in Figlile Rlthough there  ducted here for the special circumstances of a dynamo which
is some correspondence in the two patterns, there are signifibuilds global-scale magnetic fields that are nearly steady i
cant differences. In particular, the mean-field emiB,) has ~ time. The magnetic wreaths realized in dynamos at higher
peak amplitudes in the cores of the wreaths{a6° latitude) ~ Magnetic Reynolds numbers show larger time-variatiorts, an
and is negative there. In contrast, the actual fluctuatinfy em it is possible thatx(B,) better approximateEg during the
given byEg is positive and has its highest amplitude at the growing phase of each oscillation, when the magnetic fields
poleward side of the wreaths (nea(® latitude). Thus the  have notyet saturated in strength and the dynamo is in a more
mean-field emf predicts an incorrect balance in the generakinematic regime.
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7. CONCLUSIONS by the ohmic diffusion. This is unlike the toroidal balance,

The ability for a dynamo to build wreaths of strong mag- ;‘or here t?e_mean flows play glmosthno LOle gnd theit;ljrbu—
netic fields in the bulk of the convection zone has largely '€nt correlations are constructive rather than destract

been a surprise, for it had generally been supposed that tur@SS€ssing whata mean-field model might predict for the mag-

bulent convection would disrupt such magnetic structures, N€tiC structures realized in case D3, we find that the isatrop
To avoid these difficulties, many solar and stellar dynamo homor?ﬁﬂf?QUSlf'e.}‘fect based 0?] kinetic ar;d magrE)enc %cur-
theories shift the burden of magnetic storage, amplificatio €"t) he |c||t|es ails to caplturet € sensdetc)) our tur uhéﬂ“.'

and organization to a tachocline of shear and penetration af” gdenera! O%EF' 'ﬁ' poorly repr_esentel y a:véB@ tdat IS

the base of the convection zone where motions are more>C determined. This comparative analysisigB;) andEr
quiescent. In contrast, our simulations of rapidly rogtin 'S Performed here only for the special case of a dynamo with
stars are able to achieve sustained global-scale dynainaact Persistentglobal-scale magnetic fields. Itis possiblettiese
within the convection zone itself, with the magnetic struc- '€Sults will differ in our dynamos that show substantialeim
tures both being built and able to survive while embedded V&7ying behavior. . .

deep within the turbulence. These dynamos are able to cir- . 1€ realization of global-scale magnetic structures in our
cumvent the Parker instability by means of turbulent Regsol ~ Simulations, and their great strength relative to the flati

and Maxwell stresses that contribute to the mechanicagforc fields, may in part be a consequence of the relatively modest
balance and prevent the wreaths from buoyantly escaping th&legree of turbulence attained here. Whether such striscture
convection zone. This striking behavior may be enabled by ¢ be generated and sustained amidst the far more complex
the stars rotating somewhat faster than the current Sughwhi flows in actual stellar interiors is not yet clear. If suctustr
yields a strong differential rotation that is a key elemerthie  tures are indeed realized in stars, they may or may not sur-
dynamo behavior. In our broader exploration of rapidly ro- Vive to print through the highly turbulent convection occur
tating dynamos, we find that magnetic wreaths are present ir{Ing just below the stellar photosphere. If they do appear at
all simulations, including those rotating as slowly aS.. he surface, some global-scale magnetic features may propa
Such structures may be obtainable in simulations rotating a 92t€ toward the poles along with the bands of angular velocit

the solar rate as well, and efforts are underway to explare th SPe€dup. There are some indications in stellar obsergation
presence of wreaths in solar dynamos. that global-scale toroidal magnetic fields may indeed becom

We have achieved some dynamo states that are persistergirond in rapidly rotating stars (Donati et 'al. 2006; Peitale
and others that flip the sense of their magnetic fields. In our2208), though small-scale fields may still account for much o

case D3 the global-scale fields have small vacillationseirth € magnetic energy near the surface (Reiners & Basri 2009).

amplitudes, but the magnetic wreaths retain their idexstior | '€ global-scale poloidal fields may be more successful in
many thousands of days. This represents hundreds of notatio SUrviving the passage through the turbulent surface cenvec

periods and several magnetic diffusion times, indicatmgg t  t1on- If they do, the stellar magnetic field will likely have
the dynamo has achieved a persistent equilibrium. significant non-dipole components. Thus the mean poloidal

Increasing the rotation rate or decreasing the magnetic dif fields observed at the surface may give clues to the presence

fusivity 7 yields more complex time dependence. In many of large wreaths of magnetism that occupy the bulk of the

of our dynamos the oscillations can become large, and thisConvection zone.

may result in the global-scale fields repeatedly flippingrthe

polarity. At times those dynamos appear to be cyclic but  \ye thank Axel Brandenburg, Geoffrey Vasil, Steve Saar
in other intervals they behave more chaotically. Such time- 5, \ausumi Dikpati for helpful conversations and advice
dependent dynamos will be reported on in a forthcoming pa- 5,4t stellar magnetism and dynamo action. We thank the
per. In separate explorations, we have found that magnetic,nonymous referee for their comments which have tight-
wreaths also survive in the presence of a tachocline of penegaq the focus of this paper. This research is supported
tration and shear. In those simulations the wreaths coatinu by NASA through Heliophys'ics Theory Program grants
to fill the convection zone even while developing roots in the NNG05G124G and NNX0BAIS7G, with additional support
tachocline. Dynamos in rapidly rotating suns with tachweti ¢, 55vn through the NASA GSRP program by award num-
can also exhibit time-dependent oscillations and polagty e NNGOSGNO8H. Browning was supported by a NSF As-
versals. Wreath-building dynamos with tachoclines will be tronomy and Astrophysics postdoctoral fellowship AST 05-
reported on subsequently.3 b vze th 02413, and now by research support at CITA. Brun was
In our persistent case D3 we are able to analyze the genery, y sypported by the Programme National Soleil-Terre of
ation and transport of mean magnetic field. We find that our ~-\NRs/INSU (France), and by the STARS2 grant from the
dynamo action is of an —{2 nature, with the mean toroidal - g,-qhean Research Council. The simulations were carried
fle|dS being .genera.ted by _z{m-effec;t from the. mean shear- out with NSF PACI support of PSC, SDSC, TACC and NCSA,
ing flow of differential rotation. This generation is baladc .4 by NASA HEC support at Project Columbia. Volume ren-

by a combination of turbulent induction and ohmic diffusion  yerjngs used in the analysis and the field line tracings shown
The mean poloidal fields appear to be generated bycan \yere produced using VAPOR (Clyne etlal. 2007).
effect arising from couplings between the fluctuating flows N

and fluctuating fields, with this production largely balathce

APPENDIX

PRODUCTION, DESTRUCTION AND TRANSPORT OF MAGNETIC FIELD

We derive diagnostic tools to evaluate the generation amsport of magnetic field in a magnetized and rotating tul
convection zone. This derivation is in spherical coordisaind is under the anelastic approximation.
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Induction Equation

In the induction equatiori]4), the first term on the right haitk represents production of magnetic field while the sgcon
term represents its diffusion. We first rewrite the produtterm to make the contributions of shear, advection andgxessible
effects more explicit as

V x (vx B)=(B-V)v—(v-V)B-B(V-0). (A1)

Under the anelastic approximation the divergenceadn be expressed in terms of the logarithmic derivative@htlean density
because

V- (pv)=0=p(V-v)+(v-V)p,

and therefore

0
V.u= —vra Inp. (A2)
The induction equation thus becomes
0B 0, _
—=B-Vv-(w-V)B+vB—Inp -V x(nV X B) (A3)
ot ——— = or SN————

——

compression diffusion

shearing advection

As labeled, the first term represents shearinggpthe second term advection 8 the third one compressible amplification of
B, and the last term ohmic diffusion.

Production of Axisymmetric Magnetic Field

To identify the processes contributing to the productiomefin (axisymmetric) field, we separate our velocities angimatc
fields into mean and fluctuating components (v) +v" and B = (B) + B’ where angle brackets denote an average in longitude.
Thus{v') = (B') = 0 by definition. Expanding the production term of equati@B)(we obtain the mean shearing term

((B-V)v)=((B)- V) (v) +((B'- V), (A4)
the mean advection term
~{(v-¥)B) == ({v)- V) (B) = (/- V)B'), (AS)
and the mean compressibility term
B Ing) = (v) (B)+(v.B) ~-Inp. (A6)

In a similar fashion, the mean diffusion term becomes
(VX (nV x B)) ==V x (nV X (B)). (A7)
The axisymmetric component of the induction equation igteunisymbolically as:

o(B
%:PMS+PFS+PMA+PFA+PMC+PFC+PMD (A8)
With Pys representing production of field by mean sh@&agproduction by fluctuating sheda advection by mean flow$:a
advection by fluctuating flow$yc amplification arising from the compressibility of mean flgWsc amplification arising from
fluctuating compressible motions, aR@p ohmic diffusion of the mean fields. In turn, these terms are

Pvs = (<B> : V) <U>v PFS:«BI : V)vl>v Pva == (<U> ’ V) <B>a Pra =_<(vl : V)B/>v
Puc = ((v)(B)) glnﬁ, Pee=((V,B)) glnﬁ, and Pup ==V X (nV x (B)). (A9)

We now expand each of these terms into their full representat spherical coordinates.
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Production of Mean Longitudinal Field

0(B
(By) =Pws+Prs+Pua +Pra +Puc +Pec+Puwp

ot
d  (By) 0 (Bp) (Vi) +cotd(By) (Vo)

us= |85+ 0 () + :

(0 By o By 9]\ (Byv)+cotd(Bv,)
L "or 1 90 rsingag| ? ;

Fva =~ [w% +@%] (B0} - 22 (B + 00U 5) )
[, 0 V0 vy 0., \ (VB +cotf(V,By)

o= [V s &)

Puc=" () (8s)) 5 Inp Pre=((VB}) Zinp
_ _n(B) dn (10(r(By))

Plo = 11V(By) rzsi§9+a<77)

Production of Mean Latitudinal Field

0(B
<at0>=PMS+PFS+PMA+PFA+PMC+PFC+PMD

_ [ @  (Bg) 0 (Bg) (Vi) —cotf(By)(Ve)
= |85+ g () r

Pes= < [ ;2+B_/9£+ B_tb i} 0>+ (Bpvr) —cotd (B, Vv)
or r 90 rsinf 0¢ r
N PN\ _ (Vo) (Br) —cotf(vy)(By)
Phaa = _<Vr>8r+ r 89} (Bo) r
_ 0 Vp 0 Vo 97\ _ (VpBr)—coth{v,B)
Pra = <[\4§+T%+rsin98_¢] B"> r

Puc= (()(Bs}) 37 Inp Pro= (VB))) 72 np

Pvip = 77V2<Be>+ﬁw— n{Bs) +d—77 (Z_LB(r<Bg>)_}8<Br>

r2 90 r2sirtg dr \r Or r oo

Production of Mean Radial Field

3faBtr> =Pus + Prs+Pua +Pea + Puc + Pec+ Pup
Pus = [(B,>§+<B_">%} Vi) - <BG><V0>:<B¢><V¢>

r

.9 B,o B, o (Bpvy) +(Bjyvys)
(B o)t

Pua =— [<V L (Vo) 5} (B + Vo) (Bo) * (Vo) (Bo)

Prs=

YRIY)
Yor  r 90 r
WE

__ Vp 9 Ve 905\ (VeBy) +(VyB)
Fha= _r8r+7%+rsin98_¢] B’>+ r
0 0
Puc = (<Vr><B,))§Inﬁ PFC=(<\/rB:>)§|nﬁ
<Br> _ﬁ 6<Bg> _ 27700t9<59>

— 2
= nV(B) -2
Puo= 7 < r> 1] r2 2 96 r2
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(A10)

(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)
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Maintaining the Poloidal Vector Potential

The balances achieved in maintaining the mean poloidal etagiield are somewhat clearer if we consider its vector e
rather than the fields themselves. The mean poloidal {i8jd;) has a corresponding vector potentja);), where

(Bpo) = (Br)f+(Bg)8 =V x (A
= ot o (Assing) =15 (rA;) 6 (A28)
=V X <A¢¢>

The other components of the poloidal vector potential dieap, as terms involving/d¢ vanish in the azimuthally-averaged
equations. Likewise, th@-component of the possible gauge te¥m\ is zero by virtue of axisymmetry. We recast the induction
equation (ed.]4) in terms of the poloidal vector potentialihgurling the equation once and obtain

0(A
<8t¢> =v X B|,~nV X B|,. (A29)
This can then be decomposed into mean and fluctuating cotitnits, and represented symbolically as
(%aitw =Ewm +Er +Ewp, (A30)

with Ey representing the electromotive forces (emf) arising froeamflows and mean fields, and related to their mean induction.
Likewise,E, is the emf from fluctuating flows and fields akgp is the emf arising from mean diffusion. These are in turn

Ewi = (v) X (B)], = (Vr)(Bg) = (Vo) (Br), (A31)
Er = (v X B')|, = (VBpy) = (vyB), (A32)
Euo =19 x (B}, =07 (5 (r(Ba)) - 22 ) (33

Fluctuating (Non-Axisymmetric) Component of the Induction Equation

Left out of this analysis is the fluctuating component of theuction equation. This can be derived by subtracting therme
induction equatior (A8) from the full induction equationelgding the following equation for the fluctuating fields

o’ _

5 (B) - V)W +(B"-V){v)+ &

() V)B'~ (- V)(B) - F
H(W) B +HV{B)) o+ G

-V x (nV x (B"))

(A34)

where the quantitie€ = (B’ - V)v' = (B’ - V)v'), F = (v’ - V)B' = {((v' - V)B’), andG = (v, B’ - <v§B’>)§ Inp, represent the
difference between mixed stresses from which we subtraatalxisymmetric mean. In the standard mean-field derivatieese
quantities are siblings of the G-current involving the mekattromotive forcév x B) and its 3-D equivalent X B (i.e., the so

called “pain in the neck” term, Moffatt 19178).
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