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Abstract. The Sun is the archetype of magnetic star and its proximity coupled with very high
accuracy observations has helped us understanding how solar-like stars (e.g with a convective
envelope) redistribute angular momentum and generate a cyclic magnetic field. However most
solar models have been so fine tuned that when they are applied to other solar-like stars the
agreement with observations is not good enough. I will thus discuss, based on theoretical con-
siderations and multi-D MHD stellar models, what can be considered as robust properties of
solar-like star dynamics and magnetism and what is still speculative. I will derive scaling laws
for differential rotation and magnetic energy as a function of stellar parameters, discuss recent
results of stellar dynamo models and define the new concept of spot-dynamo, e.g. global dynamo
that develops self-consistent magnetic buoyant structures that emerge at the surface.
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1. Introduction
The Sun exhibits fascinating magnetic phenomena, with sunspot emergence, flares,

prominences and CME’s most of which varies in number and intensity during the 11-yr
activity cycle. Being able to understand the origin of such a large variety of magnetic
manifestations and their link to the underlying solar dynamo has been challenging. Many
observations show for instance that the symmetric (quadrupolar-like) and antisymmetric
(dipolar-like) dynamo families come into play to modulate the 11-yr cycle, make one
hemisphere lag the other during reversals (DeRosa et al. (2012)) and sometimes even lead
to grand minima of activity (Tobias(1997)). It is thus important in order to progress in
our current understanding of the solar dynamo to characterize how dynamo actions varies
as a function of stellar parameters. Thanks to improved instrumentations, observations
of the magnetism of solar-type stars, i.e. stars possessing a deep convective envelope and
a radiative interior (late F, G, K and early M spectral type) are becoming more and more
available Giampapa (2005). One difficulty of such observational programs is that they
require long term observations since stellar cycle periods are likely to be commensurate
to the solar 11-yr sunspots cycle period. Thanks to the data collected at Mount Wilson
Observatory since the late 60’s, such data is available (Wilson (1978), Baliunas et al.
(1995)). Among the sample of 111 stars (including the Sun as a star) originally observed
between the F2 to M2 spectral types, it is found that about 50% of the stars possess
a cyclic activity, with cycle (starspot) periods varying roughly between 5 to 25 yrs, i.e.
between half to twice the sunspot cycle period. They further indicate that among the
inactive stars of the sample some are likely to be in a quiet phase (as was the Sun during
the Maunder minimum). Overall activity cycles seem to be more frequent for less massive
K stars than for F stars. More recent observational programs have been pursued that
now even provide information on the field topology as a function of the rotation rate,
such as the one using the Espadons and Narval instruments and the Zeeman Doppler
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Imaging technique (Donati et al. (1997)). Applying this observational technique over a
sample of four solar analogues with rotation rate Ω0 varying from one to three times solar
Ω�, Petit et al. (2008) have shown that the field amplitude increases as a function of the
star’s rotation rate and, more importantly, becomes more and more dominated by its
toroidal component (modulo possible bias in the observational technique used). If such a
trend is confirmed, i.e. that the field topology is becoming more toroidal with increasing
rotation rate, it is a very important and instructive result and puts strong constraints on
the dynamo models. In a more recent study Morgenthaler et al. (2011) have continued to
monitor these stars over several years and have observed that some of them underwent a
reversal of their global magnetic field, confirming the tendancy of solar-like stars to have
time varying (cyclic?) global field polarity.

The systematic analysis of stellar magnetism data revealed that for solar type stars
there is a good correlation between the cycle and rotation periods of the stars and
that correlation is even stronger when using the Rossby number (Ro = Prot/τ) that
takes into account the convection turnover time τ at the base of the stellar convective
envelope (Noyes et al. (1984), Baliunas et al. (1996)). As the star rotates faster, its cycle
period is found to be shorter. Typically, Noyes et al. (1984) found that Pcyc ∝ Pn

rot , with
n = 1.25±0.5. Based on an extended stellar sample Saar & Brandenburg (1999) and Saar
(2002) have argued that there is actually two branches when plotting the cycle period
vs the rotation period of the stars (results later confirmed by Böhm-Vitense(2007)).
They make the distinction between the primary (starspot) cycle and Gleissberg or grand
minima type modulation of the stellar activity. For the active branch they found an
exponent n ∼ 0.8 and for the inactive stars n ∼ 1.15. It is also found that this correlation
breaks at high rotation rate with the possible appearance of a super active branch. Recent
progress based on asteroseismic data from Corot and Kepler have also started to put new
constraints on stellar magnetism by increasing the number of observed stars (Mathur
et al. (2013)) thanks to the change of frequency of oscillations (mostly acoustic modes)
induced by magnetic field. There too evidence for cyclic activity are found (Garćıa et al.
(2010)). It was also noticed that at very high rotation rate, the chromospheric (soft-X
ray) activity level usually used as a good proxy for stellar magnetism, is saturating. The
saturation of the X-ray luminosity seems to limit the validity of the scaling found at
more moderate rotation rates (Pizzolato et al. (2003), Wright et al. (2011)). For G type
stars this saturation is found for rotation rate above 35 kms−1 , for K type stars at about
10 kms−1 and for M dwarfs around 3-4 kms−1 , so about a Rossby number of 0.1. Note
that the observed quantity Bf , where B is the field amplitude and f the surface filling
factor, does not allow to distinguish if B actually saturates with Ω0 or if only the filling
factor f does (Reiners (2012)). It is thus also important to understand through dynamo
simulations how stellar magnetic flux scales with rotation rate since it is telling us how
the magnetic field generated by dynamo action inside the stars emerges and imprints the
stellar surface and how it varies.

2. Stellar Dynamo: theoretical concepts
Stars possess a priori all the ingredients necessary to the development of a dynamo

instability (Weiss (1994)), such as a large-scale shear (or differential rotation), turbulent
motions, helicity (thanks to rotation and its associated Coriolis force) and low diffusiv-
ity. All these properties are favourable to the emergence by dynamo action of a magnetic
field. Observations in the Sun and in most solar-like stars (which much less details of
course), of phenomena such as starspots or flares, clearly hint to the presence of magnetic
fields. Their temporal dependence and properties has led naturally to consider that the
origin of this magnetism is indeed dynamo action. However, we also know that stellar
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magnetic activity manifests itself in a multitude of facets (irregular, cyclic, modulated),
certainly indicating the presence of several types of dynamo or magnetism. Until the
recent advent of massively parallel super computers, astrophysicists were especially in-
terested with the cyclic and large-scale dynamo and developed simplified models based
on mean field dynamo theory and have put forward the fundamental concept of α and ω
effects (Moffatt(1978), Charbonneau (2010)).

Theoretical considerations to interpret stellar magnetism based on classical mean
field α-ω dynamo models (Durney & Latour (1978), Baliunas et al. (1996), Montesinos
et al.(2001)) naturally yield correlation between rotation rate and stellar activity. In
particular it is found that both magnetic field generation and the dynamo number D
(i.e. a Reynolds number characterizing the mean field α and ω dynamo effects used in
the models) vary with the rotation period of the star D ∝ 1/Ro2 . This is due to the
fact that in these models both effects are sensitive to the rotation rate of the star. The
ω-effect is a direct measure of the differential rotation ΔΩ established in the star. It is
well known both theoretically and observationally that the differential rotation in the
convective envelope of solar-type stars is directly connected to the star’s rotation rate Ω0
(Donahue et al.(1996), Barnes et al.(2005), Ballot et al. (2007), Brown et al. (2008), Küker
et al.(2011), Matt et al. (2011), Augustson et al. (2012), Gastine et al. (2013)). However,
the exact scaling exponent nr (i.e. ΔΩ ∝ Ωnr

0 ) is still a matter of debate among both
the observers and the theoreticians, being sensitive to both the observational techniques
used and to the modelling approach. Likewise since the α-effect is a parameterization of
the mean electromotive force (emf), it was actually shown to be directly related to helical
turbulence (Moffatt(1978), Pouquet et al.(1976)), thus naturally connected to the rota-
tion rate of the star and the amount of kinetic helicity present in its convective envelope.
So this explains why in α-ω dynamo model it is straigthforward to related rotation and
dynamo action.

However the currently preferred solar dynamo model, e.g. the so called flux transport
Babcock-Leigthon dynamo model (Dikpati et al. (2004)), relies not on the α-effect to
regenerate the poloidal component of the magnetic field but on the so-called Babcock-
Leighton effect (Babcock(1961), Leighton(1969)), e.g. the tendancy for active regions or
sunspot bipoles to be tilted with respect to the east-west direction (Joy’s law). So as the
active regions decay away over several weeks, the poloidal component of the diffuse field
plays the actual role of a source term. This tilt is thought to be due to the action of the
Coriolis force during the rise and emergence of the toroidal structures as active regions
(D’Silva & Choudhuri(1993)). So here too a simple link to rotation can be obtained.
Note however that recent 3-D simulations in spherical shells with developed convection
motions (Jouve et al.(2013), and references therein) indicate that this is not the only effect
responsible for the observed tilt and that the twist and arching of the toroidal structures
as well as the continuous action of the surface convection during the emergence have
some influence on the resulting tilt. So it may not be as simple as anticipated to relate a
Babcock-Leigthon like source term to rotation and one may anticipate a different scaling
between D and Ro than is standard α-ω dynamos. Further another important ingredient
in flux transport models is the large scale meridional circulation (MC) used to connect
the surface source term generating the poloidal field to the region of strong shear at the
base of the convection zone (i.e. the tachocline) where it will be subsequently sheared
by the ω-effect in order to close the global dynamo loop (i.e. Bpol → Btor → Bpol). The
meridional flow (or “conveyor belt”) thus plays an important role in setting the cycle
period of the global dynamo in this class of models. As a direct consequence it is natural
to ask how the meridional circulation amplitude and profile change with the rotation rate
and how these may influence the magnetic cycle period. Several authors have thus looked
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at the influence of the meridional circulation on the butterfly diagram and activity cycle
period (Dikpati et al.(2001), Charbonneau & Saar(2001), Nandy(2004), Jouve & Brun
(2007), Nandy & Martens(2007)). They all reached the same conclusion: only a positive
scaling of the amplitude of meridional flows with the rotation rate can reconcile the
models with observations of magnetism of solar-like stars. Unfortunately as we will discuss
in the next sections, 3-D simulations actually find the opposite, the meridional circulation
actually weakens with faster rotation rates, and this has important consequences for
current stellar dynamo model as demonstrated by Jouve et al. (2010). So while it is
easy to find a link between magnetic field amplitude, cycle period and rotation rate,
observations of stellar magnetism actually impose that these relationship follow very
specific trends not necessarily fitting our current solar dynamo paradigm.

3. 2-D mean field models of stellar magnetism
As we have seen, the observational correlation between rotation and activity obtained

by Noyes et al. (1984), Baliunas et al. (1996), Saar & Brandenburg (1999), Böhm-
Vitense(2007) could be due to the influence of rotation on dynamo action in stellar
convective envelopes. However, flux transport dynamo model are in difficulty because
their cycle period Pcyc depends strongly on the meridional circulation amplitude (as well
as its profile, Jouve & Brun (2007)):

Pcyc ∝ Ω0.05
0 s0.07

0 v−0.83
0 (3.1)

As will be seen in §4 the meridional circulation is found to decrease with the rotation
rate as v0 ∝ Ω−0.45

0 . This is not intuitive as one could expect that the meridional circula-
tion increases with the rotation rate. A careful study of the vorticity equation shows that
it actually weakens with rotation rate as more and more kinetic energy is being trans-
ferred to longitudinal motions at the expense of meridional kinetic energy. The fact that
in recent 3-D simulations the meridional circulation is found to weaken as the models is
rotated faster directly implies that standard advection dominated flux transport dynamo
models yield the opposite dependency with rotation than the one observed, e.g. activity
cycles are found to be longer for faster rotating stars (Jouve et al. (2010)). This fact
alone impose to revise our current dynamo paradigm for solar-like stars. One way is to
shortcircuit the advection path by for instance adding more cells in latitude or increase
the radial diffusion as was done in Jouve et al. (2010), Hazra et al.(2013). Considering
several cells either in latitude and/or radius for the meridional circulation is actually in
better agreement with numerical simulations of rotating convection zone at low Rossby
number and seems to also be observed in the Sun (Zhao et al.(2013)). An alternative is
to consider another transport process such as magnetic turbulent pumping. We will now
discuss this new class of dynamo models in more details (see also Guerrero & de Gouveia
Dal Pino (2008), DoCao & Brun (2011)).

Magnetic pumping refers to transport of magnetic fields in convective layers that does
not result from bulk motion. One particular case is turbulent pumping. In inhomogeneous
convection due to density stratification, convection cells take the form of broad hot up-
flows surrounded by a network of downflow lanes Miesch et al. (2008). In such radially
asymmetric convection, numerical simulations show that the magnetic field is prefer-
entially dragged downward (Tobias et al.(2001)). This effect has been demonstrated to
operate in the bulk of the solar convection zone. A significant equatorward latitudinal
component also arise when rotation becomes important, i.e. when the Rossby number is
less than unity. Turbulent pumping speeds of a few ms−1 can be reached according to
the numerical simulations of Käpylä et al. (2006). Therefore, its effects are expected to
be comparable to those of meridional circulation.
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In the mean field dynamo framework in order to model the global dynamo operating
in solar-like stars, we start from the induction equation, which after the usual scales sep-
aration between mean and fluctuating fields, e.g. B = 〈B〉+b, becomes (Moffatt(1978)):

∂〈B〉
∂t

= ∇× (〈V〉 × 〈B〉) + ∇× 〈v × b〉 − ∇× (ηm∇× 〈B〉). (3.2)

A closure relation must then be used to express the mean electromotive force (emf)
ε = 〈v×b〉 in terms of mean magnetic field, leading to a simplified mean-field equation.
If the mean magnetic field varies slowly in time and space, the emf can be represented
in terms of 〈B〉 and its gradients

εi = aijBj + bijk
∂Bj

∂xk
+ ... (3.3)

where aij and bijk are in the general case tensors containing the transport coefficients
(for simplicity we dropped 〈〉). The tensors aij and bijk cannot, in general, be expressed
from first principles due to the lack of a comprehensive theory of convective turbulence.
In the kinematic regime where the magnetic energy is negligible in comparison to the
kinetic energy, the most simple approximation is to neglect all correlations higher than
second order in the fluctuations. This is the so-called first order smoothing approximation
(FOSA); Charbonneau (2010). In most studies isotropic turbulence is assumed and the
pseudo tensor aij reduces into a single scalar giving rise to the α-effect. However in the
full tensor non-isotropic case for a, the emf can be expressed as:

ε = (αB + γ × B) − β∇× B (3.4)

where α is a scalar referring to the standard α-effect. The term γ is the turbulent pumping
and β is defined such that bijk = βεijk (with εijk the Levi-Civita tensor) and represents
the turbulent enhancement of magnetic diffusion. Note that as we work in the framework
of Babcock-Leighton flux transport models, we will replace the αB term by a non local
source term S representative of flux emergence.

Stellar mean field dynamo models have been studied in the case of a shallow MC by
Guerrero & de Gouveia Dal Pino (2008). We have expanded in DoCao & Brun (2011)
their results by considering both a deeper MC and various rotation rates, applying this
pumping dominated dynamo models to other stars. Under certain conditions we showed
that turbulent pumping can shorten the advection path driven by MC. We refer to DoCao
& Brun (2011) for detailed analytical expression of the turbulent pumping. On Figure 1
we show buttefly diagrams obtained with this new dynamo model. We clearly see that
for faster rotation the cycle period is shorter and the butterfly diagram remains solar-like
with the correct phase relationship between the poloidal and toroidal field components.

By studying a large range of paremeters, DoCao & Brun (2011) were able to derive
the following dependancy for the cycle period Pcyc :

Pcyc ∝ v−0.40
0 γ−0.30

r0 γ−0.15
θ0 (3.5)

We found that the turbulent pumping becomes a major player in setting the magnetic
period, but its influence is not as large as in Guerrero & de Gouveia Dal Pino (2008).
First, the MC is still the dominant effect and the radial pumping component is not as
important. Second, the effect of γθ is not negligible. This supports the idea that the
latitudinal advection process, and especially at the BCZ, is an important ingredient in
advection dominated BL models, capable of transporting the toroidal magnetic field from
the pole toward the equator. This difference may come from their choice of a shallow MC
with almost zero velocity at the BCZ.
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Figure 1. Butterfly diagram for 2 representative cases : 0.7Ω� and 3.0Ω�. Both figures share
the same color scale : between −5103G and 5103G for Br and between −9105G and 9105G for
Bφ . We also show the phase relations between Bpol and Btor , (DoCao & Brun (2011))

Figure 2. Left: Bpol/Btor ratio as function of the rotation rate. Solid line is a least square fit
of the data. Right: Magnetic cycle period as function of the rotation rate in models including
turbulent pumping. Solid line is a least square fit of the simulated data (DoCao & Brun (2011))

On Figure 2 we show the ratio of the poloidal to toroidal field and the cycle period
as a function of the star’s rotation rate. We clearly find the observed tendancy of a
more and more dominant toroidal component and of shorter cycle. A simple look at the
scaling law 3.5 gives that if we want to recover these observational trends, in particular
the shorter cycle period (again, we assume that v0 ∝ Ω−0.45), and assuming that γr/γθ

remains constant, the pumping effect should roughly scales as Ω2
0. Such a scaling may

be too extreme and only systematic 3-D numerical simulations will tell us if this is the
case or not. Nevertheless, pumping dominated stellar dynamos are a plausible solution
to explain observations.

Note that recent observations of the Sun and of solar analogues also point to the im-
portant role played by the symmetric family dynamo modes (such as the axisymmetric
quadrupole) and that succesful dynamo models must also possess symmetric and not just
antisymmetric equatorial symmetry. Indeed DeRosa et al. (2012) have shown that in the
Sun the symmetric modes contribute to about 25% of the overall magnetic energy and
that during reversals the quadrupolar mode actually dominates. This is certainly at the
origin of the time lag of 1 to 2 years between the north and southern hemisphere in the
Sun, since a dipole plus a quadrupole of equal amplitude would lead to an hemispherical
dynamo. During grand minima activity phase, such as during the Maunder minimum,
an hemispherical state with mostly sunspots in the southern hemisphere has been ob-
served, there too, pointing for a strong contribution of the symmetric dynamo family
Tobias(1997). It is certainly also the case that solar-like stars do not possess a purely
antisymmetric state of their magnetic field and that both dipolar and quadrupolar-like
symmetries are found Petit et al. (2008). Simple kinematic dynamos usually do not couple
both dynamo familiies due to simple symmetry considerations of their main ingredients.
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Only the introduction of asymmetric flows or source terms at the level of 0.1% can couple
the families to the adequate level (DeRosa et al. (2012)). An alternative is to use dynamo
coefficients deduced from 3-D numerical simulations as in Dubé & Charbonneau(2013).
Indeed nonlinear coupling between both symmetric and antisymmetric dynamo families
can easily be achieved in 3-D simulation of convective dynamos Strugarek et al. (2013).

4. 3-D global simulations of mean flows and dynamo action in stars
With the advent of massively parallel computers it is becoming more tractable to

attack the difficult problem of stellar convection and dynamo with full 3-D MHD non
linear simulations.

4.1. Differential rotation and Meridional Circulation in Stars
Systematic studies of rotating convection in spherical shells to model solar-like stars have
been undertaken over the last 10 years by several groups and codes (Brun & Toomre
(2002), Ballot et al. (2007), Brown et al. (2008), Käpylä et al. (2011), Augustson et al.
(2012), Gastine et al. (2013), and references therein). The general trend is that the
Coriolis force modifies convection such as to establish a large scale differential rotation
Ω(r, θ) (Brun & Rempel (2009)). Depending on the influence of the Coriolis force, usually
mesured by the turbulent Rossby number Ro = ωconv /2Ω0 ∼ vconv /2Ω0d, or a variant,
with ωconv , vconv characteristic vorticity and velocity in the convection zone and d the
convection zone depth, the resulting differential rotation can be anti-solar (high Ro > 1,
with fast poles-slow equator), solar-like (0.2 < Ro < 0.9, with fast equator, slow poles and
some constancy at mid latitude of the isocontours of Ω) or Jupiter-like (Ro < 0.1, with
cylindrical profile with alternance of prograde and retrograde jets) Matt et al. (2011).
On Figure 3 we represent these different profiles in models for various masses (0.5, 0.7
and 1.1 Msol) that also include the coupling to a stably stratified radiative interior,
thus possessing a tachocline Matt & Brun (2013). For each stellar mass these various
states can be achieved but for a different effective rotation rate (or v sin i). Indeed, we
find that the convective velocity vconv roughly scales as (L∗/(ρ̄czR

2
∗))

1/3 . Hence, more
massive is the stars, higher is its luminosity and lower is its average density as the base
of the convective envelope moves outward in relative mass (the stellar radius variation
for a masse range between 0.5 to 1.2 solar mass is a factor of 2 at most). The direct
consequence is that the convective velocity increases significantly with stellar mass and
so does the Rossby number for a fixed rotation rate. So we anticipate that the transition
between prograde and retrograde differential rotation does not occur at the same rotation
rate for a given spectral type. Searching for this limit observationaly would be most useful
to theoreticians. We also find that the differential rotation amplitude from the equator
to 60 deg increases with rotation rate but not as fast as the rotation rate such that the
relative differential rotation ΔΩ/Ω0 reduces. 3-D numerical simulations also predict that
ΔΩ should be larger for more massive stars as shown in Figure 4 left panel. This is in
qualitative agreement with observations of Donahue et al.(1996) and Barnes et al.(2005).

Likewise the meridional circulation is influenced by rotation. We generally found that
for simulations with Ro < 1, meridional circulations possess many cells in radius and/or
latitude per hemisphere. Only for anti-solar differential rotation cases, is the meridional
circulation uni-cellular Matt et al. (2011). We also find that the amplitude decreases
as the rotational influence is increased as shown on Figure 4 right panel. This comes
about by having more energy diverted toward differential rotation kinetic energy reservoir
as motions tends to become more horizontal than to the meridional circulation kinetic
energy reservoir that requires motions to go across surfaces aligned with the rotation
axis which becomes harder as Ω0 increases. As we have seen in §3, both multi-cellular
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Figure 3. Differential rotation profiles realized in 3-D ASH simulations of solar-like G and K
stars, chosen such as to emphasize the 3 rotation regimes as the Rossby number changes from
< 0.1 to > 1: banded-cylindrical, solar-like-conical, anti-solar (slow equator-fast poles).

Figure 4. Left: Latitudinal variation of angular velocity contrast with Rossby number. We note
that the contrast increases with faster rotation and that more massive is the star higher for a
given Rossby number is its differential rotation. Right: Variation of kinetic energy in meridional
circulation flow with Rossby number. We note that as the star rotates faster less energy is
channeled to the meridional circualtion (Matt et al. (2011), Matt & Brun (2013))

meridional circulations and weaker flow amplitudes imply that we must reconsider the
standard dynamo model for solar-like stars if we want to reproduce observations.

Up to now we have discussed results that did not take into account the retroaction of
the magnetic field. This is of course correct as long as the feedback of the Lorentz force
on motions is negligible. We now discuss in which conditions this is or not the case.

4.2. Stellar nonlinear dynamo action, scaling laws of magnetic energy and spot-dynamo
3-D numerical simulations of dynamo action in solar-like stars have revealed a large range
of behavior, from steady dynamo, to irregular and cyclic ones (Brun et al. (2004), Brown
et al. (2010), Brown et al. (2011), Racine et al.(2011), Gastine et al.(2012), Augustson
et al. (2013), Käpylä et al.(2013), Nelson et al. (2013), and references therein). In partic-
ular in model with a dominant influence of the rotation, large scale magnetic wreaths (see
Figure 6 left panel) have been obtained without requiring the presence of a tachocline
Brown et al. (2010), Brown et al. (2011). We show on Figure 5, 4 butterfly diagrams
(time-latitude plots of the azimuthally averaged toroidal magnetic field near the base of
the CZ) realized in such simulations for of a solar-like star rotating at 3 times the solar
rate Nelson et al. (2013). We remark that as the model is made more turbulent, the
steady magnetic wreaths become more time dependent and can lead to cyclic activity
(bottom right panel).

In such stars, along with the degree of turbulence, rotation plays an important role
in determining the global properties of their magnetism. This is due to a shift in the
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Figure 5. Magnetic wreaths yielding in turn steady (D3), irregular (D3a) and quasi cyclic
(D3b & S3) magnetic butterfly diagrams (Brown et al. (2010), Nelson et al. (2013))

balance of forces driving the flow between the advection, Coriolis and Lorentz terms. As
the rotation rate increases the Lorentz force tends to balance the Coriolis force yielding
larger magnetic energy in superequipartion with the kinetic energy of the flow (a direct
consequence of a magnetostrophic state; c.f. strong scaling below) as in the Earth’s iron
core. The Elsasser number Λ = B2/4πρ̄cz ηΩ0, with ρ̄cz mean density in the convective
envelope, η magnetic diffusivity, Ω0 stellar rotation rate, B a characteristic magnetic
field of the CZ, is useful to discuss this balance of terms in the Navier-Stokes (N. V.)
equation. Depending on the amplitude of this number and on the balance assumed in the
Navier-Stokes equation, various scaling of the magnetic field amplitude can be expected
(Fauve & Pétrélis(2007), Christensen(2010)):

• First, let’s recall that an order of magnitude of an equilibrium magnetic field (as-
suming ideal gas law) can easily be obtained: Beq ∼

√
8πPgas ∼ √

ρ̄cz , since Tef f varies
by a factor 2 to 3 between early F and late K stars, whereas ρ̄cz varies by more than a
factor 100 (Matt et al. (2011)). Now let’s assume that the magnetic Reynolds number
∼1 such that a characteristic velocity is given by v ∼ η/d, and let’s study the balance of
terms in N. V. eq.:
• Laminar (weak) scaling: Lorentz ∼ viscous diffusion

⇒ B2
weak ∼ ρ̄cz νv/d ∼ ρ̄cz νη/d2

• Turbulent (equipartition) scaling: Lorentz ∼ advection
⇒ B2

turb ∼ ρ̄cz v
2 ∼ ρ̄cz η

2/d2 ⇔ |Bweak | ∼ |Bturb |P 1/2
m

• Magnetostrophic (strong) scaling (e.g. Elsasser nb Λ ∼ 1): Lorentz ∼ Coriolis
⇒ B2

strong ∼ ρ̄czΩ0η

with v, d characteristic velocity and length scales, Pm = ν/η the magnetic Prandtl nb.
Of course there is an upper limit to the magnitude of the magnetic energy ultimately
set by the amount of energy (likely the star’s outward energy flux) than can be made
available to the dynamo process. We recall here that dynamo action does not exist for
any class of motions due to its intrinsic 3-D character (Moffatt(1978)).

So a possible scenario is the following: Stars rotating at moderate rate (such that
their Elsasser number is small), have a level of magnetic energy (or averaged global field
strenght) that are less than or of the order of the equipartition field given by either
the weak or turbulent scalings. As stars rotate faster and get closer to be in a magne-
tostrophic state with an Elssasser number of order 1 or larger, the formation of large
and intense magnetic wreaths starts. The magnetic field is more an more dominated by
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Figure 6. Turbulent magnetic wreaths (panel a) leading to the generation of buoyant loops
(panel b) in case S3 (Nelson et al. (2013))

its toroidal component and the magnetic energy becomes larger and larger going above
the equipartition value and follows the strong scaling. The consequence is the following.
As the magnetic energy (or field amplitude) becomes large, the associated Lorentz force
starts back reacting strongly on the mean flow. The first consequence is what can be
called an “omega-quenching”, e.g. the differential rotation reduces in strength and an
almost solid body rotation state in the convective zone (envelope or core) is established
(Brun (2004), Brun et al.(2005)). In mean-field classification this means that the stellar
dynamo transits from being an α − ω or α2 − ω to being an α2 dynamo, i.e. helical tur-
bulence is solely responsible for field generation and maintenance, the large scale shear
now plays a marginal role. At that stage what remains of the magnetic wreaths is still
unclear, more work must be done. As the rotation is made even faster, quenching of
the α effect, due to the large scale magnetic field being more and more intense, occurs.
The link to the Lx saturation (Pizzolato et al. (2003), Wright et al. (2011)) is not as
straightforward to deduce as one must also assess how the filling factor of the magnetic
field on the star’s surface evolves with stellar parameter not just the field strenght. As
we have seen the field amplitude does not easily saturate. So one can supposely think
that the first saturation is due to ω-quenching and limitation of overall spot coverage
and the second “over-saturation” may be due to “α-quenching”, so of the actual field
strength (see Gondoin(2012) for an alternative explanation). In order to be able to prop-
erly set the transition and the saturation of B and f independently, spot-dynamo, e.g.
dynamo generating self consitently rising omega-loop must be developped and the pa-
rameter space explored systematically. We show a first step toward that goal in Figure
6 where we see a magnetic wreath-like structure becoming turbulent and intermittent
enough, that intense bundles of fields reach 50 kG and start becoming buoyant, forming
omega-loop like structures (Nelson et al. (2011), Nelson et al. (2013)). We believe that
such simulations are the progenitor of future more realistic spot-dynamos.

5. conclusion
By extending the concept of dynamo to other stellar spectral type (F → M), it would

seem that a transition occurs from α−ω + flux transport dynamos, to α2 dynamos and
a turbulent dynamo. We have seen that theory and numerical simulations can explain
qualitatively the general trends. We now summarize the most important results:
• Convective velocities vconv roughly scales with cubic root of L∗/(ρ̄czR

2
∗) (stars lu-

minosity devided by mean density in CZ and stellar radius squared). So it implies that
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prograde vs retrograde state changes at different Ω0 as spectral type is changed (since
Ro = vconv /(2Ω0d) and vconv changes with spectral type),
• Cylindrical vs conical vs shellular differential profiles depends on Reynolds stresses

and thermal (baroclinic) effects (see Miesch et al. (2006) and Ballot et al. (2007) for more
details). Larger absolute differential rotation for both more massive stars and higher
rotation rates are recovered,
• The meridional circulation is found to be weaker for faster rotation rate, due to

relatively more energy being channeled to longitudinal motions,
• Magnetic field B reduces or can even supress differential rotation Ω(r, θ) (ω-quenching),
• at high rotation rate we get magnetic wreaths that generate omega-loops as we

lower diffusivity, cyclic dynamos are easier to get, and a new concept of spot-dynamo has
emerged,
• Strength of field (weak/strong) depends on balance of forces in N.V eq. and Multi-

polar or Dipolar magnetic bi-stability can exist but multipolar fields seem to dominate
at high stratification,
• Observed stellar cycle period becomes shorter for faster rotation, implies to modify

the standard flux transport mean field dynamo model to include either multi-cellular
flow or turbulent pumping,
• Stratification and/or a tachocline and/or a low Pm may help getting equatorward

butterfly diagram (results in a shift of location of Ω(r, θ) and α-like effects and hence of
their phase relationship).
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