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ABSTRACT

The dynamical effects of rotation on thermal convection in a fluid layer of spherical shape induce an
equatorial acceleration. Special properties of the convection zone assumed in earlier theories on the dif-
ferential rotation of the Sun are not required. To demonstrate the mechanism, the mathematical problem
of convection in a rotating Boussinesq fluid subject to temperature and gravity fields of spherical sym-
metry is considered. At the critical value of the Rayleigh number the onset of convection takes place
predominantly in the equatorial region. The dynamical constraint of rotation, together with the geometry
of the problem, leads to the equatorial acceleration at finite convection amplitudes. Estimates give rea-
sonable agreement with values observed on the Sun.

1. INTRODUCTION

Since C. Carrington discovered in 1863 that the Sun rotates faster at the equator
than at the poles, a variety of explanations have been put forward for the phenomenon
of the solar differential rotation. Among the more recent theories two hypotheses have
received particular attention and have been investigated mathematically to a con-
siderable extent.

Biermann (1951, 1958) has proposed the concept of an anisotropic viscosity tensor
to describe the dynamical consequences of the turbulent motion in the solar convection
zone. In his work and in later work by Kippenhahn (1963) it was shown that, owing to
the anisotropic viscosity tensor, a complex flow, including differential rotation, replaces
rigid-body rotation as the asymptotically approached state.

A recent reexamination of sunspot data by Ward (1965, 1966) suggests that the trans-
port of angular momentum by eddies of rather large scale is responsible for the main-
tenance of the differential rotation. Spectroscopic measurements by Plaskett (1966)
indicate similar phenomena. These observations have stimulated Ward (1965), Plaskett
(1966), and Starr and Gilman (1965) to refer to the analogous situation in the Earth’s
atmosphere, in which azimuthal wind systems are caused by large-scale eddies with the
dynamical properties of Rossby waves. The energy source for these eddies is the baroclin-
ic conversion of potential energy which is generated by the temperature difference be-
tween pole and equator. Gilman (1966) proposes that a similar temperature difference
exists on the Sun, at least in the deeper zones of the convection layer if not in the photo-
sphere. At present no conclusive evidence for such a temperature gradient does exist.

In contrast to these and other theories, we propose in this paper that the dynamical
effects of rotation on convection in a spherical geometry are sufficient to produce a mean
azimuthal flow of the observed form. Neither the anisotropic effects of thermal tur-
bulence nor large-scale temperature differences are necessary to explain the maintenance
of the solar differential rotation, although they may be important in the actual situa-
tion on the Sun.

To exhibit the characteristic features of the problem, we adopt the policy of neglect-
ing all properties of stellar convection zones which are not necessary to explain the mech-
anism of the equatorial acceleration. It will become apparent that the present work can
be extended in a straightforward way for calculations of more realistic models. The
mathematical formulation of the problem is given in § II. We shall use the Boussinesq
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approximation and restrict the analysis to small convection amplitudes. In § III it is
shown how the linear part of the equations can be solved by an expansion in powers
of the rotation rate. The nonlinear terms which induce the differential rotation will be
considered in § IV. An explicit solution of the problem is given in § V in the case of the
thin shell. The assumption of stress-free boundaries with fixed temperature will allow
us to obtain a simple analytical solution. The conclusions which can be drawn from the
highly idealized model are necessarily of a qualitative nature. The numerical estimate
given in § VI should be regarded solely as a suggestion that a more realistic picture of
the proposed mechanism can provide values for the differential rotation in reasonable
agreement with observations of the Sun. The effects of compressibility, in particular,
will strongly modify the results. The justification for studying the model of an incom-
pressible fluid is based on the experience that the dynamical properties of incom-
pressible fluids are reflected by compressible fluids under corresponding conditions as
long as all velocities are subsonic.

II. FORMULATION OF THE MATHEMATICAL PROBLEM

We consider a spherical shell of an incompressible fluid subjected to a gravitational
force of spherical symmetry. A spherically symmetric distribution of heat sources in
the core underlying the shell, and possibly in the shell itself, leads to a temperature
gradient of the same symmetry in the static fluid layer. When the temperature dif-
ference AT across the shell reaches a sufficiently high value, the buoyancy forces over-
come the stabilizing effects of viscous and thermal dissipation. The static state becomes
unstable, and convective motions set in.

For the mathematical description of the problem we shall use the equations of motion
in the Boussinesq approximation in which homogeneous properties of the fluid are
assumed, with the exception of the temperature dependence of the density, which is
taken into account only in the gravity term. A more detailed description of the problem
can be found in Chandrasekhar’s book (1961, chap. 6). It is convenient to introduce
dimensionless variables by using the thickness % of the shell, 4*/v, and AT X Pr as
scales for length, time, and temperature, respectively, where Pr is the Prandtl number,
which is defined as the ratio between the kinematic viscosity » and the thermal dif-
fusivity x. We assume further that the entire system is rotating homogeneously about
an axis described by the unit vector k. Since the centrifugal force can be derived from a
potential, it enters the problem analogously to the force of gravity. In consistency with
the assumption of a spherically symmetric shell, we shall neglect the centrifugal force
in comparison with the force of gravity. Accordingly, the equation for the velocity
vector v and the heat equation for the deviation ¢ of the temperature from the static
temperature field T'(r) are given by

—VX(VXu)+R07'y(r)—-V1r=)\k><u+5azu—u><(v>(u), @2.1)

V23 + u-rT'(r)r ! = Pr (u~V0 + ':992 0) . (2.2)

v« includes the pressure and other terms which can be written in the form of a gradient,
and r denotes the position vector with respect to the center of the shell. The functional
dependence y(r) of the gravity force gory(r) has been normalized in such a way that
go gives the value of gravity at the inner radius # = 7, of the shell. The Rayleigh number
is defined by

R = (l'goATh__3 ,

Ky
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where a denotes the coefficient of expansion. The rate of rotation enters the problem
in the form of the parameter

2Qh2
.

A=

In addition to equation (2.1), the velocity field has to satisfy the equation of continu-
ity
V-u=0. (2.3)

Any vector field u satisfying this equation can be separated into two parts, a poloidal
and a toroidal part, each of which is described by a scalar function

u=vXVXn+vXrmw. (2.4)

By applying the operations r-v X (vX and r-VX onto equation (2.1), after the
representation (2.4) has been introduced, we obtain

[ (v2 - a%) + M X 1V |vh + AQw — RyI?8 = 1+
X {vX[uX(@vXuwl},
[Lz(v2——)+>\erV]w—)\Qv=—rVX[uX(VXu)] (2.6)

(2.5)

Equation (2.2) can be rewritten in the form
gvz — Pr%%z} + L2T'(r)r ! = Pr(u-vé). (2.7)

We have used the following property of the representation (2.4):
rru= L= —rV2 + r-V(r-Vv + v) .
In spherical coordinates (7, 8, ¢) with respect to the axis k the operator L? is given by

1 8. 98 1 9
2 — g g 9
L s 030" %% " sntoos (2.8)

The operator Q is defined by
Q = kv — 3(L*k-V + k-VL?) (2.9)

and is identical with the operator Q® introduced by Roberts (1968) in a related problem.
In the following we shall not refer to specified boundary conditions. We assume that
they are of the form

= arz—l-axa) (a —I—az)w— (—%-l—a3>19=0 (2.10)
r=1, r+1,

although the discussion will hold for more general, not necessarily linear, boundary
conditions. The arbitrary constants a, may have different values at the two surfaces of
the shell.

In order to solve the system of equations (2.5)-(2.7), we mtroduce an expansion in
powers of the convection amplitude e
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R = RO 4 R® 4 &R® 4 . . .| '

(2.11)
7 = e® 4+ &v® ...,

and analogous series for w and ¢&. This expansion allows us to replace the nonlinear
equations (2.5)-(2.7) by a hierarchy of linear equations which can be solved in turn.
The first order in this hierarchy consists of all terms proportional to ¢ and represents a
homogeneous eigenvalue problem with R(® as the eigenvalue. In higher orders inhomo-
geneous equations have to be solved in which the parameters R®™ (n > 0) are to be
determined by the solvability conditions. We shall not extend the analysis beyond the
second order. The second-order equations, however, are important, since the nonlinear
terms enter here for the first time. It will become evident in § IV that they introduce
effects which are qualitatively different from those described by the linear terms.

In the following section we shall be concerned with the linear problem which is given
by equations (2.5)—(2.7) after the right-hand sides have been replaced by zero. Since
even the linear problem does not allow a solution in the form of simple analytic functions,
we shall introduce another expansion in powers of the parameter A.

III. THE LINEAR PROBLEM

It is convenient to assume in the discussion of the linear part of equations (2.5)-
(2.7) the special functional dependence

v(r) = T'(r)r! = r1. 3.1)
The equations for vV, ¢V and w are then given by
L2(V? — iw) + imA]VRD — ROy 29 = —NQuw
[L2(V? — iw) + imA]w® = AQv® | (3.2)
[V2 — Priw]d® 4 r"tL2® = 0.
Because of the linearity, a ¢- and ¢-dependence of the form
gimdtivt (3.3)

has been assumed. Equations (3.2) have been solved by Chandrasekhar (1953, 1961)
for various boundary conditions in the case A = 0. In the latter reference it was also
shown that the results of the particular case (3.1) do not change qualitatively if more
general functions y(r) and T'(r) are considered.

The problem is to determine the lowest value R, of R at which a solution exists
satisfying equations (3.2) and the boundary conditions for real values of w. R, repre-
sents the critical value of the Rayleigh number at which the static fluid layer becomes
unstable. The corresponding solution v™®, ¢® %M describes the physically realized
solution to the first order of the amplitude, provided that the eigenvalue R® = R, is
simple.

Since we are interested in the qualitative features of the solution rather than in its
most general description, it is sufficient to consider the case of small values of N which
allow a representation of the solution in the form

RO =Ry+ANR;i +NR;+ ...,
v = g0+ Aoy + N .. .,

and analogous expansions for w, ¢V, w®, Chandrasekhar (1961) has shown for fairly
general cases of boundary conditions that w® and w vanish in equations (3.2) in the case

(3.4)
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= 0. Accordingly, the equations of lowest order are
Vi — Redore™ = 0,

(3.5)
Vi + L2y ! =
These equations allow a solution in the form of spherical harmonics
99 = V(r)Pi(cos #)e™* . (3.6)
V(r) and R, are determined as a function of / by
(Ed; 72% 1+ 1)) V(r) = W+ + 1) BT DRovir) . (3.7)

In the following we shall restrict the use of the symbols Ry, I, V(r) to the particular
solution of equation (3.7) with the lowest value of Ry. Since the parameter 7 does not
appear explicitly in equation (3.7), 2/ 4+ 1 independent convection modes correspond
to the value Ro. This degeneracy of the eigenvalue problem will be removed as soon as
the influence of rotation is considered.

The first-order equations consisting of all terms proportional to A of equations (3.2)
do not yet resolve the degeneracy. The solvability condition, which is obtained in the
same way as relation (3.13) below, yields

m

I+ 1)1 + Pr)
Using the normalization condition <0(15 L2 9Oy = (g L? vy, we find
=% =0. (3.9)

Relation (3.8) in conjunction with expression (3.3) shows that the convective motion has
the time dependence of a wave propagating opposite to the sense of the given rotation.
This property corresponds to the dynamical behavior of Rossby waves in a container in
which the depth parallel to the axis of rotation increases with the distance from the
axis. In the discussion which follows we have to consider the toroidal component of the
velocity field which is determined by

R1 = 0, w = (38)

Lvw? = Qu,
] 9 sinfd
[cos v <L + 7 ar) (cos 6 3, 9 ] T (3.10)
— m l__________ & I]' m l | tmet+iwt
= [P I+1 2] 1 t+( l) + Pm 121 lt (r,l)]e .

The quantities ¢, and {_ denote expressions independent of m. The right-hand side of
equation (3.10) indicates the important fact that w and v have a different 8-dependence.
The second order in A of equations (3.2) is given by

LWy — Rory 1129, = —‘le + Roro 1129, y
Vzl}z + ro_lLZ'L’g =0.

(3.11)

We want to show that R, is always positive and that it reaches its lowest value for m =
I. By multiplying the first of equations (3.11) by ", the second by R,d", adding the
result, and integrating it over the volume of the shell, we obtain after partial integration

= — (0"Qw1) + Re (0" L )ro7" . (3.12)
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The angular brackets denote the average over the shell, and the asterisk indicates the
complex conjugate. The right-hand side of relation (3.12) has vanished because ", %"
satisfy the homogeneous part of equations (3.11). For the partial integration, boundary
conditions of the form (2.10) have been assumed. To prove that R; is positive, we note

that
(0" L*d) = (doLlPn") = "0(|V"0|2> (3.13)
is positive. The term
(w'Quwi) = — (wlViw') = (VL wi-Vwr') (3.14)
is positive since w can be written according to equation (3.10) as the sum of two parts
w = [5—_2—1—7%__}1——1 P Ty (r,l) + ZZ—Z% sz_lT_(r,l)]e"(""f’*‘"") ; (3.15)

for which the operation L?is equivalent to multiplication by (! + 1) (! + 2) and I(l — 1),
respectively. Hence R, exceeds zero. The fact that Ty and T do not depend on 7 allows
us to write the integral (3.14) in the form

. | — 1\2 ! 2
— @iy = o (L5 ) (Pl + o (5%) (1Pmal®y, (316)

where ¢; and ¢_ are positive constants independent of m. Similarly, the integral (3.13)
can be written
(" L2 et = ¢{| P/|?) (3.17)

with a positive constant ¢ independent of m. Finally, the relation

ootay 2011+ m 1
IPrenl) = 3 T—m ¥ 1

(| Pm?)

has to be used, and the proof that m = [ yields the lowest value of R. follows immediately
from
I+ 12— m? 22— m?

Re= o In@i+3 TC@=DRF+ D

Accordingly, it can be concluded that the convection which is physically realized at
low supercritical Rayleigh numbers and small but finite rates of rotation corresponds to
the mode P} (cos ), a mode which is characterized by a pronounced maximum at the
equator.

This result is not surprising if it is remembered that the critical Rayleigh number of a
plane fluid layer increases strongly with @ when the axis of rotation is perpendicular
to the layer, yet does not change at all when the axis of rotation is parallel. Because of
the curvature of the shell the convection cannot be strictly independent of the k-direction
and consequently the critical Rayleigh number depends on © even at the equator.
The fact that the least axisymmetric mode yields the initial Rayleigh number indicates
that computations of axisymmetric convection in a rotating spherical shell (Durney
1968) have limited physical significance.

We have considered only terms up to the order A? in the expansion in powers of A.
Yet we expect that the description based on those terms is qualitatively correct even at
large values of \. This belief is supported by the corresponding results in the plane ge-
ometry (Chandrasekhar 1961). The terms up to the order A? yield the exact solution in
this case if “free” boundaries are assumed and if the horizontal wavenumber is deter-
mined by minimizing Ry 4+ A?R; as a function of the wavenumber.
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IV. NONLINEAR EFFECTS

We return to the end of § II where the expansion in powers of the amplitude e was
formulated. A number of studies have shown that the nonlinear features of convection
in a plane layer can be described successfully for a rather wide range of Rayleigh num-
bers above the critical value if terms up to the order €? are considered. For the particular
aspect of this problem in a rotating system we refer to Veronis (1959). It can be ex-
pected that the relations which have been obtained in the case of a plane layer hold,
with minor modifications, in the case of a spherical shell. The dependence of the ampli-
tude of convection on the supercritical Rayleigh number is the most important relation
of this kind. In addition, however, there may possibly be effects which depend on the
particular geometry of the shell. One of these possibilities is a differential rotation arising
from the nonlinear momentum transport of the convection. In the following we shall
restrict our attention to this most striking aspect of the problem.

The equation for the second order of the toroidal part of the velocity field is given
according to equation (2.6) by

[U (V2 - %) + A X r-V]w‘” — NQv® = —r-V X [u® X (Vv Xu®)]. (4.1)
The evaluation of the inhomogeneous term on the right-hand side of equation (4.1)
yields
1V X [u® XV Xu®)] = —r(Vr-vDyp X VViu)

+ Ar-v X [(r X VD)V, — (r X VDw)V? + VDvy X VDwi] + ...,

where terms of the order A? and higher have not been denoted explicitly. The operator D
is defined by

(4.2)

D=rv+1.

In equation (4.2) and in the rest of this section we assume that % and w; are described
by the real part of the complex description which was derived in the preceding section.
The term independent of A in expression (4.2) vanishes, since both factors in the vec-
torial product have the same ¢- and 6-dependence. The terms linear in X can be rewritten
in the following way

)\[(T X VVZ‘HH)‘(T X VD?)()) - V2w1L2D‘Z)0 + %T‘V X (VDvo X Vle)]

— X [preceding terms with w; and v, interchanged]

_=A[o/l ., 0 ) i<___1 2 O )] (4.3)
“sino[ao(r2Lw15m060D”° + 3 s g LW gg Do

+ ;?{5 [preceding terms with w; and v, interchanged] .

According to equations (3.6) and (3.15) the expression (4.3) consists of an axisymmetric
part and a part with the periodicity 2m in the azimuthal direction. We are interested in
the axisymmetric part, which is defined as the average of equation (4.3) over the ¢-depen-
dence and which will be indicated by angular brackets with subscript ¢. Accordingly, we
obtain from equations (4.1) and (4.3), if terms of the order A? are neglected,

9 cr @ __(—2<2_"i >_—2<z_‘2 >)
80V<w Yo = —A(7 LwlaeDvo \ r Lvoaele ) (4.4)
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It is convenient to rewrite this equation in terms of the mean ¢-component of the ve-
locity field

d
(U)o = — 625—0 (w®)s .
Thus, neglecting terms proportional to higher powers of ¢, we have

o 1 o4 _3_2_3_) _2(2_3_ T )
(aosinoaosmo + Fatew (uy )y = €N L, 39 Dvy — Ly 56 Dw,). (4.5)
This equation shows that, because v and w differ with respect to their dependence on
6 and on 7, a differential rotation will be produced by the nonlinear terms. It cannot be
easily seen from equation (4.5) which form and which sign the differential rotation does
possess. For this purpose we shall study in the following section a special example in
more detail.

V. THIN-SHELL APPROXIMATION

To obtain a more detailed picture of the differential rotation, an explicit solution of
the linear problem must be inserted in the right-hand side of equation (4.5). We wish
to avoid lengthy computation, so we turn to the simplest possible model. We introduce
the thin-shell approximation by assuming that the thickness of the convectively un-
stable shell is small compared with its radius, i.e., we assume 7o > 1. Moreover, the case
of stress-free boundaries with fixed temperatures will be considered; this is called the
“free boundary” case and corresponds to the limit

a, a, a'l—0

of the boundary conditions (2.10). As is to be expected, the solution of equation (3.7)
is closely related to the analogous solution in a plane convection layer,

V(r) = sin w(r — 1) (5.1)
with
Ry = 2xt, I+ 1) = P = j2'rd. (5.2)
Equation (3.10) for w, reduces to
d sinfd
200 — = —_
Vi, (cos 0 ar 7o 30 %
(5.3)
- -1 p l[é_ Vo) — 2 V(,)]e¢z¢+m
2041 *lar 1o ’
where the result = [ has been used. The integration of this equation yields
-1 p §2 S S S _ ) L giteriot
w =57 T 1P z+1§31r cos w(r — 7o) ; R A DY) cos 2vw(r ro)ze .(5.4)

The coefficients a, are determined by the expansion of sin w(r — 7) in terms of the
Fourier modes cos 2vw(r — 7,) which satisfy the required boundary conditions

4 2
—m for VZI, ao=;.

The solution {(#4)4 of equation (4.5) can be obtained by expanding {#4)¢ and the in-
homogeneous right-hand side in terms of a system of orthogonal functions which satisfy

a, =
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the boundary conditions in the §-direction as well as in the r-direction,

(g)s = Z,,0%,, cOs pw(r — 1) PL,(cos 6) , (5.5)
%le %% Dy, — L2, (—% lei = 2, b cos ur(r — r0)PL(cos 6) . (5.6)

Because of the property

d 1 d
d6 sin 6 df sin 6P, (cos 6) + p(o + 1)P'y(cos ) = 0 (5.7)

equation (4.5) yields, in the case of the small-gap approximation with free boundaries,
the formal solution
buo

p(p + 1) + (um)?’

A more explicit solution can be obtained if we consider only the average of ()4 with
respect to its r-dependence. We denote this average by a second subscript  and obtain
the equation for {#4)4, from relation (4.5):

d . d l
= 2 —_— I — 3 v
d0(sn0d0 sin 6 (ug ), r) e [<d0P1>sm0d0Pz +»Pz 7 (smo P,) i

Uy = €N (5.8)

d( 1 d P G9)
— 2 2 i 1o 2Y__ Y
7 (sin 5ap (P sin0) ) 20+ 1)’
where the relationship
1 , _sinfd 1 d
W1 1P1+1 =7 dHP T+ 146 sin 6P; (5.10)

has been used. Neglecting /=! in comparison with 1, we write the solution of equation
(5.9) in the form

(g or = Al 1’5 (Pu2)? sin 6. (5.11)

The important result is the positive sign of the mean azimuthal flow, i.e., the flow has
the same direction as the basic rotation. In addition, it is symmetric in both hemispheres
and shows a pronounced maximum at the equator. These characteristic features are
shown by the differential rotation observed on the Sun.

VI. COMPARISON WITH OBSERVATIONAL EVIDENCE

The knowledge about convection in the solar atmosphere has advanced considerably
in recent years owing to the development of new cbservational techniques. There is
now evidence for convective motions of three distinct scales in the outer layer of the
Sun. The ordinary granulation can be interpreted as a manifestation of the scale height
at the surface as governing scale. An order of magnitude larger is the scale of the super-
granulation which was discovered by Leighton (1960) and his coworkers (Leighton,
Noyes, and Simon 1962). A third scale of motions, which exceeds the supergranulation
scale by another factor of about 10, corresponds to the depth of the convectively un-
stable layer. The evidence for convection cells of such a large size (they are called
“giant cells”) is still scarce. Various observations of sunspot motions (Ward 1965,
1966) and of magnetic regions (Bumba, Howard, and Smith 1964), as well as observations

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1970ApJ...159..629B

J: - -1597 T629B!

P

04

oy

638 F. H. BUSSE Vol. 159

by spectroscopic methods (Plaskett 1966), suggest the existence of cells with a hori-
zontal extension of about 4.10° km. Theoretical considerations by Simon and Weiss
(1968) based on mixing-length arguments tend to support the hypothesis that the ob-
served giant cells correspond to convective motions extending throughout the convection
zone. :

The giant cells obviously show the closest relation to the idealized convection model
considered in the preceding sections. We shall take into account the action of the
convective eddies of smaller scale by assuming an eddy viscosity ». in place of the molec-
ular viscosity ». Schwarzschild (1959) gives as a rule of thumb

ve = &VL, (6.1)

where V represents a typical velocity and L a typical length of the eddies. It was noted
by Leighton (1965) that the turbulent diffusion described by the foregoing equation
has about the same value for ordinary granulation as for supergranulation. In the fol-
lowing we shall use a value of about 10'?2 cm? sec™!. The typical convection velocity
of our model

Ve

h

Va = erlyy

(6.2)

has to be identified with the typical velocity V, in giant cells which, according to Bumba
(1967), has a value of about 3 X 10 cm sec™!. The expression (5.11), together with
equations (3.6) and (5.2), yields the following relation for the ratio between the equato-
rial acceleration and the velocity of convection:

Ws)our  \ V2 Vmh

erlvg 1012 v,

~ 10, (6.3)

where 4 =~ 10'° cm has been assumed as the height of the convection zone and Q =~
3 X 10-% sec™! as the rotation rate of the Sun. The value (6.3) corresponds to an ob-
served value of = 10. The agreement between both values is by no means conclusive
because of the large uncertainties which enter such an estimate. Yet the comparison
suggests that the proposed driving mechanism for the differential rotation is consistent
with the present knowledge about the solar convection zone. For a quantitative com-
parison with the observed form of the differential rotation, a more detailed model will
have to be considered which takes into account the compressibility and the stresses
exerted by the magnetic field on the average during the solar cycle. In addition, it
would be desirable to replace the concept of eddy viscosity by more reliable results of
a theory of turbulence.

In all the qualitative aspects which can be compared, we have found a reasonable
correspondence despite the limitations of the model. We therefore conclude that the
dynamical mechanism described in this paper is capable of explaining the equatorial
acceleration in the solar convection zone.
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