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The surface zonal winds observed in the giant planets form a complex jet pattern with alternating pro-
grade and retrograde direction. While the main equatorial band is prograde on the gas giants, both ice
giants have a pronounced retrograde equatorial jet.

We use three-dimensional numerical models of compressible convection in rotating spherical shells to
explore the properties of zonal flows in different regimes where either rotation or buoyancy dominates
the force balance. We conduct a systematic parameter study to quantify the dependence of zonal flows on
the background density stratification and the driving of convection.

In our numerical models, we find that the direction of the equatorial zonal wind is controlled by the
ratio of the global-scale buoyancy force and the Coriolis force. The prograde equatorial band maintained
by Reynolds stresses is found in the rotation-dominated regime. In cases where buoyancy dominates
Coriolis force, the angular momentum per unit mass is homogenized and the equatorial band is retro-
grade, reminiscent to those observed in the ice giants. In this regime, the amplitude of the zonal jets
depends on the background density contrast with strongly stratified models producing stronger jets than
comparable weakly stratified cases. Furthermore, our results can help to explain the transition between
solar-like (i.e. prograde at the equator) and the ‘‘anti-solar’’ differential rotations (i.e. retrograde at the
equator) found in anelastic models of stellar convection zones.

In the strongly stratified cases, we find that the leading order force balance can significantly vary with
depth. While the flow in the deep interior is dominated by rotation, buoyancy can indeed become larger
than Coriolis force in a thin region close to the surface. This so-called ‘‘transitional regime’’ has a visible
signature in the main equatorial jet which shows a pronounced dimple where flow amplitudes notably
decay towards the equator. A similar dimple is observed on Jupiter, which suggests that convection in
the planet interior could possibly operate in this regime.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Surface zonal jets on the giant planets Jupiter, Saturn, Uranus
and Neptune have been investigated since the 1970s by tracking
cloud features (e.g. Ingersoll, 1990). On each planet, these zonal
winds form a differential rotation profile with alternating prograde
(i.e. eastward) and retrograde (i.e. westward) flows.

On both gas giants, a strong eastward equatorial jet is flanked
by multiple weaker alternating zonal winds (10–20 m s�1). Jupi-
ter’s equatorial jet extends roughly between ±20� latitude reaching
a maximum velocity around 150 m s�1 (Porco et al., 2003; Vasava-
da and Showman, 2005). Saturn’s equatorial jet is fiercer and wider
with a maximum flow amplitude of 450 m s�1 and extension of
±35� latitude (Porco et al., 2005).
The zonal wind profiles of Uranus and Neptune are quite differ-
ent. One broad retrograde equatorial jet is flanked by only two
strong prograde jets at higher latitudes. On Uranus, this equatorial
sub-rotation extends between ±30� latitude and reaches 100 m s�1

(Hammel et al., 2005); it extends over ±50� latitudes and reaches
400 m s�1 on Neptune (Sromovsky et al., 1993).

Two competing categories of models try to explain the observed
zonal winds structure. In the ‘‘shallow-forcing’’ scenario, zonal
winds are driven by injection of turbulence via different types of
physical forcings at the stably-stratified cloud level (e.g., latent
heat release, solar radiation, moist convection). These models suc-
cessfully reproduce an alternating zonal flow pattern similar to
those observed in giant planets (e.g. Williams, 1978; Cho and Pol-
vani, 1996). Although many earlier shallow models predict a sim-
ilar westward equatorial zonal flow for all four giant planets,
recent studies show that these models can also replicate the equa-
torial zonal flows of the four giant planets via the inclusion of an
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additional forcing mechanism such as water vapor condensation
(Lian and Showman, 2010) or via enhanced radiative damping
(Scott and Polvani, 2008; Liu and Schneider, 2011).

In the ‘‘deep-forcing’’ scenario, zonal winds are maintained by
deep-seated convection. The increasing electrical conductivity in
the deep-interior of the giant planets (Nettelmann et al., 2008;
French et al., 2012) goes along with stronger Lorentz forces that
are thought to prevent the strong zonal winds to penetrate deep
into the molecular layer. Liu et al. (2008) therefore argued that
the zonal winds must be confined in a thin upper layer (0.85RS

and 0.96RJ), since deep jets extending over the whole molecular
envelope would lead to Ohmic dissipation that would exceed
the planetary luminosity. More recent dynamo models by Heim-
pel and Gómez Pérez (2011) support the idea that zonal flows
would maybe reach less than half of the distance to the bottom
of the molecular layer. These deep models rely on 3-D numerical
simulations of rapidly-rotating spherical shells. In rotating con-
vection at moderate convective forcing, convection occurs on
long, axially-oriented columns reaching through the whole fluid
layer. These well-organized columnar flows generate Reynolds
stresses (i.e. statistical correlations between the convective flow
components) that drive strong zonal winds (e.g. Busse, 1983,
1994; Plaut et al., 2008; Brown et al., 2008). The typical azimuth-
ally prograde tilt of these convective columns always yields an
eastward equatorial jet (e.g. Zhang, 1992; Christensen, 2001; Aur-
nou and Heimpel, 2004). The direction and the number of jets are
consistent with Jupiter’s and Saturn’s observation provided thin
shells and low Ekman numbers are considered (e.g. Heimpel
et al., 2005, 2007).

A different zonal flow regime is however found when global-
scale buoyancy starts to dominate the Coriolis force. The equatorial
zonal flow tends to reverse (e.g. Gilman, 1977, 1979; Glatzmaier
and Gilman, 1982). Responsible for the latter is the turbulent mix-
ing of angular momentum, which may explain the strong retro-
grade equatorial zonal flow observed on the ice giants (Aurnou
et al., 2007).

To further inform the ongoing discussion on the driving mech-
anisms and the depth of the zonal jets in the giant planets, here we
investigate the deep-seated zonal flow perspective and thus com-
pute 3-D global models of convection in spherical shells.

Many of the previous parameter studies have employed the
Boussinesq approximation where the density stratification is sim-
ply ignored (Christensen, 2002; Aurnou et al., 2007). This is rather
dubious in the strongly stratified giant planets where the density
contrasts are huge (e.g. Nettelmann et al., 2012, 2013). More recent
models therefore use the anelastic approximation which allows to
incorporate the effects of background stratification while filtering
out the fast acoustic waves (e.g. Braginsky and Roberts, 1995;
Lantz and Fan, 1999; Brown et al., 2012). In an extensive parameter
study, Gastine and Wicht (2012) concentrate on the influence of
the density stratification on convection and zonal flows in the rota-
tion-dominated regime (see also Showman et al., 2011). While the
density stratification affects the local scales and the amplitude of
the convective flow, the mean zonal flows and the global quantities
are fairly independent of the density contrast, similar to the results
of Jones and Kuzanyan (2009).

Many anelastic and fully compressible models of solar and stel-
lar convection have observed a transition between the solar-like
(i.e. eastward equatorial zonal flow) and the so-called ‘‘anti-solar’’
(i.e. westward equatorial zonal flow) differential rotation profiles
when buoyancy dominates the force balance (Glatzmaier and Gil-
man, 1982; Bessolaz and Brun, 2011; Käpylä et al., 2011a). Yet,
to date, no systematic parameter study has been made to investi-
gate the influence of density stratification on the transition be-
tween the rotation-dominated and the buoyancy-dominated
zonal flow regimes.
This is precisely the focus of the present study, which extends
the previous Boussinesq study of Aurnou et al. (2007) to anelastic
models. To this end, we conduct a systematic parameter study
from Boussinesq to strongly stratified models (i.e. qbot/qtop ’ 150)
and solutions that span the range from weakly to strongly super-
critical convection.

In Section 2, we present the anelastic formulation and the
numerical methods. Section 3 shows the change in convection
when the driving is gradually increased from the rotation-domi-
nated to the buoyancy-dominated regime. Section 4 focuses on
the zonal flows profiles that develop in the buoyancy-dominated
regime. In Section 5, we concentrate on the so-called transitional
regime, a specific feature of strongly stratified anelastic models, be-
fore concluding in Section 6.
2. Hydrodynamical model and numerical methods

2.1. Governing equations

We consider hydrodynamical simulations of an anelastic ideal
gas in a spherical shell rotating at a constant rotation rate X about
the z-axis. We use a dimensionless formulation of the governing
Navier–Stokes equations where the shell thickness d = ro � ri is em-
ployed as a reference lengthscale and X�1 as the time unit. Density
and temperature are non-dimensionalised using their outer
boundaries reference values qtop and Ttop. Entropy is expressed in
units of Ds, the imposed entropy contrast over the layer. Kinematic
viscosity m, thermal diffusivity j and heat capacity cp are assumed
to be homogeneous.

Following the anelastic formulations of Gilman and Glatzmaier
(1981); Braginsky and Roberts (1995) and Lantz and Fan (1999),
the background reference state (denoted with tildes in the follow-
ing) is hydrostatic and adiabatic. It is defined by deT=dr ¼ �g=cp and
a polytropic gas ~q ¼ eT m;m being the polytropic index. As we are
interested in the dynamics of the molecular region of giant planets,
we assume that the mass is concentrated in the inner part, so that
g / 1/r2 provides a good approximation (see also Jones and Kuza-
nyan, 2009; Gastine and Wicht, 2012). Such a gravity profile then
leads to the following background temperature profile

eT ðrÞ ¼ c0

ð1� gÞr þ 1� c0 and ~qðrÞ ¼ eT m; ð1Þ

with

c0 ¼
g

1� g
exp

Nq

m
� 1

� �
with Nq ¼ ln

~qðriÞ
~qðroÞ

: ð2Þ

Here eT and ~q are the background temperature and density, g = ri/ro

is the aspect ratio of the spherical shell and Nq corresponds to the
number of density scale heights over the layer (see also Jones
et al., 2011, for the full derivation of the reference state).

In the anelastic approximation, the dimensionless equations
that govern convective motions are given by

$ � ð~quÞ ¼ 0; ð3Þ
@u

@t
þ u � $uþ 2ez � u ¼ �$
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~q
þ Ra�

r2
o
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~q
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where u, p and s are velocity, pressure and entropy, respectively. S is
the traceless rate-of-strain tensor with a constant kinematic viscos-
ity, given by

Sij ¼ 2~q eij �
1
3

dij$ � u
� �

with eij ¼
1
2

@ui

@xj
þ @uj

@xi

� �
; ð5Þ

dij being the identity matrix. The dimensionless entropy equation
reads
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where Qm is the viscous heating contribution given by

Q m ¼ 2~q eijeji �
1
3
ð$ � uÞ2

� �
: ð7Þ

In addition to the aspect ratio g and the two parameters involved in
the description of the reference state (Nq and m), the system of Eqs.
(3)–(6) is governed by three dimensionless parameters, namely, the
Ekman number, the Prandtl number and the modified Rayleigh
number:

E ¼ m
Xd2 ; Pr ¼ m

j
; Ra� ¼

gtopDs

cpX
2d
; ð8Þ

where gtop is the gravity at the outer boundary. Ra⁄ can be related to
the standard Rayleigh number Ra = gtopd3Ds/cpmj with (e.g. Chris-
tensen, 2002)

Ra� ¼ RaE2

Pr
: ð9Þ

The definition of Ra⁄ is based on the global entropy jump over the
spherical shell and on the gravity value at the outer boundary. In
anelastic models, it is however more appropriate to define a local
modified Rayleigh number that encompasses the radial dependence
of the background reference state (e.g. Kaspi et al., 2009; Gastine
and Wicht, 2012):

R�ðrÞ ¼ g

cpX
2

dsc

dr

����
����; ð10Þ

where sc is the conduction state entropy, which is the solution of

$ � ð~qeT$scÞ ¼ 0: ð11Þ

As the entropy gradient is inversely proportional to ~qeT , the value of
R� can become very large at the surface in the most stratified cases.
In these models, convection sets in first in the outermost region
Jones et al. (2009) and Gastine and Wicht (2012). To compare
numerical models with different density contrasts, it is either pos-
sible to consider a mass-weighted average of R� as suggested by
Kaspi et al. (2009), or use its value at mid-depth (Unno et al.,
1960; Glatzmaier and Gilman, 1981). Table 1 shows that these
two definitions lead to very similar results. In the following, we
use the modified Rayleigh number at mid-depth R�m � R�ðrmidÞ to
compare our different numerical models.

The first numerical models of rotating convection in spherical
shells by Gilman (1977) and Glatzmaier and Gilman (1982) have
shown that the physical mechanism responsible of the zonal flow
production is sensitive to the relative contribution of buoyancy
and Coriolis force in the global-scale force balance. The ratio be-
tween these two forces can be related to Ra⁄ (for the full derivation,
see Aurnou et al., 2007) via

Buoyancy
Coriolis

� ðRa�Þ1=2
: ð12Þ

This ratio is commonly referred to as the ‘‘convective Rossby num-
ber’’ in the solar and stellar convection communities (e.g. Elliott
et al., 2000; Ballot et al., 2007) and in the fluid physics community
Table 1
Local Rayleigh number at mid-depth and mass-weighted average of R� for Ra⁄ = 1 for
different density stratifications.

Nq R�ðrmidÞ hR�iq

0.01 1.462 1.534
1 1.563 1.599
3 0.880 0.867
5 0.237 0.245
(e.g. Zhong and Ahlers, 2010). In Boussinesq studies, Ra⁄ � 1 is typ-
ically found to be a good proxy to separate the rotation-dominated
zonal flow regime (i.e. Ra⁄� 1) from the buoyancy-dominated flow
regime (i.e. Ra⁄	 1) (Gilman, 1977; Aurnou et al., 2007; Evonuk
and Samuel, 2012).

In contrast to the Ra⁄ � 1 zonal flow transition in Boussinesq
spherical shells, there is not yet a consensus concerning the mech-
anisms that control the breakdown of the smaller-scale convection
columns (e.g. Schmitz and Tilgner, 2009; King et al., 2012,; Julien
et al., 2012b,a). However, in low Ekman number Cartesian Bous-
sinesq simulations, it is clear that the transition Ra⁄ values at
which columnar modes become unstable is significantly less than
unity. This low Ra⁄ breakdown criterion suggests that independent
behavior transitions may exist for the large-scale zonal flows and
the local-scale columnar convection modes.

In our simulations, however, the convection columns and the
zonal flows seem to undergo simultaneous behavioral transitions.
This may occur due to the moderate Ekman values at which we
carry out our suite of simulations, or due to a difference in the sta-
bility properties of convection columns in spherical shell convec-
tion in the presence of zonal flows. Thus, we will focus here only
on the one fundamental transition that separates the rapidly-rotat-
ing regime, in which columns exist and the equatorial zonal flow
tends to be prograde (e.g. Gastine and Wicht, 2012), and the buoy-
ancy-dominated regime, in which the columns are unstable and
the equatorial zonal flows tend to be retrograde (e.g. Aurnou
et al., 2007).

2.2. Numerical methods and boundary conditions

The numerical simulations of this parameter study have been
carried out using the anelastic version of the code MagIC (Wicht,
2002; Gastine and Wicht, 2012), which has been validated in the
Jones et al. (2011) anelastic dynamo benchmark study. To solve
the system of Eqs. (3)–(6), ~qu is decomposed into a poloidal and
a toroidal contribution

~qu ¼ $� ð$�WerÞ þ $� Zer: ð13Þ

W, Z, s and p are then expanded in spherical harmonic functions up
to degree ‘max in colatitude h and longitude / and in Chebyshev
polynomials up to degree Nr in radius. A detailed description of
the complete numerical method and the associated spectral trans-
forms can be found in Gilman and Glatzmaier (1981). Typical
numerical resolutions range from (Nr = 65, ‘max = 85) for Boussinesq
models to (Nr = 161, ‘max = 256) for the most demanding anelastic
models with Nq = 5. In the latter, a twofold or a fourfold symmetry
in longitude has been used to ease numerical computation. As rap-
idly-rotating convection is dominated by high azimuthal wave
numbers, this enforced symmetry is not considered to be influential
on the averaged properties of the flow (e.g. Christensen, 2002;
Heimpel et al., 2005; Jones and Kuzanyan, 2009). Note that this
can influence the dynamics at high latitude where large-scale struc-
tures may evolve (e.g. polar vortices). However, this concerns only a
very minor fraction of the total simulated volume.

In all the numerical models presented in this study, we have as-
sumed constant entropy and stress-free mechanical boundary con-
ditions at both spherical shell boundaries, ri and ro.

2.3. A parameter study

In this investigation, we consider two different Ekman numbers,
E = 10�3 and E = 3 � 10�4, which are rather moderate but allow us
to carry out a significant number of strongly supercritical cases.
Following our previous hydrodynamical models, the Prandtl num-
ber is set to 1 and we use a polytropic index m = 2 for the reference
state. For all the models of this study, we employ an aspect ratio
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g = 0.6. This non-dimensional fluid layer depth exceeds those ex-
pected for the zonal flows in the gas giants (i.e. 0.85RS and
0.96RJ, see Liu et al., 2008; Heimpel and Gómez Pérez, 2011). How-
ever, this thicker shell geometry has the advantage of avoiding the
significant numerical expense associated with spectral models of
thin shell dynamics.

We have performed numerical simulations with various density
contrasts spanning the range from Nq = 10�2 (i.e. nearly Bous-
sinesq) to Nq = 5 (i.e. qbot/qtop ’ 150). The strongest stratification
considered here is still below the expected density contrast of
the gas giants interiors: Nq = 7.2 between the 1 bar level and
0.96RJ (Nettelmann et al., 2012; French et al., 2012) and Nq = 7.7
between the 1 bar level and 0.85RS (Guillot, 1999). However, since
the density gradient rapidly decreases with depth in both giant
planets, a value of Nq = 5 covers more than 99% of the outward
molecular envelope when starting at 0.96RJ (or 0.85RS). For each
density stratification and Ekman number, we vary the Rayleigh
number from onset of convection to R�m � 10. Critical Rayleigh
have been obtained with the linear stability code by Jones et al.
(2009) and are given in Table 2.

Most of the runs have been initiated from a conductive thermal
state (see Eq. (10)) with a superimposed random entropy perturba-
tion. For the most demanding high R�m cases, a converged solution
at different parameter values has been used as a starting condition.
Altogether, more than 125 simulations have been performed, each
running for at least 0.3 viscous diffusion time such that a nonlin-
early saturated state is reached (see Table A.4).
3. From rotation- to buoyancy-dominated regime

3.1. Convective flows

Fig. 1 shows the radial velocity patterns when the supercritical-
ity is gradually increased for two different density stratifications.
In the rotation-dominated regime (i.e. R�m � 1, upper panels of
Fig. 1), the convective structures are aligned with the rotation axis
following the Taylor–Proudman theorem. The azimuthal length-
scale of the convective columns is roughly three times smaller in
the strongly stratified than in the Boussinesq model, following
the critical wave numbers listed in Table 2. As shown in the linear
stability analysis by Jones et al. (2009), this variation is due to the
background density contrast that confines convection close to the
outer boundary when Nq increases. This confinement causes the
decrease in the typical length scales in both the radial and the azi-
muthal directions (see also Gastine and Wicht, 2012).

Convection develops both inside and outside the tangent cylin-
der in cases with more supercritical Rayleigh numbers that still
have R�m K 1 (Fig. 1, middle row). The integrity of the convective
columns is disturbed due to the gradual loss of geostrophy as the
buoyancy forcing increases in strength (e.g. Soderlund et al.,
2012). The difference in lengthscales between the two cases is
roughly retained at r = 0.9ro. However, due to the local variations
Table 2
Critical Rayleigh numbers and corresponding azimuthal wave numbers for the
different parameter regimes considered in this study.

Ekman number Nq Rac mcrit

10�3 0.01 1.412 � 104 10
10�3 1 2.919 � 104 16
10�3 3 8.126 � 104 29
10�3 5 1.624 � 105 37

3 � 10�4 0.01 5.075 � 104 15
3 � 10�4 1 1.291 � 105 24
3 � 10�4 3 3.714 � 105 47
3 � 10�4 5 6.373 � 105 60
of the density scale height, the convective flow lengthscale in-
creases in the deep interior of the Nq = 5 case (see for instance
Fig. 5 in Gastine and Wicht, 2012).

The alignment of the convective features along the rotation axis
is completely lost when buoyancy dominates the global-scale force
balance (R�m J 1, lower panels of Fig. 1). While up- and downwel-
lings have a very similar structure in the Boussinesq model, a
strong asymmetry is visible in the strongly stratified case. Here
the convection roughly forms a network of thin elongated down-
flows that enclose broader and weaker upflows. Upwelling struc-
tures tend to expand and acquire a mushroom-like shape, while
downwelling plumes are narrow and concentrated. This network-
like pattern of convection has been frequently observed in numer-
ical models of the solar granulation (e.g. De Rosa et al., 2002;
Miesch et al., 2008).

3.2. Zonal winds

Fig. 2 shows the change in the zonal winds when R�m is in-
creased in the nearly Boussinesq models (Nq = 10�2, upper panels)
and in the strongly stratified models (Nq = 5, lower panels). The
typical pattern of an eastward (i.e., prograde) outer and a west-
ward inner geostrophic zonal flow already develops at mildly
supercritical Rayleigh numbers (top row of Fig. 1). These zonal
flows are driven by Reynolds stresses (i.e. the statistical correlation
of convective flow components), which rely on the prograde tilt of
the convective columns induced by the boundary curvature (e.g.
Busse, 1983; Zhang, 1992; Christensen, 2002). In the rotationally-
dominated models, Reynolds stresses generate a positive angular
momentum flux away from the rotation axis that is balanced by
viscous drag. Because of the strong confinement of convection
close to the outer boundary in the Nq = 5 case, the equatorial jet
is narrower than in the Boussinesq model. In addition, its ampli-
tude is significantly larger than the amplitude of the adjacent ret-
rograde jet in the stratified model.

With further increasing supercriticality, the differences dis-
cussed above tend to vanish. Thus, for R�m K 0:5� 1 (third panels),
the equatorial jets have indeed very similar amplitudes and latitu-
dinal extent while the retrograde jet is still somewhat weaker in
the anelastic model. This agrees with the results or our previous
parameter study in the R�m K 1 regime (Gastine and Wicht,
2012). Note that the larger Ekman number cases considered here
do not allow for the multiple jets solution found in Gastine and
Wicht (2012), where the main equatorial jet was flanked by a ret-
rograde zonal flow attached to the tangent cylinder and a pair of
high latitude prograde jets.

When buoyancy starts to dominate the force balance (i.e.
R�m J 1), the zonal flow direction largely reverses. The flow outside
the tangent cylinder becomes mainly retrograde and the flow in-
side the tangent cylinder prograde. The amplitude of these zonal
winds also increases roughly by a factor 5 at this transition reach-
ing Ro ’ �0.5. The zonal winds are nearly z-independent for
R�m ’ 1 (fourth panels), even though the convective motions are
no longer in geostrophic balance. However, a further increase of
the supercriticality produces some pronounced smaller-scale z-
dependent features in the Boussinesq models. These small-scale
structures are highly time-dependent and would therefore cancel
out when time-averaged quantities are considered. The last panels
of Fig. 2 show that both the mean zonal flow and the small-scale
ageostrophic motions depend on the density contrast in the
R�m 	 1 regime.

This change in the zonal flow structure is confirmed by the
time-averaged toroidal kinetic energy spectra shown in Fig. 3 for
four Boussinesq models at E = 10�3. In the rotation-dominated re-
gime (R�m < 1, upper left panel), the spectrum peaks at m = 0, illus-
trating the strong contribution of axisymmetric zonal flows in the



Fig. 1. Radial velocity ur at r = 0.9 ro for six different numerical simulations with E = 10�3. Boussinesq models (i.e. with Nq = 10�2) with increasing R�m are displayed in the left
panels, while anelastic models with Nq = 5 are displayed in the right panels. Outward flows are rendered in red, inward flows in blue. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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toroidal kinetic energy budget. For spherical harmonic orders
m > 20, the spectra follow a clear power-law behavior and the
steep decrease (close to m�5) is very similar to previous quasi-geo-
strophic studies computed at much lower Ekman numbers
(E = 10�8) (Schaeffer and Cardin, 2006) and matches the k�5 scaling
derived by Rhines (1975) in the b-plane turbulence framework.
Axisymmetric zonal flows still dominate the toroidal energy in
the R�m ¼ 2:92 and R�m ¼ 10:23 cases, but the slope at smaller
lengthscales flattens gradually. At R�m ¼ 29:24 (lower right panel),
the spectrum shows a mild maximum at m = 2 before clearly fol-
lowing an inertial range scaling of m�5/3, the theoretical behavior
expected for homogeneous and isotropic 3-D turbulence (e.g. Le-
sieur, 1997). In this case, the axisymmetric zonal flow contribution
is not dominant anymore as already suggested by the last panel of
Fig. 2a.
3.3. Convection regimes

To further investigate the change in zonal flow regime observed
in Figs. 1 and 2, we consider time-averaged quantities for the
whole set of numerical models computed in this parameter study.
We focus in the following on the zonal flow amplitude character-
ized by the dimensionless Rossby number Ro ¼ �u/=Xro and on
the contribution of axisymmetric toroidal energy in the total ki-
netic energy budget. Following Christensen (2002), this is quanti-
fied by the ratio of the total to the non-zonal kinetic energy Ekin/
Enz, where Ekin has been obtained by

Ekin ¼
1
s

1
V

Z t0þs

t0

Z
V

~qu2 dV dt; ð14Þ

where V is the volume of the spherical shell and s is the time-aver-
aging interval. Each numerical simulation has been averaged long
enough to suppress the short term variations.

Fig. 4 shows how the surface equatorial zonal flow amplitude
Roe and the ratio Ekin/Enz change when R�m is increased for numer-
ical models with different Ekman numbers and density contrasts.
In the rotation-dominated regime R�m K 1

	 

, the equatorial jets is

always prograde and its amplitude gradually increases with R�m.
A maximum amplitude of Roe ’ 0.1–0.15 is reached around
R�m ’ 0:5—0:8. In this regime, the influence of the density contrast
is not obvious: the Nq = 3 cases produce stronger jets than the
Boussinesq models, which are, rather similar to the strongly strat-
ified Nq = 5 cases.

Fig. 4b shows that the ratio Ekin/Enz first increases for weak to
moderate supercriticalities before decaying once convection is
strongly driven. This decay is attributed to the gradual decorrela-



(a)

(b)

Fig. 2. Zonally averaged azimuthal velocity in the meridian plane for simulations with E = 10�3 and increasing R�m. Upper panels correspond to Boussinesq models (i.e.
Nq = 10�2) and lower panels to Nq = 5. Colorscales are centered around zero: prograde jets are rendered in red, retrograde jets in blue. In some cases, the prograde contours
have been truncated in amplitude to emphasize the structure of the retrograde flows. Extrema of the zonal flow velocity are indicated in the center of each panel (velocities
are expressed in Rossby number units, i.e. u/Xro). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Time-averaged toroidal kinetic energy spectra for four different numerical models with Nq = 10�2 and E = 10�3.
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(a) (b)

Fig. 4. (a) Amplitude of the surface zonal wind at the equator (in units of Roe = u//Xro) plotted against R�m . (b) Ratio of total over non-zonal kinetic energy plotted against R�m.
In both panels, closed symbols correspond to simulations with E = 3 � 10�4 and open symbols to simulations with E = 10�3. The transition at R�m ¼ 1 is emphasized by a
dotted vertical line.
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tion of the convective flow components in the strongly-driven re-
gime, which reduces the efficiency of the energy transfer between
small-scale convection and large-scale mean zonal flows via Rey-
nolds stresses (Christensen, 2002; Gastine and Wicht, 2012). The
maximum of this ratio depends on both the density stratification
and the Ekman number. In Boussinesq models at E = 3 � 10�4, this
maximum is around 10 (which means to 90% of the total kinetic
energy is contained in the zonal flows) while it reaches only 5
(i.e. 80%) in the Nq = 5 models. In addition, decreasing the Ekman
number tends to produce a stronger zonal flow contribution (see
Christensen, 2002).

An abrupt transition to retrograde equatorial zonal winds takes
place close to R�m ’ 1, independently of the density stratification
and the Ekman number considered. The retrograde equatorial jet
amplitude is roughly multiplied by a factor 4 at this transition to
reach Roe ’ �0.4. This goes along with a larger Ekin/Enz value that
reaches approximately 7 for the E = 10�3 cases (i.e. 85%) and 15
for the E = 3 � 10�4 cases (i.e. 93%).
Fig. 5. Regime diagram of the mean surface zonal flow at the equator as a function
of R�m. Regime I corresponds to the rotation-dominated regime, in which R�m K 1.
Regime II corresponds to the buoyancy-dominated regime in which the mixing of
the angular momentum per unit of mass is efficient, while Regime III suggests a
possible suppression of the zonal flow for R�m 	 1. This regime diagram is based on
the Boussinesq cases from Fig. 4.
As R�m is increased further, the density stratification starts to
play a more important role. For stronger stratifications, the equato-
rial zonal flow amplitude further increases while it roughly levels
off and finally decreases in the Boussinesq models. This is also re-
flected in the variation of Ekin/Enz where the strongly stratified
cases decay slower at large R�m than the weakly stratified models.
Since we expect that the convective fluctuations will dominate the
mean zonal flows at R�m 	 1, the ratio Ekin ’ Enz should ultimately
tend to unity. This is already observed in Boussinesq cases in
Fig. 4b where a value of 1.04 is reached at R�m ¼ 29:24. For the
stronger stratified cases, much larger R�m values are required than
we could afford to simulate numerically.

Fig. 5 shows a tentative regime diagram based on our simula-
tion results. Regime I corresponds to rotation-dominated cases
R�m < 1
	 


where convection shows a columnar structure and main-
tains a prograde equatorial zonal flow. Regime II is characterized
by three-dimensional convection and a strong retrograde equato-
rial jet. The transition between regimes I and II takes place around
R�m � 1 independently of the density stratification and the Ekman
number. The strong decrease of the zonal flow amplitude observed
in the Boussinesq models for R�m > 5 points toward a possible third
regime in which the zonal flows are insignificant and convection
becomes isotropic. The transition between regimes II and III is
however gradual and rather difficult to pinpoint (emphasized by
the dashed-line and the color gradient in Fig. 5). Our simulations
suggest for instance that the transition depends on the density
stratification.

The reason for the density-dependent jets amplitude ob-
served in the buoyancy-dominated regime and the possibility
of a third regime at large Ra⁄ are further discussed in the next
section.
4. Angular momentum mixing

4.1. Influence of the density stratification

When buoyancy dominates Coriolis force, strong convection can
locally mix the angular momentum. Flows in which angular
momentum is indeed homogenized have been found in several
studies of atmospheric dynamics or numerical models of rotating
convection with a weak rotational influence (e.g. Gilman, 1977;
Hathaway, 1982; De Rosa et al., 2002; Aurnou et al., 2007; Bessolaz
and Brun, 2011).



Fig. 6. Profiles of f for different density stratifications as a function of smix, the
minimum cylindrical radius above which mixing of angular momentum per unit of
mass occurs. The vertical line corresponds to the location of the tangent cylinder.
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In an inertial reference frame, the angular momentum of a fluid
parcel is given by

M ¼MZF þMPR ¼ q�u/sdV þ qXs2dV; ð15Þ

where dV is the volume of the fluid element, s = r sin h is the cylin-
drical radius, MZF is the angular momentum due to zonal flows and
MPR is the angular momentum that comes from the planetary rota-
tion. The overbars here indicate an azimuthal average. Because of
the anelastic continuity Eq. (3), the mass of a fluid element is con-
served during its displacement such that qdV ¼ const: If, in addi-
tion, a fluid parcel conserves its angular momentum M, then, as
hypothesized by Gilman and Foukal (1979), the angular momentum
per unit of mass L is a conserved quantity

L ¼ LZF þ LPR ¼ �u/sþXs2 ¼ const: ð16Þ

Nondimensionalising this equation by Xr2
o leads to

L� ¼ Ro
s
ro
þ s2

r2
o
: ð17Þ

A spatially homogeneous L� value would then equal the mass inte-
gral of the initial angular momentum distribution (i.e. a rigid body
rotation) given by

f ¼ hL�iq ¼
1
m

Z
V
L�PRdm

¼ 1
m

Z 2p

0

Z p

0

Z ro

ri

~qðrÞs2

r2
o

� �
r2 sin hdr dhd/; ð18Þ

where m is the total mass of the spherical shell given by
m ¼

R
V

~qðrÞdV . f depends on the background density stratification
and decreases by 25% when the density contrast is increased from
nearly Boussinesq (Nq = 10�2) to Nq = 5 cases (see the middle col-
umn of Table 3). This decrease of f explains the differences in equa-
torial jet amplitudes in Fig. 4 via

Ro ¼ f
ro

s
� s

ro
: ð19Þ

Note that Aurnou et al. (2007) derived the Boussinesq version of Eq.
(19), in which the background density is homogeneous.

4.2. Partial mixing of L�

The previous derivation provides an idealized description of the
simulation results at R�m 	 1. For instance, the equatorial zonal
flows, shown in Fig. 4, never reach the maximum theoretical
amplitudes of Roe = �0.528 for Nq = 10�2 and Roe = �0.654 for
Nq = 5 predicted by Eq. (19). From this we suspect that the mixing
of L� takes place in only part of the spherical shell.

We can then make the following ad hoc assumption that L� is
homogenized for cylindrical radii s > smix only. This leads to

fsmix
¼ 1

mðsmixÞ

Z
zðsÞ

Z 2p

0

Z ro

smix

~qðrÞs2

r2
o

� �
sdsd/dz; ð20Þ

where zðsÞ ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o � s2
p

outside the tangent cylinder and



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o � s2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

i � s2
q� �

inside. Fig. 6 shows the variation of fsmix

for different density stratifications as a function of smix. When the
Table 3
f from Eq. (18) and fTC for different density stratifications.

Nq f fTC

0.01 0.470 0.616
1 0.436 0.588
3 0.375 0.529
5 0.346 0.496
shell is only partially mixed the influence of the density stratifica-
tion is gradually reduced and becomes negligible when L� is
homogenized in only a small fraction of the domain. Because the
tangent cylinder is often considered to present a dynamical barrier
for rotation-dominated convection, Aurnou et al. (2007) introduced
the respective values for mixing outside the tangent cylinder only.
Note, however, that this is a rather arbitrary choice since there is
no expected sharp vorticity step across the tangent cylinder in the
regime II discussed here. The third column in Table 3 corresponds
to these cases (also see the dotted lines in Fig. 6). In the Boussinesq
limit we recover fTC ¼ 1� 3

5 ð1� g2Þ already derived by Aurnou et al.
(2007).

Fig. 7 displays time-averaged cylindrically radial profiles of L�

and latitudinal profiles of surface zonal flows for numerical simu-
lations in the buoyancy-dominated regime (Regime II). For each
panel, the gray-shaded area shows the spans between the theoret-
ical L�-mixing over the entire shell and outside the tangent cylin-
der only. For comparison, a solid body rotation profile is
demarcated by the dashed black lines in the left panels of Fig. 7.

For R�m ’ 1 (dark green lines), the L� profiles are roughly con-
stant outside the tangent cylinder in the Boussinesq models. From
Table 3 and Fig. 6, we therefore predict a value of
Roe ¼ fsmix

� 1 ’ �0:4 consistent with the numerical surface value
of Roe = �0.385 (see Table A.4). In contrast, L�-mixing occurs only
in a relatively thin region (s > 0.7 � 0.8 ro) in the Nq = 5 case. Pre-
dictions for Roe for this range of mixing depths lie between
�0.25 and �0.4, consistent with the numerical value of
Roe = �0.368.

In the strongly stratified cases (Nq P 3), the L�-mixing moves
deeper when R�m is increased. The entire region outside the tangent
cylinder is homogenized (light green line for Nq = 3 and orange line
for Nq = 5) and the surface zonal flows match the theoretical profile
derived before, at least at mid latitudes (i.e. h [ ±50�) once R�m ’ 2.
For R�m > 10; L� is constant for s > 0.5ro and the zonal flow profiles
lie roughly midway between the two theoretical curves (fully-
mixed and smix = sTC limits). They reach stronger amplitude in the
Nq = 5 cases due to the larger available L� reservoir (Fig. 6).

The profiles also show that the L�-mixing stops in the highest
R�m Boussinesq models (dark purple line) and gradually tends to-
ward the solid body rotation, i.e. L� ¼ s2=r2

o . As described before,
this weakening of the zonal flow at the highest accessible values
of R�m appears to define a third dynamical regime.



Fig. 7. Left: time-averaged specific angular momentum plotted against the cylindrical radius s for various numerical simulations with E = 10�3. Right: corresponding
azimuthally-averaged velocity profiles as a function of latitude at the outer boundary. The vertical lines in the left panels correspond to the tangent cylinder. For comparison,
the gray-shaded area are delimited by the theoretical values associated with L� mixing over the whole spherical shell (lower bound) and outside the tangent cylinder only
(upper bound, see Table 3 for the corresponding values).

164 T. Gastine et al. / Icarus 225 (2013) 156–172



T. Gastine et al. / Icarus 225 (2013) 156–172 165
4.3. Azimuthal force balance and meridional flow structure

In this section, we explore how the zonal flows are maintained
in the L�-mixing regime (Regime II in Fig. 5) and the possible decay
of these flows at larger R�m (Regime III). To do so, we analyse the
axisymmetric, azimuthal component of the Navier–Stokes equa-
tions (Eq. (4)) following Miesch and Hindman (2011) and Brun
et al. (2011):

~q
@�u/

@t
þ ~q�um � $L ¼ �$ �F tot;

¼ �$ � FRe �F visc½ �;

¼ �$ � ~qsu0u0/ � E~qs2$
�u/

s

� �� �
;

ð21Þ

where �um is the mean meridional circulation, L ¼ s�u/ þ s2 is the
angular momentum per unit of mass, F tot is the angular momentum
flux associated with Reynolds and viscous stresses, FRe and F visc,
respectively. Primed quantities correspond to fluctuations about
the axisymmetric mean. Eq. (21) requires that the advection of axi-
symmetric angular momentum by the meridional flow is balanced,
on time-average, by the net axial torques due to Reynolds stresses
and viscosity.

Fig. 8 shows the angular momentum per unit of mass and the
mean meridional flow, along with the different contributions of
this force balance for two strongly stratified numerical models
with R�m ¼ 0:24 and R�m ¼ 2:37. In the rotation-dominated case
(R�m ¼ 2:37, upper panels), the equatorial zonal wind is prograde
(a) (b) (c)

(a) (b) (c)
Fig. 8. Azimuthal force balance for two numerical models with R�m ¼ 0:24 (upper pan
averaged angular momentum per unit of mass L� . (b) Time-averaged stream-function of
mean meridional circulation, i.e. left-hand side of Eq. (21). (d) The net axial torque of the r
The contribution of viscous stresses to this axial torque. For each panel, positive (negativ
interpretation of the references to color in this figure legend, the reader is referred to th
and L gradually increases with cylindrical radius s. In the buoy-
ancy-dominated case (R�m ¼ 2:37, lower panels), L is roughly con-
stant outside the tangent cylinder (see also the orange curve in the
last row of Fig. 7) and is associated with a strong retrograde equa-
torial jet which reaches Roe ’ �0.5.

The meridional circulation patterns differ between the two
numerical models shown in Fig. 8. While a relatively small-scale
multicellular meridional circulation structure is observed in the
first case, the meridional flow in the second model is dominated
by a pair of large-scale cells. In the latter, a second pair of weaker
counter-cells is discernable close to the inner boundary. Such a
transition between small-scale multicellular and large-scale sin-
gle-celled meridional circulation has been already observed for
numerical simulations around R�m � 1 (e.g. Elliott et al., 2000;
Bessolaz and Brun, 2011).

This change of the meridional circulation pattern observed
around R�m ’ 1 is reflected in the spatial variations of the force bal-
ance expressed by Eq. (21). The third and fourth panels of Fig. 8
check this balance and confirm that the advection of L by the mean
meridional flow is indeed balanced, on time average, by the sum of
the torques due to viscous and Reynolds stresses. Some small-scale
time-dependent features remain visible in the R�m ¼ 2:37 case but
will vanish if a longer averaging time is considered. In the
R�m ¼ 0:24 case, viscous stresses (panel f) are significant and lar-
gely, but not perfectly, compensate the Reynolds stresses (panel
e). This results in several sign changes in the axial torque (panel
d) that are mirrored by the complex meridional flow structure
(see also Augustson et al., 2012). This force balance is somewhat
(d) (e) (f)

(d) (e) (f)
els) and R�m ¼ 2:37 (lower panels). Both cases have Nq = 5 and E = 10�3. (a) Time-

the meridional circulation ~q�um . (c) Advection of the angular momentum L� by the
ight-hand side of Eq. (21). (e) The contribution of Reynolds stresses to this torque. (f)
e) values are rendered in red (blue). Panels (d–f) share the same contour levels. (For
e web version of this article.)



Fig. 9. Correlation Cr/ for different numerical models in regime II with Nq = 10�2, E = 10�3 (left panels) and Nq = 5, E = 10�3 (right panels). The average correlation Cr/

throughout the shell is indicated in the middle of each panel.

Fig. 10. Time-averaged kinetic energy budget for the numerical simulations
displayed in Fig. 7. Dark-gray area correspond to the non-zonal kinetic energy,
black area to the kinetic energy contained in the axisymmetric poloidal flows (i.e.
meridional circulation), and hatched light gray area to the energy in axisymmetric
toroidal flow.
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different in the R�m ¼ 2:37 model in which the simple large-scale
Reynolds stresses dominate the force balance and drive the domi-
nant pair of meridional circulation cells. The viscous contribution
becomes significant only near the inner boundary and results in
the second weaker pair of cells visible in Fig. 8b. The presence of
these weak counter cells might however be sensitive to the type
of mechanical and thermal boundary conditions employed in our
models (see also Miesch et al., 2008).

4.4. Towards a possible third regime for R�m 	 1

Fig. 8 shows that the Reynolds stresses become the dominant
contribution to the net axial torque when R�m J 1. The force bal-
ance (21) can thus be approximated in the R�m 	 1 regime by

~q�um � $L ’ �$ �F Re ’ �$ � ~qsu0u0/
h i

; ð22Þ

since viscosity does not play a significant role here. This balance
shows that Reynolds stresses rely on the correlations between the
meridional and the longitudinal components of the convective flow
u0ru

0
/ and u0hu0/ (e.g. Ruediger, 1989; Käpylä et al., 2011b). In the fol-

lowing, we focus on the change in u0ru
0
/ only and quantify the corre-

lation by

Cr/ ¼
u0ru

0
/

u02r u02/
� �1=2 ; ð23Þ

where the overbars correspond to an azimuthal average. Fig. 9
shows the variation of Cr/ when R�m is increased in Boussinesq
(left panels) and in strongly stratified models (right panels). For
R�m ’ 1, the correlations are significant and strong negative Rey-
nolds stresses are maintained. However, Cr/ gradually decreases
in the more supercritical cases. An increase of the Rayleigh num-
ber indeed goes along with stronger turbulent velocities and
smaller typical flow lengthscales, leading to a gradual decrease
of the turnover timescale of convection. Small-scale eddies are
not influenced by rotation anymore since their lifetime becomes
significantly smaller than the rotation period (see also Gastine
and Wicht, 2012, for the rotation-dominated cases). This loss of
coherence results in a gradual decrease of the Reynolds stresses
correlations needed to maintain the mean flows (Brummell
et al., 1998; Miesch et al., 2000; Käpylä et al., 2011b). A reduction
of the mean flows amplitude is therefore anticipated when the
motions become more turbulent.

Fig. 10 shows the energy distribution for numerical models in
the buoyancy-dominated regime (see Fig. 7 for the corresponding
zonal flows). Zonal flows dominate the energy budget for R�m ’ 1
(80–90%). In Boussinesq models, the contribution of the turbulent
flows then increases rapidly to overwhelm the energy distribution
for R�m > 10. This increase is more gradual for the Nq = 3 cases and
it even seems to level around 20% in the Nq = 5 models. This re-
flects the density-dependent evolution of Ekin/Enz in the R�m 	 1 re-
gime visible in Fig. 4b.

This decorrelation defines a gradual transition towards the pos-
sible regime III displayed in Fig. 5. When the degree of turbulence
increases and the small-scale motions dominate the energy bud-
get, a decrease of zonal flows amplitudes is observed in Boussinesq
and Nq = 1 models due to the gradual loss of correlation of the con-
vective flow. However, this scenario still needs to be confirmed in
strongly stratified models: the presently accessible range of R�m al-
lows for only weakly turbulent convective motions in our Nq P 3
simulations (see Table A.4).
5. A transitional regime in anelastic models

As mentioned in Section 2, R� is a radially-dependent quantity
that can vary across the fluid shell by several orders of magnitude
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in the strongly stratified models. This can lead to different dynam-
ical regimes close to the outer boundary and in the fluid shell’s
deeper interior.
Fig. 12. Sketch illustrating the transitional regime in strongly stratified models.
5.1. Convective flows in the transitional regime

Fig. 11 shows the variation of R�ðrÞ for different numerical
models with Nq = 5. The spherical shell can be separated in two
distinct layers: R� > 1 close to the outer boundary where buoy-
ancy effects become large and R� < 1 in the deep interior where
rotation can still dominate the force balance. As R�m increases,
the buoyancy-dominated region grows inward. The radius rmix is
defined by the radius at which R� ¼ 1 approximately separating
the buoyancy-dominated region from the rotation-dominated in-
ner region. Fig. 12 sketches this transitional regime in which colum-
nar convection in the deep interior exists contemporaneously with
three-dimensional convective structures close to the outer
boundary.

Fig. 13, showing equatorial cuts of xz for numerical models
with Nq = 5 and three different Rayleigh numbers, confirms that
rmix indeed coincides with a dynamical regime boundary. In the
inner part, the convective flow is dominated by convective col-
umns tilted in the prograde direction (positive vorticity domi-
nates) that maintain Reynolds stresses. Beyond rmix, the
convective flow seems to be more radially-oriented with no pre-
ferred sign of vorticity anymore. Some strongly-stratified simula-
tions discussed in our previous study already show the very
beginning of this transitional regime (see Fig. 14 in Gastine and
Wicht, 2012).
(a)

(b)

Fig. 11. (a) Sketch of the radial profile of R� in strongly stratified models. rmix

corresponds to the radius at which R� ¼ 1. It marks the tentative limit between the
buoyancy-dominated region ðR� > 1Þ and the rotation-dominated region ðR� < 1Þ,
both emphasized by a gray-shaded area. (b) Radial profile of R� for various
numerical simulations with Nq = 5 and E = 3 � 10�4.
5.2. Zonal flows in the transitional regime

The transition to regime II happens when rmix reaches approxi-
mately mid-depth, where an abrupt transition to a retrograde
equatorial jet takes place. The parameter space, where the transi-
tional regime with two distinct types of convection co-exists, is
therefore quite narrow. Strong stratification is required and R�m
has to be neither too small nor too large, typically in the
R�m ’ 0:1� 0:5 range.

Fig. 14 shows the surface zonal flows for numerical models that
lie in this specific range of parameters. Typical for numerical sim-
ulations at moderate Ekman numbers (here E = 3 � 10�4) that are
still in the R�m < 1 regime, a large prograde equatorial jet is flanked
by two weaker retrograde jets at higher latitudes (±60�). Due to the
aspect ratio of the spherical shell considered in this study (g = 0.6),
the prograde equatorial wind extends up to mid latitudes of ±50�.
For R�m ¼ 0:128 (green line), the zonal wind maximum is reached
at the equator, similarly to Boussinesq models (e.g. Heimpel
et al., 2005). However, when increasing R�m, the center of the main
equatorial jet decreases until eventually a dimple appears flanked
by two maxima. The width of the dimple further grows with R�m
while the central flow amplitude decreases reaching approxi-
mately ±25� latitude and 20% of the maximum zonal wind ampli-
tude just before the transition to regime II (see the inset in
Fig. 14). Such a pronounced dimple has also been observed in the
anelastic models by Kaspi et al. (2009) who also employed strong
density contrasts (see Fig. 13 in their study).

Following the sketch displayed in Fig. 12, this dimple can be di-
rectly related to the transition between rotation-dominated and
buoyancy-dominated regions. As already shown in Fig. 13, rmix sep-
arates these two regions and thus allows us to roughly estimate the
typical latitudinal extent of the dimple via a simple geometrical
relation (see Fig. 12)

cos hdimple �
rmix

ro
: ð24Þ

This simple expression thus relates the latitudinal extent of the ob-
served surface zonal flows to the transition radius between the two
distinct internal dynamical regimes. Although this expression is



Fig. 13. Vorticity along the axis of rotation xz ¼ ð$� uÞz displayed in the equatorial plane for three numerical models with Nq = 5 and E = 3 � 10�4. Red (blue) correspond to
positive (negative) values. The dashed black circles correspond to rmix values defined in Fig. 11. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 14. Time-averaged surface zonal flows as a function of latitude for various
numerical simulations with Nq = 5 and E = 3 � 10�4. The corresponding R�ðrÞ
profiles are given in Fig. 11. The two magenta lines correspond to the theoretical
width of the dimple obtained from Eq. (24) for the R�m ¼ 0:427 case.

Fig. 15. Observed surface zonal winds on Jupiter. Velocities are given in Rossby
number units. The data are adapted from Porco et al. (2003) and Vasavada and
Showman (2005).
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rather crude in predicting the exact width of the dimple (see the
two magenta lines in Fig. 14), it can be used as an order of magni-
tude estimate of its latitudinal extent.
5.3. A dimple in the equatorial zonal band of Jupiter

A similar dimple exists on Jupiter (Fig. 15) and extends roughly
between ±7� latitude. The amplitude of the equatorial wind de-
creases by roughly 30% at the equator. Is Jupiter’s dimple the sur-
face expression of an internal regime transition? From Eq. (24)
with hdimple � 7�, we can speculate that the mixing radius rmix

would lie around 500 km below the 1 bar level.
To evaluate the plausibility of this scenario, we try to establish

the value R�surf of Jupiter using the scaling laws by Christensen
(2002, 2006) and Gastine and Wicht (2012),1 which relates the
modified Nusselt number to the flux-based Rayleigh number
Ra�q ¼ agq=qcpX

3d2 via Nu� ¼ 0:076Ra�q
0:53. R�surf can then directly
1 Note that using Nu � Ra1/3 as suggested by King et al. (2012) leads to very similar
values of R�surf .
be obtained with R�surf ¼ Ra�q=Nu�. Taking an internal heat flux of
5.5 W m�2, a = 6 � 10�3 K�1, X = 1.75 � 10�4 s�1, cp = 1.2 � 104

J kg�1 K�1, a gravity g = 25 m s�2, a density q = 0.2 kg m�3 and a
lengthscale d = 0.04rjup = 2.8 � 106 m (values taken from French
et al., 2012), we derive a surface value R�surf � 5� 10�2.

The observed near-surface shear layer on the Sun is also
thought to be due to a similar dynamical transition when R�

crosses unity (see Miesch and Hindman, 2011). As suggested by
these authors, another way to evaluate the impact of rotation on
convection from observable quantities is to estimate the surface
convective Rossby number using Roc = (X sc)�1, where sc is the
convective turnover time (see also Section 4.2 in Gastine and
Wicht, 2012). Using sc = Hq/uconv with Hq � 5 � 104 m from the
models by Nettelmann et al. (2012) and uconv � 5 m s�1 from
observations by Salyk et al. (2006), we obtain sc � 104 s, which
leads to Roc � 0.5 (i.e. R�surf � ðRocÞ2 � 0:25) at Jupiter’s surface, a
factor of five larger than the scaling law prediction.

Concerning the uncertainties in our simulations and in our
knowledge of Jupiter’s dynamics, as well as a possible influence
of boundary conditions on scaling laws, this latter value is quite
close to the expected value of R�surf > 1 required to form a dimple
in the transitional regime.



T. Gastine et al. / Icarus 225 (2013) 156–172 169
6. Conclusion

We have investigated the transition between the rotation-dom-
inated and the buoyancy-dominated regimes in rotating spherical
shells with different density contrasts, extending the previous
Boussinesq study by Aurnou et al. (2007). Following Gilman and
Glatzmaier (1981) and Jones and Kuzanyan (2009), we have em-
ployed the anelastic approximation to filter out fast acoustic waves
and the related short time steps. Exploring moderate Ekman num-
bers (E = 10�3 � 3 � 10�4) allowed us to raise the Rayleigh number
into the buoyancy-dominated regime (characterized here by
R�m > 1) and to study zonal flows in a broad parameter range.
We highlight our main findings:

� When gradually increasing R�m, the convective flows change
from geostrophic columnar convection when rotation domi-
nates the force balance to three-dimensional turbulent motions
when buoyancy becomes significant. In the stratified cases, the
latter is characterized by a pronounced asymmetry between
broad upwellings and narrow downwellings. This change in
the convective features is accompanied by a sharp transition
in the zonal flow regime. The equatorial zonal jet reverses its
direction at R�m ’ 1, independently of the background density
contrast and the Ekman number.
� In the rotation-dominated regime (i.e. R�m � 1), a combination

of quasi-geostrophic columns, density stratification effects,
and boundary curvature lead to Reynolds stresses (i.e. the cor-
relation between the cylindrically radial and the azimuthal
components of the convective flow) that maintain a prograde
equatorial zonal flow. The zonal flow amplitude is relatively
independent of the density stratification (see also Gastine and
Wicht, 2012).
� In the buoyancy-dominated regime (i.e. R�m 	 1), convection

homogenizes the angular momentum per unit of mass which
leads to a strong retrograde equatorial zonal flow flanked by
prograde winds at higher latitudes. The maximum zonal flow
amplitude now increases with density stratification. As already
mentioned by Aurnou et al. (2007), these zonal flow patterns
are reminiscent to those observed on Uranus and Neptune,
though it remains uncertain whether convective driving in the
ice giants indeed reaches R�m > 1.
Table A.4
Results table.

Ekman Nq R�m Ra/Rac Rezon

10�3 0.01 2.92 � 10�2 1.4 3.2
10�3 0.01 4.39 � 10�2 2.1 7.0
10�3 0.01 7.31 � 10�2 3.5 14.7
10�3 0.01 1.17 � 10�1 5.7 29.3
10�3 0.01 1.46 � 10�1 7.1 43.4
10�3 0.01 2.19 � 10�1 10.6 77.6
10�3 0.01 2.92 � 10�1 14.2 107.5
10�3 0.01 4.39 � 10�1 21.2 145.4
10�3 0.01 5.85 � 10�1 28.3 150.9
10�3 0.01 7.31 � 10�1 35.4 154.1
10�3 0.01 8.77 � 10�1 42.5 140.3
10�3 0.01 1.02 49.6 127.8
10�3 0.01 1.17 56.6 511.1
10�3 0.01 1.32 63.7 538.2
10�3 0.01 1.46 70.8 561.3
10�3 0.01 2.92 141.6 614.2
10�3 0.01 4.39 212.4 548.8
10�3 0.01 5.85 283.2 471.6
10�3 0.01 7.31 354.0 460.6
10�3 0.01 1.02 � 101 495.7 432.1
10�3 0.01 1.46 � 101 708.1 351.7
� Our simulations suggest the possible existence of a third regime
where the mean zonal flows are negligible and three dimen-
sional turbulent convection strongly dominates. The timescale
of the small-scale convective motions is much shorter than
the rotation period which therefore cease to play a role in orga-
nizing large-scale flow. The transition to the third regime seems
to depend on the density stratification and has not been reached
for Nq P 3.
� For strongly stratified models in the R�m ’ 0:1� 0:5 range, both

the dynamical regimes I and II can be present in the spherical
shell. Close to the outer boundary, buoyancy dominates and
leads to more turbulent flows within a thin outer layer. In the
deep interior, rotation still dominates, and columnar convection
drive the typical zonal flow structure. The turbulent outer layer
reduces the zonal flow amplitude in the center of the equatorial
jet. This leads to a dimple similar to the one observed on Jupiter.
Its width suggests that a transition between the two dynamical
regimes may occur at a depth of 500 km below the 1 bar level in
Jupiter. Estimate based on the turnover timescale of convection
suggests R�surf � 0:25, just on the low side of the required value.
� This parameter study on the different zonal flows regimes in rotat-

ing anelastic spherical shells has also some possible stellar appli-
cations as it helps to clarify the transition between the solar-like
differential rotation (i.e. prograde) and the so-called anti-solar dif-
ferential rotation (i.e. retrograde) observed in a number of stellar
convection zone models (e.g. Brun and Toomre, 2002; Miesch,
2005; Bessolaz and Brun, 2011; Käpylä et al., 2011a).
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Appendix A. Results table

See Table A.4.
Remer Re0 Roe Nu

0.0 5.3 1.85 � 10�3 1.06
0.1 7.7 3.64 � 10�3 1.11
0.3 12.6 6.84 � 10�3 1.21
0.8 20.8 1.62 � 10�2 1.44
1.1 26.4 2.55 � 10�2 1.60
3.0 41.6 4.59 � 10�2 2.18
5.3 57.6 6.32 � 10�2 2.88

10.7 90.0 8.32 � 10�2 4.22
11.6 121.1 1.05 � 10�1 5.36
14.9 149.6 1.08 � 10�1 6.46
18.1 178.7 1.05 � 10�1 7.48
21.0 205.5 1.01 � 10�1 8.37
51.5 201.5 �3.73 � 10�1 8.32
57.1 215.4 �3.82 � 10�1 9.16
58.6 231.2 �3.85 � 10�1 9.90
94.6 376.6 �4.08 � 10�1 15.10

114.5 483.6 � 4.06 � 10�1 18.70
142.8 583.5 � 3.88 � 10�1 21.70
153.3 650.5 � 3.57 � 10�1 23.00
191.6 802.9 �3.03 � 10�1 27.00
220.9 1010.5 �2.64 � 10�1 32.10

(continued on next page)
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Table A.4 (continued)

Ekman Nq R�m Ra/Rac Rezon Remer Re0 Roe Nu

10�3 0.01 2.92 � 101 1416.2 333.4 313.6 1501.5 �1.79 � 10�1 44.90

10�3 1.00 5.47 � 10�2 1.2 2.2 0.0 4.5 1.67 � 10�3 1.04
10�3 1.00 6.25 � 10�2 1.4 3.8 0.0 5.5 2.72 � 10�3 1.06
10�3 1.00 9.38 � 10�2 2.1 11.6 0.1 9.8 8.25 � 10�3 1.14
10�3 1.00 1.25 � 10�1 2.7 20.3 0.4 13.0 1.39 � 10�2 1.23
10�3 1.00 1.56 � 10�1 3.4 30.1 1.1 16.5 2.31 � 10�2 1.33
10�3 1.00 2.34 � 10�1 5.1 58.3 4.5 27.4 3.81 � 10�2 1.75
10�3 1.00 3.13 � 10�1 6.9 77.5 9.4 36.8 6.01 � 10�2 2.22
10�3 1.00 4.69 � 10�1 10.3 135.4 6.6 78.1 1.07 � 10�1 3.48
10�3 1.00 6.25 � 10�1 13.7 160.6 10.0 107.8 1.38 � 10�1 4.67
10�3 1.00 7.81 � 10�1 17.1 164.2 13.2 137.9 1.40 � 10�1 5.75
10�3 1.00 9.38 � 10�1 20.6 159.7 16.4 165.8 1.31 � 10�1 6.90
10�3 1.00 1.25 27.4 532.9 61.3 216.7 �4.23 � 10�1 9.13
10�3 1.00 1.56 34.3 573.4 73.2 255.1 �4.31 � 10�1 10.80
10�3 1.00 3.13 68.5 636.4 114.2 400.3 �4.32 � 10�1 16.10
10�3 1.00 4.69 102.8 562.3 140.0 511.0 � 4.38 � 10�1 20.10
10�3 1.00 6.25 137.0 462.6 140.2 584.5 � 4.03 � 10�1 21.80
10�3 1.00 9.38 205.5 514.7 214.5 753.3 � 3.89 � 10�1 28.10

10�3 3.00 7.92 � 10�2 1.1 1.3 0.0 4.9 2.17 � 10�3 1.03
10�3 3.00 8.80 � 10�2 1.2 2.8 0.1 6.2 4.57 � 10�3 1.05
10�3 3.00 1.32 � 10�1 1.8 13.8 0.3 12.6 2.04 � 10�2 1.13
10�3 3.00 1.76 � 10�1 2.5 27.8 0.5 18.5 3.65 � 10�2 1.23
10�3 3.00 2.64 � 10�1 3.7 59.7 2.1 36.0 7.10 � 10�2 1.67
10�3 3.00 3.52 � 10�1 4.9 87.3 3.6 51.0 1.04 � 10�1 2.06
10�3 3.00 4.40 � 10�1 6.2 110.5 5.1 64.6 1.24 � 10�1 2.42
10�3 3.00 5.28 � 10�1 7.4 129.8 6.3 77.3 1.45 � 10�1 2.74
10�3 3.00 6.16 � 10�1 8.6 142.8 7.8 90.0 1.59 � 10�1 3.07
10�3 3.00 7.04 � 10�1 9.8 153.8 8.7 101.5 1.65 � 10�1 3.32
10�3 3.00 8.80 � 10�1 12.3 165.9 10.9 124.7 1.66 � 10�1 3.87
10�3 3.00 1.14 16.0 459.3 40.6 161.6 �4.40 � 10�1 5.44
10�3 3.00 1.32 18.5 501.6 50.8 177.7 �4.62 � 10�1 5.98
10�3 3.00 1.76 24.6 565.5 70.1 217.6 �4.99 � 10�1 7.19
10�3 3.00 2.64 36.9 633.4 94.7 285.1 �5.18 � 10�1 9.00
10�3 3.00 3.52 49.2 669.2 110.3 335.3 �5.25 � 10�1 10.30
10�3 3.00 6.16 86.1 682.3 153.1 441.0 �5.39 � 10�1 12.20
10�3 3.00 1.76 � 101 246.1 753.1 325.1 625.8 �5.41 � 10�1 13.80

10�3 5.00 4.75 � 10�2 1.2 1.5 0.1 6.7 3.79 � 10�3 1.05
10�3 5.00 7.12 � 10�2 1.8 6.2 0.6 11.5 1.37 � 10�2 1.11
10�3 5.00 9.49 � 10�2 2.5 13.5 0.9 18.0 2.67 � 10�2 1.19
10�3 5.00 1.19 � 10�1 3.1 21.2 1.6 27.8 3.53 � 10�2 1.37
10�3 5.00 1.42 � 10�1 3.7 28.5 2.4 34.8 4.76 � 10�2 1.49
10�3 5.00 1.66 � 10�1 4.3 35.9 2.9 40.8 5.70 � 10�2 1.59
10�3 5.00 1.90 � 10�1 4.9 42.6 3.1 46.2 6.70 � 10�2 1.68
10�3 5.00 2.37 � 10�1 6.2 54.3 3.6 56.4 7.68 � 10�2 1.84
10�3 5.00 3.56 � 10�1 9.2 77.8 5.4 80.1 9.04 � 10�2 2.24
10�3 5.00 4.75 � 10�1 12.3 90.5 7.4 102.9 7.82 � 10�2 2.66
10�3 5.00 5.93 � 10�1 15.4 84.2 9.7 127.3 4.54 � 10�2 3.07
10�3 5.00 7.12 � 10�1 18.5 318.3 24.4 138.3 �3.68 � 10�1 3.65
10�3 5.00 8.31 � 10�1 21.6 357.7 27.9 150.1 �3.98 � 10�1 3.97
10�3 5.00 9.49 � 10�1 24.6 384.5 31.1 163.1 �4.21 � 10�1 4.26
10�3 5.00 1.19 30.8 437.4 37.1 184.5 �4.52 � 10�1 4.77
10�3 5.00 1.42 36.9 476.9 45.0 205.3 �4.80 � 10�1 5.23
10�3 5.00 2.37 61.6 574.0 68.0 270.5 �5.33 � 10�1 6.03
10�3 5.00 4.75 123.2 662.8 101.6 370.8 �5.54 � 10�1 7.08
10�3 5.00 7.12 184.7 701.6 135.6 421.7 �5.66 � 10�1 7.23
10�3 5.00 1.19 � 101 307.9 749.0 188.3 488.4 �5.80 � 10�1 7.53

3 � 10�4 0.01 7.89 � 10�3 1.2 2.1 0.0 4.2 3.04 � 10�4 1.03
3 � 10�4 0.01 1.32 � 10�2 2.0 8.5 0.1 7.9 1.17 � 10�3 1.07
3 � 10�4 0.01 2.63 � 10�2 3.9 25.4 0.3 15.7 3.86 � 10�3 1.16
3 � 10�4 0.01 6.58 � 10�2 9.9 106.3 1.2 39.7 1.84 � 10�2 1.60
3 � 10�4 0.01 7.89 � 10�2 11.8 137.8 1.8 48.6 2.48 � 10�2 1.82
3 � 10�4 0.01 1.05 � 10�1 15.8 200.7 3.3 69.6 3.74 � 10�2 2.40
3 � 10�4 0.01 1.32 � 10�1 19.7 263.3 5.3 90.2 4.84 � 10�2 2.98
3 � 10�4 0.01 1.97 � 10�1 29.6 340.7 10.4 145.1 7.10 � 10�2 4.59
3 � 10�4 0.01 2.63 � 10�1 39.4 404.8 15.9 194.4 8.95 � 10�2 6.03
3 � 10�4 0.01 3.95 � 10�1 59.1 492.4 26.4 282.5 1.09 � 10�1 8.75
3 � 10�4 0.01 5.26 � 10�1 78.8 565.8 36.7 380.0 9.26 � 10�2 11.70
3 � 10�4 0.01 7.89 � 10�1 118.2 615.9 53.3 571.7 6.53 � 10�2 16.70
3 � 10�4 0.01 1.05 157.6 2069.2 172.7 550.7 �3.76 � 10�1 19.00
3 � 10�4 0.01 1.32 197.0 2172.9 181.4 656.9 �4.11 � 10�1 22.60
3 � 10�4 0.01 2.63 394.1 2151.6 232.4 1093.1 �4.25 � 10�1 35.90

3 � 10�4 1.00 2.11 � 10�2 1.2 2.7 0.0 4.7 5.35 � 10�4 1.02
3 � 10�4 1.00 2.81 � 10�2 1.5 8.9 0.0 8.2 1.73 � 10�3 1.06
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Table A.4 (continued)

Ekman Nq R�m Ra/Rac Rezon Remer Re0 Roe Nu

3 � 10�4 1.00 4.22 � 10�2 2.3 25.6 0.1 14.1 5.26 � 10�3 1.13
3 � 10�4 1.00 5.63 � 10�2 3.1 49.9 0.4 22.6 1.06 � 10�2 1.23
3 � 10�4 1.00 8.44 � 10�2 4.6 105.8 1.2 39.0 2.55 � 10�2 1.51
3 � 10�4 1.00 1.13 � 10�1 6.2 162.3 2.4 57.1 4.04 � 10�2 1.91
3 � 10�4 1.00 1.41 � 10�1 7.7 210.4 3.9 75.4 5.07 � 10�2 2.36
3 � 10�4 1.00 2.11 � 10�1 11.6 302.5 8.8 125.7 7.39 � 10�2 3.70
3 � 10�4 1.00 2.81 � 10�1 15.5 379.2 13.4 173.1 1.02 � 10�1 5.09
3 � 10�4 1.00 5.63 � 10�1 31.0 592.1 32.7 340.6 1.35 � 10�1 10.20
3 � 10�4 1.00 8.44 � 10�1 46.5 672.2 52.9 556.8 4.46 � 10�2 16.90
3 � 10�4 1.00 1.13 62.0 2088.3 145.0 614.0 �3.47 � 10�1 23.10

3 � 10�4 3.00 3.17 � 10�2 1.1 1.2 0.0 4.8 7.32 � 10�4 1.02
3 � 10�4 3.00 4.75 � 10�2 1.6 15.1 0.2 12.6 6.80 � 10�3 1.08
3 � 10�4 3.00 6.33 � 10�2 2.2 40.8 0.4 21.2 1.73 � 10�2 1.17
3 � 10�4 3.00 7.92 � 10�2 2.7 72.6 0.7 30.0 3.00 � 10�2 1.27
3 � 10�4 3.00 1.19 � 10�1 4.0 152.3 2.8 60.1 5.84 � 10�2 1.82
3 � 10�4 3.00 1.58 � 10�1 5.4 227.9 5.3 89.1 8.23 � 10�2 2.44
3 � 10�4 3.00 2.38 � 10�1 8.1 363.9 9.7 140.9 1.27 � 10�1 3.60
3 � 10�4 3.00 3.17 � 10�1 10.8 469.4 13.7 187.3 1.58 � 10�1 4.66
3 � 10�4 3.00 4.75 � 10�1 16.2 572.5 21.4 275.8 1.83 � 10�1 6.76
3 � 10�4 3.00 6.33 � 10�1 21.5 601.7 28.9 354.1 1.52 � 10�1 8.04
3 � 10�4 3.00 7.92 � 10�1 26.9 513.6 40.1 492.3 2.86 � 10�2 10.60
3 � 10�4 3.00 1.19 40.4 2038.5 158.1 518.3 �5.13 � 10�1 16.90

3 � 10�4 5.00 1.50 � 10�2 1.1 0.8 0.0 5.8 8.20 � 10�4 1.03
3 � 10�4 5.00 2.14 � 10�2 1.6 6.6 0.1 11.5 5.45 � 10�3 1.06
3 � 10�4 5.00 3.20 � 10�2 2.4 21.3 0.7 21.3 1.54 � 10�2 1.16
3 � 10�4 5.00 4.27 � 10�2 3.1 41.4 1.6 34.8 2.60 � 10�2 1.35
3 � 10�4 5.00 6.41 � 10�2 4.7 93.8 3.5 72.1 4.73 � 10�2 2.00
3 � 10�4 5.00 8.54 � 10�2 6.3 149.9 4.9 98.1 6.71 � 10�2 2.46
3 � 10�4 5.00 1.28 � 10�1 9.4 249.5 8.2 144.8 9.68 � 10�2 3.27
3 � 10�4 5.00 1.71 � 10�1 12.6 323.5 11.5 185.3 1.05 � 10�1 3.96
3 � 10�4 5.00 2.14 � 10�1 15.7 372.0 15.0 224.7 9.74 � 10�2 4.67
3 � 10�4 5.00 3.20 � 10�1 23.5 448.5 20.2 295.7 8.78 � 10�2 5.53
3 � 10�4 5.00 4.27 � 10�1 31.4 470.8 26.2 361.0 9.09 � 10�2 6.69
3 � 10�4 5.00 6.41 � 10�1 47.1 477.2 35.6 454.6 7.71 � 10�2 8.75
3 � 10�4 5.00 8.54 � 10�1 62.8 1550.8 121.8 435.8 �4.76 � 10�1 9.92
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