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ABSTRACT
Stellar differential rotation can be separated into two main regimes: solar-like when the equa-
tor rotates faster than the poles and anti-solar when the polar regions rotate faster than the
equator. We investigate the transition between these two regimes with 3-D numerical sim-
ulations of rotating spherical shells. We conduct a systematic parameter study which also
includes models from different research groups. We find thatthe direction of the differential
rotation is governed by the contribution of the Coriolis force in the force balance, indepen-
dently of the model setup (presence of a magnetic field, thickness of the convective layer,
density stratification). Rapidly-rotating cases with a small Rossby number yield solar-like dif-
ferential rotation, while weakly-rotating models sustainanti-solar differential rotation. Close
to the transition, the two kinds of differential rotation are two possible bistable states. This
study provides theoretical support for the existence of anti-solar differential rotation in cool
stars with large Rossby numbers.

Key words: convection - turbulence - MHD - stars: rotation - Sun: rotation

1 INTRODUCTION

The solar surface rotates differentially with the equatorial regions
rotating faster than the poles. In addition, helioseismic measure-
ments revealed the internal rotation profile of the Sun: (i) the outer
convective region exhibits significant latitudinal gradients of shear;
(ii ) a strong radial differential rotation is observed at the bottom of
the convective zone forming the tachocline; (iii ) and the radiative
core rotates nearly uniformly (e.g.Thompson et al. 2003).

In cool stars other than the Sun, the surface differential rota-
tion can be inferred from different measurements techniques en-
compassing Doppler imaging (e.g.Collier Cameron et al. 2002),
Fourier transform of the spectral lines (e.g.Reiners & Schmitt
2002) or period detection in the photometric measurements (e.g.
Reinhold et al. 2013). The latitudinal differential rotation in stars is
usually described by a single-parameter law of the formΩ(θ) =
Ωe(1 − α sin2 θ), θ being the latitude andΩe the angular veloc-
ity at the equator. Differential rotation is then usually categorised
as “solar-like” whenα > 0 (α⊙ = 0.2), or as “anti-solar” when
the polar regions rotate faster than the equator (i.e.α < 0). For
main and pre-main sequence stars, observations of absolutesur-
face shear show some dependence on rotation period and effec-
tive temperature (Barnes et al. 2005; Ammler-von Eiff & Reiners
2012; Reinhold et al. 2013). Information on the sign of differential
rotation is very sparse because observational signatures are very
subtle (Fourier technique) or only the absolute value is obtained
(photometric technique). Up to now, anti-solar differential rotation
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has only been reported for a handful of K giant stars observed
with the Doppler imaging technique (e.g.Strassmeier et al. 2003;
Weber et al. 2005; Kovári et al. 2007). We may thus wonder what
determines the sign of differential rotation in cool stars?

The first theoretical approach to model stellar differential ro-
tation relies on hydrodynamical mean-field models (e.g.Ruediger
1989). In a similar way as in the mean-field dynamo models, the
velocity componentsui are therefore decomposed into a mean-
field contributionūi and a fluctuating partu′

i. The quadratic cor-
relations of the fluctuating quantities, such as Reynolds stresses
Qij = u′

iu
′
j , are then parametrised as functions of the mean-field

quantities only. Reynolds stresses are for instance expanded as-
sumingQij = ΛijkΩ̄k − Nijkl∂ūk/∂xl, whereΛijk andNijkl

are third and fourth order tensors, respectively. The parametrisa-
tion of the velocity correlationsQij thus involves some free co-
efficients (turbulent viscosity for instance) that need to be set to
ensure the closure of the mean-field model. Despite these approxi-
mations, mean-field approaches were quite successful in predicting
a weak dependence of the surface shear on the rotation rate and
a strong correlation with the effective temperature as observed on
the main sequence stars (Küker & Rüdiger 2011). In addition, these
models have a strong prediction concerning the sense of the dif-
ferential rotation and predominantly yield solar-likeΩ(θ) profiles
(Kitchatinov & Rüdiger 1999). Anti-solar differential rotation can
only be maintained in case of very strong meridional circulation
(Kitchatinov & Rüdiger 2004).

Alternatively, stellar differential rotation can be modelled us-
ing 3-D hydrodynamical and dynamo models of rotating convec-
tion in spherical geometry. In that case, the differential rotation
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is maintained by the interaction of turbulent convection with rota-
tion. Despite their own limitations (high diffusivities and moderate
density contrasts), 3-D models allow to fully take into account the
nonlinearities involved in the angular momentum transport. In con-
trast with mean-field approaches, no parametrisation of Reynolds
stresses is required in 3-D simulations. Although a large num-
ber of such simulations yield solar-like differential rotation, they
have also frequently produced anti-solar differential rotation over
a broad range of parameters and model setups (e.g.Gilman 1977;
Glatzmaier & Gilman 1982; Aurnou et al. 2007; Steffen & Freytag
2007; Matt et al. 2011; Käpylä et al. 2011; Bessolaz & Brun 2011;
Gastine et al. 2013). The differential rotation direction is suspected
to be controlled by the relative contribution of buoyancy and Cori-
olis force in the global force balance (Gilman 1977; Aurnou et al.
2007). Cases where rotation dominates the force balance yield pro-
grade equatorial azimuthal flows, while a weak rotational influence
leads to anti-solar differential rotation. As shown in previous pa-
rameter studies, these two regimes can be well separated by acrit-
ical convective Rossby number of unity (Gilman 1977), indepen-
dently of the background density stratification (Gastine & Wicht
2012; Gastine et al. 2013, hereafter GW12, GWA13).

The present work extends these studies to a broader range of
parameters to investigate the zonal flow transition in 3-D models
in a systematic way. For the sake of generality, we also incorporate
data of different research groups who reported anti-solar differen-
tial rotation in their models.

2 HYDRODYNAMICAL MODEL

We consider numerical simulations of an anelastic ideal gasin
spherical shells rotating at a constant rotation rateΩ0. A fixed en-
tropy contrast∆s between the inner and the outer boundary drives
the convective motions. Our numerical models are computed using
the anelastic spectral code MagIC (Wicht 2002, GW12) that has
been validated against hydrodynamical and dynamo benchmarks
(Jones et al. 2011). We non-dimensionalise the MHD equations us-
ing Ω−1

0
as the time unit and the shell thicknessd = ro − ri as

the reference lengthscale. The anelastic system of equations is then
governed by four dimensionless parameters

E =
ν

Ω0d2
, Ra =

god
3∆s

cpνκ
, Pr =

ν

κ
, Pm =

ν

λ
, (1)

whereν, κ, andλ are the constant kinematic, thermal and mag-
netic diffusivities andgo is the gravity at the outer boundary. De-
tails of the numerical implementation are extensively discussed by
Jones et al.(2011) and GW12. Differential rotation maintained in
3-D models is suspected to be sensitive to the relative contribution
of buoyancy and Coriolis force in the force balance. The ratio be-
tween these two forces can be roughly assessed by the so-called
convective Rossby number, defined byRoc =

√

RaE2/Pr.
The converged solution of a numerical simulation is then char-

acterised by several diagnostic parameters. The rms flow velocity
is given in units of the Rossby numberRo′ = u′

rms/Ω0d, where
primed quantities correspond to the non-axisymmetric contribu-
tion. The typical flow lengthscaleℓ is defined asℓ = πd/l̄u, where
l̄u is the mean spherical harmonic degree obtained from the kinetic
energy spectrum (e.g.Christensen & Aubert 2006; Schrinner et al.
2012). A local Rossby numberRoℓ = u′

rms/Ω0ℓ can then be used
to evaluate the relative contribution of inertia and Coriolis force to
the global force balance. Differential rotation is quantified by the
amplitude of the equatorial surface zonal flow:
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Figure 1. Dimensionless control parameters explored by various numeri-
cal models computed with different codes. Data have been gathered and
adapted fromGilman(1977, 1979); Aurnou et al.(2007), ASH (Ballot et al.
2007; Browning 2008; Brun & Palacios 2009; Brown 2009; Matt et al.
2011; Bessolaz & Brun 2011); Kaspi et al. (2009); Käpylä et al. (2011);
Soderlund et al.(2013); GW12 and GWA13.

αe =
ūφ(r = ro, θ = 0)

Ωoro
=

dΩ(r = ro, θ = 0)

Ωo

, (2)

where overbars denote axisymmetric quantities.
Our previous parameter studies were dedicated to the effects

of the density stratification on the differential rotation (GW12,
GWA13). They assumedPr = 1 and covered a limited range of
Ekman numbers (E = 10−3 − 10−4). To extend the coverage of
the parameter space, we have computed here 150 new cases which
span the range of10−5 < E < 10−2, 103 < Ra < 5 × 108 and
Pr ∈ [0.1, 1, 10]. We consider here non-magnetic nearly Boussi-
nesq models (i.e.Nρ = ln(ρbot/ρtop) = 10−2) in a thin spherical
shell of aspect ratioη = ri/ro = 0.6. To investigate how the mag-
netic field influences differential rotation, we also consider a few
Boussinesq dynamo models withη = 0.35 andPm = 1.

Furthermore, we include additional data from published stud-
ies which encompasses Boussinesq (e.g.Aurnou et al. 2007),
anelastic (e.g.Gilman 1977, ASH) and fully compressible 3-D
models (Käpylä et al. 2011). To our knowledge, all the data re-
porting anti-solar differential rotation have been gathered in Fig.1,
provided control and relevant diagnostic parameters (i.e.αe) were
accessible. Note that to ease the comparison between the different
setups, the Rayleigh numbers have been rescaled in Fig.1 to use
the entropy gradient at mid-depth, i.e.Ra = god

3|ds/dr|m/cpνκ.
This provides a better way of comparing different referencestate
models (seeKaspi et al. 2009, GWA13).

3 RESULTS

3.1 Differential rotation regimes

Figure2 shows the surface differential rotation amplitudeαe as a
function ofRoc for the Fig.1 dataset. When Coriolis forces domi-
nate the force balance (i.e.Roc ≪ 1, regime I), the equatorial zonal
flow is prograde and its amplitude increases withRoc. A relatively
sharp transition to retrograde zonal winds (or anti-solar differen-
tial rotation) then occurs close toRoc ∼ 1. Although the dataset
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Figure 2. Amplitude of the surface zonal flows at the equator in units of
αe = ūφ/Ω0ro as a function ofRoc for the numerical models of Fig.1.

Figure 3. Left panels: radial velocity atr = 0.95 ro. Right panels: time-
averaged zonal velocity (colored levels) and meridional circulation (solid
and dashed lines). Case (a) corresponds toNρ = 3, η = 0.6, E = 10−4,
Ra = 9 × 106, Pr = 1, case (b) to Nρ = 3, η = 0.6, E = 10−3,
Ra = 4×106, Pr = 1. Radial velocity is given in Reynolds number units
(urd/ν) while zonal flows are expressed in Rossby number units.

is scattered, the retrograde equatorial flow is on average stronger
than in regime I and reaches values ofαe ∼ −0.4 for Roc ∼ 1.
When buoyancy starts to dominate the force balance (i.e.Roc ≫ 1,
regime II), the differential rotation decreases suggesting a possible
third regime where turbulent motion gradually suppress themean
flows (Roc > 10, see GWA13 andBrummell et al. 1998).

Despite differences in size of the convective layer, valuesof
the control parameters, definition of the Rayleigh number, choice
of thermal boundary conditions and so on, the transition between
regimes I and II is well captured byRoc, with all the data points
concentrating in the top-left and bottom-right quadrants.

To illustrate the differences in the differential rotationpat-
terns in the two regimes, Fig.3 shows radial velocity and zonal
flows for two selected models. In the rotation-dominated regime
(Roc = 0.09, upper panels) convective columns aligned with the
rotation axis are visible at low latitudes. They are accompanied
at higher latitudes by small-scale time-dependent convective cells.
Due to the curvature of the spherical shell, the convective columns
are slightly tilted in the prograde direction and give rise to Reynolds

stresses (a statistical correlation between the convective flow com-
ponents, seeBusse 1983; Christensen 2002). Reynolds stresses
maintain a positive flux of angular momentum away from the rota-
tion axis which is responsible for the observed differential rotation.
The pair of geostrophic zonal flows with an eastward equator and
westward poles is typical in this regime (e.g.Käpylä et al. 2011,
GW12). In contrast, when buoyancy becomes a first-order contri-
bution in the force balance (Roc = 4, lower panels), the convec-
tive features lose their preferred alignment with the rotation axis
and the zonal flow direction reverses. The equatorial jet becomes
retrograde and is flanked by two prograde zonal winds inside the
tangent cylinder. The anti-solar differential rotation observed here
can be attributed to the mixing of angular momentum by the turbu-
lent convective motions (e.g.Gilman & Foukal 1979; Aurnou et al.
2007). As demonstrated by GWA13, the angular momentum per
unit massM is thus a conserved quantity such that

M = ūφs+ Ω0s
2 = const.= ζ(η,Nρ)Ω0r

2

o, (3)

wheres is the cylindrical radius and0 < ζ(η,Nρ) < 1 depends
on the background density stratification, the size of the convective
zone and the efficiency of the angular momentum mixing. Using
Ω0r

2

o to non-dimensionalise this equation leads to the following
formulation of the differential rotation in regime II:

Ro =
ūφ

Ω0ro
= ζ(η,Nρ)

ro
s

−
s

ro
. (4)

Comparisons between the zonal flow profiles and this theoreti-
cal prediction give a good agreement for models withRoc & 1
(Aurnou et al. 2007, GWA13).

Meridional circulation patterns change when differentialrota-
tion changes sign (e.g.Matt et al. 2011; Bessolaz & Brun 2011). In
the upper panel of Fig.3, multiple small-scale meridional circula-
tion cells are observed, while the second model shows only one
large-scale cell in each hemisphere. This transition results from
a change in the spatial variations of the azimuthal force balance
between viscous and Reynolds stresses (a mechanism sometimes
known as “gyroscopic pumping”, e.g.Miesch & Hindman 2011).

Figure 4a shows the same quantities as Fig.2 for a consis-
tent subset of nearly Boussinesq numerical models (Nρ = 10−2)
with η = 0.6. This subset is partly composed by the Boussinesq
models of GW12 and GWA13 and partly by the additional cases
computed for the present study. Considering the same reference
model for the whole subset allows to more accurately scrutinise the
zonal flow transition. While the regime change occurs in the range
0.8 < Roc < 2, some parameter dependence is still noticeable.
For instance, the transition is rather gradual for large Ekman num-
bers (E = 10−2, magenta symbols) and becomes sharper when
the Ekman number is lowered. Moreover, the Prandtl number de-
pendence does not seem to be perfectly captured byRoc. In fact,
the zonal flow transition in the numerical models withPr = 10
(Pr = 0.1) takes place at higher (lower) values ofRoc than the
Pr = 1 cases. As our dataset is limited to relatively large Ekman
numbers forPr 6= 1, we might however speculate that suchPr de-
pendence vanishes at low Ekman numbers. As shown in Fig.4b, the
zonal flow transition is better captured whenαe is plotted against
the local Rossby numberRoℓ. This reduction of the dispersion is
expected asRoc is only a rough proxy of the convective Rossby
number, whileRoℓ is a measure of the actual local Rossby num-
ber of a numerical model. A precise estimate ofRoℓ for the whole
dataset of models shown in Fig.2 would thus also help to reduce
the observed dispersion.

c© 2013 RAS, MNRAS000, 1–5
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Figure 4. (a) αe as a function ofRoc and (b) as a function ofRoℓ. All the
numerical models haveNρ = 10−2 andη = 0.6.

3.2 Zonal flow bistability

We find several cases of bistability where the two kinds of differen-
tial rotation are stable at identical parameters (i.e.Ra, E andPr)
whenRoc ∼ Roℓ ∼ 1. The initial condition then selects which dif-
ferential rotation profile will be adopted by the converged solution.
As shown on Fig.5, starting from a model with a solar-like dif-
ferential rotation and increasingRoc (or Roℓ) maintains a solution
with the same kind of differential rotation for0.5 < Roℓ < 1.3
before falling on the other branch at higherRoℓ. Alternatively, if
one initiates this model withαe < 0 and decreasesRoc, the solu-
tion may remain on that branch. Once again, thePr dependence on
the bistability region seems to be better captured when one consid-
ersRoℓ instead ofRoc. The hysteresis loop is relatively narrow for
E = 10−3 and becomes wider atE = 3 × 10−4. At E = 10−4,
it becomes numerically too demanding to further investigate the
extent of the two branches. Hence, an Ekman number dependence
cannot be completely ruled out and the extent of the bistability re-
gion might increase further whenE is lowered.

3.3 Magnetic field influence

To investigate if the zonal flow transition is affected by thepresence
of magnetic field, we compute two sets of Boussinesq models with
η = 0.35: one consists of non-magnetic cases, while the other con-
tains their dynamo counterparts. Figure6 shows that in both cases
the transition between regimes I and II occurs aroundRoℓ ∼ 1.
Due to the influence of the magnetic field on the convective flow
velocity and lengthscale, the exact value ofRoℓ at the transition
is slightly lower in the dynamo models. In the rotation-dominated
regime, the magnetic cases have significantly weaker zonal flows
than the non-magnetic ones. In contrast, hydrodynamical and dy-
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Figure 5. (a) αe as a function ofRoc and (b) as a function ofRoℓ. Selec-
tion of numerical models withNρ = 10−2 andη = 0.6 to illustrate the
bistability of the zonal flow. The dependence on the initial conditions (IC)
is shown by different symbol fillstyles. The blue arrows indicate possible
continuation of the hysteresis loop for theE = 10−4 cases.
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Figure 6.αe as a function ofRoℓ for non-magnetic and magnetic (Pm =

1) models withNρ = 0, η = 0.35, E = 10−4 andPr = 1.

namo models yield similar zonal flow amplitude in regime II, con-
firming the previous findings bySoderlund et al.(2013). These dif-
ferences can be attributed to the relative efficiency of the mag-
netic braking. The quenching of the differential rotation by Lorentz
forces is indeed more pronounced when the magnetic field has a
significant large-scale contribution (Roℓ < 1, Yadav et al. 2013).

4 DISCUSSION

We investigate the transition between solar-like and anti-solar dif-
ferential rotation in rotating spherical shells. We extendprevious
studies (Gastine & Wicht 2012; Gastine et al. 2013) with a new set
of models which covers a broader range of control parameters. We
also include models published by various groups in our analysis.

From this set of simulations we confirm previous findings that
the direction of differential rotation is determined by thevalue of
the convective Rossby number defined asRoc =

√

RaE2/Pr.

c© 2013 RAS, MNRAS000, 1–5
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In the rotation-dominated regime (regime I,Roc < 1), the differ-
ential rotation is solar-like, i.e. the equator rotates faster than the
poles. When buoyancy dominates the force balance (Roc > 1), the
turbulent convective motions homogenise the angular momentum,
which leads to anti-solar differential rotation profiles. The regime
transition takes place atRoc ∼ 1, independently of the details of
the model (density stratification, thickness of the convective layer
and so on). We show that the local Rossby numberRoℓ – a good
proxy of the relative contribution of Coriolis force and inertia in the
force balance (Christensen & Aubert 2006) – helps to better sepa-
rate the two regimes. Close to the transition (0.5 < Roℓ < 1.5),
the two kinds of differential rotation are two possible stable states at
the same parameter values, forming a bistable region. The presence
of a magnetic field reduces the amplitude of differential rotation in
regime I without affecting the regime change atRoℓ ∼ 1.

It should be however noted that global numerical models al-
ways operate in a parameter regime far from the stellar values due
to their large diffusivities (i.e. small Rayleigh and largeEkman
numbers). Hence, the existence of additional dynamical regimes
cannot be ruled out at realistic parameters. Nonetheless, anti-solar
differential rotation is systematically found in weakly-rotating 3-
D simulations in contrast with the mean-field results. A closer
comparison between mean-field predictions and 3-D simulations is
therefore desirable to better establish the limits of validity of such
mean-field approaches (e.g.Käpylä et al. 2011).

Our results provide theoretical support for the existence of
slowly rotating cool stars exhibiting anti-solar differential rotation.
A further validation of our prediction requires to estimateRoℓ in
stellar convective zones. We adoptRoemp, the ratio of the rotation
periodProt and the turnover time of convectionτconv, as our best
available proxy forRoℓ (e.g.Gastine et al. 2013). WithProt = 25 d
andτconv = 12−50 d (Reiners 2012), the solar Rossby number lies
in the range0.5 < Roemp < 2. This suggests that the Sun might
be at the limit of the rotation-dominated regime and that stars with
Rossby number just above the solar value could exhibit strong anti-
solar differential rotation. Claims of anti-solar differential rotation
are so far restricted to K giants. Most of these stars are in binary
systems where tidal effects likely have an impact on the surface
shear (e.g.Kovári et al. 2007). The K giant HD 31993 is the only
single giant for which a significant anti-solar differential rotation
is reported (α = −0.125, Strassmeier et al. 2003). For this star
Prot = 25.3 d andτconv ≃ 25 d (Gunn et al. 1998) yieldRoemp ≃ 1,
a value close to the threshold but compatible withα < 0.

Measuring differential rotation for stars clearly in theRo > 1
regime remains challenging. Doppler imaging or line profileanal-
ysis are sensitive to the sign of differential rotation but suffer from
some limitations. Doppler imaging indeed relies on the presence
of large spots at the stellar photosphere which is not expected
for Roemp > 1. Line profile analysis requires a minimum ro-
tational velocityv sin imin ∼ 10 − 20 km.s−1. This is incom-
patible withRoemp > 1 for cool main sequence stars. Although
Ammler-von Eiff & Reiners(2012) observed line profile shapes at-
tributable toα . 0 for dwarf stars withRoemp < 1, they at-
tributed these signatures to the presence of cool polar spots. With
their larger radii, weakly active evolved giant stars mightbe more
suitable targets. Space missions CoRoT and Kepler collect high-
precision photometric data for a vast sample of stars. Although this
technique cannot directly determine the sign ofα, a regime change
in the differential rotation might still be captured. Our numerical
models indeed suggest a relatively sharp rise in|α| at the transi-
tion between solar and anti-solar differential rotation. Latest results
based on moderate to fast rotators (Prot < 45 d) by Reinhold et al.

(2013) suggest a possible increase of|α| with the Rossby num-
ber stressing the need for further analysis of slowly-rotating Kepler
stars.
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