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ABSTRACT

We test the hypothesis that the weak influence of rotation upon solar supergranulation, resulting
in fluid particles conserving their angular momentum while moving radially, is responsible for the
outward decrease in angular velocity inferred from the difference between photospheric plasma
and sunspot rotation rates. This test is performed using numerical integrations of a Boussinesq
spherical convection model for a thin shell at small Taylor number (implying weak influence of
rotation). We find that the convection does maintain an outward decrease in angular velocity,
which approaches the limit implied by angular momentum conservation as the Rayleigh number
or driving for convection is increased.

By examining the energetics of the motion, we verify that the dominant process maintaining
the calculated angular velocity profile against viscous diffusion is the inward transport of angular
momentum by the convection. Axisymmetric meridional circulation plays virtually no role in this
process. We further find there is no tendency for convection weakly influenced by rotation to form
an equatorial acceleration, contrary to earlier calculations by Busse for similar velocity boundary
conditions.

We argue from these and earlier calculations that the origin of the Sun’s latitudinal gradient of
angular velocity is deep in the convection zone. At these depths there may be a strong tendency
for angular velocity to be constant on cylinders, implying a positive radial gradient of angular
velocity. The latitude gradient is transmitted to the photosphere by supergranulation which
locally produces the negative radial gradient in the top layers. We suggest from the rotation of
various magnetic features that the transition from negative to positive radial angular velocity

gradient occurs near the bottom of the supergranule layer.
Although the convection model we have used is Boussinesq, we argue that angular momentum
conservation in radially moving fluid particles should produce a similar angular velocity profile

in compressible convecting fluid layers.

Subject headings: convection — Sun: atmospheric motions — Sun: granulation — Sun: rotation

I. INTRODUCTION

Doppler observations of the photosphere (e.g.,
Howard and Harvey 1970) show that the mean rota-
tion rate of the gas is about 5%, lower than the rate
observed from rotation of most magnetic tracers (such
as sunspots) at the same latitude. This difference might
arise (Foukal 1972) if the magnetic tracers are anchored
in a deeper layer of higher angular velocity, and can
slip through higher layers with relatively little resis-
tance. The observed sign and magnitude of the differ-
ence are reproduced (Foukal and Jokipii 1975) if the
gas conserves angular momentum in its radial motion
over a depth d ~ 1.5 x 10* km, corresponding to the
depth expected for supergranular convection.

It is interesting that a very similar rotation profile
with w increasing inward by about 5%, in the top layers
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of the convection zone has been obtained more
recently in the preliminary analysis of the splitting
of the mode structure of the 5 minute oscillation in the
(k, w)-plane (Deubner 1977).

It is likely that the convection of largely non-
magnetic gas in this layer is effectively decoupled
dynamically from the magnetic field (Foukal and
Jokipii 1975). This suggests (Foukal 1977) that super-
granulation offers a relatively direct opportunity (that
is, uncomplicated by the influence of Lorentz forces)
to compare solar convection with the models of
Boussinesq nonaxisymmetric convection in a rotating
spherical shell, developed by Gilman (1975, 1976, 1977,
1978).

In particular, integrations performed with this
model indicate (Gilman 1977) that for Prandtl
numbers P < 1, in a slowly rotating shell, the gas
tends to conserve angular momentum in radial motion.
These results emerged from calculations carried out
on a geometrically thick shell and with a stress-free
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lower boundary. The integrations reported in this
paper were carried out to determine whether a
geometrically thin layer with a nonslip lower boundary
might still exhibit the tendency to conserve angular
momentum that we have inferred in the supergranular
layer from the observations described above.

We also discuss the implication of these calculations
in the broader context of radial and latitudinal angular
velocity gradients throughout the convection zone, as
well as model calculations by others.

We argue finally that, although the model treats
convection in the Boussinesq approximation, a similar
rotation profile may be established in a convecting
layer of nonuniform density as on the Sun.

II. CONVECTION MODEL

The model equations actually integrated are the
standard Boussinesq equations for a rotating stratified
liquid. Density variations are ignored except where
coupled with gravity. Fluid accelerations at a point are
produced in response to the following forces: pressure
gradient, buoyancy, Coriolis and viscous, as well as
nonlinear inertia forces due to the fluid transporting
its own momentum. Temperature is changed by diffu-
sion and nonlinear transports. Temperature and
density fluctuations are linearly related by the equation
of state for a liquid. The flow has no divergence.
Viscous and thermal diffusion are represented linearly,
with scalar constant diffusion coefficients.

All fluid variables are represented by Fourier series
in longitude and the resulting amplitude functions are
integrated forward in time on a finite difference grid
in the meridian plane. The flow is not axisymmetric
about the rotation axis, since a large group of nonzero
longitudinal wavenumbers are retained, as well as the
axisymmetric (wavenumber zero) part. The equations
are solved in dimensionless form, in which four non-
dimensional parameters appear, namely, the Prandtl
number P, Taylor number T, Rayleigh number R, and
a parameter 8, which is the ratio of inner radius of the
shell to the shell thickness. As defined in publications
cited above, P = vfx, in which v is the kinematic
viscosity and « the temperature diffusivity; T =
4Q2d%v?, in which Q is the rotation rate of the
reference frame, and d the shell depth; R = gaA8d3/«v,
in which g is gravity, « the coefficient of volume
expansion, and Af the temperature difference across
the shell.

We regard this convection model not as representing
the supergranular layer directly, but rather as an
analog containing much of the relevant physics needed
for studying how convection redistributes angular
momentum. We are interested here in the role played
by supergranule scale convection, and so choose
ranges of the parameters P, T, R, and 8 with this in
mind. In particular, we assume granules and other
small-scale motions act in an eddy diffusive way on
the supergranule scale motions. Therefore v and « are
identified as eddy diffusivities and taken to be of
similar magnitude. Thus we focus on cases with P =1.
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From mixing-length arguments, we can estimate v ~
1012108 cm2s~I, Then with d = 2 x 10°cm, Q =
2.8 x 10-¢s-1, the Taylor number for supergranules
falls in the range 5 to 500. R is very difficult to estimate,
since on the Sun A6 corresponds to the excess tempera-
ture difference above the adiabatic difference across
the layer. Obviously, we must choose R large enough
to get convection. In the actual numerical experiment,
we will scan through a range of R values between 1500
and 48,000.

Previous studies with this convection model have
focused on the problem of how convection influenced
by rotation could produce equatorial acceleration. We
found (Gilman 1972, 1976, 1977, 1978) that in order
to get significant equatorial acceleration, the convec-
tion must be strongly influenced by rotation. As argued
in Gilman (1977), this may be expressed as a statement
that PT/R > 1, or the Coriolis frequency is com-
parable to or larger than the buoyancy frequency or
the turnover rate for the convection. For super-
granules, clearly the turnover rate is greater than the
Coriolis frequency, so that supergranules are at best
weakly influenced by rotation. Thus they cannot be
responsible for the solar equatorial acceleration. As
we shall show, they can, however, be largely respon-
sible for the radial gradient of angular velocity in this
thin layer below the photosphere.

III. NUMERICAL EXPERIMENT

The supergranule layer on the Sun probably has a
depth no greater than 2%,-3%, of the solar radius. To
model this thin a layer over a whole spherical shell
requires very high horizontal resolution to resolve the
convective cells properly. We choose to take a some-
what thicker layer, 107, (B = 9), to greatly reduce the
computation required, while still illustrating the basic
effect. For this layer we adopt a 2°5 grid in latitude,
with eight interior grid intervals in radius, and the
lowest 20 longitudinal wavenumbers (0 through 19).
The bottom of the layer is assumed to be one of
constant heat flux; the top, constant temperature. The
bottom is taken to rotate rigidly, to simulate a strong
coupling to the angular momentum of the denser
layer below. The top is assumed to be stress-free. We
could have applied the observed latitudinal differential
rotation at the bottom, but we choose to illustrate the
radial gradient effect in its simplest form. Also, a
nonslip boundary condition on the convective velocities
represents the most restrictive condition, in that the
viscous boundary should impede the convection from
conserving angular momentum in radial motion. An
alternative, but fluid dynamically somewhat artificial,
boundary condition would have been to retain the
nonslip condition on the axisymmetric east-west flow,
and allow stress-free conditions on all other tangential
velocities.

The calculation is then begun from random numbers
in the temperature field, at a given P, T, R, and allowed
to continue until the average properties of the con-
vective flow seem stationary. Among other statistics,
the model computes the average linear (as opposed to
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angular) rotational velocity u, as a function of level
above the bottom. If the rotational velocities produced
at all levels have the same angular momentum as the
rigidly rotating bottom of the shell at the same latitude,
then, at each level above the bottom, there will be a
rotational velocity relative to the bottom which is
negative. Expressed in dimensionless form in terms of
the parameters defined above, it is given by uy(X) at
the level K,

uo(K) = —PTY?Q2K — 3) A4+ (2K — 3)A

328+ 0K —3)A %>

M

in which A is the grid interval in the radial direction in
fractions of the shell depth, and ¢ is the latitude. In
this case A = 1/8. Note that the Rayleigh number R
does not enter into (1). The K levels are defined as
follows: K =1 is A/2 below the inner boundary,
K = 2is A/2 above the inner boundary, and higher X
values are successively (K — 2)A above. The lowest
two levels, which straddle the physical boundary, are
used to set the boundary conditions.

The object, then, of the calculation is to see how
close the values of u, obtained from the model
calculation compare to the constant angular momen-
tum values given in equation (1).
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IV. RESULTS

Figure 1 shows the calculated linear rotational
velocity at K level 9 (near the top of the convective
shell) for several Rayleigh numbers, at a Taylor
number of 300 and Prandtl number of 1, compared to
the smooth curve for constant angular momentum
obtained from equation (1). We see that there is an
obvious tendency toward conserving angular momen-
tum along local radii. At R = 3000, which is only
about 3 times critical for convection to occur, about
half the required amplitude is achieved, while by R =
24,000, almost 80, of the constant angular momentum
profile is attained. At R = 48,000 (not shown) the
agreement is even better. The effect is about the same
at all latitudes except near the poles, where the effect
is less clear. This should not be surprising, because at
higher latitudes, the local moment arm changes more
due to horizontal than radial motions.

The jagged nature of the computed profiles is due
to the finite size of the convection elements introducing
local fine structure in the profiles. The latitudinal
scale of these features would be considerably reduced
for a layer of supergranule depth rather than the 10%,
we have chosen.

How closely does the rotational profile approach
that of constant angular momentum along radii for
deeper levels in the shell? Figure 2 plots results for
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FiG. 1.—Linear rotational velocity generated by the convection near the top of the convecting layer for several Rayleigh numbers,
compared with value (smooth solid curve) predicted for conservation of angular momentum.
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four levels at R = 24,000, to be compared with the
constant angular momentum values at the same levels
in Figure 3. We see that levels 9 and 7 compare rather
well, level 5 somewhat less so, and level 3 not well. We
interpret this result as indicating that at level 3, the
influence of the viscous boundary layer at the bottom
is quite large, resulting in litile tendency for fluid
particles moving radially to conserve angular momen-
tum through these deepest levels. Instead, level 3
rotates at nearly the same rate as the bottom, and so
has a higher angular momentum. Above level 3, the
tendency becomes much stronger, so little further
angular momentum is gained. For example, at low
latitudes in both Figure 2 and 3 the linear velocity
becomes 7 or 8 units more negative in going from level
5 to level 9. Had we chosen stress-free bottom
boundary conditions for the convective velocities,
while retaining a nonslip condition for the differential
rotation there, the effect of the viscous boundary layer
at the bottom would have been greatly reduced.

We have done other calculations at even lower
Rayleigh numbers, and at other small Taylor numbers,
for example, T = 100, and found very similar results.

It appears from our calculation thatas Risincreased,
the calculated rotational profile asymptotically ap-
proaches the profile of constant angular momentum
along local radii. This is a rather general result, indicat-
ing we need not know precisely what the effective
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Rayleigh number is for supergranules in order to
determine whether fluid particles moving radially in
them are conserving angular momentum.

Busse (1973) predicted from linear theory at low
Taylor numbers for a thin shell with rigidly rotating
bottom that an equatorial acceleration would be
formed. We find no evidence of this, even at an R =
1500 for T = 300, which is only about 1.5 times critical.
An equatorial acceleration would show up as positive
values (below the zero line) of rotational velocity in
Figures 2 and 3, which is the opposite of what we find.
Clearly the tendency of fluid particles moving radially
to conserve their angular momentum predominates
over any latitudinal angular momentum transport
toward the equator which would be needed to spin
it up. This effect of radially moving particles is
apparently not properly captured in Busse’s (1973)
calculations.

V. MAINTENANCE OF THE CALCULATED RADIAL
DIFFERENTIAL ROTATION PROFILE

In the absence of a process to maintain it, the radial
angular velocity gradient implied by Figure 2 would
relax to zero due to viscous stresses. This relaxation
would constitute an outward diffusion of angular
momentum. Since an equilibrium has been reached in
which angular velocity decreases outward, this out-
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FiG. 2.—Linear rotational velocity profile for several levels in the convecting layer at a Rayleigh number of 24,000
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FiG. 3.—Linear rotational velocity profiles for the same levels as shown in Fig. 2 which have the same angular momentum as the

bottom of the convecting layer.

ward diffusion of angular momentum must be balanced
by inward angular momentum transports due to the
convective motions. A check of the radial angular
momentum transport by the convection in the model
indeed shows that, virtually everywhere, the transport
isinward.

That this inward radial transport is the dominant
mechanism for maintaining the angular velocity
gradients can be verified by computing the work done
to maintain the kinetic energy of differential rotation
u, which we denote by DRKE. The details of this kind
of calculation have been outlined earlier in Gilman
(1977, 1978). As described there the integral equation
describing the work done can be written in symbolic
form as

a%(DRKE) — HMT + VMT + CURYV
+HCF+VCF—1. ()

All the rates of work done on the right are nor-
malized with respect to the viscous dissipation rate, so
it appears as a —1. HMT represents the work done
by the convergence of latitudinal or horizontal
momentum transport by Reynolds stresses associated
with the convection, VMT the same for vertical or

radial transport. CURV represents work done by
stresses associated with the curvature of the coordinate
system. HCF represents work done by Coriolis forces
due to the horizontal or latitudinal component of
axisymmetric meridional circulation, and VCF the
same for the vertical or radial component of the
meridional circulation.

For energy balance to be achieved, the sum of the
first five terms on the right in equation (2) must add
up to about + 1. Figure 4 plots the magnitude of these
terms as function of the Rayleigh number R for the
calculations we have done. We see that for all R, the
dominant work term is indeed VMT, indicating that
the primary mechanism for maintaining the angular
velocity gradient is the inward radial transport of
angular momentum by Reynolds stressesinduced in the
convection. This is the inevitable consequence of
inward-moving fluid particles having higher angular
momentum than their outward-moving counterparts
at the same level.

By contrast, any axisymmetric meridional circula-
tion present plays a negligible role in maintaining the
differential rotation. This implies it is risky to infer
much about differential rotation maintenance from
purely axisymmetric models, as numerous authors
have done in the past.
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F1G. 4—Graphical representation of eq.(2) for rates of
maintenance of differential rotation kinetic energy scaled
relative to the kinetic energy dissipation rate plotted against
the log of the Rayleigh number. See text for explanation of
curve labels.

At large R, we see that HMT grows to about one-
third of the total work done. Examination of the
profile of latitudinal angular momentum transport
reveals that it is highly structured, with no global
pattern of equatorial transport. This i$ in contrast to
the results obtained by Busse (1973) from linear
theory for weak rotational influence on convection in
a thin rotating spherical shell with nonslip bottom, and
illustrates the risks in extrapolating very far from
linear theory into the nonlinear region. At small R,
HMT is negligible compared with VMT in maintaining
the angular velocity profile, also contrary to the
inferences made by Busse from his linear results. The
reason why Busse’s (1973) model does not work well
is that the mode selection mechanism found by him to
favor modes which produce an equatorial acceleration
is an extremely weak one when the Taylor number is
small. It is easily overcome even quite close to the
critical Rayleigh number required for convection to
occur, once a spectrum of convective modes are
allowed to grow and seek their own relative ampli-
tudes, as happens in our model calculation.

VI. COMMENTS ON ANGULAR VELOCITY PROFILES
WITH LATITUDE AND DEPTH ON THE SUN

We have shown that convection in a thin spherical
shell weakly influenced by rotation can produce a sub-
stantial outward decrease of rotational velocity, ap-
proaching the limit predicted if radially moving fluid
particles conserve their angular momentum. This
provides a plausible explanation for the difference in
angular velocity between sunspots and the photo-
spheric plasma. It is clear, however, that these same
motions cannot be responsible for the maintenance of
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an equatorial acceleration such as the Sun has. Our
calculations are for a nonslip bottom, and it might be
argued this prevented such an equatorial acceleration
from forming. However, similar calculations with a
stress-free bottom at weak rotational influence indicate
quite the opposite; in particular, with a stress-free
bottom boundary, the polar regions accelerate much
more.

On the other hand, numerous calculations by Gilman
(1976, 1977, 1978) indicate that convection in a rotat-
ing spherical shell will generate substantial equatorial
acceleration provided the rotational influence on the
convection is strong enough. Strong rotational in-
fluence on convection cannot be obtained for super-
granules, because their turnover time is simply too
short compared with the rotation time. But we would
expect giant cells, extending to the bottom of the solar
convection zone, to be strongly influenced by rotation.
These global motions could then be the origin of the
latitudinal gradient in angular velocity seen on the
Sun.

In summary, then, our qualitative picture of the
angular velocity gradient in the solar convection zone
is as follows: Near the top, the angular velocity
decreases outward, due to the action of supergranules.
The profile of angular velocity decreasing with latitude
is formed at much deeper levels, and is efficiently
transmitted to the surface by the supergranules. In the
deeper layer, underneath the supergranule shell, the
angular velocity may be nearly constant on cylinders
concentric with the axis of rotation, as implied by the
convection calculations of Gilman (1972, 1976, 1977,
1978). These arguments would predict that there is an
intermediate depth in the convection zone, at which the
angular velocity reaches a maximum for the latitude.
What this depth is is not clear, but we suspect that it is
near the bottom of the supergranule layer.

Observational evidence for the existence of a maxi-
mum in the angular velocity profile with depth may
come from measurements of rotational frequency
shifts of global oscillations. We point out here that
rotational velocities of sunspots and X-ray emission
features of different sizes, together with surface
Doppler velocities, may have already provided us with
such evidence. In particular, Golub and Vaiana (1978)
have shown that the shortest-lived X-ray emission
features rotate at essentially the surface Doppler rate,
while the largest, longest-lived features rotate up to
5%, faster, or at the sunspot rate. On the other hand,
Ward (1966) found that small, short-lived sunspots
rotate up to 2%, faster than large, long-lived spots,
particularly the recurrent spots. Thus small sunspots
have the fastest rotation rate of all features in low
latitudes. Let us assume, with Golub and Vaiana
(1978), that the larger X-ray features have magnetic
field roots which go deeper than for small features,
make a similar assumption for large spots as compared
with small, and finally assume that sunspots, with their
higher field strengths spread over larger areas, reach
deeper than the magnetic roots of X-ray features. Then
the various tracers would reach to depths as shown
schematically in Figure 5, with long-lived, large sun-
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PHOTOSPHERE

SHORT LIVED, SMALL X-RAY FEATURES
ar LONG LIVED, LARGE X-RAY FEATURES
______ SHORT LIVED, SMALL SUNSPOTS

or LONG LIVED, LARGE SUNSPOTS

BOTTOM OF SUPERGRANULE LAYER (?)

F1G. 5.—Schematic of supergranule layer illustrating depths
to which various magnetic features may reach, together with
the sign of the radial angular velocity gradient inferred.

spots extending deepest, and short-lived, small X-ray
regions shallowest. Therefore the radial angular
velocity gradient would change sign at the depth of
small sunspots, probably near the bottom of the
supergranular layer, about 1.5 x 10* km below the
photosphere. We acknowledge that the fast rotation
rate of small spots compared with large ones may also
in part be due to expansion of young emerging active
regions and the tendency for small short-lived spots
to occur in the preceding part of such a dipole, as
suggested by Kiepenheuer (1953).

VII. EFFECTS OF COMPRESSIBILITY

We have demonstrated a strong tendency for radial
motions in Boussinesq convection in a slowly rotating
thin spherical shell to conserve their angular momen-
tum. This tendency increases with increases in the
Rayleigh number. To determine in detail how strong
the same effect is in convection of a compressible fluid,
we need to do comparable simulations with a com-
pressible model. However, we can argue heuristically
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why it should also occur in the compressible case, as
follows. Conservation of angular momentum by a
fluid element, whether compressible or incompressible,
axisymmetric or nonaxisymmetric, implies

pr cos ¢(2Qr cos ¢ + u,) AV = const. ©))

in which p is the element density, AV its volume, Q the
rotation rate of the coordinate system, u, the linear
rotational velocity of the element relative to the
coordinate frame, and r the distance to the center of
the sphere. The mass of the same fluid element is also
conserved, so

pAV = const. ©)
But then dividing equation (4) into (3) gives
r cos ¢(2Qr cos ¢ + u,) = const. 5)

so that the angular momentum per unit mass for the
fluid element is conserved, for both compressible and
incompressible fluids. Therefore if viscous and other
torques are sufficiently weak in a compressible, con-
vecting, slowly rotating fluid, our present calculations
suggest the angular velocity should decrease outward
in it at a rate approaching that predicted by angular
momentum conservation.

Parallel arguments could be made by considering a
vorticity equation for the differential rotation, but
this is beyond the scope of the present work.

We wish to thank Jack Miller of the NCAR comput-
ing facility for programming the convection model
used for the calculations reported here. One of us
(P. V. F) is grateful for partial support at Nice
Observatory from the NATO Senior Scientists
Programme in the period 1978 January-July.
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