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Benchmark solutions for fully nonlinear anelastic compressible convection and dynamo action in a rotat-
ing spherical shell are proposed. Three benchmarks are specified. The first is a purely hydrodynamic case,
which is steady in a uniformly drifting frame. The second is a self-excited saturated dynamo solution, also
steady in a drifting frame. The third is again a self-excited dynamo but is unsteady in time, and it has a
higher Rayleigh number than the steady dynamo benchmark. Four independent codes have been tested
against these benchmarks, and very satisfactory agreement has been found. This provides an accurate ref-
erence standard against which new anelastic codes can be tested.
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1. Introduction

The anelastic approximation can be usefully employed to study
convection in giant planets and stars, including the Sun. In these
bodies, the heat flux emerging from the interior is often carried
by convection. This heat flux is usually sufficiently small that only
subsonic velocities are required to transport it. However, Bous-
sinesq models are not really adequate to describe the convection,
because the density in giant planets and stars is much greater in
their deep interiors than in their upper regions. Fully compressible
convection models suffer from the disadvantage that they allow
sound waves which have oscillation periods of typically only min-
utes. The turnover time of the convection, and the timescale on
which magnetic field is generated by dynamo action, are much
longer than this. The existence of these two very different
timescales makes numerical simulation very difficult, as a vast
number of timesteps is required if they have to be short enough
to resolve sound waves, while the time integration has to last
many turnover times. In practice, the difficulty can be even worse
if dynamo action is considered, as it may be necessary to integrate
for at least a substantial fraction of a magnetic diffusion time (and
often several diffusion times, which may need to be turbulent eddy
diffusion times in astrophysical applications) before the magnetic
field reaches its fully saturated state. The anelastic approximation,
which filters out sound waves and so allows a much larger
ll rights reserved.

nes).
timestep, is therefore a popular choice for studies of solar and
stellar convection zones and the interior dynamics of giant planets
(e.g. Glatzmaier, 1984, 1985; Brun et al., 2004; Jones et al., 2009;
Jones and Kuzanyan, 2009; Miesch et al., 2000; Kaspi et al., 2009).

To model the convection zones of planets and stars, a spherical
shell geometry is natural, and rotation usually strongly influences
the dynamics. Fully three-dimensional anelastic models are typi-
cally more expensive to run than Boussinesq models, as the varia-
tion in density often leads to smaller spatial scales requiring higher
resolution. The recent development of relatively inexpensive paral-
lel computer clusters now makes it more practical to use anelastic
codes to explore the dynamics of convection zones, and this has led
to the construction of a number of different anelastic codes. Veri-
fying these codes is not a simple matter, and the main purpose
of this paper is to provide researchers with some straightforward
benchmark cases that have been independently checked. This work
is a natural follow-up from the benchmark published for the Bous-
sinesq dynamo problem by Christensen et al. (2001). Another aim
was to compare the results of some already existing codes. The
community decision to develop these benchmark tests was taken
at the Kavli Institute of Theoretical Physics programme on ‘Dynamo
theory’ in 2008. A dynamo benchmark that is steady in a drifting
frame evolves to a state with time-independent values of the ki-
netic and magnetic energy, which makes it much easier to accu-
rately compare different codes. It proved more difficult to find
parameters that gave reliable, reproducible dynamos steady in a
drifting frame than had been anticipated, which accounts for the
delay between inception and delivery. However, the benchmarks
presented here have all now been checked to a surprisingly high
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level of accuracy by independently constructed codes, and they can
all be computed to good accuracy without the need for excessively
large computing resources. The teams contributing were generally
using runs lasting a few days with typically between 32 and 128
processors in each run. Many such runs were performed while
the benchmarks were established, but now that they have been
fixed, reproducing these results will not be unduly expensive. Dur-
ing the course of this work, a number of issues arose which need
particular care, and which had not previously been given much
attention. We report on these below.

The objective here is to provide solutions which can be rela-
tively easily verified rather than to provide a realistic model of
either a giant planet interior or a stellar convection zone. Thus sim-
ple boundary conditions are used, and relatively low Rayleigh
numbers are involved. This means that the diffusivities used are
much larger than those in either giant planets or stars. In conse-
quence, the heat flux coming out of the models is very much larger
than that coming out of any realistic giant planet. Furthermore, the
impenetrable boundaries are not a particularly realistic represen-
tation of giant planet or stellar convection zones. It is a task for fu-
ture research to adapt the models to more physically realistic
problems. Nevertheless, we have for definiteness adopted a well-
defined model, based very crudely on Jupiter, as the basis of these
benchmarks. Some codes use dimensionless parameters, and oth-
ers a dimensional representation. While in principle it is simple
to convert between these two, in practice it is easy to make errors,
so we here report all the results in both dimensional and dimen-
sionless form, to avoid any time-wasting confusion for those writ-
ing new codes.

In addition to the steady benchmarks, we also computed an
unsteady dynamo benchmark case, which has ‘chaotic’ time-
dependence. Only time-averages can be compared in this case,
but it does test the heat transport terms more thoroughly. In stea-
dy benchmarks, most of the heat is transported by diffusion rather
than convection, whereas in our unsteady case, the convective heat
flux is greater than the diffusive heat flux.

Four codes took part in this benchmark exercise. The Leeds code
and the MAGIC code are both adaptations of Boussinesq codes, and
used the Lantz–Braginsky–Roberts (LBR) formulation of the anelas-
tic approximation, described below. The ASH code (Anelastic
Spherical Harmonic code) computes the pressure and density per-
turbations explicitly (see Clune et al., 1999). The Glatzmaier code
comes in two versions, an older version which, like ASH, computes
pressure and density perturbations explicitly, and a newer version
based on the LBR formulation. Both versions of the Glatzmaier code
gave the same results, to many significant figures of accuracy.
These codes are all spectral, that is they all use a spherical har-
monic expansion to represent the latitudinal and longitudinal
dependence, and they use a toroidal–poloidal expansion to repre-
sent vector fields. The radial dependence can be represented either
by finite differences or Chebyshev expansions. The ASH, MAGIC
and Glatzmaier codes employ the same basic numerical methods
because the ASH and MAGIC codes were derived from the original
version of the Glatzmaier code (Glatzmaier, 1984). However, all
three codes have been independently modified and parallelized
since then. The Leeds code was developed independently and em-
ploys a somewhat different numerical solution method. Although
no fully finite difference codes, or finite element codes, took part
in this benchmark, it will be of interest to see results from such
codes as they are developed.
2. Anelastic equations

We consider a spherical shell of gas, bounded by an inner spher-
ical surface at r = ri and an outer surface at r = ro. The radius ratio
b = ri/ro. Gravity acts radially inward. For simplicity, we assume
that the bulk of the mass is concentrated inside the inner surface,
and so gravity satisfies g = GM/r2, with G being the gravitational
constant and M the interior mass. The shell is rotating about the
z axis with angular velocity X, but the centrifugal acceleration is
assumed negligible in comparison with gravity.

The anelastic equations were derived by Ogura and Phillips
(1962) in the context of stably stratified atmospheres, and ex-
tended to convecting atmospheres by Gough (1969) and Gilman
and Glatzmaier (1981). The approach used here follows Gilman
and Glatzmaier (1981) and Lantz and Fan (1999). Further explana-
tion of the anelastic equations is given in Miesch (2005). We first
decompose the thermodynamic variables density, pressure and
temperature into the sum of the basic state variables correspond-
ing to the reference atmosphere (assumed close to adiabatic) de-
noted by an overbar, and a convective disturbance, denoted by a
prime:

q ¼ �qþ q0; P ¼ P þ p0; T ¼ T þ T 0: ð1Þ

The equation of motion for the velocity u can then be written in
the following dimensional form (see e.g. Chandrasekhar, 1961),

@u
@t
� u�x ¼ �rp0

�q
�r1

2
u2 þ 1

�q
j� B� 2X� uþ Fm þ

q0g
�q
; ð2Þ

j ¼ ð1=lÞ$� B being the current density, B the magnetic field and l
the magnetic permeability of free space. The reference state vari-
ables satisfy the hydrostatic equation, which leads to a polytrope
(see Section 3 below). We are neglecting centrifugal force in the ref-
erence state and its perturbation in Eq. (2). We assume constant
kinematic viscosity m, and zero bulk viscosity, so that (Landau and
Lifshitz, 1959, p. 48; Gilman and Glatzmaier, 1981; Eqs. (4)–(6)),
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A common alternative assumption is to take constant dynamic
viscosity (see e.g. Glatzmaier and Gilman, 1981). Since it is natural
to take the magnetic diffusivity as a constant independent of den-
sity, our choice of constant kinematic and thermal diffusivity has
the convenience that the Prandtl numbers are also constant
throughout the shell. The anelastic continuity equation is

r � �qu ¼ 0: ð4Þ

We assume a perfect gas,

P ¼ RqT; ð5Þ

and define the specific entropy S for the perfect gas (Landau and
Lifshitz, 1959; p. 315) as

S ¼ cv ln
P
qc � S0; ð6Þ

where c = cp/cv and cp and cv are the specific heat capacities at
constant pressure and volume, respectively, which we assume are
constants. In all the benchmarks we consider here, the boundary
condition that the entropy is held constant on the two spherical
boundaries is applied. The constant in the definition of the entropy
can therefore be conveniently chosen so that the entropy is zero on
the outer boundary. Note that because the reference state is close to
adiabatic, there is no need to introduce a separate perturbation
entropy.

We write the dimensional form of the energy equation in terms
of the entropy in order to eliminate the temperature completely
from our formulation. This is possible if one chooses to represent
the turbulent heat flux term as being proportional to the entropy
gradient, as in ‘mixing length theory’. For turbulent flows the
turbulent (eddy) thermal diffusivity is usually dominant and since
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this acts through entropy diffusion rather than temperature
diffusion, the energy flux down the gradient is �j�q TrS (see e.g.
Braginsky and Roberts, 1995), where j is the turbulent thermal dif-
fusivity, or entropy diffusivity, so

�qT
@S
@t
þ ðu � rÞS

� �
¼ r � j�qTrSþ Q m þ Qj; ð7Þ

with

Q m ¼ rij
@ui
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; rij ¼ m�q
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þ @uj
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3
dijr � u

� �
; Q j ¼ glj2

; ð8Þ

where T is the basic state temperature, j is the entropy diffusivity,
assumed constant across shell, and Qm and Qj are respectively the
viscous and Joule heating.

The induction and magnetic flux conservation equations are

@B
@t
¼ r� ðu� BÞ þ gr2B; r � B ¼ 0; ð9Þ

where g is the magnetic diffusivity, again assumed constant
throughout the shell.

2.1. Boundary conditions

The entropy is fixed on the boundaries at r = ri and r = ro, so we
set

S ¼ DS on r ¼ ri; and S ¼ 0 on r ¼ ro: ð10Þ

We use stress-free, impenetrable boundary conditions

ur ¼
@

@r
uh

r

� �
¼ @

@r
u/

r

� �
¼ 0; on r ¼ ri and r ¼ ro: ð11Þ

The material outside the shell (i.e. above the outer boundary
and below the inner boundary) is assumed to be electrically insu-
lating, again for simplicity. The magnetic field both below ri and
above ro is therefore a potential magnetic field with no external
or internal sources, which has to be finite at r = 0 and decaying
as r ?1. The boundary conditions for the spherical shell are that
the magnetic field in the shell matches onto these potential fields,
and these conditions can very easily be implemented for a spectral
code. If the magnetic field in the shell is expanded in toroidal and
poloidal scalars,

B ¼ $� T rþ $� $� Pr; ð12Þ
and T and P are expanded in spherical harmonics

T ¼
X1
l¼1

Xm¼l

m¼�l

T lmðrÞPjmjl ðcos hÞeim/;

P ¼
X1
l¼1

Xm¼l

m¼�l

P lmðrÞPjmjl ðcos hÞeim/; ð13Þ

then at the inner and outer boundaries the field matches onto po-
tential fields inside and outside the shell (see e.g. Roberts, 2007)
to give

T lm ¼ 0 on r ¼ ri; ro;
@Plm

@r
� l
P lm

r
¼ 0 on r ¼ ri

and
@Plm

@r
þ ðlþ 1Þ P lm

r
¼ 0 on r ¼ ro: ð14Þ

For other codes, the Laplace equation for the magnetic field may
need to be solved numerically in the insulating regions, though
integral approaches (e.g. Iskakov and Dormy, 2005) may also be
possible.

The choice of stress-free boundaries is motivated by the fact
that more applications for anelastic codes are likely to require
stress-free rather than no-slip boundaries, but stress-free (and
electrically insulating) conditions mean that total angular momen-
tum is conserved (see Appendix A), which can cause numerical dif-
ficulties (see Section 8).
2.2. Lantz–Braginsky–Roberts approximation

Lantz (1992) and Braginsky and Roberts (1995) independently
noted that if the basic reference state is close to adiabatic, then
the equation of motion (2) can be written in a form in which the
only thermodynamic variable multiplying gravitational accelera-
tion is the entropy
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where x is the vorticity. Here we have assumed thermodynamic
linearisation, that is the convective disturbances in (1) are small
compared to their reference state values, and the specific entropy
and equation of state are also linearised as in (17) below. The gra-
dient of the gravitational potential perturbation, which would nor-
mally appear in Eq. (15), vanishes in our chosen benchmark
problems because we are assuming the bulk of the mass is concen-
trated inside the inner boundary.

The significant difference between Eq. (15) and the more gen-
eral compressible equation of motion (2) is that use has been made
of the relation
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see e.g. Section 4.2 of Braginsky and Roberts (1995). The omitted
term in (16) is small compared with the others provided the
reference atmosphere is close to adiabatic. This will be the case pro-
vided the dimensionless quantity DS/cp� 1, which is the funda-
mental assumption behind anelastic theory (Ogura and Phillips,
1962).

There are a number of ways of deriving the anelastic approxi-
mation (see e.g. Gilman and Glatzmaier, 1981; Gough, 1969; Lantz
and Fan, 1999), but for this work we start from the assumption that
DS/cp = �� 1. In this case, all the thermodynamic fluctuations from
the reference state can be consistently taken as O(�) compared to
their reference state values, that is q0=�q; p0=P and T 0=T are all
O(�). This then implies from the equation of motion that u2/c2 is
O(�), c being the sound speed. If the length-scale is d = ro � ri, the
timescale on which the convection evolves is then O(d/juj), which
is O(��1/2) times longer than the free-fall time (d/g)1/2. The time-
derivative term in the mass conservation equation is then O(�)
smaller than the retained terms in (4), so that a consistent anelastic
system is derived by keeping only the leading order terms in �.
For consistency, the magnetic field must have an Alfvén speed
vA which is small compared to the sound speed, in fact
v2

A=c2 � Oð�Þ. Since the fluctuations to the density, pressure and
temperature are all O(�) compared to their reference state values,
it follows that any changes to these quantities resulting from the
convection itself are negligible. We therefore take the reference
state variables �q; P and T as fixed in time. The only exception to
this rule is the entropy. Because the reference state entropy and
the entropy fluctuations have the same order of magnitude,
O(DS), the spherically averaged entropy profile can vary signifi-
cantly with time, and forms part of the solution. It also follows that
the Lantz–Braginsky–Roberts approximation is not an additional
approximation to the anelastic approximation, but is a conse-
quence of consistently ignoring all terms that are O(�) smaller than
the leading order terms. Our approach has the merit that it is a
mathematically well-defined asymptotic limit of the full system
of equations. The question of whether the anelastic approximation
is a satisfactory one to make in any specific physical application is
of course an entirely different issue, and one that needs to be
justified in each individual case.
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When the thermodynamic fluctuations are taken as small
perturbations from their reference state values, the entropy defini-
tion and the equation of state become

S ¼ cp

c
p0

P
� cq0

�q

� �
;

p0

P
¼ q0

�q
þ T 0

T
ð17Þ

and if the equations are formulated in a way that computes the
pressure, density and temperature perturbations explicitly, these
forms of the entropy definition and equation of state must be used
in place of (6) and (5), as these have been used to obtain (16). With
formulations, such as the ASH code, which do compute pressure,
density and temperature fluctuations explicitly, and work in dimen-
sional variables, there is a scaling test which can be performed to
check that all terms of order O(�2) have been removed, described
in Section 4.6 below. Such terms can be introduced by, for example,
taking the acceleration term in the form ð�qþ q0Þ@u=@t rather than
�q@u=@t. Since the additional term q0@u/ot vanishes in the anelastic
limit, its introduction would make no difference in the limit DS/
cp ? 0, but in the benchmarks a small but finite value of DS/cp is
used, so to get precise agreement the O(�2) terms must be consis-
tently removed.

We note that not all formulations of the anelastic approxima-
tion are identical. Perhaps the only universal rule is that the
mass-conservation equation always takes the form (4) in any for-
mulation of the anelastic equations. Some authors (e.g. Gough,
1969; Miesch et al., 2000) allow the reference state to vary with
time, on the grounds that while these variations are of the same or-
der in � as the omitted @u/@t term in (4), in specific physical situ-
ations they could be more physically significant. We also note that
our formulation is restricted to the case where boundary condi-
tions on the entropy are imposed. If it is required to apply bound-
ary conditions on other thermodynamic variables, they must be
computed explicitly (see e.g. Clune et al., 1999).

3. Polytropic reference state and the dimensionless formulation

With our assumption of gravity proportional to 1/r2, the anelas-
tic equations admit an equilibrium polytropic solution,

�q ¼ qcf
n; T ¼ Tcf; P ¼ Pcf

nþ1; f ¼ c0 þ
c1d

r
; ð18Þ

where n is the polytropic index, fi and fo are the values of f at the
inner and outer boundaries respectively, d = ro � ri, and the con-
stants c0 and c1 are defined by

c0 ¼
2fo � b� 1

1� b
; c1 ¼

ð1þ bÞð1� foÞ
ð1� bÞ2

;

fo ¼
bþ 1

b expðNq=nÞ þ 1
; fi ¼

1þ b� fo

b
; ð19Þ

where Nq is the number of scale heights of density within the layer,
that is Nq = ln(qi/qo), where qi and qo are the reference state densi-
ties at the inner and outer boundaries respectively. The values qc, pc

and Tc are the reference state density, pressure and temperature
midway between the inner and outer surfaces of the shell. For a per-
fect gas close to adiabatic, the specific heats cp ¼ ðnþ 1ÞR; cv ¼ nR
and their ratio c ¼ ðnþ 1Þ=n; R being the gas constant. From the
hydrostatic equation and the gas law it follows that c1 = GM/cpTcd.

Some codes use dimensional equations, and some adopt a
dimensionless formulation. The equations can be non-dimensiona-
lised using the following units,

length : d; mass : qcd3
; t ¼ d2

g
t�; u ¼ g

d
u�;

r ¼ 1
d
r�; q ¼ qcq

�; r ¼ dr�; p ¼ Xqcgp�;

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xqclg

p
B�; Fm ¼

mg
d3 F�m; S ¼ DSS�; T ¼ TcT� ð20Þ
where qc is density at f = 1 and DS is the unit of entropy. The starred
� quantities in (21) represent dimensionless variables. In purely
hydrodynamic computations, the timescale is taken as d2/m. The
quantities used to define the dimensionless variables can be com-
bined to define the following dimensionless numbers

Ra ¼ GMdDS
mjcp

; Pr ¼ m
j
; Pm ¼ m

g
; E ¼ m

Xd2 ;

Nq ¼ ln
qi

qo

� �
; n; b ¼ ri

ro
; ð21Þ

where Ra is the Rayleigh number, Pr and Pm are the fluid and mag-
netic Prandtl numbers, E is the Ekman number, exp(Nq) is the den-
sity ratio across the layer, n is the polytropic index and b is the
radius ratio. After substituting (21) into (15) and dropping the star
superscript � we obtain
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where
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The dimensionless entropy equation becomes

DS
Dt
¼ Pm

Pr
f�n�1r � fnþ1rSþ Di

f
E�1f�nðr � BÞ2 þ Q m

h i
ð24Þ

with the dissipation parameter Di defined as

Di ¼ GM
dTccp

Pr
PmRa

¼ c1Pr
PmRa

; Q m ¼ 2 eijeij �
1
3
ðr � uÞ2
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The dimensionless induction equation is then

@B
@t
¼ r� ðu� BÞ þ r2B: ð26Þ
4. Benchmark definitions and outputs

Since some codes use a dimensional formulation and others use
a dimensionless formulation, we adopted a specific set of physical
values to define the benchmarks, to facilitate comparisons between
different codes. We also specify how the dimensional and dimen-
sionless values are related, and in our tables of results we give both
the dimensionless and dimensional values, to avoid confusion.

The defining physical inputs for all the models are the radius of
the planet, the angular velocity, the mass, the density on the inner
boundary and the gravitational constant G. The mean molecular
weight was chosen so that the gas constant R ¼ 3:503�
107 erg g�1 K�1 = 3.503 � 103 J kg�1 K�1, approximately that for a
giant planet. The radius ratio then gives the radius of the inner
sphere, and hence the gap width, which is taken as the unit of
length. The remaining six dimensionless parameters in (21) then
specify the model completely. The Ekman number and the rotation
rate determine the kinematic viscosity, and the Prandtl number
then gives the thermal diffusivity, and the magnetic Prandtl num-
ber determines the magnetic diffusivity. The magnetic diffusivity is
used to define the unit of time in dimensionless equations. Once
the polytropic constants are evaluated from our dimensionless
parameter choice using (19), the value of the density at the inner
radius then determines the value of qc in the polytropic law
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q = qcf
n, thus determining the density at the outer radius. The

pressure pc that appears in the polytropic law p = pcf
n+1 satisfies

pc = GMqc/(n + 1)c1d and so is now determined. From pc we can
compute the pressure on the inner and outer boundaries in the
reference state. Next the equation of state determines the
temperatures at the boundaries, and the polytropic index
gives cp ¼ ðnþ 1ÞR. Finally, the chosen Rayleigh number deter-
mines the entropy jump across the shell DS = Ramjcp/ GMd. The
unit of energy is then qcg2d, and of energy density is qcg2/d2. In
hydrodynamic cases, we set g = m, so the energy unit is then also
qcm2d.

The unit of total luminosity comes from the conducted heat
flux, F = �jqTrS erg cm�2 s�1. The unit of q is qc, the unit of T is
Tc, the unit of specific entropy is DS and the unit of distance is d,
so the unit of heat flux is jqcTcDS/d erg cm�2 s�1, and the unit of
luminosity is jqcTcDSd erg s�1.

The unit of magnetic field is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xqclg

p
. If SI units are used for

these quantities, l = 4p � 10�7 and the resulting field is in Tesla.
If cgs units are used, current density is defined as (c/4p)r� B,
and B is then in gauss, 1 T being 104 G. In cgs units, l is taken as
1, and the Lorentz force is then (1/c)j � B.

All these quantities are given below in Tables 1, 3 and 5. The
outputs requested from the participating partners for the two
benchmarks which are steady in a drifting frame were various
components of the energy, the luminosity, the drift rate and point
values of some quantities in the equatorial plane.

4.1. Energies

The kinetic energy is defined as

KE ¼
Z

V

1
2

�qu2r2 sin hdr dhd/; ð27Þ

in spherical polar coordinates (r,h,/), the volume integral being
over the whole spherical shell. Note that �q is a function of r in this
anelastic case, unlike the Boussinesq case. We also give the kinetic
energy density, which is KE divided by the volume V of the shell.
The shell volume V in dimensionless units is

V ¼ 4p
3

1

ð1� bÞ3
� b3

ð1� bÞ3

 !
; ð28Þ

and the physical volume is Vd3.
The magnetic energy is defined as the magnetic energy inside

the fluid. The energy of the potential fields both inside and outside
the shell are not included in this definition, so

ME ¼
Z

V

1
2l

B2r2 sin hdr dhd/: ð29Þ

The kinetic energy of the differential rotation and the meridio-
nal circulation are also quantities of interest. We define the azi-
muthal average by

hui ¼ 1
2p

Z 2p

0
ud/: ð30Þ

The kinetic energy of the zonal flow, or differential rotation, is
then

KEzonal ¼
Z

V

1
2

�qhu/i2r2 sin hdr dhd/; ð31Þ

the integral being over the whole spherical shell V. The kinetic en-
ergy of the meridional flow is then

KEmeridional ¼
Z

V

1
2

�q huri2 þ huhi2
� �

r2 sin hdr dhd/: ð32Þ
In rapidly rotating flows, the meridional kinetic energy is usu-
ally much smaller than the zonal kinetic energy. The magnetic en-
ergy can be decomposed similarly,

MEzonal ¼
Z

V

1
2l
hB/i2r2 sin hdr dhd/; ð33Þ

and

MEmeridional ¼
Z

V

1
2l

hBri2 þ hBhi2
� �

r2 sin hdr dhd/: ð34Þ
4.2. Luminosity

The luminosity is

L ¼
Z

s
�j�qT

@S
@r

r2 sin hdhd/; ð35Þ

where the integral is taken over the top surface or the bottom sur-
face. These quantities have the same magnitude in a steady state
solution (or steady drifting solution) because there are no internal
heat sources. Note that viscous and ohmic heating are not internal
heat sources, but are balanced by the work done against gravity by
the buoyant convection in the overall energy balance. The luminos-
ity coming from the conduction state, when no convection occurs, is
given by (35) with the conduction state entropy Scond defined by

Scond ¼
DS f�n

o � f�n	 

f�n

o � f�n
i

: ð36Þ

This gives the basic state luminosity as 4pnc1f
n
i ðexp Nq � 1Þ�1

times the unit of luminosity. This value is given for each bench-
mark in Tables 1, 3 and 5. The Nusselt number is defined as the ac-
tual output luminosity divided by this basic state luminosity.

All the models reported that for the benchmarks steady in the
drifting frame, the luminosity evaluated at the top and bottom
eventually became the same, so only the one value is recorded
here. Since the Nusselt number can easily be obtained by dividing
by the basic state heat flux listed in the defining tables, this is not
given separately. For the unsteady benchmark, the top and bottom
luminosities are not the same at any one instant, though their long
term averages must converge to the same value.

4.3. Drift speed

In some parameter regimes, solutions that are steady in a drift-
ing frame can be found with a uniform angular velocity, x. If the
solution is written as f(r,h,/ �xt) then if the solution has m-fold
symmetry the period s is related to the angular drift frequency
by x = 2p/ms. In dimensionless units x = xdg/d2 and the unit of
s is d2/g. The drift speed can easily be expressed as a fraction of
the angular rotation velocity using the formula x/X = xdE/Pm.
The drift angular speed in compressible rotating convecting is
typically significantly faster than in the Boussinesq case (Jones
et al., 2009). In the steady benchmark Tables 2 and 4 both the
period and angular speeds are quoted.

4.4. Point values

For the Boussinesq benchmark (Christensen et al., 2001) con-
tributors were requested to supply data values at specific points
in the solution. We adopt here the same principle for the two
benchmarks that are steady in a drifting frame. We define the spe-
cific points as having a radial location midway between the inner
and outer shells, rm = (ri + ro)/2, and lying in the equatorial plane,
h = p/2. Since the solution drifts in longitude, no fixed point can



Table 1
Parameters for the hydrodynamic benchmark. The chosen defining physical input
values determine the conversion from dimensionless to dimensional units.

Dimensionless parameters
E = 10�3, Nq = 5, b = 0.35, Ra = 351,806, Pr = 1, n = 2

Defining physical input values
ro = 7 � 109 cm, X = 1.76 � 10�4 s�1, M = 1.9 � 1030 g, qi = 1.1 g cm�3,

R ¼ 3:503� 107 erg g�1 K�1, G = 6.67 � 10�8 g�1 cm3 s�2

Polytropic constants
f0 = 0.256465, fi = 3.124385, c0 = �1.287800, c1 = 2.375792, V = 14.598801

Derived physical input values
ri = 2.45 � 109 cm, d = 4.55 � 109 cm, m = 3.64364 � 1012 cm2 s�1,

j = 3.64364 � 1012 cm2 s�1

Derived thermodynamic quantities in the model
qc = 0.112684 g cm�3, qo = 0.00741174 g cm�3, Ti = 348,548 K, Tc = 111,557 K,

To = 28,611 K,
pi = 1.343061 � 1013 dyne cm�2, pc = 4.403540 � 1011 dyne cm�2,

po = 7.428259 � 109 dyne cm�2,
DS = 851225.7 erg g�1 K�1, cp = 1.0509 � 108 erg g�1 K�1, DS/cp = 0.0081,
Basic state luminosity = 7.014464 � 1032 erg s�1

Dimensionless units
Velocity 800.8 cm s�1; time 5.681818 � 106 s; distance 4.55 � 109 cm;

energy 6.806845 � 1033 erg
Energy density 7.226228 � 104 erg cm�3; luminosity 1.773999 � 1032 erg s�1
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be taken, but instead we choose the longitude at which the radial
velocity ur is zero at rm and h = p/2. We select the point at which ur

is increasing with longitude rather than decreasing with longitude,
our/@/ > 0. For both our steady benchmarks this is sufficient to
determine the specified point. Because our solutions have azi-
muthal symmetry of order m, there are m equivalent points, but
all the data are identical at all equivalent points, so the values
are well-defined. We give the azimuthal velocity u/, the entropy
S and the latitudinal component of magnetic field Bh in the steady
dynamo benchmark case. Since the field in this dynamo has dipolar
parity, Br = B/ = 0 on the equatorial plane, so only Bh is appropriate
here. The dynamo equations are invariant under a reversal of the
sign of the magnetic field, so Bh can have positive or negative val-
ues at the critical point, depending on the dipole polarity found,
which is determined by the initial condition. For the unsteady
benchmark, the point values vary with time, so we do not record
these values.

4.5. Resolution

All the codes that contributed to the benchmark were pseudo-
spectral, that is the h and / dependence was represented by an
expansion in spherical harmonics. The spherical harmonic expan-
sion of the dependent variables is truncated, and nonlinear terms
are evaluated by transforming to a mesh in physical space. This
mesh has typically more points than the truncation level of the
spherical harmonic expansion, typically in the h direction 50%
more points than harmonics. In the / direction, there are typically
three times as many points on the physical mesh as the order of
the highest harmonic, as the m in the expansion can take positive
or negative values. The resolution values shown in Tables 2, 4 and 6
refer to the number of points on the physical mesh used, so these
are typically larger than the order or degree of the highest spheri-
cal harmonic used.

The codes differed in the treatment of the radial equation. Some
used expansion in Chebyshev polynomials, others used high order
finite differences. The radial resolution Nr quoted in the tables can
therefore either be the number of grid points in r or the number of
Chebyshev polynomials used. So a quoted resolution of
Nr � Nh � N/ means Nr points or polynomials in the radial direc-
tion, Nh latitudinal points on the physical space grid and N/ longi-
tudinal points on the physical space grid. We also quote the
timestep used in the simulations and the length of the run. The
timestep required is of course dependent on the details of the
numerical method, but the information is included to help
researchers to estimate the computational resources needed to
tackle anelastic convection problems.

4.6. Scaling test

Formulations in dimensional variables will require an input
value of DS and one might wonder whether the solution should
depend on the dimensionless parameter DS/cp as well as the values
of the dimensionless parameters (21). If the rotation rate and all
the diffusivities are halved, then provided the value of DS is
divided by four, and all other quantities left the same, all the
dimensionless parameters are unchanged. The timescale changes
by a factor 2, so the energies obtained should be exactly four times
less than in the original benchmark, and the luminosity exactly
eight times less. Note that the dimensional timestep should be
doubled. So varying DS/cp and keeping the dimensionless parame-
ters the same only scales the solution, so nothing is fundamentally
changed. Because in the anelastic approximation this scaling
changes DS/cp, this test will not be passed if there are terms of
order (DS/cp)2 left in the formulation. If the equations are formu-
lated in the dimensionless LBR form, this test is not necessary,
because only the dimensionless variables appear, and DS/cp is
scaled out of the equations at the start. The ASH code, and the older
version of the Glatzmaier code which did not use the LBR formula-
tion, both passed this test.
5. Hydrodynamic benchmark

The dimensionless parameters for this run are specified in
Table 1. They were chosen so that a solution that is steady in a
drifting frame could be obtained, so that the kinetic energy, lumi-
nosity and drift speed all tend to well-defined constant values as
the time integration proceeds. The value of Nq = 5 gives a density
ratio of nearly 150 across the shell, so compressible effects on
the convection are very strong. Stress-free, constant entropy
boundary conditions are applied.

A separate linear code for evaluating the Rayleigh number at the
onset of convection (Jones et al., 2009) was used to determine the
onset values for this hydrodynamic benchmark. Linear distur-
bances have azimuthal and time-dependence �exp( im/ � ixmt),
m being an integer. With Table 1 parameters Nq = 5, n = 2, ri/ro =
0.35, Pr = 1, E = 0.001 and stress-free boundaries, the first mode
to become unstable has an azimuthal wavenumber m = 20, and
occurs at Racrit = 283175.01. The corresponding frequency is
xm = 269.56. In the nonlinear hydrodynamic benchmark simula-
tions, the solution developing from the m = 19 mode was generally
found, and this is the benchmark solution. The onset for m = 19 is
very close to the m = 20 onset, with parameters Ra = 283779.37,
m = 19, xm = 279.34. The conducted heat flux with no convection
is 3.954041 in the dimensionless units. To help those developing
codes, we also used the linear code to evaluate the growth rate
and frequency of small disturbances to the basic reference state,
that is the state defined by Eq. (18) and (36) at the benchmark va-
lue of the Rayleigh number. In dimensionless units, at the hydrody-
namic benchmark parameter values listed in Table 1, the growth
rate of m = 19 small disturbances is 77.551 with frequency
269.05, using our linear code. In the dimensional units this growth
rate corresponds to 1.1793 days�1. The energy of the disturbance,
proportional to the square of the velocity perturbation, grows at
twice this value, i.e. 2.3586 days�1. As part of our testing proce-
dures, we computed the growth rate by observing the develop-
ment of the energy of a small disturbance from the basic



Table 2
Results from the hydrodynamic benchmark.

Code Leeds Glatzmaier ASH MAGIC

K.E. (erg) 5.57195 � 1035 5.57028 � 1035 5.52650 � 1035 5.57062 � 1035

K.E. dimensionless 81.8581 81.8335 81.1903 81.8385
K.E. density (erg cm�3) 4.05188 � 105 4.05066 � 105 4.01882 � 105 4.05091 � 105

Luminosity (erg s�1) 7.44878 � 1032 7.44878 � 1032 7.44877 � 1032 7.44880 � 1032

Luminosity dimensionless 4.19886 4.19886 4.19886 4.19887

Zonal K.E. (erg) 6.38294 � 1034 6.38099 � 1034 6.33063 � 1034 6.38151 � 1034

Zonal K.E. dimensionless 9.37724 9.37437 9.30039 9.37514
Meridional K.E. (erg) 1.49875 � 1032 1.49825 � 1032 1.48637 � 1032 1.49843 � 1032

Meridional K.E. dimensionless 0.0220183 0.0220109 0.0218364 0.0220136

Period s dimensional (days) 1.23264 1.23263 1.23263 1.23241
Period s dimensionless 0.0187440 0.0187440 0.0187439 0.0187404
x = 2p/19s (rad s�1) 3.10511 � 10�6 3.10512 � 10�6 3.10512 � 10�6 3.10570 � 10�6

x = 2p/19s dimensionless 17.6427 17.6427 17.6428 17.6460

u/ at ur = 0 (cm s�1) 690.15 690.27 687.65 689.66
u/ at ur = 0 dimensionless 0.86183 0.86197 0.85871 0.86122
S at ur = 0 (erg g�1 K�1) 7.9420 � 105 7.9452 � 105 7.9766 � 105 7.9452 � 105

S at ur = 0 dimensionless 0.93301 0.93338 0.93707 0.93338

Resolution 128 � 192 � 384 121 � 512 � 1024 129 � 256 � 512 121 � 192 � 384
Timestep (s) 14.2 33 33 28.41
Timestep dimensionless 2.5 � 10�6 5.8 � 10�6 5.8 � 10�6 5 � 10�6

Run length (days) 92 450 154.4 197.29
Run length dimensionless 1.4 6.8 2.35 3.0
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Fig. 1. Hydrodynamic benchmark. Dimensionless units throughout. (a) Radial velocity ur in the equatorial plane. The m = 19 azimuthal symmetry is apparent. Black contours
at ur = 5 and ur = 15, white contours at ur = �5 and ur = �15. (b) Cut-away plot of the radial velocity ur showing the columnar structure and the concentration of convection
near the outer boundary. The innermost shell is the inner boundary at r = 0.538, the interior shell is at r = 1.437, and the outer shell is the outer boundary at r = 1.538. The
latitudinal circle where the tangent cylinder, the imaginary cylinder with axis parallel to the rotation axis that touches the inner core, cuts the outer boundary is also shown.
Contours as in (a). (c) The azimuthal velocity u/. Again the columnar structure is evident, as is the preponderance of eastward to westward flow near the outer boundary. The
stress-free boundary means u/ is non-zero on the displayed outer boundary. Black contours at u/ = 9 and u/ = 27, white contour at u/ = �9. (d) The entropy S. The entropy
gradient is strongest near the outer boundary. Note that the entropy in the interior is strongly correlated with ur. White contours at S = 0.2, 0.4, black contours at S = 0.6, 0.8.
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Table 3
Parameters for the steady dynamo benchmark.

Dimensionless parameters
E = 2 � 10�3, Nq = 3, b = 0.35, Ra = 80,000, Pr = 1, Pm = 50, n = 2

Defining physical input values
ro = 7 � 109 cm, X = 1.76 � 10�4 s�1, M = 1.9 � 1030 g, qi = 1.1 g cm�3,

R ¼ 3:503� 107 erg g�1 K�1, G = 6.67 � 10�8 g�1 cm3 s�2

Polytropic constants
f0 = 0.525580, fi = 2.355486, c0 = �0.459754, c1 = 1.515898, V = 14.598801

Derived physical input values
ri = 2.45 � 109 cm, d = 4.55 � 109 cm, m = 7.28728 � 1012 cm2 s�1,

j = 7.28728 � 1012 cm2 s�1, g = 1.457456 � 1011 cm2 s�1

Derived thermodynamic quantities in the model
qc = 0.198258 g cm�3, qo = 0.0547658 g cm�3, Ti = 411,829 K, Tc = 174,838 K,

To = 91891.5 K,
pi = 1.586901 � 1013 dyne cm�2, pc = 1.214251 � 1012 dyne cm�2,

po = 1.762888 � 1011 dyne cm�2,
DS = 774268.3 erg g�1 K�1, cp = 1.0509 � 108 erg g�1 K�1, DS/cp = 0.0074,
Basic state luminosity = 9.856055 � 1033 erg s�1

Dimensionless units
Velocity 32.032 cm s�1; time 1.420455 � 108 s; distance 4.55 � 109 cm;

energy 1.916170 � 1031 erg;
Energy density 203.4229 erg cm�3; luminosity 8.898904 � 1032 erg s�1;

magnetic field 7994.197 G
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reference state. The Leeds code gave 2.3566 days�1 and the ASH
code 2.35654 days�1, both in good agreement with the linear code.

A nonlinear solution at the parameters given in Table 1 was
found with m = 19 azimuthal symmetry and the results are shown
in Table 2. The quantities displayed in Table 2 are those defined in
Section 4. Although the solution can be obtained cheaply by
assuming this azimuthal symmetry, this was not done in the sim-
Table 4
Results from the steady dynamo benchmark.

Code Leeds Gla

M.E. (erg) 6.13528 � 1036 6.1
M.E. dimensionless 3.20185 � 105 3.2
M.E. density (erg cm�3) 4.46152 � 106 4.4

K.E. (erg) 8.03654 � 1036 8.0
K.E. dimensionless 4.19407 � 105 4.1
K.E. density (erg cm�3) 5.84410 � 106 5.8

Luminosity (erg s�1) 1.02364 � 1034 1.0
Luminosity dimensionless 11.5030 11.

Zonal M.E. (erg) 4.62190 � 1036 4.6
Zonal M.E. dimensionless 2.41205 � 105 2.4
Meridional M.E. (erg) 3.25104 � 1035 3.2
Meridional M.E. dimensionless 1.69664 � 104 1.6

Zonal K.E. (erg) 1.15305 � 1036 1.1
Zonal K.E. dimensionless 6.01749 � 104 6.0
Meridional K.E. (erg) 1.01587 � 1033 1.0
Meridional K.E. dimensionless 53.0157 53.

Period s (days) 2.41180 2.4
Period s dimensionless 1.46699 � 10�3 1.4
x = 2p/7s(rad s�1) 4.30752 � 10�6 4.3
x = 2p/7s dimensionless 611.864 611

u/ at ur = 0 (cm s�1) �2939.9 �2
u/ at ur = 0 dimensionless �91.780 �9
S at ur = 0 (erg g�1 K�1) 6.0893 � 105 6.0
S at ur = 0 dimensionless 0.78646 0.7
Bh at ur = 0 (G) ±271.39 ±27
Bh at ur = 0 dimensionless ±0.03395 ± 0

Resolution 128 � 144 � 252 65
Timestep (s) 142 300
Timestep dimensionless 10�6 2.1

Run length (days) 8648 17,
Run length dimensionless 5.26 10.
ulations presented here. The codes all evolved naturally to the state
with this symmetry, showing that it is a stable attractor, i.e. stable
to small disturbances with any azimuthal symmetry. The m = 19
solution is not unique; for example, an m = 20 solution with a
slightly lower kinetic energy than the m = 19 case is also stable.
The m = 19 solution can conveniently be found if the initial condi-
tion is specified as a small m = 19 entropy perturbation, with a
smaller m = 1 perturbation, which will allow all m modes to popu-
late initially, all other variables being initially zero.

In Fig. 1 we display the characteristic properties of this hydro-
dynamic benchmark solution. The radial velocity plot in Fig. 1a
makes the m = 19 symmetry apparent. In Fig. 1b a cutaway section
of the radial velocity is shown, and the proximity of the convection
to the outer boundary is clear, though despite this the columnar
structure of the convection is evident. The azimuthal velocity is
shown in Fig. 1c. The stress-free boundary condition means u/ is
non-zero at the outer boundary. Although the convective structure
is still clear, the predominantly eastward (positive) flow is appar-
ent. The entropy is shown in Fig. 1d. The basic state entropy gradi-
ent is strongest near the outer sphere, and this is why the
convection is predominantly close to the outer sphere.

6. Steady dynamo benchmark

The dimensionless parameters for this run are specified in Table
3. As before we set the polytropic index n = 2. Again, stress-free,
impenetrable, electrically insulating boundary conditions were ap-
plied, and the entropy set to DS on the inner boundary and zero on
the outer boundary. The solution sought is steady in a drifting
frame, so that the computed magnetic and kinetic energies tend
to time-independent well-defined values, greatly facilitating com-
parison between different codes.
tzmaier ASH MAGIC

3333 � 1036 6.08670 � 1036 6.12692 � 1036

0083 � 105 3.17649 � 105 3.19748 � 105

6010 � 106 4.42619 � 106 4.45544 � 106

3623 � 1036 7.97382 � 1036 8.03712 � 1036

9390 � 105 4.16134 � 105 4.19437 � 105

4387 � 106 5.79849 � 106 5.84452 � 106

2364 � 1034 1.02364 � 1034 1.02363 � 1034

5030 11.5030 11.5029

2046 � 1036 4.58531 � 1036 4.61589 � 1036

1130 � 105 2.39295 � 105 2.40891 � 105

4927 � 1035 3.22473 � 1035 3.24307 � 1035

9571 � 104 1.68290 � 104 1.69248 � 104

5318 � 1036 1.14414 � 1036 1.15435 � 1036

1815 � 104 5.97098 � 104 6.02426 � 104

1587 � 1033 1.00794 � 1033 1.01475 � 1033

0110 52.6019 52.9572

1175 2.41175 2.41136
6696 � 10�3 1.46696 � 10�3 1.46672 � 10�3

0760 � 10�6 4.30761 � 10�6 4.30830 � 10�6

.875 611.877 611.975

942.2 �2935.1 �2942.1
1.852 �91.631 �91.848
893 � 105 6.0889 � 105 6.0892 � 105

8646 0.78641 0.78645
2.92 ±273.40 ±272.38

.03414 ±0.03420 ±0.03407

� 128 � 256 129 � 128 � 256 65 � 128 � 256
200 142.05

� 10�6 1.4 � 10�6 10�6

000 6673 9173.77
3 4.06 5.58
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Fig. 2. Steady dynamo benchmark. Dimensionless units throughout. (a) Radial velocity in the equatorial plane. The m = 7 azimuthal symmetry is apparent. Black contours at
ur = 60 and ur = 180, white contours at ur = �60 and ur = �180. (b) Cut-away plot of the radial velocity. Note that flow is columnar, that is only weakly z-dependent. ur is
symmetric about the equator in this solution. The innermost shell is at r = 0.538, interior shell is at r = 1.221, and the outer shell at r = 1.538. The latitudinal circle where the
tangent cylinder cuts the outer boundary is also shown. The solution is tilted forward 15�. Contours as in (a). (c) As (b) but for the azimuthal velocity u/. In the outer part of
the shell, eastward flow is dominant, in the inner region and at higher latitudes the flow is more westward. The azimuthal flow is also rather columnar. Black contours at
u/ = 160 and u/ = 480, white contour at u/ = �160. (d) The radial magnetic field Br. Note the dipolar parity of the field which means Br = 0 on the equatorial plane. There is a
substantial axisymmetric component, though the m = 7 component is clearly visible near the interior shell. Black contours at Br = 0.2 and Br = 0.6, white contours at Br = �0.2
and Br = �0.6. (e) The azimuthal magnetic field B/. This is almost entirely of one sign in the northern hemisphere (very small negative values do exist but at a value below the
lowest contour level) and the opposite sign in the southern hemisphere. Note the ‘invisible’ azimuthal field is significantly stronger than the radial field at the surface. Black
contours at B/ = 0.8 and B/ = 2.4. (f) The meridional magnetic field Bh. This is not zero on the equatorial plane, but is surprisingly small there, except close to the inner core.
Black contours at Bh = 0.3 and Bh = 0.9, white contour at Bh = �0.3.
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It proved to be quite difficult to find such solutions. The mag-
netic Reynolds number, Rm = U0d/g, U0 being the root mean square
velocity, must be quite large to give dynamo action, typically of or-
der at least 100, and rapidly rotating convection typically has cha-
otic time-dependence at Rayleigh numbers not much above
critical. The only possibility is therefore to have quite large mag-
netic Prandtl number, so that a large Rm can be achieved at mod-
erate fluid Reynolds number Re = Rm/Pm and hence a Rayleigh



Table 5
Parameters for the unsteady dynamo benchmark.

Dimensionless parameters
E = 5 � 10�5, Nq = 3, b = 0.35, Ra = 2.5 � 107, Pr = 2, Pm = 2, n = 2

Defining physical input values
ro = 7 � 109 cm, X = 1.76 � 10�4 s�1, M = 1.9 � 1030 g, qi = 1.1 g cm�3,

R ¼ 3:503� 107 erg g�1 K�1, G = 6.67 � 10�8 g�1 cm3 s�2

Polytropic constants
f0 = 0.525580, fi = 2.355486, c0 = �0.459754, c1 = 1.515898, V = 14.598801

Derived physical input values
ri = 2.45 � 109 cm, d = 4.55 � 109 cm, m = 1.82182 � 1011 cm2 s�1,

j = 9.1091 � 1010 cm2 s�1, g = 9.1091 � 1010 cm2 s�1

Derived thermodynamic quantities in the model
qc = 0.198258 g cm�3, qo = 0.0547658 g cm�3, Ti = 411,829 K, Tc = 174,838 K,

To = 91891.5 K,
pi = 1.586901 � 1013 dyne cm�2, pc = 1.214251 � 1012 dyne cm�2,

po = 1.762888 � 1011 dyne cm�2,
DS = 7.56121 � 104 erg g�1 K�1, cp = 1.0509 � 108 erg g�1 K�1, DS/

cp = 0.0007195
Basic state luminosity = 1.2031317 � 1031 erg s�1

Dimensionless units
Velocity 20.02 cm s�1; time 2.272727 � 108 s; distance 4.55 � 109 cm;

energy 7.485038 � 1030 erg;
Energy density 79.462060 erg cm�3; luminosity 1.086292 � 1030 erg s�1;

magnetic field 6319.967 G
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number not far above critical. Large Pm can however lead to com-
putational difficulties, as small timesteps are necessary to resolve
temporal variations of the flow field, while long integrations are
necessary to ensure that the magnetic field has achieved its final
state. The chosen benchmark is therefore necessarily a compro-
mise, but because the steady drifting state has a well-defined
and fairly large-scale structure, it can be computed without exces-
sive computational resources.

In the actual rotating frame in which the computations are
done, the solution is time-dependent. This means that the choice
of timestep is important. Indeed, in compressible anelastic convec-
tion in spherical shells the drift speed is generally larger than in
Boussinesq convection for reasons given in Jones et al. (2009)
and Evonuk (2008), so accurate solutions typically require a some-
what smaller timestep than in the Boussinesq case.

With the parameters Nq = 3, n = 2, ri/ro = 0.35, Pr = 1, E = 0.002
and stress-free boundaries, the first mode to become unstable
has an azimuthal wavenumber m = 10, and occurs at Racrit =
61621.682. The corresponding frequency is xm = 101.38m/d2 or
xm = 5069.0g/d2 on the magnetic diffusion timescale used here.
In the nonlinear steady benchmark simulations, the m = 7 mode
was generally found. The onset for m = 7 is at Ra = 65745.82,
xm = 100.83m/d2. The steady benchmark Rayleigh number at
80,000 is only about 1.3 times the critical Rayleigh number for
the onset of convection. If the Rayleigh number is much greater
than 1.3 times critical, the convection and the dynamo are
unsteady.

A number of different initial conditions were tried which re-
sulted in the m = 7 steady drifting solution. Perhaps the simplest
to implement are a zero initial velocity perturbation, a small ran-
dom non-zero entropy perturbation, and a small random non-zero
magnetic field perturbation. Provided the perturbations contain
modes with all wavenumbers and no imposed symmetries, the ex-
act nature of the perturbations seems not to be critical. An m = 7
convection pattern emerged which leads to a dynamo which also
has m = 7 symmetry, that is only azimuthal modes which are inte-
ger multiples of 7 have non-zero amplitudes. All other modes de-
cay away to zero. Although the solution has exact m = 7
symmetry, this should not be imposed, as then the issue of
whether the m = 7 solution is stable to perturbations without this
symmetry is not addressed. However, once the stability of the
m = 7 solution has been checked, imposing m = 7 symmetry a priori
will save computer time without affecting the accuracy of the re-
sults, when for example testing the effect of changing resolution
or timestep.

The typical behaviour during the initial transient is that the
convection settles to a mode which has m = 7 dominant, but not
with exact m = 7 symmetry. Initially, the magnetic energy falls,
but after about a quarter of a diffusion time (depending on the ini-
tial magnetic perturbation) an m = 7 magnetic perturbation starts
to grow exponentially. This m = 7 perturbation takes some time
to grow, the magnetic energy multiplying by a factor 10 in about
0.19 of the magnetic diffusion time, but eventually it affects the
convection, and the nonlinear solution with exact m = 7 symmetry
emerges. We did not find any other dynamo solutions at these
parameters other than the m = 7 solution reported here. However,
this is a complex nonlinear system, so we cannot be sure that other
stable solutions do not exist.

All four codes tested found a steady solution with exact m = 7
symmetry as shown in Fig. 2. The solution drifts with a uniform
angular velocity, so all quantities have the form f(r,h,/ �xt) with
x = 2p/7s because of the sevenfold symmetry. In the coordinate
frame the period is close to s = 1.467 � 10�3 in the dimensionless
units based on the magnetic diffusion time, corresponding to
2.412 days. The drift here is eastward while the Boussinesq dyna-
mo benchmark (Christensen et al., 2001) drifts westward. The drift
speed of this anelastic compressible dynamo is significantly faster
than the Boussinesq benchmark value. This pattern is rotating at 1/
40.86 of the planetary rotation rate eastward. The Christensen
benchmark rotated at 1/323 of the planetary rotation rate west-
ward. For comparison, the linear theory gave xm = 5069 at the on-
set of convection in the dimensionless units when Ra = 61,622 and
m = 10. Because we write the wave form as exp(im/ �xmt),
x = xm/10 = 506.9, slightly slower than our nonlinear drift fre-
quency x = 611.9.

The form of the steady dynamo benchmark is shown in Fig. 2.
Unlike the hydrodynamic benchmark, the m = 7 convection pattern
occurs over the whole equatorial plane, as shown in Fig. 2a. The
density contrast is reduced to Nq = 3 here compared to Nq = 5 in
the hydrodynamic case. Although the Ekman number is 2 � 10�3,
and so not very small compared with recently published Bous-
sinesq dynamos (Kageyama et al., 2008; Sakuraba and Roberts,
2009; Jones, 2011) the convection is still columnar as can be seen
in Fig. 2b and c. From Fig. 2c we see that the azimuthal flow is
mainly eastward near the outer boundary and more westward in
the interior. The radial component of magnetic field shows a dipo-
lar symmetry (Fig. 2d). For the magnetic field, two equivalent solu-
tions are possible that differ only in sign. The field may thus be
dominantly outward in the northern and inward in the southern
hemisphere (as shown in Fig. 2d), or the other way round. Which
is found depends on the initial condition, but both of course have
identical energies. There is a strong axisymmetric component to
the magnetic field structure, particularly apparent near the poles
in the radial component of the magnetic field (Fig. 2d) and every-
where in the azimuthal magnetic field (Fig. 2e). Note that the
dipolar symmetry of the field means B/ is antisymmetric about
the equator and hence exactly zero on the equatorial plane. The
latitudinal component of the magnetic field (Fig. 2f) is symmetric
about the equator and hence non-zero there. It is however surpris-
ingly weak on the equatorial plane except very close to the inner
boundary.
7. Unsteady dynamo benchmark

The hydrodynamic and steady dynamo benchmarks are quite
close to critical, so the convective heat flux is less than the con-



Table 6
Results from the unsteady dynamo benchmark. Time-averaged values are shown, with the corresponding standard deviation in square brackets, expressed as a percentage of the
average value.

Code Leeds Glatzmaier ASH MAGIC

M.E. (erg) 1.81 � 1036 [12%] 1.80 � 1036 [10%] 1.77 � 1036 [13%] 1.84 � 1036 [11%]
M.E. dimensionless 2.42 � 105 [12%] 2.40 � 105 [10%] 2.37 � 105 [13%] 2.46 � 105 [11%]

K.E. (erg) 1.74 � 1036 [13%] 1.75 � 1036 [12%] 1.72 � 1036 [12%] 1.74 � 1036 [12%]
K.E. dimensionless 2.32 � 105 [13%] 2.34 � 105 [12%] 2.29 � 105 [12%] 2.32 � 105 [12%]

Zonal M.E. (erg) 7.07 � 1034 [40%] 7.07 � 1034 [38%] 7.12 � 1034 [34%] 7.10 � 1034 [41%]
Zonal M.E. dimensionless 9.45 � 103 [40%] 9.45 � 103 [38%] 9.51 � 103 [34%] 9.49 � 103 [41%]
Meridional M.E. (erg) 1.59 � 1035 [43%] 1.66 � 1035 [33%] 1.53 � 1035 [38%] 1.67 � 1035 [44%]
Meridional M.E. dimensionless 2.13 � 104 [43%] 2.22 � 104 [33%] 2.04 � 104 [38%] 2.23 � 104 [44%]

Zonal K.E. (erg) 1.02 � 1035 [37%] 1.00 � 1035 [43%] 1.02 � 1035 [55%] 1.02 � 1035 [38%]
Zonal K.E. dimensionless 1.36 � 104 [37%] 1.34 � 104 [43%] 1.36 � 104 [55%] 1.36 � 104 [38%]
Meridional K.E. (erg) 7.84 � 1032 [31%] 8.36 � 1032 [30%] 8.90 � 1032 [29%] 8.28 � 1032 [32%]
Meridional K.E. dimensionless 105 [31%] 112 [30%] 119 [29%] 111 [32%]

Luminosity (erg s�1) 4.62 � 1031 4.67 � 1031 4.65 � 1031 4.64 � 1031

Luminosity dimensionless 42.5 43.0 42.8 42.7
Standard deviation (bottom) 11% 11% 9% 11%
Standard deviation (top) 4% 4% 3% 5%

Resolution 96 � 288 � 576 129 � 256 � 512 129 � 256 � 512 121 � 256 � 512
Timestep (s) 681 100 100 113.64
Timestep dimensionless 3 � 10�6 4.4 � 10�7 4.4 � 10�7 5 � 10�7

Run length (days) 3950 1022 2014 3644
Run length dimensionless 1.5 0.39 0.77 1.35
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Fig. 3. Energies and luminosities of the unsteady benchmark. (a) The magnetic and kinetic energies and the top and bottom luminosities during the initial transient. (b) The
magnetic and kinetic energies for one diffusion time after saturation. Also shown are the azimuthally averaged zonal magnetic and kinetic energies and meridional magnetic
and kinetic energies. (c) The running average of those energies. (d) The top and bottom luminosities and their running averages.
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ducted heat flux, Nusselt numbers being 1.062 and 1.039 respec-
tively. To test the codes at higher critical Ra, in a situation where
the convective heat flux is significantly larger than the conducted
flux, we examined an unsteady dynamo benchmark with parame-
ters given in Table 5. The price paid for increasing Ra to well above
critical is that the solutions become unsteady, indeed mildly turbu-
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Fig. 4. Unsteady dynamo benchmark snapshots. Dimensionless units throughout. (a) Ra
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the equatorial plane, the flow is still columnar. There is some convection inside the tan
r = 1.221, and the outer shell at r = 1.538. The solution is tilted forward 30�. Contours a
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contours at u/ = �110 and u/ = �330. (d) The entropy. The convection has created a therm
White contours at S = 0.2, 0.4, black contours at S = 0.6, 0.8. (e) The radial magnetic field Br

a few large scale patches of field, but they do not persist in time. Black contours at Br = 0.
B/. Like the radial field this has no persistent large scale structure. Unlike the steady b
contours at B/ = 0.5 and B/ = 1.5, white contours at B/ = �0.5 and B/ = �1.5.
lent, so that only averaged values of kinetic and magnetic energy,
and luminosity, can be found. Because it is only practical to inte-
grate at higher Rayleigh numbers for at most a few diffusion times,
computed averages will not have completely settled by the end of
the run, so we cannot expect the same accuracy levels as are pos-
sible for the benchmarks which are steady in a drifting frame.
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The procedure adopted for the time average and standard devi-
ations listed in Table 6 was to start from a small thermal and mag-
netic perturbation, until the large initial transients disappear (see
Fig. 3a). Then the solution was integrated for a further settling
time, typically about half a magnetic diffusion time, and then the
averaging process was started, over the data shown in Fig. 3b
(energies) and 3d (luminosities). As can be seen from these figures,
the energies continually fluctuate randomly with an amplitude of
about 10%, so to give some indication of whether the average val-
ues are settling we plot the running averages in Fig. 3c. The run-
ning average kinetic energy is defined as

AKEðtÞ ¼ 1
t � t0

Z t

t0

Z
V

1
2

�qu2 r2 sin hdr dhd/dt ð37Þ

where t0 is the point at which the averaging starts, which for Fig. 3
was t0 = 0.557 in units of the magnetic diffusion time. Running aver-
ages for other quantities are defined similarly. It appears as though
the magnetic and kinetic energies do settle to well-defined values,
but it would require a very long (and expensive) time-integration
to get these values to significantly better than 1% accuracy. Simi-
larly, the running average of the luminosity emerging from the
top boundary should approach the luminosity flowing into the
bottom boundary, as there are no internal heat sources. We see in
Fig. 3d that this does happen, but that it takes a long time for equal-
ity to establish.

The onset of convection for the unsteady benchmark parameter
values occurs with an m = 43 mode at Ra = 9.33002 � 106, with
xm = 590.12m/d2, which corresponds to xm = 1180.24 in our
dimensionless units. The unsteady benchmark Rayleigh number
is therefore 2.68 times the critical value for the onset of convection.

In Table 6 we give the results for the averages found by the var-
ious groups for this unsteady benchmark, giving as before both
dimensional and dimensionless values to facilitate comparison be-
tween codes. We also give the standard deviation of the energy of
the run, defined as

r ¼ 1
tf � t0

Z tf

t0

ðE� �EÞ2 dt
� �1=2

; ð38Þ

where E is the average energy over the whole run between t0 and tf.
Note that t0 should be chosen large enough for the effects of initial
transients to be removed. It is even harder to establish precise val-
ues for the standard deviations than for the average energies them-
selves, so these standard deviations are only included to give some
estimate of the amount of fluctuation to be expected.

The form of the solution for the unsteady dynamo benchmark
can be seen in the snapshots shown in Fig. 4. Unlike the solutions
shown in Figs. 1 and 2, the flow and field patterns vary consider-
ably with time, so these are only typical of the behaviour;
researchers should not be unduly concerned if their equivalent
plots differ somewhat from these. The low value of E = 5 � 10�5

leads to thin convection columns, visible in the radial velocity
Fig. 4a and b. Convection occurs both inside and outside the tan-
gent cylinder, but at these parameters it is weaker inside the tan-
gent cylinder. There is significant differential rotation, strongly
eastward in the equatorial plane, westward at higher latitudes.
In Fig. 4d we see that the entropy has been affected by the con-
vection, as expected with larger Nusselt numbers; the average
Nusselt number for the unsteady dynamo benchmark is around
3.9. The entropy is still fairly close to the inner boundary value
except near the outer boundary. The magnetic field shows no
persistent large scale structure, unlike the steady dynamo bench-
mark. Patches of large scale field, both radial and azimuthal, can
be seen in Fig. 4e and f, but they come and go in different loca-
tions as time increases. Despite this, the overall magnetic energy
reaches a fairly well-defined average value (Fig. 3c) and even the
azimuthally averaged zonal and meridional fields approach well-
defined limiting values.
8. Discussion and conclusions

Once the benchmark cases were formulated, a number of dif-
ficulties were experienced before the agreement found in Tables
2, 4 and 6 was obtained. The main issue concerned angular
momentum conservation, which is a problem specific to the
choice of stress-free boundaries. If we take the vector product
of Eq. (2) with r and integrate over the whole shell volume, we
find that all three components of the total angular momentum
are conserved, see Appendix A where formulae for the compo-
nents of the angular momentum and the magnetic torques are gi-
ven. The truncation errors in space and time associated with the
numerical methods mean that at each timestep there is a small
change in the angular momentum. Since the numerical schemes
we used are well resolved both spatially and temporally, this er-
ror is small for each timestep, but the cumulative effect when
integrating over very large numbers of steps can be non-negligi-
ble. Since the dynamo equations have to be integrated over many
turnover times before they settle, this is a very real hazard. We
found that when no special measures were employed to ensure
accurate angular momentum conservation were in place, small
growth of the angular momentum could lead to significant errors
developing in the energy. It is particularly important to ensure
that the equatorial x and y components of angular momentum
remain zero, not just the axial z component, as these equatorial
components correspond to a rotation which advects polar fluid
(where the magnetic field may be coherent and strong) to the
equator and thus can lead to a large (erroneous) growth of mag-
netic field as it gets stretched out by equatorial differential
rotation.

Once the problem has been identified, the solution is quite
straightforward. Either one stress-free boundary condition can
be replaced by the global condition that angular momentum is
exactly conserved at each timestep, or the angular momentum
can be computed explicitly at each timestep and an appropriate
solid body rotation added to remove any angular momentum
change. In spectral codes, both of these conditions are easy to
implement, because the angular momentum only affects a few
spherical harmonics (see Appendix A). Although this problem
surfaced in the context of anelastic convection, the Boussinesq
case with stress-free boundaries will give rise to similar prob-
lems. Normally, no-slip conditions have been used in Boussinesq
simulations (as in the 2001 benchmark) motivated by convection
in liquid metal cores, where there is a solid core–mantle
boundary.

The issue of angular momentum conservation, and the serious
errors that can arise over long integration times when stress-free
boundaries are used, is an important lesson from these studies.
In practice, there is always a compromise between keeping the
timestep small to obtain reasonable accuracy but not so small that
long overall integration times become impossibly expensive. It is
therefore not usually practical to keep the timestep small enough
to conserve angular momentum with the required degree of accu-
racy, so additional measures have to be taken to ensure accurate
conservation of all three components of the angular momentum
vector.

Researchers whose experience is with Boussinesq codes may
also be surprised at the magnitude of the truncation errors in-
curred by having too large a timestep. With Boussinesq codes, pro-
vided the timestep is small enough to ensure numerical stability,
truncation errors are usually sufficiently small that even a first or-
der integration scheme gives sufficient accuracy. The faster wave
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propagation in compressible rotating convection means that
reducing the timestep until stability is found is not necessarily suf-
ficient, particularly if accurate agreement with the benchmark is
desired. A timestep significantly below the stability limit may be
needed. We have not performed a systematic analysis on this
point, but we did find that runs with the timestep controlled only
by stability considerations were significantly less accurate than
those reported in the tables given here. The Leeds and Glatzmaier
codes were stable with timesteps at least three times larger than
those quoted in Table 4, and though the results at the larger time-
steps only differed by less than 1%, this was significantly greater
than the final accuracy achieved.

The overall level of agreement between the codes is very
satisfactory, giving considerable confidence that these benchmark
solutions are a reliable test for newly developed codes. Of course,
it should be borne in mind that the benchmark solutions are low
Rayleigh number, moderately small Ekman number solutions, with
Nq not too large. Consequently, even our unsteady case is not
turbulent enough, or rotationally dominant enough, to maintain
a banded pattern of alternating east–west directed zonal jets as
seen on the surface of Jupiter and Saturn. However, banded
patterns do emerge at much higher Ra and smaller E, see e.g. Jones
and Kuzanyan (2009). We spent a considerable amount of time
looking for benchmark cases that require only modest computer
resources. More extreme values of any of these parameters would
reduce the accuracy of the solutions. Also, a benchmark at more
extreme values could only be statistical in nature, and would
certainly require far larger computing resources than are needed
for the benchmarks presented here.
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Appendix A

Angular momentum is most easily treated in a non-rotating
frame, in which the velocity ~u is

~u ¼ uþX� r: ðA1Þ

Since the solid body rotation term X � r has no stress at the
boundaries, ~u satisfies the stress-free boundary conditions and
Eq. (2) without the Coriolis term. The centrifugal acceleration term
is neglected in (2) in comparison with gravity, as usual in spherical
convection studies.
Taking the vector product of r with the equation of motion and
integrating over the whole shell volume givesZ

r� �q
@~u
@t

dv þ
Z

r� �qð~u � rÞ~udv

¼ �
Z

r�rp0 dv þ
Z

r� ðj� BÞdv þ
Z

r� �qFm dv : ðA2Þ

The angular momentum is thenZ
r� �q~udv ¼ L0 þ L0 ðA3Þ

where

L0 ¼
8pẑ

3

Z ro

ri

X�qr4 dr; ðA4Þ

is the fixed contribution from the basic state and

L0x ¼
Z
��qðr sin / uh þ r cos h cos / u/Þdv;

L0y ¼
Z

�qðr cos / uh � r cos h sin / u/Þdv ; ðA5;A6Þ

L0z ¼
Z

�qr sin h u/ dv ; ðA7Þ

are the three Cartesian components of the angular momentum due
to the convection. With stress-free and magnetically insulating
boundaries all these contributions to the total angular momentum
must remain fixed, as we show below. Within the framework of
the anelastic approximation, the fluctuation of L0 due to the density
perturbation q0 is small compared to the magnitude of L0. If the
velocity is expanded in toroidal and poloidal components, as is
usual in the spectral approaches,

u ¼ 1
�q
r�r� rP�qþ 1

�q
r� rT �q; ðA8Þ

then the poloidal part gives zero contribution to the angular
momentum. To see this, we note that we can express the integrand
as a divergence since using suffix notation

r�r�r� rP�q ¼ �ijkrj
@ðrm �qPÞ
@xk@xm

� @ðrk �qPÞ
@xm@xm

� �

¼ @

@xm
�ijkrj

@ðrmP�qÞ
@xk

� @ðrkP�qÞ
@xm

� �
þ 2�imkrkP�q

� �
:

ðA9Þ

The angular momentum volume integral can then be written as
the difference of surface integrals,Z

Sout

�ijkrj
@ðrmP�qÞ
@xk

� @ðrkP�qÞ
@xm

� �
r̂m dS

�
Z

Sin

�ijkrj
@ðrmP�qÞ
@xk

� @ðrkP�qÞ
@xm

� �
r̂m dS; ðA10Þ

r̂ being the unit vector in the radial direction. The last term in
(A9) gives zero contribution because of the antisymmetry of �ijk.
These surface integrals both vanish, because ur = 0 on the bound-
aries implies that P = 0, and hence r �rP = 0 on the boundaries.
The toroidal part of the velocity gives non-zero angular momen-
tum, but if T is expanded in spherical harmonics with complex
coefficients,

T ¼
X1
l¼1

Xm¼l

m¼�l

TlmðrÞPjmjl ðcos hÞeim/ ðA11Þ

with Tl;�m ¼ T�l;m; � denoting complex conjugate, then only the T10

and T11 coefficients appear in the expressions for L0, and the compo-
nents are
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L0x ¼
16p

3

Z ro

ri

RefT11ðrÞg�qr3 dr;

L0y ¼ �
16p

3

Z ro

ri

ImfT11ðrÞg�qr3 dr;

L0z ¼
8p
3

Z ro

ri

T10ðrÞ�qr3 dr; ðA12;A13;A14Þ

where Re{} denotes the real part and Im{} denotes the imaginary
part, T10(r) being purely real. This makes it particularly convenient
to evaluate the angular momentum with spectral codes.

The vanishing of the viscous force term in (A2) is an immediate
consequence of it being the divergence of the viscous stress-tensor,
and the relevant components of the stress tensor vanish on the
spherical boundaries because of the stress-free conditions there.
Similarly, the vanishing of the pressure gradient torque is a simple
consequence of writing this term as a divergence and applying
ur = 0 on the boundaries. The vanishing of the Reynolds stress term
is a consequence of (4), since thenZ

�q�ijkrj~um
@

@xm
~uk dv ¼

Z
@

@xm
ð�ijk �qrj~uk~umÞ � �ijk �q~uj~uk dv

¼
Z

S
�ijk �qrj~uk~umr̂m dS; ðA15Þ

and the inner and outer surface integrals are zero because ~u � r̂ ¼ 0
on the boundaries.

The vanishing of the Lorentz term is more involved than one
might expect, see Rochester (1962). The Lorentz torque can be ex-
pressed as a divergence involving the Maxwell stresses,

C ¼
Z

r� ðj� BÞdv ¼
Z

@

@xm
�ijkrjðBkBm �

1
2

dkmB2Þ
� �

dv : ðA16Þ

The magnetic torque can then be written as surface integrals
(Rochester, 1962)

Cx ¼
Z

Sout

�ðr sin /BrBh þ r cos h cos /BrB/ÞdS

þ
Z

Sin

ðr sin /BrBh þ r cos h cos /BrB/ÞdS; ðA17Þ

Cy ¼
Z

Sout

ðr cos /BrBh � r cos h sin /BrB/ÞdS

�
Z

Sin

ðr cos /BrBh � r cos h sin /BrB/ÞdS; ðA18Þ

Cz ¼
Z

Sout

r sin hBrB/ dS�
Z

Sin

r sin hBrB/ dS; ðA19Þ

the surface integrals being the difference of the outer sphere and in-
ner sphere contributions. With perfectly conducting boundaries,
Br = 0 and the vanishing of all three components is evident. With
insulating boundaries it is not quite so simple. Expressing the mag-
netic field in toroidal and poloidal scalars,

B ¼ r�r� rP þr� rT ; ðA20Þ

the insulating conditions imply that T ¼ 0 on both boundaries and
ð@r � l=rÞP ¼ 0 on r = ri and ð@r þ ðlþ 1Þ=rÞP ¼ 0 on r = ro, where l
refers to the components of P with spherical harmonic degree l.
On inserting these into (A17)–(A19) it is clear that the toroidal
part gives zero contribution, since T and hence its horizontal
derivatives are zero on the boundaries. The poloidal expansion
can be written

P ¼
X1
l¼1

Xm¼l

m¼�l

P lmðrÞPjmjl ðcos hÞeim/: ðA21Þ

The expression for Cz from the outer surface is then
Cout
z ¼

Z
Sout

X1
l¼1

Xm¼l

m¼�l

lðlþ 1ÞPjmjl ðcos hÞPlmeim/
X1
l0¼1

�
Xm0¼l0

m0¼�l0
Pjm

0 j
l0
ðcos hÞ im

0

r
@

@r
ðrP l0m0 Þeim0/ dS: ðA22Þ

The orthogonality of the spherical harmonics implies that only
contributions with l = l0 and m = �m0 are non-zero, and m = 0 gives
nothing. Using the boundary condition on the outer surface, the
contribution to Cz there is

Z
Sout

X1
l¼1

Xl

m¼1

lðlþ 1Þ Pjmjl ðcos hÞ
h i2

P lmP�lm
iml
r
� iml

r

� �
dS ¼ 0: ðA23Þ

since the contributions from m and �m in the sum cancel out. A
similar argument holds on the inner surface. To establish the x
and y components of the Lorentz torque vanish, we note that the
Lorentz force, unlike rotational forces, has no preferred direction.
We can therefore simply make the transformation x0 = y, y0 = z and
z0 = x, with corresponding spherical polar coordinates r0, h0 and /0.
Then Cx takes exactly the same form in the primed coordinates as
Cz does in the original coordinates. We then expand B in poloidal
and toroidal scalars in the primed coordinates, and expand P0 in
spherical harmonics based on the primed coordinate system. Since
the boundary conditions only involve r and r-derivatives, these are
unchanged in the new primed system, and so Cx ¼ C0z ¼ 0 by the
same argument, and a similar argument shows Cy = 0.
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