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In the Earth’s fluid outer core, a dynamo process converts
thermal and gravitational energy into magnetic energy. The
power needed to sustain the geomagnetic field is set by the
ohmic losses (dissipation due to electrical resistance)1. Recent
estimates of ohmic losses cover a wide range, from 0.1 to 3.5 TW,
or roughly 0.3–10% of the Earth’s surface heat flow1–4. The energy
requirement of the dynamo puts constraints on the thermal
budget and evolution of the core through Earth’s history1–5.
Here we use a set of numerical dynamo models to derive scaling
relations between the core’s characteristic dissipation time and
the core’s magnetic and hydrodynamic Reynolds numbers—
dimensionless numbers that measure the ratio of advective
transport to magnetic and viscous diffusion, respectively. The
ohmic dissipation of the Karlsruhe dynamo experiment6 sup-
ports a simple dependence on the magnetic Reynolds number
alone, indicating that flow turbulence in the experiment and in
the Earth’s core has little influence on its characteristic dissipa-
tion time. We use these results to predict moderate ohmic
dissipation in the range of 0.2–0.5 TW, which removes the need
for strong radioactive heating in the core7 and allows the age of
the solid inner core to exceed 2.5 billion years.

The limited thermodynamic efficiency of thermal convection
means that the power available to drive the dynamo is only a
fraction of the total heat flow from the core. Compositional
convection, driven by the rejection of light alloying elements from
the growing solid inner core, is not limited by Carnot efficiency, but
is intimately associated with core cooling. The heat flow from the
core must be 5–10 times larger than the ohmic dissipation1. For high
dissipation, the core has to supply a substantial part of the Earth’s
heat. If this heat flow is due to secular cooling alone, as is
conventionally assumed, it implies unrealistic core temperatures
early in Earth’s history1,3. Significant radiogenic heat production in
the core (for example, from decay of 40K) would be needed to avoid
this. If the core cools rapidly, the solid inner core would have formed
only 1 Gyr ago3. It is clearly important to better constrain the actual
power requirements of the dynamo.

The observed geomagnetic field could be maintained, in prin-
ciple, by currents that produce ,1 GW of ohmic dissipation2, but
the actual losses are believed to be much larger. Ohmic dissipation is
given by

Dohm ¼

ð
ðh=m0Þð7£BÞ2dV / 2hEmag=l 2

B ð1Þ

where h is magnetic diffusivity, m 0 magnetic permeability, B
magnetic field, E mag magnetic energy and l B the characteristic
length scale of the field. Estimating the ohmic dissipation of
the geodynamo suffers from several sources of uncertainty—for
example, the magnetic field strength inside the core. More impor-
tantly, the scale of the core field is unknown, because magnetization
of the Earth’s crust shields wavelengths below 3,000 km from
observation8. Recent geodynamo models can reproduce basic
properties of the geomagnetic field, and have been used to estimate
ohmic dissipation1,2,9,10. However, the values of some model

parameters are far from Earth-like. In particular, the Ekman
number E ¼ n/(QR 2), measuring viscous forces relative to
rotational forces, and the magnetic Prandtl number Pm ¼ n/h, are
far too large (n is viscosity, Q rotation frequency and R core radius).
Several models use hyperdiffusivities that suppress small scales in
the magnetic and flow fields. A rather low ohmic dissipation of
about 0.1–0.3 TW has been estimated when small-scale contri-
butions are ignored1,2. An extrapolation to account for these scales,
using the magnetic power spectrum at the core–mantle boundary
from a high-resolution dynamo model10, predicted 1–2 TW of total
ohmic dissipation2.

Rather than using a single dynamo, we determine the time-
average ohmic dissipation in a suite of 24 models, varying the key
non-dimensional numbers by factors of 20–30. This allows us to
study systematically the dependence on the control parameters and
to derive scaling laws that are applicable to the geodynamo. Because
the magnetic energy differs substantially between models, we do not

Figure 1 Scaling of magnetic dissipation time. a, b, Dissipation time in units of dipole

decay time versus magnetic Reynolds number (a) and versus a combination of magnetic

and hydrodynamic Reynolds numbers (b). The magnetic Prandtl number is 2–3 for open

symbols, 1 for light grey, 0.5 for dark grey and 0.15–0.25 for black symbols. The Ekman

numbers are 1.27 £ 1024 (circles), 4.2 £ 1025 (triangles), 1.27 £ 1025 (squares) and

4.2 £ 1026 (diamonds). The reversing dynamo is marked by a circled cross. Best-fitting

lines with a slope of21.0 in a and20.97 in b and 3j limits (broken lines) are drawn. The

mean misfit is 16% in a and 9% in b. All dynamos have been run for at least 40 advection

times (R/U ), and averages have been taken after the transient adjustment. The numerical

resolution varies between 53 and 168 in spherical harmonic degree and 33 and 81 radial

points, depending on parameters. At the lowest Ekman number, twofold symmetry in

longitude has been assumed; all other cases are for a full sphere. The large asterisk is for

the Karlsruhe laboratory dynamo. For the laboratory dynamo the magnetic Reynolds

number is based on the cylinder radius R, whereas the hydrodynamic Reynolds number is

calculated with the width of the flow ducts d ¼ 0.05 m.
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scale Dohm directly, but rather scale the magnetic dissipation time:

tdiss ¼ Emag=Dohm / l 2
B=2h ð2Þ

For our models we solve the full magnetohydrodynamic equations
without hyperdiffusivities for an incompressible fluid in a rotating
spherical shell11. The magnetic fields are dipole-dominated, mostly
with stable polarity. We include one case with dipole reversals
similar to those in the geomagnetic field12.

A large-scale magnetic field is converted by nonlinear interaction
with the flow field to small scales where it is dissipated. The
important parameter for this process is the magnetic Reynolds
number Rm ¼ UR/h, with the r.m.s. velocity U. In Fig. 1a we plot
magnetic dissipation time versus Rm and find a simple fit of the
form:

tdiss=tdipole ¼ 1:74 Rm21 ð3Þ

Here we normalize with the dipole decay time, tdipole ¼ R2/(p2h),
for a full sphere, which is the longest possible time constant for
decay of a magnetic field in a stagnant conductor. Cases with lower
magnetic Prandtl number (darker shading in Fig. 1a) tend to plot
below the fitting line, and those with higher Pm tend to fall above
the line. This suggests an additional dependence on Pm, or
expressed differently, on the hydrodynamic Reynolds number
Re ¼ Rm/Pm. A best fit of the form:

tdiss=tdipole ¼ aðRm RebÞc ð4Þ

with a ¼ 3.58, b ¼ 1/6 and c ¼ 20.97, reduces the scatter some-
what (Fig. 1b). We find no clear influence of the Ekman number.
The dependence on Re is weak, but to apply equation (4) to the core
requires extrapolation over six orders of magnitude in Re, and leads
to a factor of ten difference in tdiss compared with equation (3).
Adding more free parameters always reduces the misfit, hence one
may question if a dependence on Re is really warranted, and if so,
whether it also holds for much larger values of the Reynolds
number.

In order to resolve this question, we analyse the ohmic dissipation

of the Karlsruhe laboratory dynamo6,13, where liquid sodium is
pumped through a system of pipes arranged into cells forming a
nearly homogeneously conducting cylinder. Here the hydro-
dynamic Reynolds number is 2.5 £ 105, based on the size of the
largest possible turbulent eddies, and the magnetic Prandtl number
is 9 £ 10–6, whereas in the models Re , 500 and Pm $ 0.15. When
the flow rate exceeds a threshold, dynamo action sets in and a sharp
rise in the driving pressure drop can be used to calculate the ohmic
dissipation (Fig. 2). In order to calculate tdiss, the magnetic energy
must be known. We obtain this energy by fitting the magnetic field
of a dedicated kinematic dynamo simulation to field measurements
performed along the cylinder axis and outside the sodium. A
simpler version of this model predicted successfully the onset of
dynamo action14. Finally, we normalize tdiss with the numerically
calculated dipole decay time tdipole ¼ 0.79 s. The result, marked by
an asterisk in Fig. 1, agrees well with the simple scaling on the
magnetic Reynolds number alone. The additional dependence on
the hydrodynamic Reynolds number under-predicts the dissipation
time by a factor of 2.5 (Fig. 1b), which is far outside the estimated
uncertainty for the experimental value of 40% and the 3j limit of
the fit to the numerical results. A dependence of tdiss on Re might be
plausible, because the small eddies that occur in the flow at high Re

Figure 2 Pressure drop versus flow rate in the Karlsruhe dynamo experiment. Three

independent pumps send sodium through disjoint flow loops, two of which are designated

as ‘helical’ and one as ‘axial’ because of the shape of the path followed by the flow. The

cylinder formed by the pipes has a radius R ¼ 0.95 m and similar height. Triangles show

the pressure drop Dp in the helical loops, and circles that in the axial loop versus flow rate

Q helical in the helical loops. The flow in the axial loop is held constant at 112.5 m3 h21.

Above the onset of dynamo action at Q helical < 100 m3 h21, the ohmic dissipation is

calculated as Dohm ¼ SQi ðDpi 2Dpv
i ), where the summation is over the three loops.

The contribution of viscous friction to the pressure drop Dp v is obtained by

extrapolating Dp from below the threshold of dynamo action. We extrapolate (interpolate)

the data to a reference state with Q ¼ 111 m3 h21 in all three loops, for which the

magnetic field was measured inside the cylinder without recording the pressure drop.

Figure 3 Secular variation time scaling. a, Timescale tn of secular variation as function of

spherical harmonic degree n for the geomagnetic field in the time interval 1840–1990

and, as an example, for the long-term average of the reversing dynamo model. The model

data are scaled to real time with t dipole ¼ 29,000 yr, obtained for an electrical

conductivity j ¼ m0/h ¼ 6 £ 105 S m21 in the core20. Fitting lines of the form

t n ¼ t sec /n are included. b, Secular variation timescales tsec of the dynamo models

versus magnetic Reynolds number. The fitting line is tsec /tdipole ¼ 21.7 Rm21. The

dotted horizontal line indicates the Earth value estimated from the fit in a, 535 yr in

physical units. The predicted Rm < 1,200 agrees well with the value obtain from

estimates of U ¼ 12–15 km yr21 obtained by inverting geomagnetic secular variations

for the fluid flow near the core surface21.
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(low Pm), together with the large-scale flow, may be more efficient
in transporting magnetic energy to small scales. However, such an
effect will vanish in any case when the turbulent eddies become
smaller than the length scale l B at which diffusion dissipates
magnetic energy. One interpretation of our finding is that a weak
dependence on the magnetic Prandtl number at values Pm < 1
disappears for Pm , 1. We therefore suggest that the simpler
scaling law (equation (3)) represents Earth’s core conditions reason-
ably well.

In order to calculate the dissipation of the geodynamo, we must
know Rm and the total magnetic energy in the core. We use the
dependence of the secular variation on Rm in our dynamo models
to estimate the core value. The timescale of secular variation
depends on the spherical harmonic degree n, and is defined as:

tn ¼
Xn

m¼0

g2
nm þ h2

nm

� �* +
=

Xn

m¼0

_g2
nm þ _h

2

nm

� �* +" #1=2

where g,h are the Gauss coefficients, the dot marks their time
derivative and k l the time average. For the geomagnetic field, tn

decreases with n (ref. 15). To derive a single time constant of secular
variation tsec we attempt a simple fit of the form tn ¼ tsec/n,
although a somewhat stronger dependence on n might better
represent the present rate of secular variation (R. Holme, personal
communication). Excluding the dipole part, the fit is fair for n ¼ 2–
8 in the time period 1840–1990 and gives tsec ¼ 535 yr (Fig. 3a). The
secular variation in the dynamo models, averaged over much longer
time, follows more closely a 1/n-dependence. tsec depends on the
inverse of the magnetic Reynolds number (Fig. 3b). The estimated
secular variation time of the geomagnetic field requires Rm ¼ 1,200
in the core, which leads to a magnetic dissipation time of 42 yr.

The factor between the mean magnetic field strength inside the
model shell and that in degrees n up to 12 on the outer boundary is
in the range of 2.5–5 in our non-reversing dynamos and 7.5 in the
reversing case. With a likely factor of 5–7.5 for the geodynamo and
an r.m.s. field strength (n , 13) at the core–mantle boundary of
0.39 mT (ref. 16), we infer 2–3 mT for the field in the core, which
gives Emag ¼ (2.8–6.2) £ 1020 J. From equation (2) the ohmic dis-
sipation is found to be 0.2–0.5 TW.

For the recently preferred high-power-consumption values of the
geodynamo of .1 TW (refs 2, 3, 17), the required heating could be
supplied by .200 p.p.m. potassium in the core17. Although recent
experiments suggest that such concentrations are possible7,18, our
result suggesting a more moderate power requirement relaxes severe
constraints on core evolution, and removes the strong need for heat
sources in the core. The inner core could be much older than 1 Gyr;
thermal modelling1 predicts an inner core age of 2.4 Gyr for
Dohm ¼ 0.5 TW and ,3.5 Gyr for Dohm ¼ 0.2 TW. As the geody-
namo must operate differently in the absence of an inner core or
may not operate at all, the existence of a magnetic field of roughly
present-day strength over the past 3.5 Gyr (ref. 19) is more easily
reconciled with an old inner core. A
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15. Hulot, G. & LeMouël, J. L. A statistical approach to the Earth’s main magnetic field. Phys. Earth Planet.

Inter. 82, 167–183 (1994).

16. Bloxham, J. & Jackson, A. Time-dependent mapping of the magnetic field at the core-mantle

boundary. J. Geophys. Res. 97, 19537–19563 (1992).

17. Buffett, B. A. The thermal state of the Earth’s core. Science 299, 1675–1676 (2003).

18. Rama Murthy, V., van Westrenen, W. & Fei, Y. Experimental evidence that potassium is a substantial

radioactive heat source in planetary cores. Nature 423, 163–165 (2003).

19. McElhinny, M. W. & Senanayake, W. E. Paleomagnetic evidence for the existence of the geomagnetic

field 3.5 Ga ago. J. Geophys. Res. 85, 3523–3528 (1980).

20. Secco, R. A. & Schloessin, H. H. The electrical resistivity of solid and liquid Fe at pressures up to 7 GPa.

J. Geophys. Res. 94, 5887–5894 (1989).

21. Bloxham, J., Gubbins, D. & Jackson, A. Geomagnetic secular variations. Phil. Trans. R. Soc. Lond. A

329, 415–502 (1989).

Acknowledgements We thank U. Müller for the permission to use unpublished results from the

laboratory dynamo experiment. This work was supported by the priority programme

“Geomagnetic secular variations” of the Deutsche Forschungsgemeinschaft.

Competing interests statement The authors declare that they have no competing financial

interests.

Correspondence and requests for materials should be addressed to U.R.C.

(Christensen@linmpi.mpg.de)

..............................................................

Optimal nitrogen-to-phosphorus
stoichiometry of phytoplankton
Christopher A. Klausmeier1,2, Elena Litchman2,3, Tanguy Daufresne1

& Simon A. Levin1

1Department of Ecology and Evolutionary Biology, Princeton University,
Princeton, New Jersey 08544, USA
2School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta,
Georgia 30332-0230, USA
3Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick,
New Jersey 08901, USA
.............................................................................................................................................................................

Redfield noted the similarity between the average nitrogen-to-
phosphorus ratio in plankton (N:P 5 16 by atoms) and in deep
oceanic waters (N:P 5 15; refs 1, 2). He argued that this was
neither a coincidence, nor the result of the plankton adapting to
the oceanic stoichiometry, but rather that phytoplankton adjust
the N:P stoichiometry of the ocean to meet their requirements
through nitrogen fixation, an idea supported by recent modelling
studies3,4. But what determines the N:P requirements of phyto-
plankton? Here we use a stoichiometrically explicit model of
phytoplankton physiology and resource competition to derive
from first principles the optimal phytoplankton stoichiometry
under diverse ecological scenarios. Competitive equilibrium
favours greater allocation to P-poor resource-acquisition
machinery and therefore a higher N:P ratio; exponential growth
favours greater allocation to P-rich assembly machinery and
therefore a lower N:P ratio. P-limited environments favour
slightly less allocation to assembly than N-limited or light-
limited environments. The model predicts that optimal N:P
ratios will vary from 8.2 to 45.0, depending on the ecological
conditions. Our results show that the canonical Redfield N:P
ratio of 16 is not a universal biochemical optimum, but instead
represents an average of species-specific N:P ratios.
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