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Abstract

Scaling laws are derived for the time-average magnetic dipole moment in rotating convection-driven numerical dynamo models.
Results from 145 dynamo models with a variety of boundary conditions and heating modes, covering a wide section of parameter
space, show that the time-average dipole moment depends on the convective buoyancy flux F. Two distinct regimes are found
above the critical magnetic Reynolds number for onset of dynamo action. In the first regime the external magnetic field is dipole-
dominant, whereas for larger buoyancy flux or slower rotation the external field is dominated by higher multipoles and the dipole
moment is reduced by a factor of 10 or more relative to the dipolar regime. For dynamos driven by basal heating, the dipole
moment M increases like M∼F1/3 in the dipolar regime. Reversing dipolar dynamos tend to cluster near the multipolar transition,
which is shown to depend on a local Rossby number parameter. The geodynamo lies close to this transition, suggesting an
explanation for polarity reversals and the possibility of a weaker dipole earlier in Earth history. Internally heated dynamos generate
smaller dipole moments overall and show a gradual transition from dipolar to multipolar states. Our scaling yields order of
magnitude agreement with the dipole moments of Earth, Jupiter, Saturn, Uranus, Neptune, and Ganymede, and predicts a
multipolar-type dynamo for Mercury.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Planets and satellites in the solar system with active
dynamos have magnetic dipole moments that span nearly
eight orders ofmagnitude [1]. In spite ofmajor differences
in structure, composition, and history, most of these
dynamos are thought to be maintained by similar
mechanisms: thermal and compositional convection in
electrically conducting fluids in the planet interiors [2]. In
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addition to active dynamos in Earth, Mercury, Jupiter,
Saturn, Neptune, Uranus and Ganymede, extinct convec-
tive dynamos have been proposed for Mars [3] and the
Moon [4]. In contrast Venus has an iron core that may be
convecting, but has no dynamo [37].

The search for a unified theory linking dipole
moments to the structure and dynamics of planetary
interiors has led to a number of proposed magnetic
scaling laws [5–9]. Initially these were derived using
dimensional analysis and simplified physical arguments,
usually in the form of power–law relationships between
the dipole moment and basic physical properties such as
radius, rotation rate, angular momentum, density, and
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Table 1
Earth's core physical properties

Parameter Notation Units Value

Dipole moment M A m2 7.8×1022

Core radius ro m 3.48×106

Inner core radius ri m 1.22×106

Outer core thickness d m 2.26×106

Rotation rate Ω rad s−1 7.29×10−5

Density ρ kg m−3 11×103

Electrical conductivity σ A2 kg−1 m−3 s3 6×105

Magnetic diffusivity λ m2 s−1 1.3
Buoyancy flux F m2 s−3 2×10−13
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electrical conductivity. More recently, they have been
generalized to include dependence on the dynamo
energy source, convection in this case [23]. Such
heuristic scaling laws allow for easy comparison
between diverse planetary magnetic fields, but because
their physical content is so limited, they have been only
partly successful in rationalizing the known planetary
dipole moments and predicting the values of newly
discovered ones [7,10,38].

Numerical dynamos are now used to model planetary
magnetism, with considerable success. Numerical dyna-
mos driven by Boussinesq convection in thick, rotating
fluid shells commonly produce magnetic fields similar to
the geomagnetic field, with a strong axial dipole
component, secular variation, and occasional polarity
reversals [11–13]. Convection-driven dynamo models in
thin shell geometries sometimes produce inclined dipolar
or multipolar fields, suggestive of the magnetic fields of
Neptune and Uranus [14,15] and possibly Mercury
[53,54]. Dynamo models with inner cores smaller than
the present Earth predict different magnetic field intensity
at early stages of inner core growth [16].

However, problems remain in applying numerical
dynamo model results directly to the planets. Some of
these problems stem from our limited knowledge of
planetary interiors, but others arise because the dynamo
models are far removed in parameter space from the
planets. Specifically, numerical dynamos rotate too
slowly, are less turbulent, and have far too large
viscosity (relative to electrical conductivity) compared
to their planetary counterparts [17]. In terms of the
dimensionless parameters that control convective dyna-
mos, this combination of factors means that the
Rayleigh number is too small, and the Ekman and
magnetic Prandtl numbers are too large in the dynamo
models [18]. The prospect of direct numerical simula-
tion with realistic values of these parameters is remote,
because of the enormous temporal and spatial resolution
such calculations would require [19].
In this paper, scaling relationships for the dipole
moment are derived from the results of numerical
dynamos within the part of parameter space now
accessible to computation. These relationships are then
extrapolated to planetary interior conditions and com-
pared with observed (and inferred) planetary dipole
moments. Several properties of numerical dynamo
models have already been analyzed this way, including
the zonal fluid velocity [20,21] and Ohmic dissipation
[22]. Recently, Christensen and Aubert [32] (hereafter
abbreviated CA) have proposed asymptotic scaling
relationships for the rms internal magnetic field strength,
heat flow, and convective velocity, based on a large set of
numerical dynamos. In this paper we make use of the CA
scaling parameters, but we focus on the dipole moment,
the most fundamental observable dynamo property.
Unlike some other dynamo properties, the dipole moment
does not follow an asymptotic power-law scaling.

2. Dynamo scaling parameters

In terms of standard dynamo model properties, the
time average dipole moment M is defined as

M ¼ 4pr3offiffiffi
2

p
l0

Bdip ð1Þ

Here μ0=4π×10
−7 H/m is magnetic permeability, ro

is the dynamo (outer core) radius and Bdip is the time
average rms dipole field intensity at ro. The time
average dipole moment is a function of the input control
parameters that specify a particular dynamo model. One
set of control parameters that has been widely used for
thermal convection dynamos [24] consists of the Prandtl
number

Pr ¼ m
j

ð2Þ

where ν is kinematic viscosity and κ is thermal
diffusivity of the fluid, the magnetic Prandtl number

Pm ¼ m
k

ð3Þ

where λ=1/μ0σ is magnetic diffusivity (σ is electrical
conductivity), the Ekman number

E ¼ m
Xd2

ð4Þ

where Ω is angular velocity of rotation and d is the fluid
thickness, and a Rayleigh number

Ra ¼ agqd4

kjm
ð5Þ



Table 2
Planetary core physical properties relative to earth's core

Planet Ω ro ρ σ M F d Refs.

Venus 0.004 1.0 1.0 1.0 0.0 0.8 1.0 [39]
Mercury 0.017 0.5 0.9 1.0 0.0004 0.5 0.2 [40]
Earth 1.0 1.0 1.0 1.0 1.0 1.0 1.0 [41]
Marsa 1.0 0.5 0.9 1.0 0.15 2.0 0.5 [42]
Jupiter 2.42 16.0 0.16 0.1 18,000.0 100 18.0 [43–45]
Saturn 2.25 8.5 0.16 0.1 580.0 50 7.0 [46,47]
Uranus 1.39 4.9 0.18 0.03 50.0 20 5.0 [48]
Neptune 1.49 4.5 0.18 0.03 24.0 20 5.0 [49]
Moona 0.07 0.12 0.9 1.0 0.001 0.3 0.12 [50]
Ganymede 1.37 0.2 0.7 1.0 0.002 0.3 0.2 [51]

a Extinct dynamo.
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where α is thermal expansivity, g is gravity on the outer
boundary, q is the average superadiabatic heat flux on the
outer boundary, and k is thermal conductivity. In addition,
a geometrical parameter is needed for planets with a solid
inner core. For these we use the radius ratio, defined as

r⁎ ¼ ro
ri

ð6Þ

where ri is the inner core radius, so that d=ro−ri. Other
model parameters would be needed to fully characterize
compressibility, boundary heterogeneity, and inner core
rotation, but in this study we consider only the above five.
Units of the physical quantities in these parameters are
given in Table 1, along with Earth's core values. The
relative values of these parameters assumed for the other
planets and satellites are given in Table 2.

Although (4) and (5) are often used as input for
dynamo modelling, they are not the most suitable
choices for scaling convection-driven dynamo behavior.
In place of these, we use the magnetic Ekman number
Eλ

Ek ¼ Pm−1E ¼ k
Xd2

ð7Þ

and a buoyancy flux-based Rayleigh number RaQ
defined by CA [32] as

RaQ ¼ r4F

d2X3 ð8Þ

where F is the average convective buoyancy flux. The
Rayleigh number RaQ is advantageous in this context
because it is directly proportional to the power input by
buoyancy forces. The buoyancy flux in thermal
convection can be expressed in terms of the convective
heat flux q′ as

F ¼ agq V
qCp

ð9Þ
where Cp is specific heat and ρ is density. For base-
heated convection, the conventional Rayleigh number
(5) and the buoyancy flux-based Rayleigh number (8)
are related by

RaQ ¼ r⁎E3ðNu−1Þ
Pr2Nu

Ra ð10Þ

where

Nu ¼ r⁎qd
kDT

ð11Þ

is the time-average Nusselt number on the outer
boundary, written in terms of the superadiabatic
temperature difference across the spherical shell ΔT.

The conventional parameter for scaling the internal
magnetic field in planetary dynamos is the Elsasser
number, which has the following definition for the
dipole field:

Kdip ¼
rB2

dip

qX
ð12Þ

However, CA [32] argued that a better choice for scaling
magnetic fields in convective dynamo models is the
Lorentz number. The dipole field Lorentz number is
here defined as

Lodip ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EkKdip

p ¼ Bdipffiffiffiffiffiffiffiffi
ql0

p
Xd

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0=q

p

4pr3oXd
M ð13Þ

We are also interested in relating scaling laws for
dipole moment to scaling laws for the convective fluid
velocity. The usual scaling for dynamo fluid velocity u
is the magnetic Reynolds number Rm=ud/λ, however,
CA [32] have shown that a Rossby number scaling is
more compatible with (8). For the time average rms fluid
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velocity, we use the following definition of the global
(i.e., large scale) Rossby number:

Ro ¼ EkRm ¼ u
Xd

ð14Þ

In addition, it is useful to define a local (i.e., small scale)
Rossby number, based on a characteristic length scale of
the flow, as in CA [32]:

Rol ¼ lu
p
Ro ð15Þ

in which

lu ¼
Xlmax

l¼0

l
huld uli
hud ui ð16Þ

where ul is the spherical harmonic degree l component of
the vector velocity u and the angle brackets denote rms.
3. Data selection

Numerical data from different numerical dynamo
calculations were extracted from a variety independently
conducted, systematic modeling studies [12,18,26–32].
To test the robustness of the scaling, data was included
from 125 published dynamos with both rigid and stress-
free velocity boundary conditions, as well as fixed
temperature and fixed heat flux thermal boundary
conditions. In addition, we have included 20 unpublished
dynamos driven by uniform volumetric (internal) heat
generation, which simulate the effects of radioactive
decay and secular cooling. All models used in this study
assume Boussinesq conditions and all employ constant
diffusion coefficients (i.e., no hyperdiffusivity). Most
assume a geometry close to Earth's core, some include
inner core rotation, and others include core–mantle
boundary heat flow heterogeneity. Because most numer-
ical dynamo models exhibit dipole moment fluctuations
and some include dipole polarity reversals, we have used
time-average dipole moments, fluid velocities, and heat
flows throughout this study, except for the data from [12]
which were based on snap-shot values. Included in the
data are seven subcritical and failed dynamos, which were
added to help define the regime transitions.

Since the various modeling studies used different
schemes of nondimensionalization, the first step was to
tabulate all the data in terms of the conventional parameters
Pr, Pm, E, Ra, Rm, Nu, and either Brms or M. Time
averages of these quantities were typically computed over
several dipole diffusion times, and then converted to Eλ,
RaQ, Lodip, and Ro, as defined in (7) , (8), (13), and (14),
respectively. For base-heated dynamos, the total (i.e.,
surface-integrated) buoyancy flux is independent of radius,
and for these cases there is no ambiguity in the definition of
Nu, F, and RaQ. For internally heated dynamos however,
the Nusselt number and the total buoyancy flux are radius-
dependent. For these cases we used the volume-average
Nusselt number in calculating Nu and RaQ. As illustrated
in Fig. 1 the model data space covers the ranges 3×10−6≤
E≤10−2, and 104≤Ra≤1.5×1010, and also 0.06≤Pm≤
24, 0.1≤Pr≤20. In all cases we use r⁎=2.85, appropriate
for the Earth's core. Different studies used different
amounts of numerical resolution. Typical spherical har-
monic truncations were lmax=64, 106, and 200 for
E=3×10−4, 3×10−5, and 3×10−6, respectively, although
[12] and [18] used lmax=256 and 384, respectively.

4. Velocity scaling results

Scaling laws that are independent of, or only weakly
dependent on, the small diffusion coefficients are
especially useful because the values of the diffusion
coefficients in planetary cores are either highly uncertain
or cannot be matched in numerical models. This is
particularly true for the kinematic viscosity. Recently,
several diffusivity-free scaling laws for velocity have
been found by assuming the Rossby number Ro depends
on the Rayleigh number RaQ, and is independent of Eλ,
Pr, andPm. For example, a scaling law has been proposed
for the time-average zonal part of the fluid velocity in
convective dynamos [20,21] of the form

Rozonalgð2RaQÞ1=2 ð17Þ
and CA [32] found Ro=0.85RaQ

0.41 for the rms velocity in
convective dynamos with rigid, isothermal boundaries.

The upper panel in Fig. 2 shows the variation of Ro
with RaQ in the more diverse set of dynamos used in this
study. Our velocity data define two nearly parallel
trends, one for all of the base-heated cases, the other for
the internally heated cases. The base-heated cases are
well-approximated by

Ro ¼ bRa2=5Q ð18Þ

with β≃0.85, very close to the results of CA [32]. For the
internally heated dynamos, number of cases and the
parameter range is more limited, although the same 2/5-
power-law with β≃0.43 provides a reasonably good fit.
In terms of dimensional variables, for an Earth-like
geometry with r⁎=2.85 and β=0.85, (18) is equivalent to

ug1:3ðd=XÞ1=5F2=5 ð19Þ



Fig. 1. Parameter range of numerical dynamo models used for dipole
moment and convective velocity scaling. Ra and E are heat flow-based
Rayleigh number and Ekman number, respectively, with symbols
indicating the various model boundary and heating conditions. Insert
shows the range of Prandtl numbers Pr and Pm, respectively.

Fig. 2. Fluid velocity and dipole moment versus buoyancy flux Rayleigh
number fromnumerical dynamos. Top: Rossby number for fluid velocity.
Dashed lines show fits to 2/5-power-law for base-heated and internally
heated cases, respectively. Bottom: Lorentz number for dipole moment
from base-heated, dipole-dominant dynamos with Nusselt numbers
NuN1.9. Dashed lines show fits to 1/3-power-law envelope.
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A similar formula applies to internally heated dynamos,
but with a coefficient of about 0.66.

Eq. (19) indicates that the rms fluid velocities in
dynamos driven either by basal or internal heating can
be expressed in terms of buoyancy flux, fluid layer
depth, and the rotation period (inverse rotation rate)
without explicit dependence on the diffusion coeffi-
cients (including the kinematic viscosity and the
magnetic and thermal diffusivities). It is somewhat
unexpected that this power-law fits such a diverse set of
dynamos, because it is well known that the choice of
boundary conditions and diffusivities have big effects
on dynamo model velocities. Evidently most of these
effects are subsumed in (18) by defining the Rayleigh
number in terms of the convective buoyancy flux. CA
[32] found a marginally better fit than (18) by
introducing a weak dependence of the of Ro on the
magnetic Prandtl numbers. That procedure applied to
this data failed to yield a significantly better fit than
shown in Fig. 2.

We have also determined the dependence of the local
Rossby number Rol on the fundamental control para-
meters, by fitting (16) to power-law products of (2), (3),
(7), and (8). In contrast to the large-scale Rossby number,
which depends to first order only on RaQ, we find that all
four basic parameters have an influence on Rol. In Fig. 3
we show that a reasonably good fit is obtained by the
following expression:

Rol ¼ 0:58Ra1=2Q E−1=3Pr1=5Pm−1=5: ð20Þ

In terms of dimensional variables and parameters, (20) is
approximately

Rolg
ðk=jÞ1=5F1=2

ðmdÞ1=3X7=6
ð21Þ

so that Rol increases with buoyancy flux, decreases with
rotation rate, and is weakly dependent on all three
diffusion coefficients.

5. Dipole moment scaling results

Unlike fluid velocity, we found no asymptotically-
valid power law scaling for the time-average dipole
moments. Instead the dipole moment shows separate
regimes of behavior. Fig. 4 illustrates schematically the
relationship between the various regimes in the dipole
moment — Rayleigh number plane, for fixed values of
the other parameters. Dynamo action first occurs beyond
the onset of convection at a Rayleigh number value that
corresponds to a critical magnetic Reynolds number



Fig. 3. Local Rossby number versus a power-law combination of the
control parameters for the model data used by CA [32]. The shape of
the symbol indicates the value of the Ekman number and the shading
the value of Pm, where darker means lower value. Exponents of the
four control parameters were found by least squares fit constrained to
small integer fractions. Slope of best-fit line is 0.5. The average
relative misfit to Eq. (20) is 17%.
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Rmcrit. This behavior is shown in Fig. 5, where the
dipole moment Lorentz number Lodip increases rapidly
from zero to a finite value around Rmcrit≃ 40,
irrespective of the other parameters. Fig. 5 also shows
that beyond Rmcrit there is no simple relationship
between Lodip and Rm, indicating that a different
parameter (or set of parameters) is needed to scale finite
dipole moments.
Fig. 4. Schematic illustration of dynamo regimes, showing variation of
time-average dipole moment versus Rayleigh number with other
parameters fixed. Solid line corresponds to base-heated dynamos,
dashed line to internally heated dynamos.
Referring to Fig. 4, as the Rayleigh number is
systematically increased beyond the onset of dynamo
action, and after its initial rapid rise, the dipole moment
increases slowlywithRayleigh number up to a peak value,
then drops tomuch smaller values as the Rayleigh number
is increased further. In the first regime, labeled “dipolar” in
Fig. 4, the magnetic field on the outer boundary is
dominated by a strong dipole component, with weaker
higher multipole fields. In the next regime, labeled
“multipolar” in Fig. 4, the dipole is weaker than some of
the higher multipole components on the outer boundary.
The Rayleigh number interval which marks the transition
from dipolar to multipolar states depends on the values of
the other control parameters, as does the magnitude of the
dipole moment drop across the transition. The transition
may be abrupt in some cases and gradual in others, as
depicted by the solid and dashed lines in Fig. 4. Dynamo
modeling studies have shown that dipole reversals are
frequent in the multipolar regime, and in the dipolar
regime they often occur near this transition [27,28].

The lower panel in Fig. 2 shows the variation in dipole
moment in the dipole-dominant regime, in terms of Lodip
versus RaQ. This plot includes only dynamomodels with
(i) dipole-dominant fields on the outer boundary; (ii)
basal heating, and (iii)NuN1.9, cases which were judged
to have reached a fully-developed convective state. For
dynamos satisfying these three restrictions, we find that
the dipole Lorentz number increases monotonically with
Rayleigh number, although there is some scatter. The
Fig. 5. Dimensionless dipole moment Lodip versus magnetic Reynolds
number Rm showing onset of dynamo action near Rmcrit≃40.
Symbols as in Fig. 2. Clipped data denote failed dynamos.



Fig. 6. Dimensionless dipole moment (normalized by Rayleigh
number) versus local Rossby number for all dynamos with Nusselt
number greater than 1.9, showing the transition from dipolar to
multipolar regimes. Reversing dipole-dominant cases are plotted with
bold symbols and cluster near the transition. Note that internally-heated
cases (circles) follow a different trend than the base-heated cases.
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dashed lines in the lower panel Fig. 2 define an
approximate envelope for the data and correspond to

Lodip ¼ gRa1=3Q ð22Þ

with the coefficients γ equal to 0.1 and 0.2 for the upper
and lower curves, respectively. In terms of dimensional
variables, (22) is equivalent to

Mg4pr3ogðq=l0Þ1=2ðFdÞ1=3 ð23Þ
where we have again used an Earth-like r⁎=2.85.
According to (23) the dipole moment increases with
convective buoyancy flux as M∼F1/3 in this regime and
shows no explicit dependence on planetary rotation rateΩ.

There is an indication in Fig. 2 of a systematic deviation
from (22), particularly at largeRaQ, where the Lodip-values
seem to approach saturation. We attempted to resolve
possible additional dependencies by fitting the dipole
moments in Fig. 2 to parameter groups involving products
of fractional powers of the Prandtl numbers, for example
LodipPr

ePmδ. This additional freedom did not substantially
reduce the scatter in Fig. 2, and since it introduces
dependence on the uncertain diffusivities (including
viscosity) we conclude that it does not meaningfully
improve the dipolemoment scaling in this regime. It is very
likely that some of the scatter in Fig. 2 is due to the variety
of boundary conditions represented in the data, different
symmetry constraints used in some models, and errors in
estimating true time-averages from finite-duration calcula-
tions, in addition to the possible weak Prandtl number
dependence. We note that CA obtained results comparable
to (22) and (23) for the rms internal magnetic field strength,
with somewhat different coefficients and without evidence
of saturation. They also found marginally better fits by
allowing weak dependance on the diffusivities and the
relative amount of Ohmic heat production.

As RaQ is increased, the dipole moment deviates from
(22) and (23), and the dynamos transition to the multipolar
regime. Fig. 6 shows this transition, expressed as the
variation of Lodip/RaQ

1/3 (the parameter combination in the
dipolar regime) versus the local Rossby number Rol. Fig.
6 includes all the successful dynamos with NuN1.9,
including those driven by volumetric heat sources. For the
base-heated dynamos, the transition fromdipole-dominant
to multipolar dynamos occurs in a narrow interval around
Rol≃0.12. Across this transition the dipole moment falls
by nearly a factor of 20. Further increase inRaQ results in a
partial rebound of the dipolemoment in some cases, but in
other cases it results in additional decrease. The internally
heated dynamos show a different behavior. Although there
are fewer internally heated cases in our study and they
cover a more limited slice of parameter space, it is clear
that their dipole moments are systematically weaker than
comparable base-heated cases, the transition from dipolar
to multipolar states is more gradual, shows more scatter,
and it begins at smaller Rol-values.

Several properties connected with the dipolar–multi-
polar transition in Fig. 6 might be important for the
geomagnetic field and other planetary magnetic fields.
First, dynamo models with reversing, dipole-dominant
fields tend to cluster near the transition. This group is
indicated with bold symbols in Fig. 6 and includesmodels
with widely different control parameters and distinct
modes of polarity reversal (i.e., dynamos with periodic
and irregular reversals). Their overlap in Fig. 6 suggests
that the likelihood for polarity reversal in an otherwise
stable dipole-dominant dynamo may be controlled by its
proximity to the multipolar transition. The localization of
reversing dipolar dynamos in this part of parameter space
is implicit in an early study by Gilman [55], who
attributed the effect to the presence of strong toroidal
flows, rather than fluid inertia. Second, the base-heated
dynamos have fairly well-defined characteristic dipole
moment values on either side of the transition; in Fig. 4
these are denoted by M+ and M−, respectively. On the



Table 3
Planetary core convection parameters

Planet Ek RaQ Ro Rol Lodip M
(calc)

M
(obs)

Mercurya 5×10−6 3×10−7 2×10−3 8 1.4×10−5 0.1 0.031
Venusa 9×10−7 4×10−6 5×10−3 50 ≃0 ≃0 ≃0
Earth 3.5×10−9 3×10−13 8×10−6 0.09 1.4×10−5 74 78
Moonb 3×10−6 1×10−8 5×10−4 2 9×10−4 0.04 ≃0.08
Marsb 1×10−8 2×10−12 2×10−5 0.1 2.4×10−5 9 ≃8
Jupiter 4.5×10−12 8×10−17 3×10−7 0.01 1.1×10−6 1.6×106 1.4×106

Ganymede 6×10−8 8×10−13 1×10−5 0.05 1.5×10−5 0.19 0.16
Saturn 3×10−11 2×10−16 4×10−7 0.01 6.6×10−7 11×104 4.5×104

Uranus 1×10−10 8×10−17 3×10−7 .005 3.5×10−7 17×103 3.9×103

Neptune 9×10−11 8×10−17 3×10−7 .005 2×10−7 14×103 1.9×103

M in units of 1021 A m2.
a Multi-polar field scaling.
b Extinct dynamo.
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dipolar side, (22) and (20) with Rol=0.12 give a peak
dipole moment of approximately

Mþg3gXr3odðq=l0Þ1=2ðj=kÞ2=15E2=9 ð24Þ

withM−≃0.05M+ on the multipolar side. In contrast, the
internally heated cases have smaller moments in the
dipolar regime and do not show characteristic values. A
third implication of Fig. 6 concerns changes in magnetic
field structure with time that would accompany secular
changes in Rol and RaQ. We discuss some implications of
these effects for the Earth and other planets in the
following sections.

6. Comparison with planetary dynamos

We have applied the scaling laws derived in the
previous section to planetary dynamos using the physical
parameter data in Tables 1 and 2. Some of the physical
parameters, such as and M, are reasonably well
constrained for all these planets and satellites, whereas
others such as d and F are known only for a few.
Estimates of the buoyancy fluxF in the Earth's core come
from energy constraints and thermal history considera-
tions [33–35], and estimates of F in Jupiter and Saturn
come from their excess luminosity [36]. The buoyancy
flux in the other planets is highly uncertain, and in some
cases even its sign is controversial. Here we have chosen
to scale the buoyancy flux of the terrestrial planets with
active dynamos relative to the Earth, in proportion to their
respective core surface areas (for the ancient Lunar and
Martian dynamos we assume twice this flux). Likewise
we scale the buoyancy flux of the gas planets relative to
Jupiter in proportion to their respective conducting fluid
surface areas. These rules are used in the absence of
stronger constraints, and may fail to account for important
differences in the present state of planetary interiors
brought about by differences in planetary evolution (i.e.,
thermal history) and other factors not considered here. For
example, we assume a positive buoyancy flux in all
planets in Table 2, contrary to models that postulate stable
stratification for some planets, Venus in particular [37].
For completeness we also include in Table 2 parameter
estimates for the proposed ancient dynamos in Mars and
the Moon, and the hypothesized dynamo in Ganymede
[51] with Earth-like conductivities assumed.

In spite of the large uncertainties in some critical
parameters, we find similarities with the dipole moments of
several planets. Table 3 summarizes our planetary scaling
results and compares the predictedwith the observed dipole
moments of the presently active planetary dynamos and the
dipole moments inferred for the extinct ones. Fig. 7 shows
planetary dipole moments scaled with the same dimen-
sionless parameters used for the numerical dynamos in Fig.
6. The darkly shaded region in Fig. 7 corresponds to (22)
with upper and lower bounds of γ=0.1 and 0.25, respec-
tively. The dipole moments of Jupiter, Earth, Saturn, and
Ganymede liewithin or near the dipole-dominant region for
base-heated convection, with Saturn lying slightly below
and Jupiter slightly above the average of this group. The
Earth plots close to the multipolar transition, where the
reversing dipolar dynamos are concentrated.

The dipole moments of Uranus and Neptune are
relatively weaker than the main group, and plot below the
dipolar regime for base-heated dynamos, within the range
of internallyheated dynamos. In contrast to the other mag-
netic planets in the main group, the external magnetic
fields of Neptune and Uranus are not strongly dominated
by the axial dipole component [48,49]. Possibly the con-
vection in these planets is not fully developed (i.e.,



Fig. 7. Dimensionless planetary dipolemoment (normalized byRayleigh
number) versus local Rossby number. The transition from strongly
dipolar (dark shading) tomultipolar (light shading) regimes fromFig. 6 is
shown for comparison. The planets are shaded in proportion to the
strength of the constraints on the control parameters RaQ and Rol.

Fig. 8. Parameter range of planet cores assuming convective scaling.
RaF and Eλ are modified buoyancy flux-based Rayleigh number and
magnetic Ekman number defined by (25) and (7), respectively. Dashed
line indicates approximate dipolar–multipolar transition for base-
heated dynamos. Broken contours indicate constant values of magnetic
Reynolds number Rm. Asterisks denote extinct dynamos.
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characterized by a small Nusselt number) or perhaps there
are geometrical effects such as a thin convecting layer [14],
whose effects are not properly represented in our scaling.
An alternative interpretation suggested by Fig. 7 is that
these dynamos are driven primarily by secular cooling,
which may act like volumetric heat sources, producing a
relatively weak dipole moment. This same argument does
not apply so well to Jupiter, which has a strong dipole and,
yet, is thought to be driven largely by secular cooling [2].

The location of these six planets in Fig. 7, and the order-
of-magnitude agreement between their observed and
predicted moments in Table 3, suggests they are
fundamentally within the same convective dynamo family,
with some variations due to differences in core geometry,
heating modes, and other factors. The situation appears
different for Mercury. As shown in Fig. 7, Mercury lies in
the multipolar region, far from the main dipolar sequence.
This is consistentwith recentmodel results [53,54] that find
multipolar fields in dynamomodels with the thin-shell core
geometry often assumed for Mercury. According to our
scaling, the combination of thin-shell geometry and the
slow rotation rate implies a large local Rossby number
Rol≃8 in Mercury, and hence a multipolar field. Venus
occupies an even more extreme position in this scheme,
with a predicted Rol-value of nearly 50.

Fig. 8 shows the planetary dynamos in the Rayleigh
number–magnetic Ekman number plane, with the
estimated locations of the extinct Lunar and Martian
dynamos included for comparison purposes. In this figure
we use another buoyancy flux-based Rayleigh number

RaF ¼ Fd2

k2X
¼ RaQ

r⁎Ek2
ð25Þ

which allows the location of the dipolar–multipolar
transition for base-heated convection to be superimposed
on contours of the magnetic Reynolds number of the
convection calculated from (18) and (14). Here we have
assumed nominal values Pm=10− 5 and Pr=1 in
determining Rol. Since the critical convective velocity
for dynamo onset corresponds to about Rm≃40, Fig. 8
indicates that all the planets have (or had, in the case of the
Moon and Mars) internal convective velocities above the
critical Rm for dynamo action. Ganymede and the ancient
Lunar dynamo have rather small magnetic Reynolds
numbers, of the order Rm≃200, according to this scaling,
whereas all the others are far beyond critical. In the case of
the Earth, our scaling predicts a convective Rm≃2300.
This is several times larger than Rm estimated for large-
scale core motions from the geomagnetic secular
variation, but comparable to the Rm estimated directly
from the characteristic time constants of secular variation
as a function of spherical harmonic degree [22].
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7. Discussion

The transition from dipolar to multipolar states has
implications for some planetary dynamos. This transition
is reported in several previous studies of base-heated
dynamos [25–27] and has been attributed to emergence
of inertia as a ranking term in the force balance [32,52].
Support for this interpretation can be found in the change
in flow structures across the transition. In the dipolar
regime, particularly at low Rol-values, the convection is
dominated by columns of axial vorticity that are
continuous (or nearly continuous) across the fluid
shell. In the multipolar regime these columnar structures
become distorted and break into irregular vortex
filaments [26]. The standard view is that inertia is
unimportant in most planetary dynamos, in comparison
with the Coriolis acceleration [23]. This view is
justifiable for the larger scales of motion, for example,
the motion in Earth's core imaged by the geomagnetic
secular variation. But at the scale of the convection, the
results in Fig. 7 indicate that inertia plays some role,
especially in the Earth and in Mercury. For example, we
find Rol≃0.09 for the Earth's core, implying a
convective length scale of a few kilometers.

Reversing dipolar dynamos tend to cluster near the
transition, suggesting a connection with geomagnetic
polarity reversals. Suppose that the time-average state of
the geodynamo is close to the transition (but within the
dipolar regime, as in Fig. 7) so that fluctuations about its
mean state sometimes result in excursions into the
multipolar regime. In dynamical terms, these fluctua-
tions might arise during bursts of outer core convection,
producing excess buoyancy flux and temporarily larger
Rol -values. After the excess buoyancy has been released
and dissipated the geodynamo would return to its usual
dipolar state, possibly with reversed polarity. In this
scenario, periods with frequent reversals and excursions
would correspond to energetic (high Rol, high variabil-
ity) dynamo states, and superchrons to quiet (low Rol,
low variability) dynamo states.

The results in Fig. 7 may also be relevant to the long-
term evolution of the geodynamo. Thermal historymodels
indicate that the buoyancy flux F has changed with time,
due to secular cooling and inner core growth [34,35].
Similarly, tidal friction predicts that the rotation rateΩ has
decreased with time. Since both of these changes affect
RaQ and Rol, it is possible that the geodynamo occupied
different positions in Fig. 7 earlier in Earth history, in
which case the dipole moment may have been signifi-
cantly weaker than today. We note that the peak
(sustained) dipole moment for the Earth predicted by
(24) is approximatelyM+≃10×1022 A m2.
Lastly we consider the practical problem of finding
numerical dynamo models with large Ekman and mag-
netic Prandtl numbers that correctly scale to planetary
magnetic fields. For example, a typical dynamo model
with E=10−4, r⁎=2.85, and Pr=Pm=1 has an “Earth-
like” Rol-value for RaQ≃6.5×10−5, or alternatively
Ra≃2.5×107. The Rossby and Lorentz numbers pre-
dicted by our scaling for this model are Ro≃1.8×10−2

and Lodip≃8×10−3. The fact that these exceed the
estimated Earth values by several orders of magnitude
(see Table 3) illustrates the importance of accurate
scaling laws for planetary dynamo modeling. Additional
calculations are therefore needed, to determine the
sensitivity to variations in fluid shell depth, smaller
Ekman and magnetic Prandtl numbers, alternative forms
of boundary heterogeneity, fluid compressibility, stable
stratification, turbulence parameterizations, and other
effects that are likely to be important in planets but have
not been considered here.
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