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The observed surface dynamics of Jupiter and Saturn are dominated by a banded system of fierce zonal
winds. The depth of these winds remains unclear but they are thought to be confined to the very outer
envelopes where hydrogen remains molecular and the electrical conductivity is small. The dynamo main-
taining the dipole-dominated magnetic fields of both gas giants, on the other hand, likely operates in the
deeper interior where hydrogen assumes a metallic state.

Here, we present numerical simulations that attempt to model both the zonal winds and the interior
dynamo action in an integrated approach. Using the anelastic version of the MHD code MagIC, we explore
the effects of density stratification and radial electrical conductivity variations. The electrical conductiv-
ity is mostly assumed to remain constant in the thicker inner metallic region and it decays exponentially
towards the outer boundary throughout the molecular envelope.

Our results show that the combination of a stronger density stratification and a weaker conducting
outer layer is essential for reconciling dipole dominated dynamo action and a fierce equatorial zonal
jet. Previous simulations with homogeneous electrical conductivity show that both are mutually exclu-
sive, with solutions either having strong zonal winds and multipolar magnetic fields or weak zonal winds
and dipole-dominated magnetic fields. All jets tend to be geostrophic and therefore reach right through
the convective shell in our simulations.

The particular setup explored here allows a strong equatorial jet to remain confined to the weaker con-
ducting outer region where it does not interfere with the deeper seated dynamo action. The flanking mid
to high latitude jets, on the other hand, have to remain faint to yield a strongly dipolar magnetic field. The
fiercer jets on Jupiter and Saturn only seem compatible with the observed dipolar fields when they
remain confined to a weaker conducting outer layer.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The gas giants, Jupiter and Saturn, mainly consist of a hydrogen-
helium mixture. Due to the large pressures and temperatures
reached inside these planets, hydrogen acquires metallic proper-
ties (Chabrier et al., 1992; Fortney and Nettelmann, 2010). The
transition happens at 85–90% of Jupiter’s and 65% of Saturn’s radii.
A classical view is that the lower metallic layer likely hosts the dy-
namo of these planets, while the upper molecular envelope accom-
modates the observed fierce zonal jets. Higher densities, Lorentz
forces and Ohmic diffusion would lead to a more sluggish dynam-
ics in the metallic layer and confine the zonal winds to the upper
region. Traditional dynamical models therefore treat the two layers
separately with dynamo simulations modelling only the metallic
layer and jet simulations concentrating on the molecular envelope.

The zonal jets have been investigated since the 70s by tracking
cloud features (see, for example, Ingersoll et al. (1979) for Jupiter
and SanchezLavega (1982) for Saturn). Their driving forces and
depth are still debated. Some authors argue that they are a shallow
weather phenomenon (Williams, 1978; Cho and Polvani, 1996)
while others promote deeper-rooted jets that extend through the
whole molecular envelope (Heimpel et al., 2005; Jones and Kuza-
nyan, 2009; Gastine and Wicht, 2012). Both gas giants emit
roughly twice as much energy as they receive from the sun which
implies vigorous interior convection. In the rotationally-dominated
dynamics ruling planetary atmospheres, interior convection natu-
rally drives zonal winds via Reynolds stresses (i.e. a statistical cor-
relation between the convective flow components; Christensen,
2002; Heimpel et al., 2005). These winds follow a geostrophic
structure, minimizing variations in the direction of the rotation
axis, and therefore reach through the whole fluid atmosphere. Lian
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and Showman (2008) show that even when the forcing is restricted
to a shallow weather layer the jets may reach much deeper into the
planet. Kaspi et al. (2009), on the other hand, present an anelastic
deep convection model where the equatorial zonal flow is geo-
strophic and the higher latitude jets are confined to the outer
few percent in radius.

Saturn’s magnetic field is very axisymmetric and strongly con-
centrated at higher latitudes (Cao et al., 2012) which is incompat-
ible with the results of a classical Earth-like dynamo model. A
stably stratified layer at the top of the dynamo region (Christensen
and Wicht, 2008; Stanley, 2010) or a completely different dynamo
driven by differential rotation (Cao et al., 2012) are two proposed
alternatives for the special situation encountered at Saturn.

Here we concentrate on Jupiter whose field is very similar to the
geomagnetic field so that the well-explored geodynamo models
also seem to apply at first sight. These models typically adopt the
Boussinesq approximation where the mild 30% density stratifica-
tion of Earth’s core is simply ignored. In Jupiter, however, the den-
sity increases by more than a factor of 5000 below the 1 bar level.
While the stratification is mostly concentrated in the outer molec-
ular envelope, the density still rises by about one order of magni-
tude across the metallic layer (Fig. 1 of French et al., 2012). Some
newer numerical models therefore use the anelastic approximation
which allows to incorporate the effects of the background density
stratification while filtering out fast sound waves (Gilman and Gla-
tzmaier, 1981; Stanley and Glatzmaier, 2010; Jones and Kuzanyan,
2009).

In an extensive parameter study, Gastine et al. (2012) (hereafter
referred to as GDW12) show that dipole-dominated dynamos are
rather rare when stronger stratifications are assumed. GDW12
quantify the stratification in their anelastic models in terms of
the number of density scale heights Nq = ln(qi/qo), where qi and
qo are the densities at the inner and outer boundaries of the simu-
lated shell, respectively. For the larger density stratifications
Nq > 2, a value that corresponds to an increase by a factor 7.4, no
dipole-dominated solutions were found. This is attributed to the
fact that the focus of convective action moves progressively out-
ward in cylindrical radius when the stratification is intensified.
Once the convective columns are mainly confined to a relatively
thin outer shell, a non-axisymmetric dynamo mode is preferred
that has previously only been observed in mean field dynamo sim-
ulations (Rüdiger et al., 2003; Jiang and Wang, 2006). We will refer
to this as the thin-shell dynamo model in the following.

For the smaller to intermediate stratifications Nq 6 2, GDW12
find dipole dominated magnetic fields when the local Rossby num-
ber remains smaller than a critical value of Ro‘c � 0.1. This is con-
sistent with the findings of Christensen and Aubert (2006) who
introduced Ro‘ as a measure for the relative importance of inertia
in their Boussinesq models (see Eq. (21)). Multipolar solutions with
weaker magnetic fields on the other hand exist for all Ro‘ values
which means that both types of solutions coexist below Ro‘c for
identical model parameters, forming two distinct branches. This
so-called bistability can be attributed to the fact that free-slip
boundary conditions were employed (Simitev and Busse, 2009;
Schrinner et al., 2012; Gastine et al., 2012). These conditions allow
strong zonal winds to develop that compete with large scale mag-
netic fields. On the dipolar branch, zonal winds are weak, on the
multipolar branch they are stronger. When no-slip conditions are
used zonal flows generally remain weaker and only the dipolar
branch is found for Ro‘ < Ro‘c (Christensen and Aubert, 2006).

Ab initio calculations suggest that there is actually no clear
phase transition between the regions of molecular and metallic
hydrogen states (Lorenzen et al., 2011; French et al., 2012). In
the dynamo context, the electrical conductivity profile is of partic-
ular importance. Due to the increasing degree of hydrogen ioniza-
tion, the conductivity rises super-exponentially with depth and
matches the conductivity of the metallic region at the transition ra-
dius without any pronounced jump. The classical separation of the
dynamics for the two envelopes thus becomes questionable. Liu
et al. (2008) argue that this has important consequences for the
depth of the zonal winds which should remain confined to a shal-
low outer layer where the conductivity remains negligible. The
strong shear associated with the zonal winds would otherwise cre-
ate strong azimuthal magnetic field and lead to Ohmic heating
incompatible with the observed luminosity (see however Glatzma-
ier, 2008).

Stanley and Glatzmaier (2010) present an anelastic simulation
of a relatively thin shell with exponentially decaying electrical con-
ductivity to model the very outer part of the shell. The model uses
extreme parameters (i.e. low Ekman and Prandtl number and high
Rayleigh number) and a dipole-dominated magnetic field develops
in the presence of strong geostrophic zonal winds. However, since
a detailed discussion and a systematic parameter study are miss-
ing, it remains impossible to disentangle the effects of density
stratification, varying conductivity, and the particular parameter
choice. Gómez-Pérez et al. (2010) and Heimpel and Gómez-Pérez
(2011) also include a radial conductivity profile in their deep shell
Boussinesq models, with a constant conductivity in the deeper
interior and an exponential decay in the outer part. These models
also demonstrate that well-pronounced deep-rooted zonal winds
can be compatible with dipole-dominated dynamo action.

The present paper extends the work of GDW12 by adding an
electrical conductivity profile loosely based on the ab initio calcu-
lations by French et al. (2012). Following Gómez-Pérez et al.
(2010) and Heimpel and Gómez-Pérez (2011), the electrical con-
ductivity profile assumes a constant value in the metallic region
and an exponential decay in the molecular region. The aim is to
systematically explore under which circumstances dipole-domi-
nated dynamo action and strong zonal surface winds can coexist
in anelastic dynamo models.

We describe our model in Section 2 with special attention to the
anelastic formulation and the electrical conductivity profile. The
numerical results are presented in Section 3, first concentrating
on the question of dipole-dominance and then on the dynamo
mechanism. Section 4 summarizes our main results and discusses
their implications for the gas giants.
2. Model

2.1. Anelastic approximation

The fluid and convective interior of the planet is modelled by
solving the MHD equations in a rapidly-rotating spherical shell.
Previous models typically used the Boussinesq approximation,
which neglects the background density and temperature varia-
tions. This is questionable in gas planets and, following Gilman
and Glatzmaier (1981), Braginsky and Roberts (1995) and Lantz
and Fan (1999), we therefore adopt the anelastic approximation.
This allows to include background variations while ruling out
sound waves by neglecting fast local density variations.

We solve the equations in a dimensionless form (e.g. Christen-
sen and Aubert, 2006), using the shell thickness d = ro � ri as a
length scale and the viscous diffusion time sm = d2/m as a timescale.
Here, ro and ri are the outer and inner radii, respectively, and m is
the kinematic viscosity. Temperature and density are both non-
dimensionalized by their values at the outer boundary, To and qo.
We employ constant entropy boundary conditions and use the im-
posed contrast Ds across the shell as the entropy scale. There are
no internal heat sources and all the heating coming into the shell
via the inner boundary leaves it through the outer. While this is
not the most realistic heating mode for gas giants, it has been cho-



Fig. 1. Radial profiles of electrical conductivity, used in this work. The black line
corresponds to the ab initio solution from French et al. (2012). All the profiles in
colour, with either a = 9 or a = 25, have rm = 0.5.
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sen to ease the comparisons with more classical Boussinesq simu-
lations. The magnetic field is scaled by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xlkiqo

p
, where X is the

rotation rate of the shell and ki is the inner boundary reference va-
lue of the magnetic diffusivity k(r) = 1/(r(r)l). Here, l is the mag-
netic permeability and r(r) is the prescribed electrical conductivity
profile. Below we will also use the normalized magnetic diffusivity
and electrical conductivity profiles related via:
~kðrÞ ¼ kðrÞ=ki ¼ ri=rðrÞ ¼ ~rðrÞ�1.

The medium is assumed to be an electrically conducting ideal
polytropic gas. Generally, dynamo simulations solve for small vari-
ations around an adiabatic hydrostatic background state that we
mark with a tilde in the following. The background temperature
profile is then defined by the background temperature gradient
deT=dr ¼ �gðrÞ=cp and the density profile by ~qðrÞ ¼ eT m, where m
is the polytropic index. For simplicity, we adopt a gravity profile
proportional to radius which implicitly assumes a homogeneous
density. The other extreme is to assume that all the mass is con-
centrated in the centre, which leads to a gravity profile propor-
tional to 1/r2 (Gilman and Glatzmaier, 1981; Jones et al., 2011).
GDW12 show that both gravity profiles lead to very similar results.
The true profile of the gas giants lies somewhere in-between. The
temperature reference state is then given by

eT ðrÞ ¼ �c0
r
ro

� �2

þ 1þ c0; ð1Þ

where

c0 ¼
ðe

Nq
m � 1Þ
ð1� g2Þ : ð2Þ

Nq = ln(qi/qo) is the number of density scale heights between
the inner and the outer boundaries of the shell and g is the ratio
between the corresponding radii (see Jones et al., 2011; Gastine
and Wicht, 2012 for the full derivation of the reference state).

The dimensionless form of the anelastic equations is

E @u
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r � ð~quÞ ¼ 0; ð6Þ

r � B ¼ 0: ð7Þ

The traceless rate-of-strain tensor S for the homogeneous kinematic
viscosity assumed here is given by

S ¼ 2~q½eij �
1
3

dijr � u� and eij ¼
1
2

@ui

@xj
þ @uj

@xi

� �
; ð8Þ

where dij is the identity matrix. The viscous and ohmic heating con-
tributions are

Q m ¼ 2~q eijeji �
1
3
ðr � uÞ2

� �
ð9Þ

and

Q j ¼ ~kðr � BÞ2: ð10Þ

The system of Eqs. (3)–(7) is governed by the dimensionless Ekman
number E, Rayleigh number Ra, Prandtl number Pr and magnetic
Prandtl number at the inner boundary Pmi:
E ¼ m
Xd2 ; ð11Þ

Ra ¼ god3Ds
cpmj

; ð12Þ

Pr ¼ m
j
; ð13Þ

Pmi ¼
m
ki
: ð14Þ

The specific heat cp, the thermal diffusivity j, magnetic diffusivity k
and kinematic viscosity m are all assumed to be homogeneous. To
quantify gravity we use the reference value go at the outer
boundary.

2.2. Variable conductivity

To simulate the variable electrical conductivity of hydrogen in
the interior of Jupiter, we employ a profile that corresponds to a
constant conductivity in the metallic hydrogen layer and an expo-
nential decay in the outer molecular envelope. Both branches are
matched via a polynomial that also ensures that the first radial
derivative is continuous:

~rðrÞ ¼
1þ ð~rm � 1Þ r�ri

rm�ri

	 
a
r < rm

~rm exp a r�rm
rm�ri

~rm�1
~rm

h i
r P rm

8><>: : ð15Þ

The exponential decay with a rate a starts at a radius rm where the
normalized conductivity has already decreased from ~ri ¼ 1 to ~rm.
For convenience we also define the relative transition radius in per-
centage: vm = rm/ro.

This profile has first been used by Gómez-Pérez et al. (2010) and
it seems a fair first approximation to the results from ab initio cal-
culations by French et al. (2012). The super-exponential increase of
electrical conductivity over the molecular layer is not feasible to
model numerically (see Fig. 1). We thus mainly use a rate of
a = 9 for our simulations, but we also tested a = 25 in a few cases
(see Table 2) and and a = 1 for one case with a different rm (grey
profile in Fig. 1, discussed in Section 3.2). In all the other cases,
~rm was fixed to 0.5 and vm was varied assuming values of 95,
90, 80 and 70%. Corresponding simulations for homogeneous con-
ductivity with vm = 100% can be found in GDW12.

2.3. Numerical model

For the numerical simulation of the model described above, we
use the anelastic version of the MagIC code (Wicht, 2002; Gastine
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and Wicht, 2012). This is a pseudo-spectral code that solves Eqs.
(3)–(7) in a spherical shell using a poloidal/toroidal decomposition
of the vector fields ~qu and B:

~qu ¼ ð~quÞpol þ ð~quÞtor ¼ r� ðr�w erÞ þ r� z er

B ¼ Bpol þ Btor ¼ r� ðr� c erÞ þ r � a er :
ð16Þ

For the spectral representation of the dependence on latitude h and
longitude /, the poloidal potentials w and c, the toroidal potentials z
and a, the entropy S and the pressure p are expanded in spherical
harmonic functions up to degree and order ‘max. Chebyshev polyno-
mials up to degree Nr are used in the radial direction.

For the parameter studies presented here, we use different res-
olutions, because the higher gradient in density and electrical con-
ductivity demand an increase of both radial and horizontal
resolutions. For the Chebyshev polynomial truncations between
Nr = 73 and Nr = 145 are used while ‘max ranges between 85 and
170. Each simulation is run for at least one magnetic diffusion time
with the exception of some cases at the lower Ekman number
E = 10�5 (see Table 2).

Regarding the velocity boundary conditions, we apply a no-slip
condition at the inner core boundary and a free-slip condition at
the outer boundary in most of our simulations which seems appro-
priate for a gas planet with a rocky core. A few test cases with no-
slip conditions at both boundaries allow to explore the impact of
the boundary condition on the dynamics.

The existence of an inner core in Jupiter and its possible size is
still unclear. Here, we assume a small and electrically conducting
solid inner core with ri/ro = 0.2. GDW12 explore g = 0.2 and
g = 0.6 in very similar models with homogeneous electrical con-
ductivity and find generally very similar results.

Furthermore, we use constant entropy boundary conditions and
match the magnetic field to a diffusive solution at the inner bound-
ary and to a potential field at the outer boundary. The Ekman num-
ber is either E = 10�4 or E = 10�5. The larger value allows a more
extensive scan of the other system parameters like Rayleigh num-
ber, density stratification Nq and electrical conductivity transition
radius vm. At E = 10�5, we could only afford to run eleven cases
in a more restricted parameter regime. We assume a Prandtl num-
ber of Pr = 1 and an inner boundary magnetic Prandtl of typically
Pmi = 2 for E = 10�4 and Pmi = 1 for E = 10�5. Nine additional cases
with Pmi = 4 � 10 at E = 10�4 and Pmi = 3 at E = 10�5 have also been
computed.

All together, we ran 74 cases with Rayleigh numbers between 3
and 46 times supercritical. Gastine and Wicht (2012) examine
anelastic convection for an aspect ratio of 0.6 and show that the
critical Rayleigh number increases with increasing stratification
Nq. Table 1 demonstrates that we observe a similar trend for the
smaller aspect ratio 0.2 employed here. At a certain stratification,
Table 1
Values of critical Rayleigh number (Racr) and critical wave number (mcr) for each Nq at
g = 0.2. The values were obtained with a modified version of the linear code by Jones
et al. (2009).

Nq Racr mcr Ekman

0.0 8.706 � 105 4 10�4

1.0 1.935 � 106 5 10�4

2.0 3.455 � 106 6 10�4

3.0 4.648 � 106 43 10�4

4.0 4.569 � 106 49 10�4

5.0 5.372 � 106 55 10�4

5.5 6.172 � 106 58 10�4

0.0 1.207 � 107 7 10�5

1.0 3.012 � 107 9 10�5

2.0 5.582 � 107 11 10�5

3.0 8.874 � 107 108 10�5
the critical wave number jumps from lower to high values. This
is the point where the centre of the flow convection moves from
close to the inner to close the outer boundary. The respective tran-
sition happens at larger stratifications Nq when the Ekman number
is decreased (see also Jones et al., 2009).

In our anelastic simulations, we consider a polytropic index of
m = 2 and we explore density scale heights ranging from the Bous-
sinesq case Nq = 0 to Nq = 5.5, where the latter corresponds to a
density jump of qi/qo ’ 245. While ab initio simulations suggest a
Jovian stratification of Nq = 8.5 from the bottom of the molecular
hydrogen layer to the 1 bar level (Guillot, 1999; French et al.,
2012). However, since the density gradient rapidly steepens with
radius in the planets outer shell our largest stratifications already
cover the inner 99% of Jupiter’s radius.

2.4. Diagnostic parameters

The parameters of all numerical experiments discussed here are
listed in Table 2 along with several diagnostic quantities that char-
acterize the solution and are defined in the following. The ampli-
tude of the zonal flow contribution is measured in terms of the
Rossby number Rozon:

Rozon ¼
uzon

X d
; with uzon ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

r3
o � r3

i

Z ro

ri

h�u2
/i r2 dr

s
; ð17Þ

where uzon is the rms volume-averaged flow velocity and the triangu-
lar brackets denote the angular average

hf i ¼ 1
4p

Z p

0

Z 2p

0
f ðr; h;/Þ sin h dh d/; ð18Þ

�u/ is the axisymmetric azimuthal flow component, and V is the vol-
ume of the spherical shell. Overbars correspond to azimuthal aver-
ages. We use the relative kinetic energy

Z ¼ Ro2
zon

Ro2 ¼

R ro

ri
�u2

/

D E
drR ro

ri
hu2i dr

ð19Þ

to quantify the relative importance of zonal flows.
The magnetic Reynolds number Rm estimates the ratio of mag-

netic field production and diffusion and we use a modified form
here to account for the radial-dependent magnetic diffusivity:

Rm ¼
3

r3
o � r3

i

Z ro

ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu2ðr; h;/Þi

p
~kðrÞ

r2 dr: ð20Þ

The local Rossby number has been introduced by Christensen and
Aubert (2006) to quantify the relative importance of the advection
term in the Navier–Stokes equation (Eq. (3)) and is defined as

Ro‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
V

R ro

ri
hu2i r2 dr

q
X ‘

: ð21Þ

Here, ‘ is a typical flow length scale given by

‘ðrÞ ¼ p u2ðrÞX
l

l u2
l ðrÞ

ð22Þ

where ul is the flow contribution of spherical harmonic degree l. We
use a modified form of Ro‘ based exclusively on the inner conduct-
ing region (ri 6 r 6 rm):

Ro‘ ¼
3

r3
o � r3

i

Z rm

ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu2ðr; h;/Þi

p
X ‘ðrÞ r2 dr; ð23Þ

The magnetic field strength is quantified by the Elsasser number
which measures the ratio of Lorentz to Coriolis forces using the
modified form



Table 2
Summary of the time-averaged results

Model vm(%) Nq Ra
Racr

E Pmi Nr � ‘max fdip SDdip Rozon Z Rm Ro‘ K s

01d 95 0.0 11.5 10�4 2.0 73 � 85 8.45 � 10�1 4.33 � 10�2 1.64 � 10�3 0.04 130 2.72 � 10�2 1.709 3.3
01m 95 0.0 11.5 10�4 2.0 73 � 106 1.12 � 10�1 8.10 � 10�2 5.59 � 10�3 0.36 157 2.66 � 10�2 0.575 2.1
02 95 0.0 17.2 10�4 2.0 73 � 106 6.49 � 10�2 6.72 � 10�2 8.66 � 10�3 0.37 236 4.26 � 10�2 1.236 1.8
03 95 0.0 23.0 10�4 2.0 73 � 106 2.81 � 10�2 2.98 � 10�2 1.02 � 10�2 0.35 290 5.43 � 10�2 1.936 1.4
04⁄ 95 0.0 23.0 10�4 2.0 73 � 106 7.50 � 10�1 3.53 � 10�2 2.80 � 10�3 0.04 239 6.37 � 10�2 2.008 1.6
05 90 0.0 9.2 10�4 5.0 61 � 64 6.21 � 10�1 1.81 � 10�1 1.62 � 10�3 0.07 242 1.78 � 10�2 3.892 3.2
06 90 0.0 10.3 10�4 2.0 73 � 85 3.88 � 10�2 5.14 � 10�2 6.73 � 10�3 0.57 130 1.86 � 10�2 0.262 1.5
07 90 0.0 11.5 10�4 2.0 73 � 106 4.79 � 10�2 5.07 � 10�2 6.93 � 10�3 0.50 153 2.31 � 10�2 0.432 2.9
08⁄ 90 0.0 11.5 10�4 2.0 73 � 106 8.64 � 10�1 2.48 � 10�2 1.45 � 10�3 0.04 114 2.59 � 10�2 1.618 2.9
09 90 0.0 23.0 10�4 2.0 73 � 106 7.06 � 10�2 7.62 � 10�2 1.12 � 10�2 0.38 270 5.21 � 10�2 1.857 1.1
10⁄ 90 0.0 23.0 10�4 2.0 73 � 106 1.16 � 10�1 8.61 � 10�2 5.09 � 10�3 0.10 241 6.49 � 10�2 0.524 2.2
11 80 0.0 11.5 10�4 2.0 73 � 106 5.30 � 10�2 5.81 � 10�2 8.98 � 10�3 0.65 140 1.91 � 10�2 0.255 3.6
12 80 0.0 11.5 10�4 10.0 73 � 106 8.03 � 10�1 5.06 � 10�2 2.35 � 10�3 0.09 403 2.81 � 10�2 6.480 1.6
13⁄ 80 0.0 11.5 10�4 10.0 73 � 106 7.60 � 10�1 5.92 � 10�2 1.45 � 10�3 0.03 395 2.52 � 10�2 6.728 1.3
14 80 0.0 17.2 10�4 2.0 73 � 106 8.66 � 10�2 1.09 � 10�1 1.38 � 10�2 0.64 206 3.06 � 10�2 0.727 1.4
15⁄ 80 0.0 20.7 10�4 2.0 73 � 85 6.26 � 10�2 9.18 � 10�2 5.05 � 10�3 0.11 162 5.66 � 10�2 0.195 1.1
16 80 0.0 23.0 10�4 2.0 73 � 106 4.78 � 10�2 5.62 � 10�2 1.86 � 10�2 0.62 276 4.25 � 10�2 1.178 3.4
17⁄ 80 0.0 23.0 10�4 2.0 73 � 106 3.40 � 10�2 4.50 � 10�2 5.00 � 10�3 0.09 177 5.82 � 10�2 0.232 1.5
18 80 0.0 45.9 10�4 2.0 81 � 170 1.11 � 10�1 3.64 � 10�2 3.12 � 10�2 0.62 454 7.55 � 10�2 2.401 1.0
19d 95 1.0 4.1 10�4 2.0 73 � 85 8.29 � 10�2 4.76 � 10�2 1.27 � 10�3 0.05 90 2.61 � 10�2 1.227 1.2
19m 95 1.0 4.1 10�4 2.0 73 � 85 9.74 � 10�2 8.93 � 10�2 2.86 � 10�3 0.21 103 2.63 � 10�2 0.399 1.2
20d 95 1.0 5.2 10�4 2.0 73 � 106 8.36 � 10�1 3.49 � 10�2 1.60 � 10�3 0.04 121 3.77 � 10�2 2.210 2.6
20m 95 1.0 5.2 10�4 2.0 73 � 106 5.24 � 10�2 6.01 � 10�2 3.82 � 10�3 0.18 145 4.00 � 10�2 0.754 2.4
21 95 1.0 7.8 10�4 2.0 73 � 85 3.86 � 10�2 4.81 � 10�2 6.83 � 10�3 0.21 234 6.26 � 10�2 1.849 1.1
22d 90 1.0 5.2 10�4 2.0 73 � 85 8.74 � 10�1 2.83 � 10�2 1.88 � 10�3 0.06 103 3.31 � 10�2 1.881 1.8
22m 90 1.0 5.2 10�4 2.0 73 � 85 8.12 � 10�2 1.08 � 10�1 4.63 � 10�3 0.26 126 3.47 � 10�2 0.602 1.4
23d⁄ 90 1.0 5.2 10�4 2.0 73 � 85 8.36 � 10�1 3.68 � 10�2 1.66 � 10�3 0.04 110 3.64 � 10�2 2.103 2.0
23m⁄ 90 1.0 5.2 10�4 2.0 73 � 85 1.01 � 10�1 9.06 � 10�2 2.01 � 10�3 0.05 131 4.41 � 10�2 0.358 4.4
24 90 1.0 7.8 10�4 2.0 73 � 106 1.13 � 10�1 1.29 � 10�1 8.55 � 10�3 0.30 204 5.46 � 10�2 1.491 1.8
25 80 1.0 5.2 10�4 2.0 73 � 106 3.53 � 10�2 4.23 � 10�2 8.08 � 10�3 0.58 95 2.25 � 10�2 0.252 4.3
26 80 1.0 10.3 10�4 2.0 73 � 106 8.79 � 10�2 8.43 � 10�2 2.19 � 10�2 0.65 224 5.19 � 10�2 1.172 2.0
27 95 2.0 2.9 10�4 2.0 73 � 106 4.20 � 10�2 3.77 � 10�2 4.34 � 10�3 0.28 107 3.66 � 10�2 0.503 2.4
28 95 3.0 3.2 10�4 2.0 73 � 106 2.10 � 10�2 2.04 � 10�2 7.02 � 10�3 0.29 158 5.68 � 10�2 0.933 3.8
29 90 3.0 3.2 10�4 2.0 73 � 85 5.64 � 10�2 6.69 � 10�2 9.05 � 10�3 0.45 124 4.16 � 10�2 0.563 2.4
30 80 3.0 3.2 10�4 2.0 73 � 85 1.19 � 10�1 1.03 � 10�1 1.38 � 10�2 0.72 76 2.38 � 10�2 0.197 3.7
31 80 3.0 3.2 10�4 6.0 121 � 106 2.33 � 10�1 1.98 � 10�1 1.04 � 10�2 0.52 215 3.01 � 10�2 1.420 1.0
32⁄ 80 3.0 3.2 10�4 2.0 73 � 106 1.08 � 10�1 9.02 � 10�2 6.75 � 10�3 0.23 90 3.71 � 10�2 0.198 1.5
33 80 3.0 4.3 10�4 2.0 73 � 106 2.80 � 10�1 1.80 � 10�1 2.06 � 10�2 0.67 134 4.25 � 10�2 0.529 3.9
341 80 3.0 4.3 10�4 2.0 121 � 106 2.34 � 10�1 1.37 � 10�1 2.18 � 10�2 0.71 128 3.90 � 10�2 0.453 2.6
35 80 3.0 4.3 10�4 6.0 145 � 106 2.27 � 10�2 2.52 � 10�2 1.45 � 10�2 0.45 341 4.88 � 10�2 2.446 0.7
36⁄ 80 3.0 4.3 10�4 2.0 73 � 106 7.52 � 10�2 7.68 � 10�2 8.55 � 10�3 0.19 137 5.62 � 10�2 0.629 1.6
37 80 3.0 8.6 10�4 2.0 81 � 170 5.25 � 10�2 3.55 � 10�2 3.47 � 10�2 0.55 258 8.86 � 10�2 2.164 1.2
38 70 3.0 4.3 10�4 2.0 73 � 106 2.03 � 10�1 2.01 � 10�1 2.52 � 10�2 0.77 90 2.22 � 10�2 0.224 1.6
39 70 3.0 4.3 10�4 6.0 129 � 106 3.07 � 10�1 2.19 � 10�1 2.25 � 10�2 0.71 241 2.52 � 10�2 1.035 0.8
40 95 4.0 5.5 10�4 2.0 81 � 170 4.07 � 10�3 4.21 � 10�3 9.46 � 10�3 0.27 168 8.57 � 10�2 1.185 1.3
41 80 4.0 4.4 10�4 2.0 81 � 170 1.07 � 10�2 2.08 � 10�2 1.52 � 10�2 0.71 69 1.78 � 10�2 0.072 3.0
42 80 4.0 5.5 10�4 2.0 81 � 170 4.40 � 10�1 2.76 � 10�1 2.00 � 10�2 0.66 102 3.27 � 10�2 0.297 2.3
43 80 4.0 5.5 10�4 4.0 97 � 170 8.06 � 10�1 1.77 � 10�2 1.33 � 10�2 0.43 156 3.90 � 10�2 1.672 1.1
44 80 4.0 8.8 10�4 2.0 81 � 170 2.43 � 10�1 2.26 � 10�1 3.01 � 10�2 0.61 184 5.83 � 10�2 0.912 1.2
45 70 4.0 6.6 10�4 2.0 81 � 170 3.38 � 10�1 2.65 � 10�1 3.24 � 10�2 0.78 93 2.23 � 10�2 0.172 1.5
46 70 4.0 6.6 10�4 4.0 81 � 170 9.32 � 10�1 1.09 � 10�2 2.28 � 10�2 0.61 118 2.75 � 10�2 1.717 1.1
47 70 4.0 8.8 10�4 2.0 81 � 170 4.16 � 10�1 2.40 � 10�1 4.37 � 10�2 0.79 129 3.01 � 10�2 0.331 1.7
48 90 5.0 7.4 10�4 2.0 97 � 170 1.18 � 10�3 1.83 � 10�3 1.16 � 10�2 0.31 140 5.61 � 10�2 0.735 1.1
49 90 5.0 9.3 10�4 2.0 97 � 170 4.85 � 10�3 2.27 � 10�3 1.32 � 10�2 0.28 181 7.06 � 10�2 1.069 0.7
502 90 5.0 9.3 10�4 2.5 81 � 192 9.63 � 10�1 8.32 � 10�3 2.38 � 10�2 0.57 50 5.82 � 10�2 0.468 1.1
51 80 5.0 7.4 10�4 2.0 81 � 170 9.02 � 10�1 1.40 � 10�2 1.37 � 10�2 0.38 69 3.33 � 10�2 0.643 2.9
52d1 80 5.0 7.4 10�4 2.0 97 � 170 9.43 � 10�1 8.77 � 10�3 2.02 � 10�2 0.60 58 2.82 � 10�2 0.319 1.0
52m1 80 5.0 7.4 10�4 2.0 97 � 170 4.73 � 10�1 2.35 � 10�1 2.59 � 10�2 0.72 100 2.09 � 10�2 0.245 1.6
53d 80 5.0 9.3 10�4 2.0 81 � 170 9.03 � 10�1 8.03 � 10�3 1.69 � 10�2 0.37 94 4.62 � 10�2 1.074 1.3
53m 80 5.0 9.3 10�4 2.0 97 � 170 5.43 � 10�1 2.25 � 10�1 2.36 � 10�2 0.56 111 3.94 � 10�2 0.470 1.6
54 80 5.0 11.2 10�4 2.0 97 � 170 4.84 � 10�1 2.74 � 10�1 2.44 � 10�2 0.49 128 5.04 � 10�2 0.732 0.7
55 70 5.0 11.2 10�4 2.0 97 � 170 4.07 � 10�1 3.06 � 10�1 3.86 � 10�2 0.72 95 2.41 � 10�2 0.250 0.8
56 80 5.5 9.7 10�4 2.0 97 � 170 9.14 � 10�1 1.53 � 10�2 1.39 � 10�2 0.30 76 3.44 � 10�2 0.820 1.4
57 95 0.0 10.0 10�5 1.0 81 � 133 8.61 � 10�1 1.64 � 10�2 2.91 � 10�4 0.06 98 7.05 � 10�3 0.214 1.1
58 80 0.0 12.5 10�5 1.0 81 � 170 8.71 � 10�1 2.45 � 10�2 4.91 � 10�4 0.11 90 7.44 � 10�3 0.324 1.0
59 80 0.0 20.8 10�5 1.0 81 � 170 8.52 � 10�1 2.69 � 10�2 1.07 � 10�3 0.17 138 1.37 � 10�2 0.969 0.9
60 80 1.0 6.7 10�5 1.0 81 � 170 9.25 � 10�1 8.83 � 10�3 1.55 � 10�3 0.40 101 1.28 � 10�2 0.538 1.1
61 80 1.0 10.0 10�5 1.0 81 � 170 8.87 � 10�1 1.83 � 10�2 3.06 � 10�3 0.41 158 1.97 � 10�2 1.301 1.1
62 80 1.0 16.7 10�5 1.0 97 � 170 2.30 � 10�1 2.00 � 10�1 6.92 � 10�3 0.60 329 3.71 � 10�2 0.821 0.4
63 80 2.0 3.6 10�5 1.0 81 � 170 8.64 � 10�1 1.34 � 10�2 1.92 � 10�3 0.54 84 1.31 � 10�2 0.234 0.8
64 80 2.0 5.4 10�5 1.0 81 � 170 9.04 � 10�1 2.68 � 10�2 4.90 � 10�3 0.73 151 1.85 � 10�2 0.531 1.5
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Table 2 (continued)

Model vm(%) Nq Ra
Racr

E Pmi Nr � ‘max fdip SDdip Rozon Z Rm Ro‘ K s

65 80 3.0 3.4 10�5 1.0 81 � 170 9.35 � 10�1 9.74 � 10�3 4.94 � 10�3 0.81 102 1.41 � 10�2 0.276 1.5
66 80 3.0 4.5 10�5 1.0 81 � 170 8.86 � 10�1 2.66 � 10�2 5.19 � 10�3 0.61 141 2.44 � 10�2 0.675 1.0
67⁄⁄ 80 0.0 7.2 10�5 3.0 121 � 170 8.40 � 10�1 9.11 � 10�3 1.82 � 10�3 0.50 306 1.20 � 10�2 2.471 0.3

1 a = 25.
2 a = 1, rm = 0.03.

⁄ No-slip top boundary.
⁄⁄ Case from Heimpel and Gómez-Pérez (2011) with g = 0.35.

Fig. 2. Dipolarity against the local Rossby number defined by Eq. (23). The outer
line of each symbol represents the Ekman number: black – E = 10�4/Pm = 2 and grey
– E = 10�5/Pm = 1. The black star inside the symbols marks the cases with a no-slip
upper boundary, instead of free-slip. The error bars correspond to standard
deviations of the time series of each case, for which the point itself is the time
average listed in Table 2. The seven dashed lines connect seven sets of cases for
which we found two solutions, depending on the initial magnetic field. The
Boussinesq case with a grey dot inside is the case from Heimpel and Gómez-Pérez
(2011) of vm = 80% and g = 0.35.

Fig. 3. Dipolarity plotted against the ratio between the azimuthal kinetic energy
and the total kinetic energy, averaged in time and volume. The symbols and colours
have the same definition as in Fig. 2. The three boxes mark the three different
regimes discussed in the text. The seven dashed lines connect seven sets of cases for
which we found two solutions, depending on the initial magnetic field.
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which measures the relative energy in the axial dipole contribution
at the outer boundary ro. Following Christensen and Aubert (2006),
we restricted the magnetic field to spherical harmonic degrees and
orders below 12 in Eq. (25). Table 2 lists time averages of the prop-
erties defined above for all our models and we always refer to the
time-averaged properties for characterizing our solutions in the fol-
lowing. The time variability of the dipolarity, also listed in Table 2,
is quantified by its standard deviation SDdip.

3. Results

3.1. Dynamo regimes

In the complex models explored here, the magnetic field geom-
etry not only depends on the local Rossby number (Christensen
and Aubert, 2006) but also on the density stratification, on the
thickness of the weaker conducting layer, on the Ekman number,
and on the magnetic Prandtl number. Fig. 2 shows the dependence
of the dipolarity fdip on the local Rossby number for all our cases,
excluding runs with Pm > 2, with the exception of case 67 from Ta-
ble 2 which is similar to one of Heimpel and Gómez-Pérez (2011)’s
runs. To illustrate the relation between the field geometry and the
zonal flows, we plot fdip versus the relative kinetic energy of axi-
symmetric azimuthal flows in Fig. 3. In both figures, the symbol
type refers to the different stratifications while the symbol colour
identifies the four transitional radii vm explored here. We start by
analysing the different dynamo regimes based on the results for
E = 10�4 and Pm = 2 and come back to the solutions for larger mag-
netic Prandtl numbers and for E = 10�5 further below.

When the weakly conducting layer is relatively thin (vm = 95%
and vm = 90%) and the stratification is mild to intermediate
(Nq 6 2), we find two distinct branches. A dipolar branch, charac-
terized by fdip > 0.7 and weak zonal flows, is restricted to cases with
local Rossby numbers below the critical value of Ro‘c � 0.04. This is
significantly lower than the values of Ro‘c � 0.08 suggested for
homogeneous electrical conductivity by GDW12. The dipole-dom-
inated solutions forming this branch are located in the upper left
corner of Fig. 2 and in the left portion of the yellow high-dipolarity
regime in Fig. 3.

A second branch with multipolar magnetic fields at fdip < 0.2 but
intermediate zonal flows exists for all Ro‘ values. These solutions
can be found in the lower part of Fig. 2 and the cyan low-dipolarity
regime in Fig. 3.

For local Rossby numbers below Ro‘c � 0.04, we thus find both
types of solutions while only multipolar solutions remain stable
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beyond Ro‘c. Figs. 2 and 3 contain seven examples (dashed lines)
where a solution on each branch is found for identical model
parameters, clearly demonstrating the bistability for Ro‘ < Ro‘c.
Which branch a specific numerical simulation will chose depends
on the initial magnetic field configuration. Note that the multipolar
attractor always has the more intense zonal flows (see Fig. 3). Com-
paring magnetic Reynolds numbers and local Rossby numbers for
bistable cases shows that the relative difference is smaller in the
latter than in the former measure. This indicates that the weaker
flow amplitude caused by the larger Lorentz forces in the dipole-
dominated cases is accompanied by a growth in the flow length
scale.

Increasing the stratification to values beyond Nq = 2 while keep-
ing vm large always leads to solutions of the multipolar thin-shell
type discussed by GDW12. Altogether, the behaviour for a thin
weakly conducting layer is similar to that for a homogeneous elec-
trical conductivity with the exception of the lower critical Rossby
number Ro‘c.

For a thicker weakly conducting layer with vm = 80%, the influ-
ence of the stratification on the dipolarity is reversed. Clearly, dipo-
lar solutions with fdip > 0.7 now exclusively exist for stratifications
of Nq = 5 or Nq = 5.5. Since the relative zonal flow amplitude
reaches intermediate values, these cases can be found in the mid-
dle section of the yellow regime in Fig. 3. A second branch of solu-
tions is characterized by low to intermediate dipolarity that
increases with Nq and by large relative zonal flow amplitudes.
These cases populate the pink region in Fig. 3. For stratification
of Nq P 3, the solutions on this secondary branch become strongly
time-dependent as indicated by the large error bars in Figs. 2 and 3.
Fig. 4 demonstrates that the time dependence reflects an oscilla-
tion between dipolar and multipolar field configurations without
ever establishing a solution on the dipole-dominated branch.
Polarity reversals or excursions become possible when the dipolar-
ity is relatively low.

Once more, both branches coexist for not too large local Rossby
numbers and we could identify two bistable cases for vm = 80%,
Nq = 5 and Ra/Racr = 7.4, Ra/Racr = 9.3. When increasing the Ray-
leigh number to Ra/Racr = 11.2, however, only the multipolar solu-
tion remains which suggests a critical local Rossby number of
about Ro‘c � 0.5 (see Table 2).

For vm = 70%, the thickest weakly conducting outer shell ex-
plored here, even stronger stratification seems required to estab-
lish a dipole dominated magnetic field than at vm = 80%. For the
magnetic Prandtl number Pm = 2, generally used at E = 10�4, only
the highly time-dependent solutions with intermediate dipolarity
and strong zonal winds (on average) were found, even at Nq = 5.
Fig. 4. Time evolution of the dipolarity at the surface (solid black line) and the tilt
angle of the dipole (dashed grey line) in degrees. The time is given in magnetic
diffusion units. The parameters are: E = 10�4, Nq = 3, Ra = 4.3Racr, vm = 80% (case 33
from Table 2).
However, the mean dipolarity increases with Nq, just as in the
vm = 80% cases and stratifications of Nq > 5 may finally establish
a dipole-dominated solution.

Fig. 5 highlights the role of the density stratification at
vm = 95%, 90%, 80% and 70% for models at E = 10�4 and Pm = 2 with
similar local Rossby numbers. When the weakly conducting layer is
relatively thin (vm = 95% or vm = 90%), dipole-dominated solutions
can only be found for Nq < 2 while multipolar solutions exist for all
stratifications. For a thicker layer, however, the stratification has a
reversed effect. The mean dipolarity increases with stratification
and highly dipolar solutions are only found for stronger stratifica-
tions Nq P 5. Note that at vm = 90% and Nq = 0, we could only find
multipolar solutions, even at low Rayleigh numbers where Ro‘ is
small. The reason for this is not yet understood. What finally
helped to establish a dipolar solution here was increasing the mag-
netic Prandtl number from 2 to 5.

We also tested the effect of larger magnetic Prandtl numbers for
several other parameter combinations and this often promoted di-
pole-dominated solutions. For example, at vm = 80% and Nq = 0 a
multipolar case became dipolar when increasing Pm from 2 to
10. Likewise, the highly time-dependent case at vm = 80%, Nq = 4,
Ra/Racr = 5.5 and Pm = 2 developed into a stable dipole-dominated
solution when doubling Pm. The same behaviour was found at
vm = 70%, Nq = 4 and Ra/Racr = 6.6. This indicates a certain trade-
off between larger stratifications and higher electrical conductivi-
ties. At vm = 80% or 70%, Nq = 3 and Ra/Racr = 4.3, however, an in-
crease from Pm = 2 to Pm = 6 was not sufficient to establish a
dipole-dominated solution. Even higher magnetic Prandtl numbers
may be required here.

Fig. 6 illustrates the different types of solutions with snapshots
of the radial magnetic field at the outer boundary for E = 10�4. The
top row shows vm = 95% cases at two different stratifications: a di-
pole-dominated Boussinesq case and a multipolar solution at
Nq = 4. The latter shows a large scale wave number (m = 1) struc-
ture similar to that reported for multipolar dynamos with homoge-
neous electrical conductivity and free-slip boundaries (GDW12
Goudard and Dormy, 2008). The bottom row of Fig. 6 depicts the
two branches found for vm = 80%. The left panel shows a snapshot
of a Boussinesq multipolar case and the right panel illustrates the
dipolar configuration found at strong stratifications (Nq = 5).

The results by Heimpel and Gómez-Pérez (2011) prompted us
to also conduct simulations at the lower Ekman number of 10�5

used in their study. Table 2 lists the respective models with differ-
ent Rayleigh numbers and stratifications. The thicker weakly con-
ducting layer of vm = 80% was generally chosen except for one
model with vm = 95%. The Boussinesq case 67 is identical to one
Fig. 5. Dipolarity against density stratification, for fixed transition radii: green –
vm = 95%, blue – vm = 90%, red – vm = 80%, cyan – vm = 70%. The dashed lines simply
gather the symbols with the same vm. The error bars are the same as in Figs. 2 and 3.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 6. Radial magnetic field at the outer boundary. The top row corresponds to vm = 95% (cases 1d and 40 of Table 2, respectively) and the bottom row to vm = 80% (cases 16
and 51 of the same table). The maps on the left are Nq = 0 cases and the maps on the right column are Nq = 4 (top) and Nq = 5 (bottom). Magnetic fields are given in units of
Elsasser number.
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of the models presented by Heimpel and Gómez-Pérez (2011) and
has a larger aspect ratio of g = 0.35 instead of g = 0.2. The outer
grey line of the symbols in Figs. 2 and 3 corresponds to the twelve
runs with E = 10�5.

While for E = 10�4 and vm = 80% we had to increase the stratifi-
cation to Nq P 5 to find strongly dipolar solutions, this is not the
case any more at E = 10�5. Even the Boussinesq models now clearly
have dipole-dominated magnetic fields. The only multipolar case,
which seems to be of the highly time-dependent type, is found at
Nq = 1 and it has a local Rossby number of Ro‘ � 0.04. Another
model at Nq = 1 but Ro‘ � 0.02 is strongly dipolar so that the critical
local Rossby number can be estimated to Ro‘c � 0.03. Note how-
ever, that Ro‘c may depend on stratification.

3.2. The role of zonal flows

The coexistence of dipolar and multipolar branches indicates a
competition between zonal winds and dipolar magnetic fields al-
ready discussed by GDW12. The stronger Lorentz forces associated
to the larger dipolar fields effectively compete with the Reynolds
stresses responsible for driving the zonal winds. The zonal wind
amplitude and the relative zonal wind energy thus remain typi-
cally small. Fierce zonal winds, on the other hand, seem to promote
multipolar fields. This is at least the situation for E = 10�4 and
vm = 95% or 90%. But why are stronger stratifications and/or larger
magnetic Prandtl numbers required to yield dipole-dominated dy-
namo action for thicker weakly conducting outer layers?

Fig. 7 illustrates the zonal flow structure and the poloidal mag-
netic field lines for different stratifications at vm = 95% (middle
row) and vm = 80% (bottom row) for E = 10�4. The top row shows
non-magnetic cases and demonstrates that the inner retrograde
jet decreases in amplitude when the stratification intensifies. This
reflects the progressive outward concentration of the convective
motions and thus of the Reynolds stresses driving the zonal flows
(GDW12).

The dominance of Coriolis forces at this relatively low Ekman
number enforces the Taylor-Proudman theorem and the intense
zonal jets remain strongly geostrophic, i.e. variations in the direc-
tion of the rotation axis are much smaller than variations perpen-
dicular to it. For the thinner weakly conducting layer (middle row
in Fig. 7), the Lorentz forces associated with the stronger dipolar
field at mild stratifications effectively suppress the zonal flows in
the whole shell. For Nq > 2, the weaker multipolar fields created
by the thin-shell dynamo allow the outer prograde jet to survive,
albeit with a significantly reduced amplitude and a restricted
width than in the non-magnetic simulations. The thickness of the
weakly conducting layer now determines the width of the outer
jet, confirming previous work by Heimpel and Gómez-Pérez
(2011).

At vm = 80% (lower row in Fig. 7), the zonal flows generally re-
main more energetic than for vm = 95%. Since these flows are lar-
gely geostrophic, the force balances on geostrophic cylinders (i.e.
on cylinders aligned with the rotation axis) should be considered.
The Lorentz forces now have a harder time to brake the zonal flows
since they act in a significantly reduced volume. Dipole-dominated
dynamo action only becomes possible when the retrograde inner
zonal jet is already relatively weak in the non-magnetic simula-
tions, which happens at stronger stratifications. The thin-shell dy-
namo mechanism generating the multipolar field for vm P 90%
does not apply here, since it would have to operate, at least partly,
in the weakly conducting layer where the magnetic Reynolds num-
ber is now too low to support dynamo action. Instead, a strongly
dipolar magnetic field is generated in the deeper interior where
it does not interfere with the remaining prograde outer zonal jet.

The change in the depth of the poloidal dynamo action is further
illustrated by the radial profiles of magnetic energy shown in Fig. 8.
Up to a stratification of Nq = 4, poloidal and toroidal magnetic ener-
gies have similar profiles and peak in the outer part of the conduct-
ing region around r/ro ’ 0.7. For Nq = 5, however, the profiles are
different with a pronounced focus on deeper parts of the shell
around r/ro = 0.4 � 0.6. For Nq 6 4, the toroidal magnetic field is
larger than the poloidal, suggesting that the induction mechanism
is different from the dipole-dominated case at Nq = 5 where the
poloidal field is stronger.

At vm = 70%, the volume over which Lorentz forces can effi-
ciently brake zonal winds is even further reduced. Dipolar solu-
tions can only be found at even larger stratification than at
vm = 80% where the driving of the inner zonal jet is yet weaker.
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Fig. 7. Azimuthal averages of the zonal component of the flow. Each column of three plots has a different Nq, namely 0, 1, 3, 4 and 5 from left to right. In the bottom and
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Fig. 8. Radial profile of magnetic energy flux (r2 Emag) averaged over time. The
dashed black line is the location of vm = 80%. These results correspond to the red
triangles and red dashed line from Fig. 5. The poloidal (dashed lines) and toroidal
(dot-dashed lines) components are also shown for Nq = 5 and Nq = 0, with the
corresponding colours. The magnetic energy fluxes are normalized by their
maximum values.
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The role of Lorentz forces in defeating zonal winds and thereby
enabling dipole-dominated magnetic fields also offers an explana-
tion why larger magnetic Prandtl numbers help. The reason likely
is that larger Pm values lead to stronger magnetic fields and thus
stronger Lorentz forces. We can also now interpret the highly
time-dependent solutions with intermediate mean dipolarities.
Here, the balance seems to be undecided (Fig. 4). Stronger Lorentz
forces successfully suppress the zonal winds at times but never en-
ough to establish the solution on the highly dipolar more stable
branch. At other times, Reynolds stresses succeed in driving stron-
ger zonal flows that mostly create a weaker multipolar magnetic
field.

To further test the theory that the zonal flows are decisive for
the field geometry we ran a few E = 10�4 cases with a no-slip outer
boundary condition that largely prevents zonal flows from devel-
oping. The results are mixed and not entirely conclusive, which
may have to do with the fact that other flow components are also
affected by this change in boundary conditions. At vm = 95%, Nq = 0
and Ra/Racr = 23.0, the no-slip boundary conditions indeed pro-
mote a dipole-dominated solution with weak zonal flows where
we only find multipolar solutions with strong zonal flows for a
free-slip outer boundary condition (compare cases 3 and 4). The
same positive effect was found for vm = 90%, Nq = 0 and Ra/
Racr = 11.5 (cases 7 and 8). At vm = 90%, Nq = 1 and Ra/Racr = 5.2,
however, we find bistable cases for both type of boundary condi-
tions (cases 22d/m and 23d/m). In the no-slip case, both the di-
pole-dominated and the multipolar solution have weak zonal
flows. Free-slip outer boundary condition promotes dipolarity,
but it is not a necessary condition to find this feature. Note that
such a bistable case for no-slip conditions has already been re-
ported by Christensen and Aubert (2006).
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At vm = 80%, Nq = 0 and Ra/Racr = 23.0, the suppression of the
zonal flows by the no-slip condition is not sufficient to yield a di-
pole-dominated solution and the same is true at vm = 80%, Nq = 3
and Ra/Racr = 3.2 or Ra/Racr = 4.3 (cases 17, 32 and 36). In the latter
two examples, the particular thin shell dynamo described by
GDW12, rather than the stronger zonal flows, may be the reason
for the multipolarity which could explain why the no-slip condi-
tion has no effect.

We also varied the electrical conductivity profile in a few cases.
Increasing the exponential decay rate from a = 9 to a = 25 for two
simulations at vm = 80% required a finer radial numerical grid
and thus more expensive numerical simulations. The zonal flows
in the weakly conducting layer were intensified in both cases,
likely because of the further decreased weaker Lorentz forces
there. The type of solution, however, remained unchanged (see
cases 33/34 and 51/52).

We also tested a more realistic profile that models the approx-
imately linear decrease of electrical conductivity in the metallic
layer (see Fig. 1 and a steeper decrease at larger radii. At
vm = 80%, Nq = 5 and Ra/Rac = 9.3 the solution is bistable for our
standard conductivity profile. For the more realistic profile we so
far only found a clearly dipole-dominated at the same supercriti-
cality but we cannot exclude that the multipolar case also exists.
Fig. 9 compares the radial profiles of the convective magnetic Rey-
nolds number Rmconv for both profiles (yellow lines and grey line).
Being based on rms flows velocities that exclude zonal winds,
Rmconv is appropriate for characterizing poloidal magnetic field
production. Numerical simulations suggest that a magnetic Rey-
nolds number larger than 50 is required to support dynamo action
(Christensen and Aubert, 2006). For our standard electrical conduc-
tivity profiles, Rmconv typically falls below this value for radii be-
yond r/ro = 0.85 or 0.9. The linear decrease in the metallic layer,
however, further reduces the convective Reynolds number which
is already very low at depth. Rmconv values larger than 50 are
now restricted to the inner region of r/ro < 0.6. A multipolar dyna-
mo where the outer parts of the shell play a sizeable role thus be-
comes unlikely. In Jupiter, Rmconv is generally significantly higher
in the metallic region and only decreases below the critical value
for dynamo action in the molecular envelope. We therefore re-
frained from further exploring this profile since the decrease in
magnetic Reynolds number artificially limits the dynamo region.
Fig. 9. The radial profiles of convective magnetic Reynolds number averaged over
time for the cases displayed in Fig. 7 (cases 50 in grey, 51 in red, 60 in blue and 66 in
green, from Table 2). The two additional yellow cases (53d/m in Table 2) yield a
higher Ra and bistability, at Nq = 5 and E = 10�4.
Fig. 10 shows zonal flows and axisymmetric poloidal field lines
for the dipole-dominated solutions at E = 10�4 with the modified
electrical conductivity profile (first panel from the left) and the
standard profile (second panel). The poloidal fields are very similar
and produced at greater depth in both cases. This explains why the
low convective magnetic Reynolds number in the outer part of the
shell has little impact on the dynamo mechanism for dipolar dom-
inated solutions. Once more, the weaker Lorentz force in the outer
layer allows for more vigorous zonal winds for the more realistic
conductivity profile.

How do the results at E = 10�5 fit into the picture we outlined
above? Fig. 10 compares two E = 10�5 cases at Nq = 1 (third panel,
case 60) and Nq = 3 (fourth panel, case 66) with the dipole-domi-
nated solutions for the more realistic profile (first panel, case 50)
and for our standard profile at Nq = 5 and E = 10�4 (second panel,
case 51, see also Fig. 7). The magnetic field and zonal flow struc-
tures are very similar in all cases. At both Ekman numbers, the rel-
ative amplitude of the retrograde jets decreases with increasing Nq
(see also Table 2). The absolute zonal flow amplitude, however, is
significantly smaller in all lower Ekman number models. For exam-
ple, the zonal flow Rossby number is Rozon = 5.2 � 10�3 in the
E = 10�5 / Nq = 3 case (66) depicted in Fig. 10, but Rozon = 1.4 � 10�2

in the E = 10�4 / Nq = 5 simulation (51).
In non-magnetic free-slip simulations, the flow amplitude

roughly scales with the modified Rayleigh number Raq = RaE2/Pr,
as it has been shown by Christensen (2002) for Boussinesq and
Gastine and Wicht (2012) for anelastic models. For example, Gas-
tine and Wicht (2012) suggest the dependence
Ro � 0:165 RaI1:06

. This scaling describes an asymptotic behaviour
for larger Rayleigh numbers where zonal flows clearly dominate so
that Ro � Rozon. For the smaller Rayleigh numbers typically exam-
ined here, it may only serve as a rough estimate for the zonal flow
amplitude. For case 51 with E = 10�4, we have Raq = = 0.4 and the
scaling predicts Rozon � 6.2 � 10�2. For case 66 with E = 10�5 and
Raq = = 0.04, it predicts Rozon � 5.4 � 10�3. Both values are not
too far from the numerical results Rozon � 1.4 � 10�2 and Rozon -
� 5.2 � 10�3, respectively, which suggests that the difference in
Raq is indeed the main reason for the much weaker zonal flows
at the lower Ekman number.

Because of the quadratic Ekman number dependence of Raq, Ra
has to be increased by two orders of magnitude to reach the same
zonal flow amplitudes in the E = 10�5 as in the E = 10�4 cases. This
leads to larger Ro‘ values and thus possibly multipolar fields
(Heimpel and Gómez-Pérez, 2011). The Rayleigh number increase
from Ra/Racr = 10.0 (case 61) to Ra/Racr = 16.7 (case 62) at Nq = 1 al-
ready leads to a multipolar field while only doubling the zonal flow
amplitude.

The similar Elsasser numbers in the dipole-dominated cases at
both Ekman numbers indicate that the Lorentz forces also have
comparable amplitudes. These forces have a much easier job to
brake the systematically weak zonal flows at E = 10�5, allowing a
dipole-dominated field to develop even at mild stratifications.
The more extensive parameter study at E = 10�4 suggests that
stronger stratifications should allow for more vigorous outer jets
while retaining dipole-dominated dynamo action.

3.3. Dynamo mechanism

GDW12 reported that the multipolar solutions with stronger
zonal flows are dynamos of an aX or an a2X type. Dynamos of
the a2 type, on the other hand, are known to produce dipole-dom-
inated magnetic fields (Olson et al., 1999). The a stands for poloidal
and toroidal field production by local helical structures, while X
stands for the production of toroidal field by global zonal wind
shear. Following Brown et al. (2011), the X-effect is given by
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Fig. 10. Azimuthal average of the zonal component of the flow. The cases from Table 2 displayed here are, from left to right: 50 and 51 of E = 10�4, 60 and 66 of E = 10�5. The
poloidal field lines are plotted on top of the zonal velocity contours, where solid lines are positive and dashed are negative values. The dotted lines correspond to vm. Zonal
velocities are given in units of Rossby number calculated by Ro = u/(Xro).

Ω
-e

ffe
ct

–720
–480
–240
0

+240
+480
+720

O
hm

ic
di

ffu
si

on

–900
–600
–300
0

+300
+600
+900

B
φ

Nρ = 3

–2.7
–1.8
–0.9
0

+0.9
+1.8
+2.7

–2700
–1800
–900
0

+900
+1800
+2700

–4200
–2800
–1400
0

+1400
+2800
+4200

Nρ = 5

–6.6
–4.4
–2.2
0

+2.2
+4.4
+6.6

Fig. 11. From top to bottom, azimuthal averages of the toroidal component of the
magnetic field, production of the toroidal field by X-effect and ohmic diffusion. The
three left panels correspond to Nq = 3, Ra/Racr = 4.3 and the three right panels to
Nq = 5, Ra/Racr = 7.4 (cases 33 and 51 from Table 2), both cases belong to the red
vm = 80% line of Fig. 5.

32 L.D.V. Duarte et al. / Physics of the Earth and Planetary Interiors 222 (2013) 22–34
X ¼ Br
@

@r
�u/

r

� �
þ Bh sin h

r
@

@h

�u/

sin h

� �
ð26Þ
and describes the production of the axisymmetric azimuthal mag-
netic field B/ which is purely toroidal. The mean ohmic diffusion
of B/ is given by
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Fig. 11 compares B/, X and MD for two vm = 80% cases, a multipolar
solution at Nq = 3 (left) and dipole dominated solution at Nq = 5
(right). Both cases were depicted previously in Figs. 7 and 8. For
the multipolar solution, the X-effect plays an important role, as
demonstrated by the high degree of correlation with the azimuthal
field over the shell. For the dipole-dominated solution, however, the
X-effect is only strong in the weakly conducting region where it is
effectively balanced by the large ohmic diffusion. The change in
field geometry is thus once more coupled to a switch from an aX
or a2X mechanism at weaker stratifications to an a2 mechanism
at stronger density stratifications.

4. Conclusions

We ran a suite of dynamo simulations with an electrical con-
ductivity profile geared to combine the dynamics of the metallic
and the molecular hydrogen layers of the gas giants in one inte-
grated model. In most models, the conductivity is assumed to re-
main constant over the inner part of the shell representing the
metallic hydrogen region. Beyond a relative radius of vm, it decays
exponentially with radius, to model the molecular envelope. The
use of the anelastic MHD code allowed us to also study the effects
of density stratification. Free-slip outer boundary and no-slip inner
boundary conditions seem appropriate for the gas giants and were
used in the majority of our simulations.

In GDW12, we had explored the dynamo action for homoge-
neous electrical conductivity in an otherwise identical setup. Di-
pole-dominated solutions were only found for mild stratifications
and local Rossby numbers below Ro‘c = 0.08. The respective solu-
tion branch is characterized by weak zonal winds and coexists with
a second branch with weaker multipolar magnetic fields but stron-
ger zonal winds at identical parameters. This indicates a competi-
tion between zonal winds and dipolar magnetic fields (Simitev and
Busse, 2009; Schrinner et al., 2012; Gastine et al., 2012). Translated
to Jupiter and Saturn, these simulations would predict multipolar
magnetic fields, should the observed zonal winds reach into the
dynamo region. The strong stratification within the gas giants
should also promote multipolar solutions.

We largely recover these results when the outer weakly con-
ducting layer occupies only 5 or 10 percent in radius (vm = 95%
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and vm = 90%). However, the critical local Rossby number, below
which dipole-dominated solutions are possible, decreases to Ro‘c -
� 0.04. Gómez-Pérez et al. (2010) already showed that even very
thin weakly conducting outer layers promote multipolar magnetic
field configurations. They speculate that the separation of the Ek-
man and Hartmann boundary layers may play a role in their mod-
els with no-slip boundaries, although this explanation is difficult to
apply for the free-slip models predominantly explored here. More
research is required to clarify this point in the future, specially con-
cerning no-slip boundaries.

For a thicker weakly conducting outer layer covering the outer
20% or 30% in radius (vm = 80% or 70%), the volume over which the
Lorentz forces can act to balance Reynolds stresses is more signif-
icantly reduced. The competition between zonal wind and stronger
dipolar fields thus becomes even more of an issue. At an Ekman
number of E = 10�4, the mean zonal winds tend to be relatively
strong even at low Rayleigh numbers. Dipole-dominated dynamo
action is nevertheless possible in the deeper interior of strongly
stratified models, where the zonal flows remain relatively weak
even in the non-magnetic case. Alternatively, dipole-dominated
solutions are found for larger magnetic Prandtl numbers which
help to keep zonal flows at bay by increasing Lorentz forces. In
the dipole-dominated solutions, the zonal winds are then mainly
restricted to a fierce prograde jet that resides within the weakly
conducting outer envelope.

At the lower Ekman number of E = 10�5, dipole-dominated
magnetic fields can even be maintained at weak stratifications be-
cause the zonal flow amplitudes are lower than at E = 10�4. The
peak velocity of Jupiter’s equatorial jet is around Roej = 1.1 � 10�2

(Vasavada and Showman, 2005) and about Roej = 5.0 � 10�2 for
Saturn (Choi et al., 2009). For example, the E = 10�4 case illustrated
in Fig. 10 (second panel from the left) reaches Roej = 5.3 � 10�2

which is somewhat too high for Jupiter. The E = 10�5 simulation
depicted in the same figure has Roej = 2.4 � 10�2 at the lower strat-
ification of Nq = 3. The amplitude of the equatorial jet decreases
with Ekman number and increases with density stratification.
We speculate that the higher stratifications within the gas giants
may allow to reach appropriate zonal jet amplitudes at the much
lower realistic Ekman number, around EJ � 5 � 10�19 (French
et al., 2012), while retaining dipole-dominated dynamo action.

The number of zonal jets is much smaller in our simulations
than for the gas giants. Also, the strong decrease in the zonal flow
amplitude from the equatorial to the flanking jets, that is necessary
to retain dipole-dominated dynamo action in our models, is not
compatible with the observations for Jupiter. A dipolar configura-
tion nevertheless seems possible should the higher latitude jets re-
main too shallow to interfere with the deeper dynamo process. The
equatorial jet does not pose a problem in this respect because it
can reside completely within the lower conductivity envelope.

An argument against deep reaching winds is that the associated
strong X-effect and Ohmic dissipation may not be compatible with
Jupiter’s observed luminosity (Liu et al., 2008). A first analysis of
our results confirms that the X-effect and associated Ohmic dissi-
pation can be significant. Glatzmaier (2008) argues that the mag-
netic field may assume a configuration where the poloidal field
lines are aligned with the rotation axis in regions of strong zonal
flow shear. Since the shear is perpendicular to the rotation axis,
this would minimize the X-effect and related Ohmic dissipation.
Fig. 10 illustrates that the field lines indeed approach such an
alignment in the very outer part of the shell where the electrical
conductivity is still important. The Ohmic dissipation nevertheless
remains significant in all our simulations with strong zonal flows.
Further investigation is necessary to quantify this effect and
extrapolate it to the planetary situation.

Any problems related to ohmic dissipation and dipolar dynamo
action would not be an issue when stronger zonal winds remain
confined to a thin outer envelope with (vm P 96%), where the elec-
trical conductivity remains small enough (Liu et al., 2008). In our
simulations, however, all the stronger jets obey the Taylor-Proud-
man theorem and reach through the planet. Shallow jets have been
found by Kaspi et al. (2009), who use a different anelastic approx-
imation and a different internal heating mode. Further investiga-
tions are required to clarify which specific model features
influence the depth on the zonal jets.
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