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The atmospheres of Jupiter and Saturn exhibit strong and stable zonal winds. How deep the winds
penetrate unabated into each planet is unknown. Our investigation favors shallow winds. It consists
of two parts. The first part makes use of an Ohmic constraint; Ohmic dissipation associated with the
planet’s magnetic field cannot exceed the planet’s net luminosity. Application to Jupiter (J) and Saturn (S)
shows that the observed zonal winds cannot penetrate below a depth at which the electrical conductivity
is about six orders of magnitude smaller than its value at the molecular–metallic transition. Measured
values of the electrical conductivity of molecular hydrogen yield radii of maximum penetration of 0.96R J

and 0.86R S , with uncertainties of a few percent of R . At these radii, the magnetic Reynolds number
based on the zonal wind velocity and the scale height of the magnetic diffusivity is of order unity. These
limits are insensitive to difficulties in modeling turbulent convection. They permit complete penetration
along cylinders of the equatorial jets observed in the atmospheres of Jupiter and Saturn. The second part
investigates how deep the observed zonal winds actually do penetrate. As it applies heuristic models
of turbulent convection, its conclusions must be regarded as tentative. Truncation of the winds in the
planet’s convective envelope would involve breaking the Taylor–Proudman constraint on cylindrical flow.
This would require a suitable nonpotential acceleration which none of the obvious candidates appears
able to provide. Accelerations arising from entropy gradients, magnetic stresses, and Reynolds stresses
appear to be much too weak. These considerations suggest that strong zonal winds are confined to
shallow, stably stratified layers, with equatorial jets being the possible exception.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Jupiter and Saturn are composed primarily of hydrogen and he-
lium with small additions of heavier elements. Their atmospheres
exhibit strong, stable zonal winds composed of multiple jets asso-
ciated with azimuthal cloud bands (Ingersoll, 1990). Zonal winds
peak in the equatorial region reaching ∼100 m s−1 on Jupiter and
∼400 m s−1 on Saturn.1 The latitudes of Jupiter’s jets have not
changed for at least 80 years (Smith and Hunt, 1976) and their ve-
locities have been constant within 10% over 25 years (Porco et al.,
2003).

The depth of the zonal winds is unknown. Both deep and shal-
low flow models have been proposed. Wind speeds measured by
the Galileo probe at 7.4◦ N on Jupiter rose from 90 m s−1 at
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1 Wind speeds on Jupiter are determined relative to System III coordinates which

rotate with the angular speed of the planet’s magnetic field (Dessler, 1983). Only
differences among wind speeds on Saturn are known because the planet’s internal
rotation rate is uncertain.
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0.4 bar to 180 m s−1 at ∼5 bar and then remained nearly con-
stant until 22 bar (Atkinson et al., 1997, 1998). It is important to
bear in mind that these measurements only sample the winds in
the outer 1% of the planet’s radius where the electrical conductiv-
ity is low. In regions of high electrical conductivity, the magnetic
field lines are frozen into the fluid. Winds in these regions would
cause changes in the external magnetic field. By comparing Galileo
and Pioneer/Voyager data, Russell et al. (2001a, 2001b) find that
increases of 0.3◦ in the dipole tilt and 1.5% in Jupiter’s dipole mo-
ment may have taken place between 1975 and 2000. The former
could be accounted for by meridional flows with speeds in the
deep interior of order 0.1 cm s−1 (Guillot et al., 2004).

Busse (1976, 1983, 1994) advocates deep flows. He applies
the Taylor–Proudman theorem (Taylor, 1923) to deduce that zonal
flows extend along cylinders oriented parallel the rotation axis in
the molecular envelope, and then terminate at the outer boundary
of the metallic core where he assumes that hydrogen undergoes
a first order phase transition. But data from shock wave experi-
ments show that hydrogen undergoes a continuous transition from
a semi-conducting molecular state to a highly conducting metallic
state as the pressure increases. This contradicts the assumption of
a first-order phase transition at the core–envelope boundary.
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Recently, a modified deep flow model for jovian zonal flows has
been proposed based on simulations of convection in a shell with a
lower boundary near 0.9R J (Aurnou and Heimpel, 2004; Heimpel
et al., 2005). The physical meaning of the lower boundary in the
modified deep flow model is obscure. Hydrogen cannot undergo a
phase change at that radius (Guillot et al., 2004). So how might
the Taylor–Proudman constraint be violated in order to reduce the
zonal flow to a near zero value below that boundary? We address
related issues in Section 5.

In shallow flow models, the observed high-speed flow is con-
fined to a thin, baroclinic layer near the cloud level; the interior
flow is much slower. Even if the high velocity flow is confined
to a shallow layer, its forcing may occur at depth. For example,
if the flow were to arise from a process that conserved angular
momentum per unit volume, ρU would be approximately con-
served, where ρ is the density and U is the magnitude of the
flow velocity. Since the density in the interior is several orders
of magnitudes larger than that near the surface, the flow veloc-
ity could then be much greater near the surface. On the other
hand, the observed zonal flow might be generated by shallow forc-
ing due to the turbulence injected at the cloud level by moist
convection, differential latitudinal solar heating, latent heat re-
lease from condensation of water, or other weather layer processes
(Vasavada and Showman, 2005). From the thermal wind equation,
a latitudinal temperature gradient of about 5–10 K across a few
pressure scale heights below the cloud level would cause substan-
tial vertical shear, which makes the flow velocity much greater
near the surface than deeper down (Ingersoll and Cuzzi, 1969;
Ingersoll et al., 1984; Vasavada and Showman, 2005).

The plan of our paper is as follows. Relevant details of the elec-
trical conductivity of molecular hydrogen as measured in shock
wave experiments are presented in Section 2. Sections 3 and 4
are devoted to the calculation of Ohmic dissipation based on the
assumption that the zonal wind penetrates the planet along cylin-
ders. In the former, the poloidal magnetic field is determined by
downward extrapolation of the external field. This procedure is ap-
propriate in regions where the magnetic Reynolds based on the
convective velocity, Rc

m � 1. In the latter, we examine the conse-
quences of assuming that the poloidal magnetic field is parallel
to the rotation axis in regions where Rc

m � 1. The requirement
that the total Ohmic dissipation be bounded from above by the
planet’s net luminosity, L, limits the depth to which the observed
zonal winds can penetrate. Section 5 asks whether the zonal winds
might be truncated within the convective envelope. A short sum-
mary of our main results is given in Section 6. A few technical
details are relegated to Appendix A.

2. Electrical conductivity in Jupiter and Saturn

Electrical conductivity in the interiors of Jupiter and Saturn is
due mainly to hydrogen. Near their surfaces it might be signifi-
cantly enhanced relative to pure hydrogen by the addition of some
more readily ionized heavier elements. Helium is unimportant due
to its high ionization potential.

Condensed molecular hydrogen is a wide band-gap insulator at
room temperature and pressure, with a band gap, E g , of about
15 eV, corresponding to the ionization energy of the hydrogen
molecule. As the pressure increases, this gap is expected to di-
minish and finally close to zero, resulting in an insulator-to-metal
transition. In experiments, this transition appears to be gradual.
As the energy gap closes, hydrogen molecules begin to dissoci-
ate to monatomic hydrogen and electrons start to be delocal-
ized from H+

2 ions (Nellis et al., 1996; Weir et al., 1996). The
insulator-to-metal transition is expected to occur even though the
hydrogen molecules have not been fully pressure-dissociated. At
much higher pressure and temperature, molecular dissociation be-
comes complete and it is presumed that pure monatomic hydrogen
forms a metallic Coulomb plasma (Stevenson and Ashcroft, 1974;
Hubbard et al., 1997).

The conductivity of hydrogen has been measured in reverber-
ating shock wave experiments from 0.93 to 1.8 Mbar (Weir et al.,
1996; Nellis et al., 1999) and in single shock experiments from 0.1
to 0.2 Mbar (Nellis et al., 1992). In these experiments, hydrogen
is in thermal equilibrium at pressures and temperatures similar
to those in the interiors of giant planets. From 0.93 to 1.4 Mbar,
the measured electrical conductivity of hydrogen increases by four
orders of magnitude. Between 1.4 and 1.8 Mbar, the conductiv-
ity is constant at 2 × 105 S m−1, similar to that of liquid Cs and
Rb at 2000 K and two orders of magnitude lower than that of a
good metal (e.g. Cu) at room temperature. The constant conduc-
tivity suggests that the energy gap has been thermally smeared
out (Weir et al., 1996). Temperatures of shock-compressed liquid
hydrogen have been measured optically in separate experiments
(Nellis et al., 1995; Holmes et al., 1995). At the highest obtained
pressure of 0.83 Mbar, the measured temperature of 5200 K falls
below that predicted for pure molecular hydrogen. This is due
to the dissociation of molecular hydrogen and enables us to es-
timate the fractional dissociation as a function of pressure. At
1.4 Mbar and 3000 K, the dissociation fraction is ∼5%. Thus metal-
lization of hydrogen occurs in the diatomic molecular phase and is
caused by electrons delocalized from H+

2 ions (Nellis et al., 1996;
Ashcroft, 1968). Since we are interested in the outer shell of the
giant planets, the measurements at 0.1–0.2 Mbar are the most
relevant. In this low-pressure range, the dissociation of hydrogen
molecules is unimportant.

The electrical conductivity of a semiconductor can be expressed
in the form:

σ = σ0(ρ)exp

(
− E g(ρ)

2K B T

)
, (1)

where σ is electrical conductivity, E g(ρ) is the energy of the
density dependent mobility gap, K B is Boltzmann’s constant, T
is the temperature, and exp(−E g/2K B T ) expresses the fractional
occupancy of the current carrying states. The conductivity mea-
surement at 0.27 g cm−3 and a temperature of 4160 K2 (Nellis et
al., 1992) is close to the interior isentropes of Jupiter and Saturn
(Guillot, 1999). This measurement determines σ0 = 1.1×108 S m−1

and E g = 11.7 ± 1.1 eV. The error bar in the energy gap comes
from the experimental uncertainties in σ and uncertainties in cal-
culated post-shock temperatures (Nellis et al., 1995).

The data suggest that it is sufficiently accurate to assume E g is
a linear function of hydrogen density ρH2 : E g = a + bρH2 , where
a and b are two constants (Nellis et al., 1992, 1996). The mea-
surements and the energy gap (15 eV) at room temperature and
pressure determine the values of a and b. Since the volume mixing
ratio of hydrogen in the outer shells of giant planets is about 92%,
the density in giant planet interiors is 1.18ρH2 . With σ0, E g(ρH2 ),
and T (ρ) from the planetary interior model (Guillot, 1999), the
conductivity profiles of the giant planets can be calculated.

Fig. 1 displays the conductivity distributions as a function of
radius in the outer shells of Jupiter and Saturn. The conductiv-
ity increases with depth, and there is a smooth transition from
semi-conducting to metallic hydrogen at pressure (1.4 Mbar). This
transition takes place at about 0.84 of Jupiter’s radius and 0.63 of
Saturn’s radius (Liu, 2006).

The electrical conductivity is proportional to the total number
density of electrical charge carriers: σ ∝ ne , which includes a con-

2 The corresponding pressure is 0.187 Mbar.
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Fig. 1. Electrical conductivity and magnetic diffusivity distributions inside giant planets: (a) Jupiter; (b) Saturn. Values of conductivity and magnetic diffusivity are plotted in
the left and right panels, respectively. Solid lines depict mean value; dashed lines bound the range of uncertainties.
tribution, which we have neglected, from impurities x in addition
to that from hydrogen:

ne = nH2 exp

(
− E g

2K B T

)
+

∑
x

nx exp

(
− Ex

2K B T

)
, (2)

where nx and Ex express the number density of the electrons
and the energy gap due to an impurity. Alkali metals are sources
of small band gap impurities. They may also contribute to the
radiative opacity thus insuring adiabaticity (Guillot et al., 2004;
Guillot, 2005). The mixing ratio of an alkali metal in the interior
of a giant planet is presumably similar to that determined from its
cosmic abundance. With these abundances, a band gap of a few
electron volts would lead to a conductivity of 10−6 ∼ 10−4 S m−1

at T ∼ 1000 K, significantly above the value due to hydrogen in
the outer shells of giant planets.

In magnetohydrodynamics it is conventional to characterize
the electrical conductivity σ in terms of the magnetic diffusiv-
ity λ = (μ0σ)−1, where μ0 is the magnetic permeability. Fig. 1
shows that the electrical conductivity of hydrogen decreases expo-
nentially outward from the metallic conducting region. Therefore,
the magnetic diffusivity increases exponentially outward. The scale
height of magnetic diffusivity

Hλ(r) = λ(r)

dλ(r)/dr
(3)

is shown in Fig. 2.

3. Ohmic dissipation based on inward extrapolation of the
external magnetic field

We approximate the planet’s magnetic field as axisymmet-
ric; Jupiter’s dipole tilt is about 10◦ and Saturn’s less than 0.1◦
(Connerney, 1993). Then we evaluate the azimuthal component of
the magnetic field produced by differential rotation acting on the
poloidal components. The maximum penetration depth is that of
the level above which the associated Ohmic dissipation matches
the planet’s net luminosity, L.
To proceed, we need to know the poloidal magnetic field above
the maximum penetration depth. Here we assume that it can be
determined by inward extrapolation of the planet’s external mag-
netic field. This assumption is appropriate provided the magnetic
Reynolds number based on the convective velocity field, Rc

m , re-
mains small down to the maximum penetration depth, which our
estimates suggest it does.3

Lack of accurate magnetic field measurements at high latitudes
close to Jupiter and Saturn makes the inward extrapolation of their
external magnetic fields somewhat uncertain. Thus we cannot ex-
clude the possibility that where Rc

m � 1 the magnetic field might
be closely aligned with the rotation axis. This possibility is exam-
ined in Section 4.

3.1. Derivation of Ohmic dissipation

The time evolution of the magnetic field satisfies

∂B

∂t
= ∇ × (U × B) − ∇ × [

λ(r)∇ × B
]
, (4)

where U and B denote velocity and magnetic field. We work in
spherical coordinates and set U = Uφeφ = r sin θΩeφ . The genera-
tion of toroidal field from poloidal field is described by

∂ Bφ

∂t
= r sin θ

(
∂Ω

∂r
Br + 1

r

∂Ω

∂θ
Bθ

)
+ 1

r

∂

∂r

(
λ

∂

∂r
(rBφ)

)

+ λ

r2

∂

∂θ

(
1

sin θ

∂

∂θ
(sin θ Bφ)

)
. (5)

We seek a steady-state solution noting that Bφ scales propor-
tional to λ−1, and Hλ is much smaller than the length scale for
the meridional variation of Uφ and B . Thus we neglect r−1∂/∂θ

with respect to ∂/∂r, which is equivalent to assuming that jr � jθ .4

3 An axisymmetric poloidal field is invariant under differential rotation.
4 A toy problem illustrating the effects that Hλ � Hρ has on j is presented in

Appendix A.
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Fig. 2. Scale height of magnetic diffusivity as a function of scaled radius: (a) Jupiter; (b) Saturn.
Then, by integrating the steady-state version of Eq. (5), we arrive
at[
λ(r)

∂

∂r
(rBφ)

]R

r
≈ − sin θ

R∫
r

dr′ r′ 2
(

∂Ω

∂r′ Br + 1

r′
∂Ω

∂θ
Bθ

)
. (6)

With axial symmetry,

jθ = − 1

μ0r

∂

∂r
(rBφ), (7)

so

jθ (r, θ) = − sin θ

μ0rλ(r)

R∫
r

dr′ r′ 2
(

∂Ω

∂r′ Br + 1

r′
∂Ω

∂θ
Bθ

)
+ Rλ(R)

rλ(r)
jθ (R, θ).

(8)

Thus jθ (r, θ) is determined up to an unknown function of θ ,
namely jθ (R, θ), the current density in the ionosphere.5 There is
a simpler and more intuitive way to derive Eq. (8). Start from
∇ × E = 0 and F = E + U × B. Express the former in terms of a
line integral around a circuit consisting of two small arcs of the
same angular width δθ , one at r and the other at R , connected by
radial segments of length δr = R − r. Eliminate the components of
E in terms of those of F and U × B. Then use j = σF to replace
the components of F in terms of those of j. Make the assumption
| jr | � | jθ | and Eq. (8) is derived.

Next, we estimate the size of the rhs of Eq. (8). Let T1 and T2
denote the first and second terms, respectively. Steady state, ax-
isymmetric currents cannot close within the ionosphere. Nor can
they penetrate inside the planet due to the extremely low conduc-
tivity of its neutral atmosphere. However, they can and do flow

5 λ(r) is extremely large, effectively infinite, in the neutral atmosphere but de-
creases dramatically in the ionosphere.
along field lines into the magnetosphere. These currents produce
torques which transfer angular momentum from the planet’s spin
to plasma that is drifting outward in the magnetosphere. In so do-
ing, they tend to maintain that plasma in approximate corotation
with the planet. The torque, and hence jθ (R, θ), are proportional
to ΩṀ , where Ṁ is the rate at which plasma is expelled from the
magnetosphere. Because the zonal winds cause Ω to vary by only
a few percent, jθ (R, θ) is a weak function of θ . Thus, to a first
approximation, T1 and T2 are uncorrelated, so the magnitude of
jθ (r, θ) is that of the larger of these terms. We take a conservative
approach and accept the well-determined value of the first term
as the minimum value for | jθ (r, θ)|. This is equivalent to treating
the ionosphere as an equipotential surface in the reference frame
rotating with planet’s mean angular velocity.

Ohmic dissipation per unit volume is equal to the square of
the current density divided by the electric conductivity. Since jθ is
dominant, we apply Eq. (8) to obtain the total Ohmic dissipation
above radius r;

P ≈ 2π

μ0

R∫
r

dr′

λ(r′)

π∫
0

dθ sin3 θ

[ R∫
r′

dr′′ r′′ 2
(

∂Ω

∂r′′ Br + 1

r′′
∂Ω

∂θ
Bθ

)]2

. (9)

For Ω constant on cylinders, the term in round brackets reduces
to (∂Ω/∂� ′′)B� , where � = r sin θ . Thus Ohmic dissipation van-
ishes both for solid body rotation and for a poloidal field aligned
parallel to the rotation axis.

3.2. Estimation of Ohmic dissipation inside Jupiter and Saturn

We apply Eq. (9) to evaluate the total Ohmic dissipation above
radius r. Atmospheric zonal flows observed on Jupiter and Saturn
(Porco et al., 2003; Sanchez-Lavega et al., 2000) are taken to be
constant on cylinders outside a spherical truncation radius and
to vanish inside. Since the observed zonal flows are not exactly
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Fig. 3. Observed zonal flow is taken to penetrate along cylinders until it is truncated at rmp. Solid curves display nominal values for the total Ohmic dissipation, P , as a
function of rmp/R . Dashed curves bound its uncertainty. Horizontal solid line marks the planet’s net luminosity, L. At rmp, P = L.
N–S symmetric, we construct N–S symmetric profiles by reflecting
the northern hemisphere zonal flow about the equator.6 The mag-
netic fields of Jupiter and Saturn have been measured by various
spacecrafts and fit by models dominated by a dipole plus smaller
quadrupole and octupole components (Connerney, 1993). We adopt
the axisymmetric part of these field models in our calculations.

Total Ohmic dissipation is plotted against truncation radius in
Fig. 3 for Jupiter and Saturn. It matches the planet’s net lumi-
nosity at radii of 0.96R J and 0.86R S . The magnetic diffusivity at
the radius of maximum penetration is 107 m2 s−1 for Jupiter and
3 × 106 m2 s−1 for Saturn. By comparison, the magnetic diffusivity
is at about 4 m2 s−1 at the planet’s outer metallic cores located at
0.84R J and 0.63R S , respectively.

The magnitudes of the induced toroidal magnetic field and the
associated poloidal current are each inversely proportional to λ

and thus increase inward. In Fig. 4 we display the toroidal mag-
netic field as a function of co-latitude at the maximum penetration
depth. It reaches a magnitude of about 15.0 G for Jupiter and about
0.5 G for Saturn.

The above estimates are based on the downward continuation
of the observed poloidal magnetic field. This is a reasonable pro-
cedure provided the magnetic Reynolds number based on the con-
vective velocity is much smaller than unity above the radius of
maximum penetration.

4. Ohmic dissipation for poloidal field lines aligned with the
rotation axis

Magnetic fields produced in some dynamo simulations show
significant alignment of poloidal field lines parallel to the rotation

6 We have verified that using the reflected southern hemisphere zonal flow
makes a negligible difference to our results.
axis (Glatzmaier, 2005). Such alignment would reduce Ohmic dis-
sipation associated with differential rotation since this dissipation
is proportional to (dΩ/d�)B� . However, alignment can only oc-
cur in regions where Rc

m � 1, so its overall effect on the maximum
penetration depth of atmospheric zonal winds on Jupiter and Sat-
urn is not obvious.

To examine the effects of alignment on Ohmic dissipation, we
consider a model in which the magnetic field is perfectly aligned
inside a sphere of radius r∗ < R (see Fig. 5),

B� = 0 and Bz = B0
[
1 − (�/r∗)2](p−1)

, (10)

with p a positive integer. The constant B0 is set to match the plan-
et’s external magnetic dipole. For larger p, the internal magnetic
field is more concentrated towards the rotation axis.

The spherical shell r = r∗ marks the outer boundary of the dy-
namo region. For r < r∗ , Rc

m > 1 and the poloidal components of
the fluid motions and magnetic field are strongly coupled. We as-
sume that the dynamo maintains the aligned poloidal magnetic
field against Ohmic decay. For r > r∗ , the poloidal magnetic field
is taken to be a potential field. Differential rotation acting on the
poloidal magnetic field produces a toroidal magnetic field as de-
scribed in Section 3.

Outside r∗ , ∇ × B = 0,

Br =
∞∑

n=1

2n(R/r)2n+1 P 0
2n−1(cos θ)g2n−1,

Bθ = −
∞∑

n=1

(R/r)2n+1 P 1
2n−1(cos θ)g2n−1. (11)

In order to match the internal field with the external field, we
expand the internal field into spherical harmonics at r∗ ,

Br = B0

∞∑
v2n−1 P 0

2n−1(cos θ),
n=1
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Fig. 4. Toroidal magnetic field at the maximum penetration depth as a function of colatitude: (a) Jupiter, (b) Saturn.
Fig. 5. Poloidal magnetic field lines for p = 5.

Bθ = B0

∞∑
n=1

w2n−1 P 1
2n−1(cos θ), (12)

with

v2n−1 = (4n − 1)

2

1∫
−1

dx x2p−1 P 0
2n−1(x),

w2n−1 = − (4n − 1)

4(2n − 1)n

1∫
−1

dx x2p−1(1 − x2)1/2
P 1

2n−1(x). (13)

The radial component of the magnetic field is continuous across
r∗ . Thus

g2n−1 = (r∗/R)2n+1 v2n−1 B0/(2n), (14)

where B0 = 2(R/r∗)3 g1/v1 in order that g1 match the planet’s ex-
ternal dipole moment.
Ohmic dissipation comes from three sources: the surface cur-
rent at r∗ , the current associated with the nonuniform field inside
r∗ (for p > 1), and the current which arises from interaction of the
vacuum field with the zonal flow outside r∗ . We treat each of these
in turn.

4.1. Dissipation due to surface current

Because Bθ is discontinuous across r∗ , the associated surface
current, J s = �Bθ /μ0, would give rise to infinite Ohmic dissipa-
tion. However, the transition between internal and external field
should be spread across a length scale of order the scale height
of the magnetic diffusivity, Hλ . Then Ohmic dissipation from the
surface current evaluates to

P ≈ 2πr2∗
Hλ

λ

μ0

1∫
−1

dx
(
�Bθ (x)

)2

= 8n(2n − 1)πr2∗λB2
0

(4n − 1)μ0 Hλ

∞∑
n=1

(
v2n−1

2n
+ w2n−1

)2

. (15)

Plots of Ohmic dissipation due to the surface current as a function
of r∗ for different values of p are displayed in Fig. 6.

4.2. Dissipation due to current inside r∗

The azimuthal current density

jφ = − 1

μ0

∂ Bz

∂�
= 2(p − 1)B0

μ0

(
�

r2∗

)(
1 − � 2

r2∗

)p−2

(16)

produces Ohmic dissipation in a layer of thickness Hλ given by

P ≈ 2πr2∗λHλ

μ0

π∫
0

(
∂ Bz

∂�

)2

sin θ dθ = 32π(p − 1)2λHλB2
0

(4p − 5)(4p − 7)μ0
. (17)

Fig. 7 displays the internal dissipation as a function of r∗ for dif-
ferent values p.
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Fig. 6. Ohmic dissipation due to surface current as a function of r∗/R . (a) Jupiter; (b) Saturn.

Fig. 7. Ohmic dissipation due to internal current as a function of r∗/R . (a) Jupiter; (b) Saturn.
4.3. Ohmic dissipation due to action of the zonal wind on the poloidal
magnetic field

B� �= 0 for r > r∗ , so Ohmic dissipation results from the action
of the zonal wind on the poloidal magnetic field. We evaluate it
with the aid of Eq. (9) and plot the results in Fig. 8.
4.4. Total Ohmic dissipation

The total Ohmic dissipation from all three sources is plotted as
a function of r∗ in Fig. 9 for different values of p. Comparison with
Fig. 3 reveals that alignment does not significantly increase the
maximum penetration depth of zonal winds on Jupiter and Saturn
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Fig. 8. Ohmic dissipation due to interaction of B� with ∂Ω/∂� as a function of r∗/R . (a) Jupiter; (b) Saturn.

Fig. 9. Total Ohmic dissipation as a function of r∗/R . (a) Jupiter; (b) Saturn.
beyond that calculated in Section 3 by downward extrapolation of
their external magnetic fields.

The arguments in this section do not refer to the mag-
netic Reynolds number, Rc

m , associated with the convective ve-
locity. Thus the maximum penetration depth we deduce is in-
dependent of this quantity. Nevertheless, in reality, the model
field we investigate only makes physical sense if Rc

m � 1
at r∗ .
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5. How deep do the zonal flows penetrate?

Together, Sections 3 and 4 place an upper limit on the depth
to which the zonal winds observed in the atmosphere of a giant
planet could penetrate. Here we address the more difficult issue
of how deeply they actually do penetrate. In particular, do they
extend unabated into the convective envelope. It proves convenient
to work in cylindrical coordinates (�,φ, z).

The Navier–Stokes equation which governs the motion of the
fluid reads

∂U

∂t
+ (U · ∇)U + 2Ω P × U = −∇p

ρ
− ∇Φtot + (∇ × B) × B

μ0ρ
, (18)

where U is the total velocity measured relative to a frame rotat-
ing at angular speed ΩP (the assumed uniform angular velocity of
the planet’s metallic core), ρ is the density, p is the pressure, and
Φtot is the gravitational plus centrifugal potential.7 We express the
steady-state limit of this equation as

2Ω P × U = −∇p

ρ
− ∇Φtot + a, (19)

where the overbar denotes time average and

a = (∇ × B) × B

μ0ρ
− (U · ∇)U. (20)

Smaller terms that involve fluctuations of ρ , p, and Φtot have been
discarded. Individually, the first and second terms on the rhs of
Eq. (19) are larger, by far, than the others. Thus

∇p

ρ
≈ −∇Φtot. (21)

Taking the curl of Eq. (19), we arrive at

2ΩP
∂U φ

∂z
= −∂ lnρ

∂s

∣∣∣∣
p
(∇s × g) · eφ − (∇ × a) · eφ, (22)

with g = −∇Φtot. Thus ∂U φ/∂z = 0 for an uniform composition
isentrope in the absence of Reynolds and Maxwell stresses. This is
the Taylor–Proudman state. Next we bound departures from this
state that each term on the rhs of Eq. (22) could produce.

5.1. Buoyancy

5.1.1. In the convective envelope
Here we are entering uncertain territory. Convection transports

the net luminosity in the fluid interior, but our understanding of
turbulent convection is limited even for nonrotating systems. Rota-
tion and especially strong differential rotation add additional com-
plexity. It is not obvious which of the terms on the rhs of Eq. (22)
is dominant for conditions appropriate to a convective envelope.

We are guided by Ingersoll and Pollard (1982) who model
convection under conditions of strong differential rotation which
shears convective cell in the azimuthal direction. They argue that
under these conditions, the magnitude of the component of ∇s
along g must satisfy

g

∣∣∣∣∂ lnρ

∂s

∣∣∣∣
p

|∇s · g|
|g| ∼

(
∂Uφ

∂�

)2

. (23)

In other words, the Richardson number based on the rate of shear
is of order unity.

The variation of U φ along z depends upon the component of
∇s that is orthogonal to both g and eφ about which mixing length
models are silent. We parameterize this component in terms of

7 We ignore the utterly negligible viscous stress.
∇s · ĝ and the angle δ between ∇s and g. Buoyancy drives convec-
tion, so it is to be expected that δ � 1. Combining Eqs. (22) and
(23) yields∣∣∣∣ Hρ

Uφ

∂Uφ

∂z

∣∣∣∣ ∼ Hρ

2ΩP Uφ

(
∂Uφ

∂�

)2

tan δ. (24)

Since g is approximately aligned along the spherical radial direc-
tion, |∇s| tan δ is essentially the magnitude of latitudinal compo-
nent of ∇s.

At the maximum penetration depth,∣∣∣∣ Hρ

U φ

∂U φ

∂z

∣∣∣∣ ∼ 0.6 tan δ (25)

for Jupiter, and∣∣∣∣ Hρ

U φ

∂U φ

∂z

∣∣∣∣ ∼ 0.3 tan δ (26)

for Saturn. As stated above, we expect that tan δ � 1. Moreover,
its numerical coefficients is proportional to Hρ , which decreases
outward. Thus buoyancy is unlikely to effect a significant departure
from the Taylor–Proudman state in the convective envelope.

5.1.2. In the radiative atmosphere
There are conflicting views about the strength of the static sta-

bility in the radiative atmospheres of Jupiter and Saturn and the
depth to which stable layers extend. Here we consider how Taylor–
Proudman columns might be truncated in strongly stable layers in
which s changes on the same spherical radial scale as ρ . In such
layers∣∣∣∣∂ lnρ

∂s

∣∣∣∣
p

Hρ |∇s| ∼ 1 (27)

in Eq. (22) to obtain∣∣∣∣ Hρ

U φ

∂U φ

∂z

∣∣∣∣ ∼ g

2ΩP U φ

tan δ. (28)

Numerical evaluation yields∣∣∣∣ Hρ

U φ

∂Uφ

∂z

∣∣∣∣ ∼ 600 tan δ (29)

for Jupiter, and∣∣∣∣ Hρ

U φ

∂U φ

∂z

∣∣∣∣ ∼ 200 tan δ (30)

for Saturn. Taylor–Proudman columns could be truncated in the
radiative atmosphere provided surfaces of constant entropy were
inclined to those of constant potential in the latitudinal direction
by more than a fraction of a degree. The resulting velocity field
would constitute a strong thermal wind.

5.2. Magnetic stresses

Deviations from the Taylor–Proudman state caused by Maxwell
stresses follow from∣∣∣∣ Hρ

U φ

∂U φ

∂z

∣∣∣∣ = Hρ

2μ0ΩP |Uφ |
∣∣∣∣eφ · ∇ ×

(
(∇ × B) × B

ρ

)∣∣∣∣
∼ Hρ B2

2μ0ΩP |Uφ |ρ�2
, (31)

where � is the typical scale over which B varies. The order of mag-
nitude estimate assumes � � Hρ .
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Next we bound B2/�2 by applying the Ohmic constraint. The
latter reduces to

4πλR2 Hρ B2

μ0�2
�L. (32)

Eliminating B2/�2 between Eqs. (31) and (32), we arrive at∣∣∣∣ Hρ

U φ

∂Uφ

∂z

∣∣∣∣ � L
8πλΩP |Uφ |ρR2

. (33)

Numerical evaluation yields∣∣∣∣ Hρ

U φ

∂Uφ

∂z

∣∣∣∣ � 10−5 (34)

at the maximum penetration depths in Jupiter and Saturn. More-
over, this ratio decreases sharply outward. Clearly, magnetic
stresses are incapable of truncating the observed zonal flows.

5.3. Reynolds stresses

Departures from the Taylor–Proudman state caused by Reynolds
stresses obey∣∣∣∣ Hρ

U φ

∂Uφ

∂z

∣∣∣∣ = Hρ

2ΩP |U φ |
∣∣eφ · ∇ × (

(U · ∇)U
)∣∣. (35)

We treat separately contributions from the mean axisymmetric
flow, U, and from fluctuations about it, u = U − U.

The sole contribution involving U φ can be absorbed by adding
U φ/� to ΩP on the lhs of Eq. (19) and in what follows. We do not
consider it further. The poloidal part of U, denoted by Up , describes
meridional circulation. It yields

∣∣∣∣ Hρ

U φ

∂Uφ

∂z

∣∣∣∣ ∼ U 2
p

2ΩP |U φ |Hρ

, (36)

where the variation scale of Up is set to Hρ . With parameters
appropriate to Jupiter and Saturn, the rhs of Eq. (36) is � 1 for
|U p | � |Uφ |.
Velocity fluctuations contribute

∣∣∣∣ Hρ

U φ

∂U φ

∂z

∣∣∣∣ ∼ Hρu2
φ

2ΩP |U φ |�p�φ

, (37)

where �p and �φ are the meridional and azimuthal scales of
the convective cells. In deriving Eq. (37), we note that az-
imuthal stretching of eddies by strong differential rotation re-
sults in �φ � �p and mass conservation implies up�φ ∼ uφ�p .

To bound u2
φ , we follow Ingersoll and Pollard (1982) and adopt

|∂U φ/∂� |(�p/�φ) as the convective rate. In each scale height, tur-
bulent mechanical energy is dissipated as heat at a rate ∼L. Hence

4π R2 Hρρu2
φ

∂U φ

∂�

�p

�φ

∼L. (38)

Together, Eqs. (37) and (38) yield

∣∣∣∣ Hρ

U φ

∂U φ

∂z

∣∣∣∣ ∼ L
8πΩP |Uφ ||∂U φ/∂� |ρR2�2

p
� L

8πΩP U φ
2
ρR3�θ

,

(39)

where �θ denotes the typical latitudinal width of the zonal jets.
In accord with Ingersoll and Pollard (1982), we set |∂U φ/∂� | ∼
|Uφ |/�p in arriving at the final form of Eq. (39). Numerical eval-
uation with parameters appropriate to the tops of the convection
zones in Jupiter and Saturn gives∣∣∣∣ Hρ

U φ

∂U φ

∂z

∣∣∣∣ � 10−5. (40)

5.4. Maximum width of an equatorial jet

A sufficiently narrow equatorial jet could maintain constant ve-
locity on cylinders throughout the planet. As an example, we con-
sider the specific velocity profile

U φ = Uφ0 sin

(
π

2

(θ − θ0)

(π/2 − θ )

) 1
10

if θ < π − θ0; (41)

0

Fig. 10. Total Ohmic dissipation rate verses jet’s angular half-width. Horizontal solid lines mark the planet’s net luminosity. Dashed lines indicate the range of uncertainties.
Central value of the maximum half-width is 18.5◦ for Jupiter and 35.5◦ for Saturn.
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and

Uφ = 0 if θ < θ0 and θ > π − θ0; (42)

so the jet has equatorial velocity Uφ0 and angular half-width
π/2 − θ0. For Jupiter and Saturn, Uφ0 is approximately 140 and
400 m s−1, respectively. Fig. 10 displays the calculated Ohmic dis-
sipation rate as a function of the jet half-width. The maximum
half-width is about 18.5◦ for Jupiter, and 35.5◦ for Saturn. The
maximum half widths are related to the fractional radii of max-
imum penetration, rmp/R , calculated in Section 3 by

cos θ0 ≈ rmp

R
. (43)

6. Discussion

The condition that the total Ohmic dissipation not exceed the
planet’s net luminosity sets an upper bound on the depth to which
the zonal flows observed in the atmospheres of Jupiter and Saturn
could penetrate. At these depths, the magnetic Reynolds number,
based on the observed zonal winds and the scale height of the
magnetic diffusivity, is of order unity.

We consider it unlikely that the observed flows extend to the
depth of maximum penetration because that would require the
Taylor–Proudman constraint to be violated in the convective en-
velope. We have been unable to identify any plausible mechanism
that could do this. Lack of a rigorous model for convection is a
weakness. We base our analysis of the robustness of the Taylor–
Proudman constraint on the mixing length model designed by
Ingersoll and Pollard (1982) to apply under conditions of strong
differential rotation. However, we have confirmed that the conclu-
sions we draw from it also follow from other convection models
that consider only solid body rotation, or even those that neglect
the effects of rotation entirely.

The boundaries of the cylindrical extensions of the equatorial
jets essentially coincide with the maximum penetration depths.
Thus these jets could maintain constant velocities along cylinders
through the planets. Winds measured at 7.4◦ N by the Galileo
probe as it descended into Jupiter are consistent with this pos-
sibility.
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Appendix A

We calculate the current distribution arising from a vacuum ax-
ial dipole field and a simple zonal flow. The angular velocity, Ω , is
taken to be of the form

Ω = ΩP + Ωout

1 + exp[cmp(rmp − r)] . (A.1)

Here cmp is the truncation factor and rmp is the truncation radius.
Ω(r) → ΩP for r < rmp and Ω(r) → ΩP + Ωout for r > rmp.8

The current density arising from interaction of this flow with a
vacuum dipole magnetic field satisfies:

∇ × j

σ
= ∇ × {[

(Ω − ΩP )ez × r
] × B

} = −2M

3r2

dΩ

dr

dP2

dθ
eφ, (A.2)

where M is the dipole moment.
Because ∇ · j = 0, j can be derived from a vector potential A

such that

j = ∇ × (Aeφ), (A.3)

8 We plot Ω − ΩP as a function of scaled radius in Fig. 11.
Fig. 11. Angular velocity corresponding to current streamlines shown in Fig. 12. Pa-
rameters in Eq. (A.1) are rmp/R = 0.9, cmp = 50. Surface value of ΩP +Ωout is scaled
to be near unity.

Fig. 12. Current stream lines arising from a toy model. A vacuum dipole field in-
teracts with a simple cylindrical flow consisting of a nearly uniformly rotating core
and a more rapidly rotating envelope. See text and Fig. 11 for details. In the outer
envelope, the streamlines are close to lines of constant r. Their spacing is inversely
proportional to jr sin θ . Ohmic dissipation per unit volume, ∝ σ U 2

φ B2
p , is maximal

near the dash line which marks to core–envelope boundary. Our model only makes
sense in regions where the magnetic Reynolds number based on the convective ve-
locity is small.

where

A = −r f (r)

6

dP2

dθ
. (A.4)

By direct computation

∇ × j

σ
= 1

6rσ

[
d2

dr2

(
r2 f

) − 6 f − d lnσ

dr

d

dr

(
r2 f

)]dP2

dθ
eφ. (A.5)

So

dΩ

dr
= −r

4σ M

[
d2

dr2

(
r2 f

) − 6 f − d lnσ

dr

d

dr

(
r2 f

)]
. (A.6)
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At the planet’s surface, the current density along the radial di-
rection goes to zero: f (r) → 0; Near its center, j ∝ r: df (r)/dr −
f (r)/r → 0. We solve Eq. (A.6) to obtain f (r).

Since,

j · ∇(Ar sin θ) = 0, (A.7)

the current density follows the contour lines of Ar sin θ and its
magnitude satisfies |j| = |∇(Ar sin θ)|/r sin θ . Fig. 12 displays the
streamlines of current flow.
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