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Abstract

We present new results on the existence of two essentid@lreint chaotic attractors arising
in a model of nonlinear convection-driven dynamo proces®iating spherical shells. We
establish the existence of a hysteresis loop in the transhietween these attractors with
variation of the rotation parameter We investigate the width of the basins of attraction of
the two distinguishable dynamo states and the possibilispontaneous transition between
them. We propose a possible mechanism for the occurrenceashagnetic field polarity
reversals.

1. Introduction static temperature distribution, and the equation of itidndor

o the magnetic flux densiti are then given by
Recently Simitev and Buss® [] have demonstrated the

possibility for the existence of essentiallyfféirent chaotic V-u=0, V-B=0, (1a)
(_jynamo solutions at id_entica_l parameter vglues ir_1 an_estab- Ge+u-V)u+7tkxu=-Vr+0Or+V2u+B-VB, (1b)
lished model of convection-driven dynamos in rotating sphe B 5

cal shells. Their study leaves open a number of importarg-que P(0© +u-V@) =Rr-u+ V-0, (10)
tions some of which we try to address here. V2B = Ppn(8:B +Uu-VB - B - Vu), (1d)

_ where all gradient terms in the equation of motion have been
2. Formulation and methods combined intoVz. The dimensionless parameters in our for-

. ) . . . mulation are the Rayleigh numbRythe Coriolis numbet, the
We consider a spherical fluid shell of thickne$sotating  prandtl numbeP and the magnetic Prandtl numty,
with a constant angular velocit®. The existence of a static '
aypd® Lo 2Qa? v v

state is assumed with a temperature distribufflgn= To — po p_Y p Y

Bd?r?/2 and a gravity field in the forng = —dyr, whererd is Tk y ™"

the length of the position vector with respect to the cent¢n®

sphere. This form of temperature profile alludes to the filssi

ity that at least a fraction of the energy available to planet

dynamos is due to radiogenic heat release. In additiah vee

use the timed?/v, the temperature?/yad* and the magnetic U=Vx(Vuxr)+vVwxr , (3a)

flux densityv(uo)Y/?/d as scales for the dimensionless descrip- B=Vx(Vhxr)+Vgxr . (3b)

tion of the problem where denotes the kinematic viscosity of

the fluid, « its thermal difusivity, o its density ang: its mag- ~ We assume fixed temperatures at rj = 2/3 andr = r, = 5/3

netic permeability. In common with most other simulatioris o and stress-free rather than no-slip boundary conditioresder

Earth and planetary dynamak p], we assume the Boussinesq t0 approach, at least to some extent, the extremely low salue

approximation implying a constant densitgxcept in the grav-  of viscosity believed to be appropriate to planetary cos [

ity term where its temperature dependence is taken intoetco 2

with @ = —(do/ dT)/o =const The equations of motion for the V=0V =ai(w/r) =6 =0, )

velocity vectoru, the heat equation for the deviati@fromthe  For the magnetic field we assume electrically insulatingiobu
aries atr = r; andr = r, such that the poloidal functioh

()

where A is the magnetic diusivity. Being solenoidal vector
fieldsu andB can be represented uniquely in terms of poloidal
and toroidal components,
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matches the functioh® which describes the potential fields that bistability and hysteresis occur also as a functiohefast
outside the fluid shell, remaining basic parameter of the model,

Figurelintroduces dynamo solutions, and illustrates two dif-
ferent attractors in a specific example.

Figure 1: Time series of kineticE, and magnetidVl, energy

The radius ratiori/ro = 0.4 is slightly larger than that ap- gensities and the dominant dipolar and quadrupolafficoents
propriate for the Earth’s liquid core. This is a standard for of the poloidal fields,HO., for two essentially dferent dy-

. . . . 120 " .
mulation of the spherical convection-driven dynamo prable 54 solutions obtained at identical parameter valuese€as

!:4, 5, 2] for which an extensive collection of results already ex- p075t35r3500000m1p15MD and p075t35r3500000m1p15FD
ists [6, 7, 8, 9]. The resulfts reported below are not strongly Figure 2 demonstrates that this is not an isolated case but a
m_odel dependent_. In particular, dyr_]{;lmos with stress-_fm:b @ part of a wider hysteresis transition.

with no-slip velocity boundary conditions as well as with-di Fi > Hyst is oh inth ﬁ{gip Mdip

ferent modes of energy supply are known to have comparable |gure ) YS eresis phenomenon in the rab,"/M,,  as
energy densities and symmetry properties (see fig. 12Jpf [ & function ofr in the case® = 0.75,Pn = 1.5,R = 3.5 x 10°.
Furthermore, aiming to retain a general physical perspecti

g=h-h®=9,(h-h®) =0 atr=r,r,. (5)

we intentionally use a minimal number of physical parameter 4, Comparison of the two attractors

including only those of primary importance for stellar ardrp
etary applications.

Equations of motion for the scalar fieldsw, are obtained

4.1. Time dependence
Typically, M D dynamos are non-oscillatory while th® dy-

by takingr - Vx Vx andr - Vx of equation {b) and equations namos are oscillatory. This is illustrated in the followifig-

for g and h are obtained by taking - Vx andr- of equa-

ures.

tion (1d). These equations are solved numerically by a pseudo- Figure 3: Contour plots oB,, B averaged in time (left) and
spectral method as described 0] based on expansions of all for a typical moment = (right) in aM D dynamo. at parameter

dependent variables in spherical harmonics for the angldar

values identical to the case in figure 3.

pendences and in Chebychev polynomials for the radial depen Figure 4: A period of dipolar dynamo oscillations offeD

dence. Typically, calculations are considered decentiglwed

dynamo atP =, R =, v =, P, =. Contour plots ofB,, B, etc

when the spectral power of kinetic and magnetic energy dropgre shown at equidistant times. Parameter values are ¢aénti
by more than a factor of 100 from the spectral maximum to theo the case in figura.

cut-of wavelength 11]. A minimum of 41 collocation points

in the radial direction and spherical harmonics up to theeord 4.2, Spatial structures and spectra
96 have been used in all cases reported here which provides,,, jiscuss spectral structures of the magnetic fieldviar

adequate resolution as demonstrated in#gfor two typical

dynamo solutions. The dynamo solutions are characteriged

their magnetic energy densities,
Vi 1 T 2 N i 2
Mp = §<|V><(thr)| ) Mi= E(IVngl )
My = %<| Vx(Vhxr) ), M= %<| vgxr ),

where(-) indicates the average over the fluid shell Miers
to the axisymmetric component bf while h is defined byh =
h —h. The corresponding kinetic energy densits E;, E,
and E; are defined analogously withandw replacingh and
g. Other global quantities of interest are the helicity of atee
field A,

Ha=((VXxA)-A),

(kinetic helicity whenu = A, and magnetic helicity wheB =
A, respectivelyfmagnetic helicity is equivalent to gl = j- B]),
and the cross-helicity

XH = (u- B).

3. Coexistence

andFD dynamos. We also show latitudinakzimuthalm, and

bradial n spectra which provide information about the level of

turbulence, spatial scales and numerical resolution osie-
tion.

Figure 5: |, m n spectra of kineticE, magneticM energies
and temperature perturbatiénfor a FD and aM D case.

4.3. Other quantities of interest

A lot of discussion during the program was devoted to
dynamo quantities such as helicity, magnetic helicity,ssfo
helicity in vied of their role in generating and dissipatidg-
namo action. In the following figures we demonstrate these
quantities computed from first-principles in a self-cotesis
dynamo model.

Figure 6: Helicity, magnetic helicity, cross-helicity ofid D
case - average and typical snapshots. — included i8 fig

Figure 7: Helicity, magnetic helicity, cross-helicity in a pe-
riod of FD oscillation. — included in figt.

5. Comparison of convection

The existence of distinguishable attractors is an entirelg-
netic phenomenon. To demonstrate this we compare the struc-

In[? ] we have demonstrated bistability and hysteresis ad!"® of the_ cor_1vective flows for the two attractor types. We us
a function of P, P, andR. Here we would like to establish the following figures.



Figure 8: Kinetic quantity ratios of a FD to a MD case. 9. Conclusion

L —FD —MD = =
Ratios includeNuP/NuMP, EFP/EMD E “/E_—~ EFP/EMP, . .
/NG / p /Ep p /Ep 1. We present new results on multiple nonlinear attractbrs o

—FD —MD ~rp — . .
E. /E. ,E{°/E}P. Note: We expect that all ratios will have tained in a model of convection-driven dynamos in rotat-
—FD —MD . . . .

values near 1, and only, /E; ~ will be greater than one. This ing spherical shells.

can be explained by theffect of magn fields on di rotation. 2. We establish the existence of a hysteresis loop with varia

Other ratios will be also weeklyfgected but this is an interest- tion of the rotation parametet

ing question to discuss. _ 3. We investigate the question of the width of the basins-of at
Figure 9: Spatial structures of convection onF® a MD traction of the possible distinguishable dynamo states and

case - average and typical snapshots. the possibility of spontaneous transition between them.

Figure 10: A period of relaxation oscillations in a the corre-

' ! 4. We propose a possible mechanism of reversals.
sponding purely-convective case.
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« 0 02505075 1
Mp/M, | same| ?? | ?? | ?? | same
type MD 0 ??| ?? FD

Table 1: Attractor type as a function of

7. Can a transitional dynamo change attractor sponta-
neously?

Take our reversal cases reported in PEPI 2009 and speculate
that they are transitional.

Figure 13: The ratioI\Wp/ﬁp determining the attractor type
as a function of time for a typical reversal case.

Note: | expect to observe that the case is mostip with
occasional excursions #D. When inFD state reversals occur.

pc.p01t100r4500000m1p05c6hb

8. Reversals

The case p075t30r2600000m1pl.5FD exhibits aperiodic re-
versals. This is a case which switches between strongly D an
weaker FD dynamo.

p075t50r4300000m1pl.5FD - another case where reversals
might occur.

p075t40r3500000m1pl.5FD - aperiodic reversals, con-
tinue!!!
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Figure 1: (Color online) Co-existing distinct chaotic atitors at identical pa-
rameter values — & D (left column (a,b)) and &D dynamo (right column
(c,d)) both in theR = 1.5x 1%, r = 2 x 10%, P = 0.75 andPy, = 1.5. The pan-
els (a,d) show time series of magnetic energy densities. Biefehe panels
show kinetic energy densities in the presence of magnetit fiek) and after
the magnetic field is removed (c,f). The compon¥ptis shown by thick solid
black line, whileX;, ip, andX; are shown by thin red, green and blue lines,
respectivelyX stands for eitheM or E.
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Figure 2: (Color online) (a) Co-existence and hysteresisnpmenon in the
ratio Mp/ﬁp as a function of in the casé® = 0.75, P, = 1.5. The values oR

are given byR = (5-3-10%7) R;, i.e.R-107° = 7.6, 17, 26,35,43,51,58, 62 at

7 =10, n= 1..8. FD andMD dynamos are indicated by full red and empty
blue circles, respectively. The expected locations of thesitions fromFD to

MD, and fromMD to FD dynamos are represented by thin dash-dotted lines
with arrows pointing down and up, respectively. (b) Ratibs.a

Figure 3: (Color online) Time-averaged spatial structuriea D dynamo in
same case as shown in FigureThe leftmost plot is a meridional cut showing
lines of constanB: in the left half and ofr sinddyh in the right half. The
middle plot shows lines of constaB} atr = r, + 1.3. The rightmost plot is
a meridional cut showing lines of constant cross-helicity, Xetic helicity
Hu and magnetic helicity i aty = 0, in the left half, right upper and lower
quarters, respectively.



Figure 9: Spatial structures of convection ilMeD and aFD with identical
parameter values for the same cases shown in figure

Figure 4: A period of dipolar oscillations of @D dynamo in the same case
as shown in Figurd. Contour plots of the same quantities as in FigBiere
shown at equidistant moments separatedby 0.0252.

Figure 10: A period of relaxation oscillations in a purelgrvective case.

Figure 5: |, m, n spectra of kineticE, magneticM energies and temperature
perturbatior® for aFD and aM D case.
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Figure 6: Helicity, magnetic helicity, cross-helicity ofMD case - average
and typical snapshots.
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Figure 7: Helicity, magnetic helicity, cross-helicity fopariod of FD oscilla-
tion.
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Figure 8: Kinetic quantity ratios of &D to a MD case. Ratios include
NUFD/NUMD, EFD/EMD, EED/EXD, EED/EQAD,EFD/E{V'D, EFD/EMD. Figure 11: Infinitesimally small random magnetic field seed.



Figure 12: A periodic reversal of BD dynamo in the same case as shown 50 — —
in Figure1. Contour plots of the same quantities as in Figi@e shown at
equidistant moments separated Aly= 0.0161. The next row (not shown)is & 0

essentially the same as the first one. T r
50

25 26 27 28

Figure 13: The ratidﬁgip/ﬁc;'p determining the attractor type as a function of
time for a typical reversal case.



Figure 14: An aperiodic reversal in the case pc.p01t10@860m1p05c6hb.
The time moments are-#4.27, 4.29, 4.31, 4.35, 4.39, 4.43.
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