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Abstract

We present new results on the existence of two essentially different chaotic attractors arising
in a model of nonlinear convection-driven dynamo process inrotating spherical shells. We
establish the existence of a hysteresis loop in the transition between these attractors with
variation of the rotation parameterτ. We investigate the width of the basins of attraction of
the two distinguishable dynamo states and the possibility of spontaneous transition between
them. We propose a possible mechanism for the occurrence of geomagnetic field polarity
reversals.

1. Introduction

Recently Simitev and Busse [? ] have demonstrated the
possibility for the existence of essentially different chaotic
dynamo solutions at identical parameter values in an estab-
lished model of convection-driven dynamos in rotating spheri-
cal shells. Their study leaves open a number of important ques-
tions some of which we try to address here.

2. Formulation and methods

We consider a spherical fluid shell of thicknessd rotating
with a constant angular velocityΩ. The existence of a static
state is assumed with a temperature distributionTS = T0 −

βd2r2/2 and a gravity field in the formg = −dγr, whererd is
the length of the position vector with respect to the center of the
sphere. This form of temperature profile alludes to the possibil-
ity that at least a fraction of the energy available to planetary
dynamos is due to radiogenic heat release. In addition tod, we
use the timed2/ν, the temperatureν2/γαd4 and the magnetic
flux densityν(µ̺)1/2/d as scales for the dimensionless descrip-
tion of the problem whereν denotes the kinematic viscosity of
the fluid, κ its thermal diffusivity, ̺ its density andµ its mag-
netic permeability. In common with most other simulations of
Earth and planetary dynamos [1, 2], we assume the Boussinesq
approximation implying a constant density̺ except in the grav-
ity term where its temperature dependence is taken into account
with α ≡ −( d̺/dT )/̺ =const. The equations of motion for the
velocity vectoru, the heat equation for the deviationΘ from the

static temperature distribution, and the equation of induction for
the magnetic flux densityB are then given by

∇ · u = 0, ∇ · B = 0, (1a)

(∂t + u · ∇)u + τk × u = −∇π + Θr + ∇2u + B · ∇B, (1b)

P(∂tΘ + u · ∇Θ) = Rr · u + ∇2
Θ, (1c)

∇2B = Pm(∂t B + u · ∇B − B · ∇u), (1d)

where all gradient terms in the equation of motion have been
combined into∇π. The dimensionless parameters in our for-
mulation are the Rayleigh numberR, the Coriolis numberτ, the
Prandtl numberP and the magnetic Prandtl numberPm,

R =
αγβd6

νκ
, τ =

2Ωd2

ν
, P =

ν

κ
, Pm =

ν

λ
, (2)

whereλ is the magnetic diffusivity. Being solenoidal vector
fieldsu andB can be represented uniquely in terms of poloidal
and toroidal components,

u = ∇ × (∇v × r) + ∇w × r , (3a)

B = ∇ × (∇h × r) + ∇g × r . (3b)

We assume fixed temperatures atr = ri ≡ 2/3 andr = ro ≡ 5/3
and stress-free rather than no-slip boundary conditions inorder
to approach, at least to some extent, the extremely low values
of viscosity believed to be appropriate to planetary cores [3],

v = ∂2
rrv = ∂r(w/r) = Θ = 0. (4)

For the magnetic field we assume electrically insulating bound-
aries atr = ri and r = ro such that the poloidal functionh
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matches the functionh(e) which describes the potential fields
outside the fluid shell,

g = h − h(e)
= ∂r(h − h(e)) = 0 at r = ri, ro. (5)

The radius ratiori/ro = 0.4 is slightly larger than that ap-
propriate for the Earth’s liquid core. This is a standard for-
mulation of the spherical convection-driven dynamo problem
[4, 5, 2] for which an extensive collection of results already ex-
ists [6, 7, 8, 9]. The results reported below are not strongly
model dependent. In particular, dynamos with stress-free and
with no-slip velocity boundary conditions as well as with dif-
ferent modes of energy supply are known to have comparable
energy densities and symmetry properties (see fig. 15 of [2]).
Furthermore, aiming to retain a general physical perspective,
we intentionally use a minimal number of physical parameters
including only those of primary importance for stellar and plan-
etary applications.

Equations of motion for the scalar fieldsv, w, are obtained
by takingr · ∇ × ∇× andr · ∇× of equation (1b) and equations
for g and h are obtained by takingr · ∇× and r· of equa-
tion (1d). These equations are solved numerically by a pseudo-
spectral method as described in [10] based on expansions of all
dependent variables in spherical harmonics for the angularde-
pendences and in Chebychev polynomials for the radial depen-
dence. Typically, calculations are considered decently resolved
when the spectral power of kinetic and magnetic energy drops
by more than a factor of 100 from the spectral maximum to the
cut-off wavelength [11]. A minimum of 41 collocation points
in the radial direction and spherical harmonics up to the order
96 have been used in all cases reported here which provides
adequate resolution as demonstrated in fig.?? for two typical
dynamo solutions. The dynamo solutions are characterized by
their magnetic energy densities,

Mp =
1
2
〈| ∇ × (∇h × r) |2〉, Mt =

1
2
〈| ∇g × r |2〉,

M̃p =
1
2
〈| ∇ × (∇h̃ × r) |2〉, M̃t =

1
2
〈| ∇g̃ × r |2〉,

where〈·〉 indicates the average over the fluid shell andh refers
to the axisymmetric component ofh, while h̃ is defined bỹh =
h − h. The corresponding kinetic energy densitiesEp, Et, Ẽp

and Ẽt are defined analogously withv andw replacingh and
g. Other global quantities of interest are the helicity of a vector
field A,

HA = 〈(∇ × A) · A〉,

(kinetic helicity whenu = A, and magnetic helicity whenB =
A, respectively[magnetic helicity is equivalent to HB = j ·B]),
and the cross-helicity

XH = 〈u · B〉.

3. Coexistence

In [? ] we have demonstrated bistability and hysteresis as
a function ofP, Pm and R. Here we would like to establish

that bistability and hysteresis occur also as a function of the last
remaining basic parameter of the model,τ.

Figure1 introduces dynamo solutions, and illustrates two dif-
ferent attractors in a specific example.

Figure 1: Time series of kinetic,E, and magnetic,M, energy
densities and the dominant dipolar and quadrupolar coefficients
of the poloidal fields,H0

1,2, for two essentially different dy-
namo solutions obtained at identical parameter values. Cases:
p075t35r3500000m1p1.5MD and p075t35r3500000m1p1.5FD

Figure2 demonstrates that this is not an isolated case but a
part of a wider hysteresis transition.

Figure 2: Hysteresis phenomenon in the ratiõMdip
p /M

dip
p as

a function ofτ in the caseP = 0.75, Pm = 1.5, R = 3.5× 106.

4. Comparison of the two attractors

4.1. Time dependence

Typically,MD dynamos are non-oscillatory while theFD dy-
namos are oscillatory. This is illustrated in the followingfig-
ures.

Figure 3: Contour plots ofBϕ, Br averaged in time (left) and
for a typical momentt = (right) in aMD dynamo. at parameter
values identical to the case in figure 3.

Figure 4: A period of dipolar dynamo oscillations of aFD
dynamo atP =, R =, τ =, Pm =. Contour plots ofBϕ, Br etc
are shown at equidistant times. Parameter values are identical
to the case in figure3.

4.2. Spatial structures and spectra

We discuss spectral structures of the magnetic field forMD
andFD dynamos. We also show latitudinall, azimuthalm, and
radial n spectra which provide information about the level of
turbulence, spatial scales and numerical resolution of thesolu-
tion.

Figure 5: l,m, n spectra of kineticE, magneticM energies
and temperature perturbationΘ for a FD and aMD case.

4.3. Other quantities of interest

A lot of discussion during the program was devoted to
dynamo quantities such as helicity, magnetic helicity, cross-
helicity in vied of their role in generating and dissipatingdy-
namo action. In the following figures we demonstrate these
quantities computed from first-principles in a self-consistent
dynamo model.

Figure 6: Helicity, magnetic helicity, cross-helicity of aMD
case - average and typical snapshots. — included in fig3.

Figure 7: Helicity, magnetic helicity, cross-helicity in a pe-
riod of FD oscillation. — included in fig4.

5. Comparison of convection

The existence of distinguishable attractors is an entirelymag-
netic phenomenon. To demonstrate this we compare the struc-
ture of the convective flows for the two attractor types. We use
the following figures.
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Figure 8: Kinetic quantity ratios of a FD to a MD case.

Ratios includeNuFD
i /NuMD

i , EFD/EMD, E
FD
p /E

MD
p , ẼFD

p /Ẽ
MD
p ,

E
FD
t /E

MD
t , ẼFD

t /Ẽ
MD
t . Note: We expect that all ratios will have

values near 1, and onlyE
FD
t /E

MD
t will be greater than one. This

can be explained by the effect of magn fields on diff rotation.
Other ratios will be also weekly affected but this is an interest-
ing question to discuss.

Figure 9: Spatial structures of convection on aFD a MD
case - average and typical snapshots.

Figure 10: A period of relaxation oscillations in a the corre-
sponding purely-convective case.

6. Width of the basins of attraction

6.1. Random initial conditions

What happens if the cases are started from random initial
conditions?

Figure 11:

6.2. Initial condition is a combination of MD and FD
What happens if the cases are started from initial conditions

that are a combination ofMD andFD?
Let α ∈ [0,1] is a continuation parameter. Take initial condi-

tions in the form

IC = αFD + (1− α)MD.

and varyα.

α 0 0.25 0.5 0.75 1
M̃p/Mp same ?? ?? ?? same

type MD ?? ?? ?? FD

Table 1: Attractor type as a function ofα.

7. Can a transitional dynamo change attractor sponta-
neously?

Take our reversal cases reported in PEPI 2009 and speculate
that they are transitional.

Figure 13: The ratioM̃p/Mp determining the attractor type
as a function of time for a typical reversal case.

Note: I expect to observe that the case is mostlyMD with
occasional excursions toFD. When inFD state reversals occur.

pc.p01t100r4500000m1p05c6hb

8. Reversals

The case p075t30r2600000m1p1.5FD exhibits aperiodic re-
versals. This is a case which switches between strongly FD and
weaker FD dynamo.

p075t50r4300000m1p1.5FD - another case where reversals
might occur.

p075t40r3500000m1p1.5FD - aperiodic reversals, con-
tinue!!!

9. Conclusion

1. We present new results on multiple nonlinear attractors ob-
tained in a model of convection-driven dynamos in rotat-
ing spherical shells.

2. We establish the existence of a hysteresis loop with varia-
tion of the rotation parameterτ.

3. We investigate the question of the width of the basins of at-
traction of the possible distinguishable dynamo states and
the possibility of spontaneous transition between them.

4. We propose a possible mechanism of reversals.
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Figure 1: (Color online) Co-existing distinct chaotic attractors at identical pa-
rameter values – aMD (left column (a,b)) and aFD dynamo (right column
(c,d)) both in theR = 1.5× 106, τ = 2× 104, P = 0.75 andPm = 1.5. The pan-
els (a,d) show time series of magnetic energy densities. The rest of the panels
show kinetic energy densities in the presence of magnetic field (b,e) and after
the magnetic field is removed (c,f). The componentXp is shown by thick solid
black line, whileXt, X̃p, and X̃t are shown by thin red, green and blue lines,
respectively.X stands for eitherM or E.
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Figure 2: (Color online) (a) Co-existence and hysteresis phenomenon in the
ratio M̃p/Mp as a function ofτ in the caseP = 0.75,Pm = 1.5. The values ofR
are given byR = (5−3·10−5τ) Rc, i.e.R ·10−5

= 7.6,17,26,35,43,51,58,62 at
τ = 104n, n = 1..8. FD andMD dynamos are indicated by full red and empty
blue circles, respectively. The expected locations of the transitions fromFD to
MD, and fromMD to FD dynamos are represented by thin dash-dotted lines
with arrows pointing down and up, respectively. (b) Ratios of .....

Figure 3: (Color online) Time-averaged spatial structures of a MD dynamo in
same case as shown in Figure1. The leftmost plot is a meridional cut showing
lines of constantBϕ in the left half and ofr sinθ∂θh in the right half. The
middle plot shows lines of constantBr at r = ro + 1.3. The rightmost plot is
a meridional cut showing lines of constant cross-helicity XH, kinetic helicity
Hu and magnetic helicity HB at ϕ = 0, in the left half, right upper and lower
quarters, respectively.
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Figure 4: A period of dipolar oscillations of aFD dynamo in the same case
as shown in Figure1. Contour plots of the same quantities as in Figure3 are
shown at equidistant moments separated by∆t = 0.0252.

Figure 5: l,m, n spectra of kineticE, magneticM energies and temperature
perturbationΘ for a FD and aMD case.

Figure 6: Helicity, magnetic helicity, cross-helicity of aMD case - average
and typical snapshots.

Figure 7: Helicity, magnetic helicity, cross-helicity for aperiod ofFD oscilla-
tion.

Figure 8: Kinetic quantity ratios of aFD to a MD case. Ratios include

NuFD
i /NuMD
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MD
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p /Ẽ
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Figure 9: Spatial structures of convection in aMD and aFD with identical
parameter values for the same cases shown in figure1.

Figure 10: A period of relaxation oscillations in a purely-convective case.
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Figure 11: Infinitesimally small random magnetic field seed.
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Figure 12: A periodic reversal of aFD dynamo in the same case as shown
in Figure1. Contour plots of the same quantities as in Figure3 are shown at
equidistant moments separated by∆t = 0.0161. The next row (not shown) is
essentially the same as the first one. H
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Figure 13: The ratiõMdip
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dip
p determining the attractor type as a function of

time for a typical reversal case.
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Figure 14: An aperiodic reversal in the case pc.p01t100r4500000m1p05c6hb.
The time moments are t=4.27, 4.29, 4.31, 4.35, 4.39, 4.43.
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