

Convection-driven spherical dynamos: bistability and attempts to model the Solar cycle

R.D. Simitev

School of Mathematics & Statistics

F.H. Busse

Institute of Physics

Convective spherical shell dynamos

R

Basic state & scaling

 $T_S = T_0 - \beta d^2 r^2 / 2$

$$oldsymbol{g} = -d\gammaoldsymbol{r}$$

Length scale: d $d^2/
u$ Time scale: Temp. scale: $u^2/\gamma \alpha d^4$ Magn. flux density: $\nu(\mu \varrho)^{1/2}/d$

model equations & parameters			
Boussinesq approximation			
$ abla \cdot \boldsymbol{u} = 0, \nabla \cdot \boldsymbol{B} = 0,$			
$\partial_t oldsymbol{u} + oldsymbol{u} \cdot abla oldsymbol{u} =$			
$-\nabla \pi - \tau \boldsymbol{k} \times \boldsymbol{u} + \Theta \boldsymbol{r} + \nabla^2 \boldsymbol{u} + \boldsymbol{B} \cdot \nabla \boldsymbol{B},$			
$P\left(\partial_t \Theta + \boldsymbol{u} \cdot \nabla \Theta\right) = R \boldsymbol{r} \cdot \boldsymbol{u} + \nabla^2 \Theta,$			
$P_m(\partial_t \boldsymbol{B} + \boldsymbol{u} \cdot \nabla \boldsymbol{B}) = P_m \boldsymbol{B} \cdot \nabla \boldsymbol{u} + \nabla^2 \boldsymbol{B}.$			
$R = \frac{\alpha \gamma \beta d^6}{\nu \kappa}, \ \tau = \frac{2\Omega d^2}{\nu}, \ P = \frac{\nu}{\kappa}, \ P_m = \frac{\nu}{\lambda}$			
Boundary Conditions			
$\boldsymbol{r}\cdot\boldsymbol{u} = \boldsymbol{r}\cdot\nabla\boldsymbol{r}\times\boldsymbol{u}/r^2 = 0,$			
$oldsymbol{\hat{e}_r} \cdot oldsymbol{B}_{ ext{int}} = oldsymbol{\hat{e}_r} \cdot oldsymbol{B}_{ ext{ext}},$			
$\hat{oldsymbol{e}}_{oldsymbol{r}} imes oldsymbol{B}_{ ext{int}} = \hat{oldsymbol{e}}_{oldsymbol{r}} imes oldsymbol{B}_{ ext{ext}},$			
$\Theta = 0$, at $r = r_i \equiv 2/3$ and $r_o \equiv 5/3$			

Model equations & narameters

Numerical Methods

3D non-linear problem:

$$\begin{split} & \mathbf{U} = \nabla \times (\nabla v \times \mathbf{r}) + \nabla w \times \mathbf{r} \quad \mathbf{B} = \nabla \times (\nabla h \times \mathbf{r}) + \nabla g \times \mathbf{r} \\ & \text{Spectral decomposition in spherical harmonics and Chebyshev polynomials} \\ & x = \sum_{l,m,n} X_{l,n}^m(t) \, T_n(r) \, P_l^m(\cos \theta) e^{im\varphi} \quad \text{where } x = (v, w, \Theta, g, h)^T \\ & \text{Scalar equations} \\ & \partial_t X_{l,n}^m = \hat{\mathcal{L}} X_{l,n}^m + N_{l,n}^m(X) \quad \text{where } \hat{\mathcal{L}} X_{l,n}^m \text{: linear, } N_{l,n}^m(X) \text{: non-linear} \\ & \text{Pseudo-spectral method. Time-stepping: Crank-Nicolson & Adams-Bashforth} \\ & [X_{l,n}^m]^{k+1} = \left(1 - \frac{\Delta t}{2} \hat{\mathcal{L}}\right)^{-1} \left\{ \left(1 + \frac{\Delta t}{2} \hat{\mathcal{L}}\right) [F_{l,n}^m]^k + \frac{\Delta t}{2} \left(3[N_{l,n}^m]^k - [N_{l,n}^m]^{k-1}\right)\right\} \\ & \text{Resolution: radial=41, latitudinal=193, azimuthal=96.} \\ & \text{Linear problem: Galerkin spectral method for the linearised equations leading for an eigenvalue problem for the critical parameters.} \end{split}$$

Linear problem:

Part 1.

Bistability and hysteresis of non-linear dynamos

References:

- Simitev, R., Busse F.H., Bistability and hysteresis of dipolar dynamos generated by turbulent convection in rotating spherical shells, **EPL**, 85, 19001,2009
- Simitev, R., Busse F.H., Bistable attractors in a model of convection-driven spherical dynamos, **Physica Scripta** (submitted 1 Dec 2011).

Two types of dipolar dynamos generated by chaotic convection

Energy densities

• Fully chaotic (large-scale turbulent) regime.

• **Two chaotic attractors** for the same parameter values.

• Essential qualitative difference: contribution of the **mean poloidal dipolar energy**

	(ab)	(de)
Rm	133.6	196.5
Mdip/Mtot	0.803	0.527

black.....**mean poloidal** green.....**fluctuating poloidal** red.....**mean toroidal** blue.....**fluctuating toroidal**

Regions and transition

Two types of dipolar dynamos

- ${
 m P}$ Mean Dipolar (MD) $\widetilde{M}_p < \check{\overline{M}}_p$
- Fluctuating Dipolar (FD) $\widetilde{M}_p > \overline{M}_p$
- MD and FD dynamos correspond to rather **different chaotic attractors** in a fully chaotioc system
- The transition between them is not gradual but is an **abrupt jump** as a critical parameter value is surpassed.
- The nature of the transition is complicated.

	MD	FD
Mdip/Mtot	(0.62,1)	(0.41,56)

Bistability and hysteresis in the MD <~> FD transition

Bistability and hysteresis in the ratio of fluctuating poloidal to mean poloidal magn energy

Bistability and hysteresis as a function of the rotation parameter $\,\mathcal{T}\,$

- (a) ratio of fluctuating poloidal to mean poloidal magn energy
 - φ Mean Dipolar (MD)
 - Fluctuating Dipolar (FD)

(b) ratio of kin energy components of **FD** to **MD** dynamos:

black.....**mean poloidal** green.....**fluctuating poloidal** red.....**mean toroidal** blue.....**fluctuating toroidal**

 $P = 0.75, P_m = 1.5$ $R \cdot 10^{-5} = 7.6, 17, 26, 35, 43, 51, 58, 62$

Comparison of coexisting dynamos – magnetic features

 $R = 1.5 \times 10^6$, $\tau = 2 \times 10^4$, P = 0.75 and $P_m = 1.5$

• Fluctuating Dipolar (FD) dynamos are oscillatory.

• Mean Dipolar (MD) dynamos are non-oscillatory.

Comparison of coexisting dynamos – convective features

The hysteresis is a purely magnetic effect

Basins of attraction – Random initial conditions

- From small random initial seed the **Fluctuating Dipolar** state is approached.
- This, however means only that a the existence of a third attractor is unlikely.

Basins of attraction – Controlled initial conditions

• Initial conditions – taken as a linear combination of MD and FD dynamos with a continuation parameter $\alpha \in [0, 1]$:

$$x(r,\theta,\varphi) = \alpha x^{\text{FD}}(r,\theta,\varphi) + (1-\alpha) x^{\text{MD}}(r,\theta,\varphi),$$

Part 2.

Minimal models of the solar cycle

- Simitev, R., Busse F.H., Solar cycle properties described by simple convection-driven dynamos, **Physica Scripta** (accepted 13 Jan 2012).
- Simitev, R., Busse F.H., How far can minimal models explain the solar cycle?, **Astrophys. J.** (submitted 13 Jan 2012).

Dependence on the shell thickness

Transition to fluctuating dynamos in thin shells

Crucial assumption:

Stress free at outer boundaryNo-slip at inner boundary

$$\eta = 0.65, P = 1, \tau = 2000,$$

 $R = 1.5 \times 10^5, P_m = 5$

black.....**mean poloidal** green.....**fluctuating poloidal** red.....**mean toroidal** blue.....**fluctuating toroidal**

Regular dipolar oscillations in thin shells

No-slip at inner boundary, stress free at outer boundary

Butterfly diagram

• Not realistic – propagation if structures is in the opposite direction

$$r\partial_{\theta}\overline{g}$$
 at $r = r_i + 0.95$

$$P = 1, R = 10^5, \tau = 2000,$$

$$P_m = 4 \qquad \eta = 0.65$$

No-slip at inner boundary, stress free at outer boundary

time

Bistability of dynamo solutions $\eta = 0.65$

m=1 azimuthal structure

The **m=1 structure**

- resembles the phenomenon of Active Longitudes
 (Usoskin et al, Adv Space Res, 2007).
- suggests that the solar field might not be azimuthally symmetric as often assumed.

 $\tau = 2000, R = 120000,$ $P = 1.2, P_m = 4.5.$

m=1 *azimuthal structure* – *butterfly diagrams*

• Still unrealistic - no drift towards equatorial region

 $\tau = 2000, R = 120000, P = 1.2, P_m = 4.5.$

Radial profiles of the differential rotation

 Unrealistic drift is due to the increasing profile of the differential rotation (Yoshimura, ApJ, 1975)

A modified boundary condition

 Along with solar observations, a recent analytical analysis of a simplified model problem (Busse, Solar Physics 2007) indicates that a suitable way to reproduce the decrease of differential rotation with radius near the surface is to employ the following boundary condition

$$(\partial_r + \beta) W_{l=1}^{m=0} = 0$$

at $r = r_o$

Beta is a fitting parameter.

Radial profiles of the differential rotation

• Profile is still unrealistic but decreasing near the surface.

Regularly oscillating dipoles with $\beta \neq 0$

Sunspot drift in dipoles with $\beta \neq 0$

Conclusion

Part A

- Bistability seems to occur in a certain region as a function of all parameters.
- Many published dynamo simulations are within the region of bistability special care is needed.

Part B

- The large scale Solar dynamo might be dominated by a nonaxisymmetric m=1 component of the magnetic field.
- Periodically reversing FD dynamos in thin shells with an equator-ward drift of magnetic structures may be a good minimal model of the solar cycle.