Dynamo, Dynamical Systems and Topology

NORDITA, Stockholm

Convection-driven spherical dynamos - Applications to the Sun

R.D. Simitev School of Mathematics

F.H. Busse Institute of Physics

Stockholm, 27 July 2011

Modelling approach

• Global dynamo models in rotating spherical shells and with the Boussinesq approximation capture the basic first order physics of the convective-dynamo problem

Thermally/chemically driven convection

Magnetic field generation

Lorentz force acts on fluid

• Such models have been relatively successful in modelling the Geodynamo because compressibility is not important.

Westward drift of magnetic structures

Reversals and excursions

Scaling properties

• We propose to use such models to capture the regular solar magnetic cycle and the solar differential rotation.

Note: Anelastic spherical shell models are not significantly better

Convective spherical shell dynamos

Basic state & scaling $T_S = T_0 - \beta d^2 r^2/2$ $\boldsymbol{g} = -d\gamma \boldsymbol{r}$

Length scale:dTime scale: d^2/ν Temp. scale: $\nu^2/\gamma\alpha d^4$ Magn. flux density: $\nu(\mu\varrho)^{1/2}$

	woder equations & parameters
	Boussinesq approximation
	$\nabla \cdot \boldsymbol{u} = 0, \nabla \cdot \boldsymbol{B} = 0,$
	$\partial_t oldsymbol{u} + oldsymbol{u} \cdot abla oldsymbol{u} =$
	$-\nabla \pi - \tau \boldsymbol{k} \times \boldsymbol{u} + \Theta \boldsymbol{r} + \nabla^2 \boldsymbol{u} + \boldsymbol{B} \cdot \nabla \boldsymbol{B},$
	$P\left(\partial_t \Theta + \boldsymbol{u} \cdot \nabla \Theta\right) = R \boldsymbol{r} \cdot \boldsymbol{u} + \nabla^2 \Theta,$
<u>H</u>	$P_m(\partial_t \boldsymbol{B} + \boldsymbol{u} \cdot \nabla \boldsymbol{B}) = P_m \boldsymbol{B} \cdot \nabla \boldsymbol{u} + \nabla^2 \boldsymbol{B}.$
<i>ing</i> ² /2	$R = \frac{\alpha \gamma \beta d^6}{\nu \kappa}, \ \tau = \frac{2\Omega d^2}{\nu}, \ P = \frac{\nu}{\kappa}, \ P_m = \frac{\nu}{\lambda}$
	Boundary Conditions
d	$oldsymbol{r}\cdotoldsymbol{u}=oldsymbol{r}\cdot abla oldsymbol{r} imesoldsymbol{u}/r^2=0,$
d^2/ u	$\hat{oldsymbol{e}}_{oldsymbol{r}}\cdotoldsymbol{B}_{ ext{int}}=\hat{oldsymbol{e}}_{oldsymbol{r}}\cdotoldsymbol{B}_{ ext{ext}},$
$ u^2/\gamma lpha d^4$	$oldsymbol{\hat{e}_r} imes oldsymbol{B}_{ ext{int}} = oldsymbol{\hat{e}_r} imes oldsymbol{B}_{ ext{ext}},$
$ u(\mu \varrho)^{1/2}/d$	$\Theta = 0$, at $r = r_i \equiv 2/3$ and $r_o \equiv 5/3$

Simitev & Busse, JFM, 2005

Model equations & parameters

Numerical Methods

3D non-linear problem:

$$\begin{aligned} & \textbf{Toroidal-poloidal representation} \\ & \textbf{u} = \nabla \times (\nabla v \times \textbf{r}) + \nabla w \times \textbf{r} \quad, \qquad \textbf{B} = \nabla \times (\nabla h \times \textbf{r}) + \nabla g \times \textbf{r} \\ & \textbf{Spectral decomposition in spherical harmonics and Chebyshev polynomials} \\ & x = \sum_{l,m,n} X_{l,n}^m(t) \, T_n(r) \, P_l^m(\cos \theta) e^{im\varphi} \quad \text{where } x = (v, w, \Theta, g, h)^T \\ & \textbf{Scalar equations} \\ & \partial_t X_{l,n}^m = \hat{\mathcal{L}} X_{l,n}^m + N_{l,n}^m(X) \quad \text{where } \hat{\mathcal{L}} X_{l,n}^m \text{: linear, } N_{l,n}^m(X) \text{: non-linear} \end{aligned}$$

Pseudo-spectral method. Time-stepping: Crank-Nicolson & Adams-Bashforth

$$[X_{l,n}^m]^{k+1} = \left(1 - \frac{\Delta t}{2}\hat{\mathcal{L}}\right)^{-1} \left\{ \left(1 + \frac{\Delta t}{2}\hat{\mathcal{L}}\right) [F_{l,n}^m]^k + \frac{\Delta t}{2} \left(3[N_{l,n}^m]^k - [N_{l,n}^m]^{k-1}\right) \right\}$$
Resolution: radial=41, latitudinal=193, azimuthal=96.

Linear problem:

Galerkin spectral method for the linearised equations leading to an eigenvalue problem for the critical parameters.

Oscillations of dipolar dynamos

Ref: Busse F.H. & Simitev R.D., Phys. Earth Planet. Inter., 168, 237, 2008.

Busse F.H. & Simitev R.D., Geophys. Astrophys. Fluid Dyn., 100, 2006.

- Examples of regular oscillations
- Parker's plane layer theory of dynamo wave

Types of dynamos in the parameter space

- Regular and chaotic non-oscillatory dipolar dynamos (at large Pm/P and not far above dynamo onset)
- Oscillatory dipolar dynamos (at values of R larger than those of non-oscillatory dipoles)
- A Hemispherical dynamos always oscillatory
- Quadrupolar dynamos always oscillatory

Example of a quadrupolar oscillation

 $P = 5, \tau = 5 \times 10^3$ $R = 8 \cdot 10^5, P_m = 3$

One period (first then second column)

Mean meridional filedlines of constant $\overline{B_{\varphi}}$ (left), $r \sin \vartheta \partial_{\theta} \overline{h}$ (right) and radial magn. field.

Time series of toroidal G_1^0 and poloidal H_1^0, H_2^0 magn. coefficients.

Half-period of oscillation (column-by-column)

An example of a dipolar oscillation $R = 3.5 \cdot 10^6$, $\tau = 3 \cdot 10^4$, P = 0.75 and $P_m = 0.65$

http://www.maths.gla.ac.uk/~rs/res/B/anim.bm.gif http://www.maths.gla.ac.uk/~rs/res/B/anim.radmagn_2.gif

A period of oscillation (column-by-column)

Stockholm, 27 July 2011

Fit to a mean-field dynamo wave model

Fit to a mean-field dynamo wave model

Applications to the Sun

- Oscillations in thin-shell dynamos
- Effects of velocity boundary conditions

Dependence on the shell thickness – motivated by Dormy, (EPL 2010)

 $P = 1, \tau = 2000, R = 10^5, P_m = 5$ no-slip boundary conditions

Stockholm, 27 July 2011

Transition to fluctuating dynamos in thin shells

$$\eta = 0.65, P = 1, \tau = 2000,$$

 $R = 1.5 \times 10^5, P_m = 5$

No-slip at inner boundary Stress free at outer boundary

Regular dipolar oscillations in thin shells

No-slip at inner boundary, stress free at outer boundary

Butterfly diagram

$$P = 1, R = 10^5, \tau = 2000, P_m = 4.5, \eta = 0.65$$

No-slip at inner boundary, stress free at outer boundary

time

LONGITUDINALLY AVERAGED MAGNETIC FIELD

Hathaway, D.H., et al, 2003, Astrophys. J., 589, 665-670

Radial profiles of the differential rotation and eta eq 0

PLOT HERE

$$P = 1, R = 10^5, \tau = 2000, P_m = 4.5, \eta = 0.65$$

No-slip at inner boundary, stress free at outer boundary

Internal Rotation of the Sun as found by helioseismology, NSF's National Solar Observatory

A modified boundary condition

Along with solar observations, a recent analytical analysis of a simplified model problem (Busse, Solar Physics 2007) indicates that a suitable way to reproduce the decrease of differential rotation with radius near the surface is to employ the following boundary condition

$$(\partial_r + \beta) W_{l=1}^{m=0} = 0$$

at
$$r = r_o$$

Beta is a fitting parameter.

$$\beta = 1, \ \eta = 0.65, \ P = 1$$

 $\tau = 2000, \ R = 10^5, \ P_m = 4$

Regularly oscillating dipoles with $\ eta eq 0$

Butterfly diagram

$$eta = 0.5, \ \eta = 0.65, \ P = 1$$

 $au = 2000, \ R = 1.2 \times 10^5$
 $P_m = 4.5$

No-slip at inner boundary, stress free at outer boundary

Hathaway, D.H., et al, 2003, Astrophys. J., 589, 665-670

Radial profiles of the differential rotation and eta eq 0

No-slip at inner boundary, stress free at outer boundary

Internal Rotation of the Sun as found by helioseismology, NSF's National Solar Observatory

