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Abstract

We outline the regions in the parameter space of a model of cardiac excitation where normal

1:1 response, alternans 2:2 response and further instabilities occur during repeated stimulation

with a dynamic restitution pacing protocol. To this end we consider a version of the classical

model of Purkinje fibers (Noble, J. Physiol. 160:317, 1962) simplified by a well-justified asymp-

totic embedding approach to a “caricature model” (Biktashev et al., Bull. Math. Biol. 70:517,

2008). The caricature is amenable to analytical study but at the same time preserves the es-

sential features of contemporary ionic models of cardiac excitation unlike models of FitzhHugh-

Nagumo type or typical ad-hoc simplifications of cardiac models. We derive an explicit discrete

“restitution” map which specifies the action potential duration as a function of the preceding di-

astolic interval. We then study the bifurcations of equilibria of this map to determine the regions

the parameter space where normal response and alternans occur. We find explicit parametric

representations of both the normal and the alternans equilibrium branches of the restitution

map. The theoretical results are compared to direct numerical simulations.
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1 Introduction

Under the so-called dynamic restitution pacing protocol a (space-clammed) cardiac cell periodically
receives an external stimulus at a fixed interval know as the Basic Cycle Length (BCL), until it
settles into a stable periodic response [9]. A variety of periodic responses have been observed in
experiments [5, 13]. For example, every stimulus may excite an action potential (AP, see section
2.3 and figure 1) and all APs may be identical (1:1 response). Under certain conditions only every
second stimulus may excite an AP and all APs may be identical (2:1 response). Under different
conditions every stimulus may excite an AP but even and odd APs may be different (alternans
2:2 response, see figure 1). It is commonly thought that the 1:1 response represents the healthy
function of the cardiac cell while the other responses are viewed as “instabilities” of the normal
response that may progressively lead to the onset of cardiac arhythmias including in tissue e.g. [2,
and references within]. It has been suggested [4, 8] that these instabilities can be studied using
discrete iterative maps, hereafter called APD restitution maps, that relate the duration of an action
potential (APD) to the duration of the preceding action potential, or equivalently to the preceding
diastolic interval (DI) if the BCL is kept fixed, see equation (??) below for an example.

With this motivation, here we derive APD restitution maps to various orders of accuracy for
a “caricature Noble model” under repeated stimulation with a dynamic restitution protocol and
study their equilibrium branches and bifurcations. The caricature Noble model represents an im-
portant example in the theory of cardiac electrical excitability. The caricature Noble model is a
version of the classical model of Purkinje fibers [7] simplified by a well-justified asymptotic embed-
ding approach [1, 12]. The asymptotic embedding procedure is specifically designed to preserve
the generic properties of cardiac excitability so that the caricature has all of the essential features
of contemporary ionic models of cardiac excitation. In contrast, other typical simplifications of
cardiac models are either ad-hoc and thus suitable only for a particular application, or are mod-
ifications of FitzhHugh-Nagumo equations that are relevant to nerve tissue but do not describe
cardiac tissue well. We remark in passing that the caricature Noble model has a non-Tikhonov
asymptotic structure essentially different from those of the latter types of models, for detailed
discussion see [1, 12]. In a recent series of works [1, 10–12], we have studied various features of
the caricature Noble model, and the present paper adds a critical mass of results to the theory of
this unique example.

The structure of the paper is as follows. ...............

2 Mathematical formulation

We consider an idealized model of an isolated cardiac cell excited by applying a periodic external
stimulus in order to study the resulting periodic responses. In this section we define the governing
model equations, describe their typical behaviour under ........

2.1 The Caricature Noble model

We consider the following set of equations [1, 12],

dE

dt
=

1

ǫ1ǫ2
GNa (ENa − E)H(E − E∗)h +

1

ǫ2

(
g̃2(E)n4 + G̃(E)

)
, (1a)

dh

dt
=

1

ǫ1ǫ2
Fh

(
H(E† − E) − h

)
, (1b)

dn

dt
= Fn(E)

(
H(E − E†) − n

)
, (1c)

where H(·) is the Heaviside step function and the remaining terms represent properties of ionic
currents and gating variables

g̃2(E) = g21H(E† − E) + g22H(E − E†), g21 = −2, g22 = −9,
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G̃(E) =





k1(E1 − E), E ∈ (−∞, E†),
k2(E − E2), E ∈ [E†, E∗),
k3(E3 − E), E ∈ [E∗,+∞),

(1d)

k1 = 3/40, k2 = 1/25, k3 = 1/10,

E1 = −280/3, E2 = (k1/k2 + 1)E† − E1k1/k2 = −55, E3 = (k2/k3 + 1)E∗ − E2k2/k3 = 1,

Fh = 1/2, Fn(E) = fn

(
r H(E† − E) + H(E − E†)

)
, r = 1, fn = 1/270,

ENa = 40, E† = −80, E∗ = −15, GNa = 100/3.

In the following we refer to equations (1) as the Caricature Noble model. It is obtained from the
authentic Noble model of Purkinje fibers [7] using a set of verifiable assumptions and well defined
simplifications as detailed in [1, 12]. The main features of equations (1) which make them an
appropriate model system are:

(a) They reproduce exactly the asymptotic structure of the authentic Noble model [7], which is
guaranteed by the embedding of the artificial small parameters 0 < ǫ1, ǫ2 ≪ 1. The authentic
Noble model is the prototype of all contemporary voltage-gated cardiac models, and for this
reason we believe that the asymptotic structure of (1) is rather generic in this class. Realistic
voltage-gated cardiac models do not have explicit small parameters already present in them;
or, rather, they have so many parameters that it is not a straightforward task which of them
to use for asymptotic reduction. Hence we employ a procedure of embedding artificial small
parameters, as discussed e.g. in [1, 12].

(b) Equations (1) have the simplest possible functional form consistent with property (a). Most
functions in the right-hand side are replaced by constants as justified in [1, 12]. This allows
analytical solutions to be obtained in closed form [1] which makes it possible to rigorously
validate asymptotic reductions in this case. This is valuable from a theoretical point of view
and also as an estimate for the errors introduced by asymptotic reductions in other realistic
ionic models where analytical solutions are not available.

We complement equations (1) by the following initial conditions

E(0) = Estim, h(0) = 1, n(0) = 0. (2a)

and apply a “pacing” condition with basic cycle length B

E(kB) = Estim, k ∈ N. (2b)

The significance and choice of these conditions is discussed in section 2.3 below.

2.2 Asymptotic reduction

At ǫ1 = ǫ2 = 1 the solutions of the caricature Noble model (1) agree closely with the solutions of
the authentic Noble model [7] as demonstrated in [1]. For this reason, we regard equations (1) as
a contemporary detailed ionic model. In the limits ǫ1, ǫ2 → 0+ the model simplifies to a hierarchy
of asymptotically reduced systems amenable to analytical work which provide much insight into
the dynamics of the full model.

Superfast-time system Consider a “super-fast” time scale t ∼ ǫ1ǫ2, or equivalently T ∼ (ǫ1ǫ2)
−1,

in the limits ǫ1, ǫ2 → 0+, or in fact at a finite value of ǫ2. The essential dynamical variables are E
and h and their evolution is governed by

dE

dT
= GNa (ENa − E)H(E − E∗)h, (3a)

dh

dT
= H(E† − E) − h. (3b)

This “superfast-time” subsystem is obtained from equations (1) by stretching time to T = t/(ǫ1ǫ2),
taking the limit ǫ1 → 0+ and neglecting the equation for n which decouples from the rest. This
system describes the upstroke stage of the action potential.
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Figure 1: (color online) A Sequence of Action potentials with related notation; Typical examples
of alternans 2:2 response. Ak and Dk intervals are denoted to introduce notation. a) Alternans at
ǫ = 1, ǫ2 = 1 b) Alternans at ǫ = 0, ǫ2 = 0.1

Slow-time system Consider a “slow” time scale t ∼ ǫ2, or equivalently τ ∼ (ǫ2)
−1, in the limit

ǫ1 → 0+ and at a finite value of ǫ2. The essential dynamical variables are E and n and their
evolution is governed by

dE

dτ
= g̃2(E)n4 + G̃(E), (4a)

dn

dτ
= ǫ2Fn(E)

(
H(E − E†) − n

)
. (4b)

This “slow-time” subsystem is obtained from equations (1) by rescaling time to τ = t/ǫ2, and tak-
ing the limit ǫ1 → 0. Equation (1b) then implies h → H(E† −E). Hence the first term of equation
(1a) is proportional to a product of non-overlapping Heaviside functions H(E−E∗)H(E†−E) = 0
which vanishes in the limit ǫ1 → 0 despite the large factor ǫ1

−1 in front of it and we are left with
system (4). This system describes the post-overshoot drop, the plateau, repolarization and recov-
ery stages of the of the action potential. It is a Tikhonov fast-slow system in its own right.

Fast-slow-time system Consider the “fast-slow” time scale t ∼ ǫ2, or equivalently τ ∼ (ǫ2)
−1,

but in this case in the limits ǫ1 → 0+ and ǫ2 → 0+ simultaneously. The essential dynamical variable
is E and its evolution is governed by

dE

dτ
= g̃2(E)n4 + G̃(E), (5a)

dn

dt
= 0. (5b)

This “fast-slow-time” subsystem is obtained directly from equations (4) by taking the additional
limit ǫ2 → 0+. This system describes the post-overshoot drop and the repolarization stages of the
of the action potential.

Slow-slow-time system Consider the “slow-slow” time scale t ∼ 1 in the limits ǫ1 → 0+ and
ǫ2 → 0+. The essential dynamical variable is n and its evolution is governed by

0 = g̃2(E)n4 + G̃(E), (6a)

dn

dt
= Fn(E)

(
H(E − E†) − n

)
. (6b)

This “slow-slow-time” subsystem is obtained directly from equations (1) by taking the limit ǫ1 →
0+ and ǫ2 → 0+ simultaneously, or equivalently by rescaling back to t = ǫ2τ in system (4) and then
taking the additional limit ǫ2 → 0+. This system describes the plateau and the recovery stages of
the of the action potential.
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Figure 2: (color online) Phase portraits of (a) the fast system (3) and (b) the slow system (4)
of the caricature Noble Model. Blue dashed lines represent vertical nulclines dh/dt = 0 in (a)
and dn/dt = 0 in (b). Solid red lines and the cross-hatched region in (a) represent horizontal
nulclines dE/dt = 0. Thin dotted black lines with attched arrows represent trajectories. The thick
dotted green line corresponds to initial conditions (2a). The letters A-F designate feature points
of the solution. Notice that the blue set in (a) is a subset of the red set, so it is a continuous set of
equilibria in the fast subsystem. Replace this plot with the actual phase portraits of (3) and (4) in
the same format as these plots.

2.3 Phase portraits and AP sequence

Action Potentials A solution of equations (1) that exhibits a significant deviation from the global
equilibrium (E, h, n) = (E1, 1, 0) is known as an Action Potential (AP); examples are shown in
figure 1. We now construct a typical AP starting from initial conditions (2a) using the phase
portraits of the asymptotic subsystems of (1).

Phase portrait of the supperfast-time system The phase portrait of the superfast-time system
(3) is shown in figure 2(a). Equations (3) and figure 2(a) demonstrate that E∗ acts as a threshold
with Estim > E∗ leading to excitation of a superfast upstroke, while if Estim < E∗ the super-fast-
time system is not activated and the AP may be generated by the slow-time system alone; see also
the discussion in [1]. This superfast-time subsystem does not make a significant contribution to
the duration of APs.

Phase portrait of the slow-time system The phase portrait of the slow-time system (4) is shown
in figure 2(b). Equation (6a) defines the super-slow manifold,

n = N (E) =
(
−G̃(E)/g̃2(E)

)1/4

, (7a)

and in t ∼ 1 equation (6b) describes the motion along this manifold. As illustrated in figure 2(b)
the super-slow manifold is split into two parts by the condition n4 ≥ 0, namely the “diastolic”
branch E ∈ (−∞, E1] and the “systolic” branch for E ∈ [E2, E3]. The stability of the fast-slow
equilibria is determined by the sign of ∂Ė/∂E which coincides with the sign of N ′(E) = dN/dE:
the stable branches of the super-slow manifold correspond to regions in (n,E) plane where its
graph has a negative slope, i.e. N ′(E) < 0. These are the regions of the entire diastolic branch
and the upper part of the systolic branch, in the range E ∈ (E∗, E3]. Here E∗ is the root of the
equation N ′(E∗) = 0, where the super-slow gating variable n takes it maximal value,

n∗ =
(
k2(E2 − E∗)/g22

)1/4
. (7b)

These considerations determine the excitability properties in terms of the slow-slow-time subsys-
tem (6). As seen in figure 2(b) a trajectory starting from Estim > E2 will be repelled by the lower
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systolic branch and attracted by the upper one, thus making a relatively large excursion if,

n(t0) < nthr ≡
(
k2(E2 −Estim)/g22

)1/4
= n∗

(
(E2 −Estim)/(E2 −E∗)

)1/4
, nthr ∈ [0, n∗). (8)

This will be followed by a slow movement along the upper systolic branch, then a jump to the
diastolic branch at E∗ and then another slow movement along the diastolic branch approaching
the global equilibrium, (E1, 1, 0), where the motion would eventually stop unless another super-
threshold external stimulus is applied, in which case the entire cycle is repeated.

Periodic pacing protocol In this paper, we wish to consider the latter scenario of a repeated
stimulation leading to the excitation of an AP sequence as illustrated in the examples of figure 1.
In physiological experiments cells are paced by applying an external stimulus current in the form
of an train of period B composed of rectangular impulses of amplitude Jstim and duration δ, i.e.

Istim(t) = Jstim

[
1

4
sgn

(
sin

2πt

B

)
sgn

(
sin

2π(t − B/2 + δ)

B

)]
.

In the experimental literature such forcing is often called dynamic restitution pacing protocol [9].
If the impulse duration is short compared to other time scales δ ≪ ǫ1, ǫ2, the current may be
consistently incorporated in our asymptotic formulation by adding a forcing term δ−1Istim(t) to
the RHS of equation (1a). To avoid non-essential complications to the analysis we impose the
pacing condition (2b), instead.

3 APD restitution maps

Examples of AP sequences excited by the periodic pacing condition (2b) are shown in figure 1.
It is desirable to describe the properties of such sequences using quantities that can be readily
measured in experiments and without recourse to the complete voltage trace. It was first proposed
in [8] that this can be accomplished using a map, henceforth called APD restitution map, that
relates the durations of subsequent APs, and is usually written in one of the following variants

Ak+1 = Φ(Ak) (9)

= Φ(B − Dk) = F (ã, Ak) = F (a, B − Ak).

Here ã = [a, B]T is a vector of model parameters and, for completeness, we define the action

potential duration (APD), Ak and the diastolic interval (DI), Dk of the k-th AP as follows.

Definition 1 Consider an AP sequence generated in model (1,2). Let the beginning of the k-th AP be

at time kB, and let t†k be the first subsequent moment such that E(t†k) = E†. We define

Ak = t†k − (k − 1)B, Dk = kB − t†k, k ∈ N. (10)

The role of the “cut-off” value may be assigned to any voltage value, E† being a convenient choice
in model (1). In direct numerical simulations and in physiological measurements 90% of the
maximal voltage is often chosen. It is not obvious that the k-th AP is generated at kB as this
depends on the type of response to the periodic stimulation as discussed below.

Typical responses to periodic stimulation (2b) may now be represented using map (9).
1:1 response A normal 1:1 response is one where every stimulus excites an AP and all APs are
identical. It can be represented by a superthreshold, stable fixed point A = F (A) of map (9),

A = F (a, B − A), (11a)
∣∣∣∣
[
∂AF (a, B − A)

]

A

∣∣∣∣ < 1, (11b)

B > Bthr. (11c)

The first condition requires that Ak = Ak+1 which is true for a sequence of identical APs. The
second condition asserts that this fixed point must be stable to be physically realizable. The third
condition is a “threshold” condition for excitation of such an AP sequence.
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2:2 response (alternans) A 2:1 response also known as alternans is one where every stimulus ex-
cites an AP but even and odd APs are different. Analogously, it can be represented by a su-
perthreshold, stable fixed point of the composed second-generation map Φ2 ≡ Φ ◦ Φ, i.e. a
2-cycle of Φ,

A = F
(
a, B − F (a, B − A)

)
, (12a)

∣∣∣∣
[
∂AF

(
a, B − F (a, B − A)

)
]
A

∣∣∣∣ < 1, (12b)

B > Bthr. (12c)

2:1 response A 2:1 response is one where only every second stimulus excites an AP and all APs
are identical. Since every second stimulus fails to initiate an AP, the BCL between successful APs
is effectively doubled to 2B and this case can be represented by

Ã = F (a, 2B − Ã), (13a)
∣∣∣∣
[
∂AF (a, 2B − Ã)

]
eA

∣∣∣∣ < 1, (13b)

2B > Bthr. (13c)

Further instabilities Other periodic responses can de described in a similar way.
Conditions such as (11), (12) and (13) may be used to partition the parameter space ã of the APD
map (15), thus providing a direct correspondence between values of model parameters and types
of response. Controlling parameter values, e.g. pharmacologically, offers the hope that cells may
be steered to a regime of “healthy” function.

In the rest of this section we derive APD restitution maps of various accuracy apply and these
ideas to the caricature Noble model (1).

3.1 A simple APD restitution map from the slow-slow-time system

Map The simplest APD restitution map of (1) is obtained in the limits ǫ1, ǫ2 → 0+ as follows.

Lemma 1 For an AP sequence generated in problem (6)–(2)

Ak = a(nk−1), a(x) ≡ fn
−1 log

(
(1 − x)/(1 − n∗)

)
, (14a)

Dk = d(nk), d(x) ≡ (rfn)−1 log(n∗/x), (14b)

nk ≡ n(kB), k ∈ N.

Proof The result follows by integration of equation (6b) along the systolic branch of the super-
slow manifold,

Ak =

(k−1)B+Ak∫

(k−1)B

dt =
1

fn

n∗∫

n((k−1)B)

dn

1 − n
= −

1

fn

[
log(1 − n)

]n∗
n((k−1)B)

=
1

fn
log

(
1 − nk−1

1 − n∗

)
,

Dk =

kB∫

(k−1)B+Ak

dt = B − Ak = −
1

rfn

n(kB)∫

n∗

dn

n
= −

1

rfn

[
log(n)

]n(kB)

n∗
=

1

rfn
log

(
n∗

nk

)
.

The crucial observation in deriving expressions (14) is that in this limit the end of any plateau
phase coincides with the beginning of the next recovery stage when the slow gating variable n
takes its maximal value (7b) on the systolic branch of the super-slow manifold (7a), e.g. n((k −
1)B + Ak) = n(kB + Ak+1) = n∗ for any k ∈ N. This is well illustrated by the phase portrait in
figure 2(b).
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Proposition 1 An APD restitution map relating Ak+1 to Ak is given by

Ak+1 = Φ(Ak),

Φ(A) = F (ã, A) = F (a, B − A) =
1

fn
log

(
1 − n∗ exp

(
− rfn (B − A)

)

1 − n∗

)
, (15)

where ã = [a, B]T = [r, fn, n∗, B]T is a vector of parameters.

Proof The result is obtained by eliminating nk between expression (14a) written for Ak+1 and
expression (14b) written for Dk = B − Ak.
Lemma 1 gives a parametric representation of the APD restitution map and the Proposition gives
an equivalent explicit representation.

Fixed points We can now proceed to find the fixed points of Φ and Φ2 corresponding the 1:1-
and 2:2-responses discussed above as follows.

Proposition 2 The equation A = Φ(A) has a unique solution branch given in parametric form by

A = a(n), D = d(n), (16)

with a parameter n ∈ [0, nthr].

Proof Rather than solving the transcendental equation A = Φ(A) directly, we use the equivalent
parametric representation of Lemma 1. In a 1:1 response Ak = Ak+1 and Dk = Dk+1, equivalent
by (14) to a(nk−1) = a(nk) and d(nk) = d(nk+1), respectively. By the bijectivity of the logarithmic
function, solutions are nk−1 = nk ≡ n and nk = nk+1 ≡ n, respectively. It follows that in a 1:1
response all APs start from identical values of the n gate, n, thus expressions (16) hold. Obviously,
the parameter n is a gating variable hence n must be in the range [0, 1]. Furthermore, no AP can
be excited above nthr so n ∈ [0, nthr].

Proposition 3 The equation A = Φ ◦ Φ(A) has three solution branches: the first one is identical to

(16), and the other two are given in parametric form by

Aeven = a(αnb), Deven = d(nb), (17a)

Aodd = a(nb), Dodd = d(αnb), (17b)

nb =
(
α1/r − 1

)
/
(
α(r+1)/r − 1

)
, (17c)

with a parameter α ∈ [1,∞).

Proof Again, rather than solving the transcendental equation A = Φ ◦ Φ(A) directly, we use the
equivalent parametric representation of Lemma 1. In a 2:2 response, Ak = Ak+2 and Ak+1 = Ak+3

as well as Dk = Dk+2 and Dk+1 = Dk+3. Applying expressions (14), we find nk−1 = nk+1 ≡ na

and nk = nk+2 ≡ nb. Since the BCL, B is fixed we also require

B = Ak + Dk = Ak+1 + Dk+1 ⇔ a(na) + d(nb) = a(nb) + d(na), (18)

and explicitly log
(
(1 − na)/(1 − nb)

)
= r−1 log

(
nb/na

)
. By the bijectivity of the logarithm and

after the change of variable na = αnb this equation reduces to α(1− αnb)
r = (1− nb)

r with exact
solution (17). Equations (17a) and (17b) follow immediately. To establish the range of α note
that (18) is invariant with respect to exchanging na and nb, so without loss of generality we may
consider only the case na ≥ nb, and since na and nb are positive it follows that na/nb = α ∈ [1,∞).

Finally, a fixed point of Φ is also a fixed point of Φ ◦Φ, hence (16) is a third solution branch of

A = Φ ◦ Φ(A).
We remark that solutions (16) and (17) can, of course, be verified by back-substitution into

A = Φ(A) and A = Φ ◦ Φ(A), respectively.
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Figure 3: (color online) Plot of solutions (16) and (17) illustrating (a) supercritical; and (b)
subcritical flip bifurcation at parameter values ...

Figure 3 illustrates equilibria (17).
Perturbation solution of A = Φ(A) We remark in passing that it is also possible to find an explicit
approximation to the solution of A = Φ(A) by using a regular perturbation approach. First, note
that equation (11a) is exactly solvable in the case r = 1. Expand the unknown A in a Taylor series
near r = 1,

A =

∞∑

m=0

(1 − r)mAm.

Upon substitution of the expansion in equation (11a), collecting powers of the small quantity
(1 − r), and solving for the expansion coefficients Am, we find, e.g. to order O

(
(1 − r)2

)

A = B −
1

fn
log(γ)

(
1 +

n∗

γ
(1 − r)

)
+ O

(
(1 − r)2

)
, (19)

γ =
(
1 − exp(Bfn)

)
n∗ + exp(Bfn).

Figure figure 4 shows comparisons between the exact solution (16) and the perturbation solutions
with variation of r and the order p of the approximation O

(
(1−r)p

)
. Remarkably, the perturbation

solution is a good approximation far beyond the asymptotic limit r → 1.

Stability and bifurcations of equilibria We now impose conditions (11b) and (12b) to establish
the stability properties of 1:1- and 2:2-responses.

Proposition 4 The equilibrium (16) of the APD restitution map (15) loses stability in a flip (period-

doubling) bifurcation at

nbif = 1/(1 + r) (20a)

or in terms of the BCL, alternatively at

Bbif =
1

fn
log

(
r n∗

1/r(1 + r)(1−r)/r

(1 − n∗)

)
. (20b)

Proof On substitution of (16) in (11b), the latter yields,

n = nbif = 1/(1 + r) ∈ (0, 1) if
[
∂AF (a, A)

]

A
= −1

or
n = nbif = 1/(1 − r) ∈ (−∞, 0) ∪ (1,∞) if

[
∂AF (a, A)

]

A
= 1.

9
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Figure 4: (color online) Comparison between direct numerical and perturbation solutions of
equation (11a). (a) as a function of r for defalut balues of the parameters and B = 200. (b) as
a function of B for r = 1.4 and default values of the other parameters. The defalut parameter
values are listed in (1). The order of accuracy O

(
(1 − r)p

)
and the type of lines is denoted in the

legend which is common to (a) and (b). The line with p = 1 corresponds to expression (19).

The second solution must be rejected since it is outside the interval [0, 1] where gating variables
are defined. The first solution is valid and since it is obtained at

[
∂AF (a, A)

]

A
= −1,

stability is lost in a flip bifurcation of the APD restitution map (15), see e.g. [3].
Evaluating (16) at nbif = 1/(1 − r) we then find

Abif = a(nbif) = fn
−1 log

(
(1/(1 + r) − 1)/(n∗ − 1)

)
, (21a)

Bbif = a(nbif) + d(nbif) =
1

fn
log

(
rn∗

1/r(1 + r)(1−r)/r

(1 − n∗)

)
. (21b)

Proposition 5 The equilibria (17) of the second-generation map Φ◦Φ bifurcate from the equilibrium

(16) of the APD restitution map (15) at (20) and lose their stability at r = 1.

Proof To confirm that equilibria (17) bifurcate from equilibrium (16) it is enough to evaluate
(17c) at α = 1, the value where (17) first emerges. Since

nb(α = 1) = 1/(1 + r) = nbif ,

(16) and (17), indeed intersect at nbif .
Rather than using (12b) directly, we recall that a flip bifurcation for Φ is a pitchfork bifurcation

for the second generation map Φ ◦Φ, see e.g. [3]. A pitchfork bifurcation (and the corresponding
flip bifurcation) can be either subcritical if [∂3

AΦ ◦ Φ]Abif
< 0 or supercritical if [∂3

AΦ ◦ Φ]Abif
> 0.

Substituting (21) into [∂3
AΦ ◦ Φ]Abif

= 0 and solving this equation for r we find that r = 1 is
the boundary between the sub- and the supercritical cases. The subcritical case is characterised
by one stable branch on one side and no branches on the other side of the bifurcation point.
The superctitical case is characterised by one stable branch on one side and two stable and one
unstable branch on the other side of the bifurcation point.

Figure 3 illustrates further the stability of equilibria.
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Thresholds We now impose the threshold conditions (11c) and (12c).

Proposition 6 The threshold value of BCL for excitation of a 1:1 response is

Athr = a(nthr) = fn
−1 log

(
(1 − nthr)/(1 − n∗)

)
,

Dthr = d(nthr) = (rfn)−1 log(n∗/nthr), (22)

Bthr = Athr + Dthr.

Proof Recall that the k-th AP can be only be excited by a super-threshold stimulus Estim > E2

for which nk−1 < nthr where nthr is given by (8). The result then follows by evaluation of (16) at
n = nthr.

Proposition 7 The threshold value of BCL for excitation of a 2:2 response is

Bthr = a
(
nthr

)
+ d
(
nthrα(nthr)

)
= a

(
nthrα(nthr)

)
+ d
(
nthr

)
, (23a)

where α(nthr) is the solution of the transcendental equation

nthr =
(
α1/r − 1

)
/
(
α(r+1)/r − 1

)
. (23b)

Proof Again, excitation of the k-th AP requires a super-threshold stimulus Estim > E2 for which
nk−1 < nthr where nthr is given by (8). The result then follows by evaluation of (17) at n = nthr.
Clearly, in this case nthr needs to be used a parameter and equation (17c) must be inverted.
Perturbation solution of equation (23b) Because we failed to find an exact solution of equation
(23b) for α, we present here an approximation obtained by regular perturbations about r = 1.
First, it is useful to look closely at the exact solutions at r = 1. We find two roots, namely α1 = 1
and α2 = (1− nthr)/nthr. While the first solution α1 is constant, and the particular constant is the
value of the left end of the interval of definition of α, the other solution α2 varies as a function of
nthr and we find that α1 = α2 exactly at nthr = [1/(1 + r)]r=1 = nbif . This implies that α1 and
α2 are not two different solutions at the same value of nthr but, in fact, two branches bifurcating
from each other at nthr = nbif . This could have been expected as the 2:2 solution does not exist
below nbif . So we now only need to find α2. We expand the unknown α2 in a Taylor series near
r = 1,

α2 =

∞∑

m=0

(1 − r)mβm.

Upon substitution of the expansion in equation (23b), collecting powers of the small quantity
(1 − r), and solving for the expansion coefficients βm, we find, e.g. to order O

(
(1 − r)2

)

α(nthr) =





1, if nthr ≥ nbif = 1/(1 + r),
1 − nthr

nthr
− (1 − r)

1 − nthr

1 − 2nthr
log

(
1 − nthr

nthr

)

+O
(
(1 − r)2

)
, if nthr < nbif = 1/(1 + r),

(24)

We remark that the threshold for excitation of a 2:2 AP sequence was determined incorrectly
in [6], where it was claimed that 2:2 sequence exists until the threshold condition (22) for a 1:1
response is violated.

==============================================

Synthesis We have proven the following Theorem

Theorem 1 The bifurcation set of problem (6)–(2) where transitions between the 1:1-response (16),

2:2-response (17) and 2:1-response occurs and where stability is gained or lost consists of surfaces

Bthr given by (22), Bthr given by (23), Bbif given by (20b), and r = 1 (see Figure 5).
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Theorem 2 (Stability and bifurcations of equilibria) This following formulation is awkward. Try to

formulate the result as a description of figure 5. The APD restitution map (15) exhibits a flip (period-

doubling) bifurcation from equilibrium (16) to equilibria (17) at nthr = 1/(1+r) which is subcritical

for r < 1, and supercritical for r > 1. More precisely, USE 3D FIGURE map (15) has

1. a unique stable equilibrium branch in the region

R1:1 =
{

(r, nthr, B) | r > 0, nthr ∈ [0, 1/(1 + r)), B > Bthr

}

∪
{

(r, nthr, B) | r > 0, nthr ∈ [0, n∗), B > Bbif

}
. (25a)

2. an unstable 2-cycle in the region

Ru
2:2 =

{
(r, nthr, B) | r ∈ ((1−n∗)/n∗, 1), nthr ∈ (1/(1+r), n∗), B ∈ (Bthr, Bbif)

}
, (25b)

and a stable 2-cycle in the region

Rs
2:2 =

{
(r, nthr, B) | r ∈ (1,∞), nthr ∈ (1/(1 + r), n∗), B ∈ (Bthr, Bbif)

}
, (25c)

where

Bbif ≡
1

fn
log

(
r n∗

1/r(1 + r)(1−r)/r

(1 − n∗)

)
, (25d)

3. a stable 2:1 response in the region

R2:1 = U/(R1:1 ∪Rs
2:2), (25e)

where U is the universe of possible values of r, nthr, B.

Proof
Use parametric representation.. 21parsol.M
The conditions for a stable equilibrium, i.e. Ak = Ak+1 = A, of (??) are

A = F (a, A), (26a)
∣∣∣
[
∂AF (a, A)

]

A

∣∣∣ < 1. (26b)

The bifurcation set, i.e. the set of values of A and a where bifurcation occurs, is found by replacing
the inequality with an equal sign. A parametric solution of (26a) is given by

A = fn
−1 log

(
(n − 1)/(n∗ − 1)

)
, D = (rfn)−1 log(n∗/n), B = A + D, (27)

12
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where the role of a parameter is played by n, the value of the primary dynamical variable of the
slow-slow-time system at the fixed point. This solution is obtained from (??) and (14b) noting
that at a fixed point and for all sufficiently large values of k, Dk = Dk+1 = D and B = A + D,
as well, so one can introduce n = n(kB). Solution (27) can be verified by backsubstitution into
(26a). This solution is obviously unique.

On substitution of (27) in (26b), the latter yields,

n = nbif = 1/(1 + r) ∈ (0, 1) if
[
∂AF (a, A)

]

A
= −1

or
n = nbif = 1/(1 − r) ∈ (−∞, 0) ∪ (1,∞) if

[
∂AF (a, A)

]

A
= 1

The second solution is rejected since it is outside the interval [0, 1] where gating variables are
defined. Note that the first valid solution requires

[
∂AF (a, A)

]

A
= −1

so stability is lost in a FLIP bifurcation of the APD restitution map (??), see e.g. [3].
Finally, for the equilibrium branch to remain stable until it ceases to exist, we must have

Abif < Athr and comparing (27) and (??) we find

nthr < nbif =
1

1 + r
.

Conversely, if the reverse inequality holds, then the equilibrium solution (27) loses stability
before it ceases to exist so there are a range of values of B such that (21b) holds true.

A flip bifurcation for Φ is a pitchfork bifurcation for the second generation map Φ ◦ Φ, see e.g.
[3]. A pitchfork bifurcation (and the corresponding flip bifurcation) can be either subcritical if
[∂3

AΦ2]Abif
< 0 or supercritical if [∂3

AΦ2]Abif
> 0. Solving

[∂3
AΦ2]Abif

= 0,

Abif = fn
−1 log

(
(1/(1 + r) − 1)/(n∗ − 1)

)
, Bbif ≡

1

fn
log

(
rn∗

1/r(1 + r)(1−r)/r

(1 − n∗)

)
,

we find that
r = 1

is the boundary between Ru
2:2 and Rs

2:2.
Explicit parametric solution for the 2 stable branches of the pitchfork bif- yes!

see “parmsol.M”

Strength-duration curve Derive formula. Plot graph. Comment on fixing nthr

A similar procedure is applied in [6] to derive an APD map in an unrelated simplified model.

Proposition 8
nb(α = 1) = 1/(1 + r),

where nb is defined in (17).

Remark 1 Consider a dynamic stimulation protocol with stimuli such that Estim > E2 and BCL

sufficiently small so that for the k-th AP n(kB) > nthr. Then stimulus number k fails to excite an

AP. The n gating variable continues to recover until this condition is ultimately satisfied. The next

stimulus will then excite an AP - 2:1 response. The equilibrium is ... Basis of attraction too narrow.

This proves the following result about the regions in the parameter space where various re-
sponses occur.

Theorem 3 (Parameter regimes) Formulate results in terms of figure 5.

3.2 Comparison with DNS
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===========Below is some text that I may discard =============

4 An APD restitution map derived from the exact solution (of

the slow-time system)

The caricature Noble model (1) allows an closed-form analytical solution derived in [1] and that
can be used to derive an exact APD restitution map. We remark that an exact solution of the model
discussed in [6] is not known.

The main question is how the fast subsystem affects the APD map. Probably via the threshold
properties.

Exact solution of the full caricature

Exact solution of the slow-time system

5 Bifurcations in the simple APD restitution map

5.1 Bifurcation sets

Conditions for instability of the 1:1 response are

Φ(A) = A,

|Φ′(A)| = 1, B = Bthr.

Solution of this set of equations gives

F21 = −
F22 (nthr − 1)

nthr
.

This can be written as

nthr =
1

1 + r
,

where r = F21/F22. This is the same expression as in Mitchell [6].

5.2 2:2 alternans responses

Conditions for sub and supercritical pitchfork bifurcations In addition to condition (5.1), the
boundary between sub- and supercritical pitchfork bifurcation is

Φ′′′(A) = 0.

Solution of this set of equations gives the line

F22 = F22 (i.e. r = 1), nthr ∈ [0, 1/2),

This is the same result as in Mitchell [6], as well.

6 Interpretation

We should address the following questions.

1. How accurate are results of the bifurcation analysis of the simple map. I.e., do we see
alternans when F22/F22 > 1 etc ..?

2. Derive conditions as a function of B.

14



References

[1] Biktashev, V. N., Suckley, R. S., Elkin, Y. E. and Simitev, R. D. [2008], ‘Asymptotic analysis
and analytical solutions of a model of cardiac excitation’, Bull. Math. Biol. 70(2), 517–554.

[2] Cherry, E., Fenton, F. and R.F. Gilmour, J. [2012], ‘Mechanisms of ventricular arrhythmias: a
dynamical systems-based perspective’, 302(12), H2451–H2463.

[3] Crawford, J. D. [1991], ‘Introduction to bifurcation theory’, Rev. Mod. Phys. 63, 991–1037.
URL: http://link.aps.org/doi/10.1103/RevModPhys.63.991

[4] Guevara, M., Glass, L. and Shrier, A. [1981], ‘Phase locking, period-doubling bifurcations,
and irregular dynamics in periodically stimulated cardiac cells’, 214(4527), 1350–1353.

[5] Hall, G., Bahar, S. and Gauthier, D. [1999], ‘Prevalence of rate-dependent behaviors in car-
diac muscle’, Phys. Rev. Lett. 82, 2995–2998.

[6] Mitchell, C. and Schaeffer, D. [2003], ‘A two-current model for the dynamics of cardiac
membrane’, Bull. Math. Biol. 65(3), 767–793.

[7] Noble, D. [1962], ‘A modification of the Hodgkin-Huxley equations applicable to Purkinje
fibre action and pace-maker potentials’, J. Physiol. Lond. 160, 317–352.

[8] Nolasco, J. B. and Dahlen, R. W. [1968], ‘A graphic method for the study of alternation in
cardiac action potentials’, J. Appl. Physiol. 25, 191–196.

[9] Schaeffer, D., Cain, J., Gauthier, D., Kalb, S., Oliver, R., Tolkacheva, E., Ying, W. and Kras-
sowska, W. [2007], ‘An ionically based mapping model with memory for cardiac restitution’,
Bull. Math. Biol. 69, 459–482.

[10] Simitev, R. and Biktashev, V. [2008], An analytically solvable asymptotic model of atrial
excitability, in Deutsch, A. et.al., ed., ‘Mathematical Modeling of Biological Systems, Volume
II’, Birkhuser Boston, pp. 289–302.

[11] Simitev, R. D. and Biktashev, V. N. [2006], ‘Conditions for propagation and block of excitation
in an asympthotic model of atrial tissue’, Biophysical Journal 90, 2258–2269.

[12] Simitev, R. D. and Biktashev, V. N. [2011], ‘Asymptotics of conduction velocity restitution in
models of electrical excitation in the heart’, Bull. Math. Biol. 73(1), 72–115.

[13] Visweswaran, R., McIntire, S., Ramkrishnan, K., Zhao, X. and Tolkacheva, E. [n.d.], ‘Spa-
tiotemporal evolution and prediction of [Ca2+]i and APD alternans in isolated rabbit hearts’,
JCE 24(11).

7 More

• CRN-3? APD map with memory?

• Ensemble Karman Filter for APs. Idea. Use a simple model e.g. the caricature and fit its
parameters using Toni’s data. Then try to do analytical work.

===============================================
===============================================
===============================================
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Proposition 9 The APD restitution map (15) exhibits a flip (period-doubling) bifurcation from equi-

librium (16) to equilibria (17) at nbif = 1/(1 + r) which is subcritical for r < 1, and supercritical for

r > 1. Corollary

Bbif ≡
1

fn
log

(
r n∗

1/r(1 + r)(1−r)/r

(1 − n∗)

)
, (28)

Proof On substitution of (16) in (11b), the latter yields,

n = nbif = 1/(1 + r) ∈ (0, 1) if
[
∂AF (a, A)

]

A
= −1

or
n = nbif = 1/(1 − r) ∈ (−∞, 0) ∪ (1,∞) if

[
∂AF (a, A)

]

A
= 1.

The second solution must rejected since it is outside the interval [0, 1] where gating variables are
defined. The first solution is valid and since it is obtained at

[
∂AF (a, A)

]

A
= −1,

stability is lost in a FLIP bifurcation of the APD restitution map (??), see e.g. [3].
Next, for the equilibrium branch to remain stable until it ceases to exist, we must have Abif <

Athr and comparing (27) and (??) we find

nthr < nbif =
1

1 + r
.

Conversely, if the reverse inequality holds, then the equilibrium solution (27) loses stability
before it ceases to exist so there are a range of values of B such that (21b) holds true.

A flip bifurcation for Φ is a pitchfork bifurcation for the second generation map Φ ◦ Φ, see e.g.
[3]. A pitchfork bifurcation (and the corresponding flip bifurcation) can be either subcritical if
[∂3

AΦ2]Abif
< 0 or supercritical if [∂3

AΦ2]Abif
> 0. Solving

[∂3
AΦ2]Abif

= 0,

Abif = fn
−1 log

(
(1/(1 + r) − 1)/(n∗ − 1)

)
, Bbif ≡

1

fn
log

(
rn∗

1/r(1 + r)(1−r)/r

(1 − n∗)

)
,

we find that
r = 1

is the boundary between Ru
2:2 and Rs

2:2.
Finally, in order to confirm that solution (16) bifurcates to (17) and not something else it is

enough to evaluate (17c) at α = 1, the value where (17) first emerges. Since

nb(α = 1) = 1/(1 + r) = nbif ,

is precisely what we need.
Explicit parametric solution for the 2 stable branches of the pitchfork bif- yes!

see “parmsol.M”
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