Chapter 3

Differentiation of vectors

Chapter Summary

Objective

Tools

Know and use the definition of grad, div and curl and
understand the meaning of vector and scalar fields

Nabla is the differential operator, V = (%, a%v 8%) .

For a scalar field f, grad f = Vf = (%,%{:,%).
For a vector field F = (Fy, Fy, F3),

: _ . _ OFy OF5 OFs
divF =V .F =290 1 9 4 O

curlF = V x F = (%_%)H(%_%)jJr
AF. oF
(87; - Byl) k.
Find the directional derivative % =u-Vf= ul% + ’LLQ% + ug%. The formula

for a directional derivative can only be used for unit
vectors. To calculate the directional derivative in
the direction of a non-unit vector v, one must use
the unit vector with the same direction as v, that is
u= .

[v]

Know the definition of the Laplacian and be able to
calculate it.

Given a scalar field f, the Laplacian of f, writ-
ten V2f = V- (Vf) = 2L + 2L+ 2L This
definition may be extended to the Laplacian of
a vector field F = (Fy, Fy, F3), to give V2F =
(V2F,V2F,,V?F3) .

Prove the nabla identities and use them to prove
other results

Nabla identities:

grad(f 4+ ¢g) = grad f + grad g,
div(F + G) = divF +div G,
curl(F + G) = curl F + curl G,
grad(fg) = f(grad g) + (grad f)g,
div(fF) = fdivF + (grad f) - F,
curl(fF) = fcurl F + grad f x F,
curlgrad f = 0, and divcurl F = 0.
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3.1 Vector-valued functions

In the previous chapters we have considered real functions of several (usually two) variables f: D — R,
where D is a subset of R™, where n is the number of variables. These are scalar-valued functions in the sense
that the result of applying such a function is a real number, which is a scalar quantity. We now wish to
consider vector-valued functions f: D — R™. In principal, m can be any positive integer, but we will only
consider the cases where m = 2 or 3, and the results of applying the function is either a 2D or 3D vector.

The simplest type of vector-valued function has the form f: I — R2, where I C R. Such a function
returns a 2D vector f(¢) for each ¢ € I, which may be regarded as the position vector of some point on the
plane.

3.2 Vector and scalar fields

(Stewart (Ed. 7): Section 16.1, p1081.)

A function of two or three variables mapping to a vector is called a wvector field. In contrast, a function
of two or three variables mapping to a scalar is called a scalar field. As we saw in Chapter 1 (using different
terminology), one can represent the graph of a scalar field as a curve or surface. A vector field F(z,y) (or
F(x,y, 2)) is often represented by drawing the vector F(r) at point r for representative points in the domain.
A good example of a vector field is the velocity at a point in a fluid; at each point we draw an arrow (vector)
representing the velocity (the speed and direction) of fluid flow (see Figure 3.1). The length of the arrow
represents the fluid speed at each point.
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Figure 3.1: Vector field representing fluid velocity

3.3 Different types of derivative

(Stewart (Ed. 7): Section 14.6, p952.)
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We have already discussed the derivatives and partial derivatives of scalar functions. Next we will consider
discuss other different types of “derivatives” of scalar and vector functions; in some cases the result is a scalar
and sometimes a vector.

Recall that if u, v, w are vectors and « is a scalar, there are a number of different products that can be
made;

Name of product Formula | Type of result
Scalar multiplication au Vector
Scalar or dot product u-v Scalar
Vector or cross product | u x v Vector

Now consider the vector differential operator

o 0 0
V(awmwm>'

This is read as del or nabla and is not to be confused with A, the capital Greek letter delta. One can form
“products” of this vector with other vectors and scalars, but because it is an operator, it always has to be
the first term if the product is to make sense. For example, if f is a scalar field, we can form the scalar
“multiple” with V as the first term

(0 0 oY, _(of of of
vi= <6x’ oy’ 62) = (&T’ oy’ 32) ’
the result being a vector.

Below we will introduce the “derivatives” corresponding to the product of vectors given in the above
table.
3.3.1 Gradient (“multiplication by a scalar”)
This is just the example given above. We define the gradient of a scalar field f to be

gradf:Vf:(af of 8f)

Oz’ Oy’ 9z

We will use both of the notation grad f and V f interchangeably.
Remark Note that f must be a scalar field for grad f to be defined and grad f itself is a vector field.

Example 3.1 Find the gradient of the scalar field f(x,y,2) = 2%y + xcoshyz. (Recall from 1S/1Y that

efte * e _e~ T
2

coshx = is the hyperbolic cosine and the hyperbolic sine is given by sinhx = “=—.)

Solution : We have

0 0 0
—f = 2xy + coshyz, —f =22 4+ zzsinhyz, a—f = zysinhyz.
z

or dy

Therefore,
grad f = (2zy + cosh yz, 2% + zzsinhyz, 2y sinh yz).

Example 3.2 Let r = (z,y, 2) so that r = |r| = \/22 + 2 + 22. Show that
V(r") =" ?r,

for any integer n and deduce the values of grad(r), grad(r?) and grad(1/r).
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Solution : We have

0 n __ 0 2 2 2\n/2
5 = %(:E +y°+ 2%)
:233%(1,2+y2+22)n/271

= nar" 2,

Then, using the symmetry of r with respect to z, y and z, we get

ﬁT" = nyr"? 27“" = nzr"?
ay =ny ) 82 - )
and thus 5 5 5
V(™) = (&%( ™, a—y(r”)7 az(r”)> = (nzr"~ ,nyrn_Q,nzr"_z) =nr" %p
Hence
grad(r) = V(r) = 1rt=2r = -,
grad(r?) = 2r*~%r = 2r,
and

(|
Example 3.3 Determine grad(c - r), when c is a constant (vector).
Solution : Let ¢ = (c1, ¢2,c3) so that
grad(c-r) = grad(c1z + coy + c22)
_ [(O0(c1z + coy + coz) O(c1m 4 coy + c22) O(c1 + coy + Co2)
B Ox ’ Oy ’ 0z
= (01,02,03) =cC.
(|

Directional derivative This is the rate of change of a scalar field f in the direction of a unit vector
u = (u1,us,u3). As with normal derivatives it is defined by the limit of a difference quotient, in this case
the directional derivative of f at p in the direction u is defined to be

oy S+ h0) — [(p)
h—0+ h

; (%)

(if the limit exists) and is denoted

of
%(P)
This definition is rarely used directly. The key formula for the directional derivative of f in the direction
u is
of _of of af
gu UV mmgy tueg sy
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To prove this, first notice that
fp+ (t+h)a) - f(p +tu)

d
Zfp+tu) = 1i
gr! P iw) = lim,

h
so that () can be obtained as
d
—f(p +tu)
dt 0
Also, using the chain rule, we have
d _of af af B
%f(p +tu) = ula(p +tu) + uga—y(p + tu) + u;:,&(p +tu) =u- Vf(p+ tu).

Combining these results gives the required formula.

Remarks

1. The formula for a directional derivative can only be used for unit vectors. To calculate the directional
derivative along a non-unit vector v, one must use the unit vector having the same direction as v, that
is

v

vl

2. Partial derivatives are special cases of directional derivatives. For example, the partial z-derivative is
the directional derivative in the direction (1,0,0).

Example 3.4 Find the directional derivative of f = x?yz> at the point P(3,—2,—1) in the direction of the
vector (1,2,2).

Solution : The unit vector with the same direction as (1,2, 2) is

(1,2,2) 122
u=——-"-——=\|-,-,-|].
V12 422 4 22 373’3
Hence the required directional derivative is

122

u-Vf = <3, 3 3) C(2ayz3, 2?23, 32y 2?)

1 .
= g(Qxyz‘3 + 2222 4 62%y2?).
At the point P, this gives
of

1
—3,—-2,-1) = -(12 - 18 — 108) = —38.
oL (3,-2,-1) = 5 )

]

If we fix a point p and are given a function f, then by considering all possible directional derivatives of
f at the point p we can ask:

e in which direction does f change fastest?
e what is the maximal rate of change?

The following theorem answers these questions.

Theorem Suppose f is a differentiable function for which V f(p) # 0 then the mazimal value of %(p) 18
IV f(p)| and occurs when u is in the same direction as Vf.
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Remark Proof: See Exercise Sheet 7, question F1.

Example 3.5 Consider f = In(zy + 2%) at the point P(1,1,1). In what direction does f have the maximal
rate of change? What is this maximal rate of change?

Solution : The theorem above states that f increases the fastest in the direction of the gradient vector at

the point P(1,1,1).
V= Y T 322
C\ay+ 23y + 23 ay+23 )7

hence Vf(1,1,1) = (1/2,1/2,3/2) is the direction of the maximal rate of change. The maximal rate of

change is
V11

3.3.2 Divergence of a vector field (“scalar product”)

(Stewart (Ed. 7): Section 16.5, p1118.)

The divergence of a vector field F = (F, Fy, F3) is the scalar obtained as the “scalar product” of V and
F

?

. oF, OF, OF;
F=V.F=21,4,22,953
div v ox + oy * 0z

It is so called, because it measures the tendency of a vector field to diverge (positive divergence) or converge
(negative divergence). In particular, a vector field is said to be incompressible (or solenoidal) if its divergence
is zero.

Figure 3.2 shows the vector fields F = (z,y,0), G = (z, —y,0) and H = (-, —y,0) in the zy-plane. We

have 9 oy
T
divF = — ——2
iv 9 +8y >0

and similarly, divG = 0 and divH = —2 < 0. Notice how the arrows on the plot of F diverge and on the
plot of H converge.

RRRE(T 2 PAA 7478/ A LB VANAN MYy AL
RRIREPPAA 774878 3 R 2R AN RN MM Y |8 222
N R 5|2 a 3N 2w e |y 3P SR R ERIEE A
Cads & s |s & DcH Q:Qsp:-g%@\ -:bgg..p@@\
e e v owoD P U [ A N
PR e sy s P W R 8|2 2 AN NA 2 s R
7878788 AR IR "R RN| RRIZ R 2AA A2 PR RRRY
74787/ AL BANANY RREET2AA AP TERRR

F, positive divergence G, incompressible H, negative divergence

Figure 3.2: Positive and negative divergence
Example 3.6 Show that the divergence of F = (x — y?2, 2, 2%) is positive at all points in R3.
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Solution : We have

2 3
s = 25— 0000

=14+0+322=1+ 322
oz oy 92 + 0+ 3z + oz

Hence for every (z,y,z), divF > 1 > 0. O

A particular example of divergence is the Laplacian of a scalar field. Given a scalar field f, grad f = V f
is a vector field and the divergence of Vf is the Laplacian of f, written V2f. This means that

0%f 0%f O%f

2 — . _
VA=V = ga gt g

This definition may be extended in a natural way to the Laplacian of a vector field F = (F, Fy, F3),

[V°F = (V2Fy, V2F,, V2Fy)

Example 3.7 Find the values of n for which V2(r™) = 0.

Solution : We have r = /22 + y2 + 22 and so from Example 3.2,

8 n
(arx ) = nar" 2.
Therefore,
62 n
3(::2 ) nr" 2 4 nx (n — 2)zr"?

=nrn? (r* + (n —2)z°),
and because of the symmetry in r with respect to x, y and z, we also have

0%(r™)
02

82 (,rn)

=nr" " (r? + (n — 2)y?), 5.2

=" (r? 4+ (n — 2)2%).

Taking the sum of these we get

V2(r") = nr"_4(3r2 +(n—2)(2* +9° + 22))
=n(n+1)r" 2

Hence V2(r™) = 0 if and only if n = 0 or n = —1. O

3.3.3 Curl of a vector field (“vector product”)

(Stewart (Ed. 7): Section 16.5, p1115.)

The curl of a vector field F = (F}y, Fy, F3) is the vector obtained as the “vector product” of V and F

0z ox

OF3; OFy)\ ., oFy OF3)\ . oFy, 0F;
i + k
Jr oy

CurlF:vXF:<ay—az
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Like any other vector product, curl F can be calculated using a 3 x 3 determinant,

i § k

iE |2 OO\ (oR BN, (oR oRY . (0B 0B,

T |ox Oy 9z \ Oy 0z 0z oz dx Oy '
FOF B

The curl of a vector field measures its tendency to rotate. In particular, a vector field is said to be
irrotational if its curl is the zero vector. Figure 3.3 shows the vector fields F = (—y, z,0), G = (y,z,0) and
H = (y, —z,0). We have

i j k
o o0 0
curl F = % @ & =2k
-y T 0
and similarly, curl G = 0 and curlH = —2k < 0. The coefficient of k in curl F being negative indicates
anticlockwise rotation.
43 RN VMBI AN AAITD>93NM
Ve eles R Yy sfleaaRn RAI2339N9Yy
deeelen i Yy usleaap PRaalssyy
dde¢ - l-5s8F b8 |22 ¢ ter-]-v3d
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F, anticlockwise rotation G, irrotational H, clockwise rotation

Figure 3.3: Clockwise and anticlockwise rotation

Example 3.8 Determine curl F when F = (2%y, 2y° + 2, xy).

Solution : We have
i j k
0 0 0
curl F = e (“)7/ 7
xzy xy2 +z a2y
= (z-1)i+(0-y)i+ (¥’ -2k

= (‘T - ]-7 7yay2 - IQ)'

Example 3.9 If c is a constant vector, find curl(c x r).
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Solution : We have r = (x,y, 2) and let ¢ = (c1, ¢2, ¢3). First, we calculate

i j k
CXr=,|cp Cy C3|= (CQZ — C3Y,C3x — C12,C1Y — CQ.T).
r Yy =z
Then,

i j k

0 0 0

1 = = — —

curl(c x r) B 3y ER

CoZ —C3Y C3x —C1Z2 C1Y — C2X

= (Cl — (761))1 + (Cg — (702))j —+ (03 — (763))1{
= 2c.

3.4 Nabla identities

(Stewart (Ed. 7): Section 16.5, p1118.)

There are analogues involving div, grad and curl of the elementary rules of differentiation such as linearity
(f+9)(x) = f'(z) + ¢'(x) the product rule (fg)'(z) = f(x)g'(x) + f'(z)g(x).

Let f and g be smooth scalar fields and F and G smooth vector fields. Then all of the following are
straightforward to prove (as illustrated in Example 3.10) just using definitions

grad(f +g) = grad f + gradg  grad(fg) = f(gradg) + (grad f)g,

div(F+ G) =divF + divG div(fF) = fdivF + (grad f) - F,

curl(F + G) = curlF + curl G curl(fF) = fcurlF + grad f x F,
curlgrad f = 0, divcurl F = 0.

In particular, note the special cases
grad(cf) = cgrad f, div(cF) =cdivF, curl(cF)=ccurlF,

when c is a (scalar) constant.
All of the identities are easier to remember if written using V. For example,

curl(fF) =V x (fF)
=f(VxF)+ (Vf)xF
= fcurl F + grad f x F.

Example 3.10 Prove the identities

(i) curlgrad f =0, (ii) curl(fF)= fcurlF +grad f x F, (iii) div(fF) = fdivF + (grad f) - F
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Solution : We have (i)

i j k
o 0 0
curlgrad f = e By 7
o fy e
= ((f2)y = (fy)2)i+ ((fa)z = (f2)a) + ((fy)e = (fa)y)k
=(0,0,0) =
and (ii),
i j k
0 0 0
Curl(fF) = 87:5 aiy &
TFy fFy [F3

= ((fF3)y — ng i+ ((FF)- fF3) )i+ (FF2)e — (fF1)y)k
= [ [((Fs)y = (F2)2)i+ ((F1): — (F3)2)j + ((F2)a — (F1)y)K]
)i+

(fyF3_sz2 (szl fmF?)) (fmF2_fyFl)k
i j k
:fcurlF+ fm fl/ fz
F, F Fy

= fcurl F + grad f x F,

as required.
(iii) Left as an exercise. O

Example 3.11 Let r = (z,y, z) denote a position vector with length » = /22 + y2? + 22 and c is a constant
(vector). Determine

(i) div(r™(c xr)), (ii) curl(r™(c x r)).

Solution
i ok
cXr=lcg ca c3|=(caz—cC3y,C3x — C12,C1Y — CoT).
x Yy =z

(i) Using the identity div(fF) = fdivF + grad(f) - F, and setting f = v and F = ¢ X r gives
div(r™*(c x r)) = r*div(c x r) 4+ grad(r™) - (c x r)
=0+n""%r-(cxr)
=0.

This uses the result from Example 3.2, and the fact that ¢ x r) is perpendicular to r.
(ii), using the identity curl(fF) = f curl F + grad(f) x F gives

curl(r"(c x r)) = r" curl((c x r)) + grad(r™) x (c x r)
"2rx (cxr) (by Ex 3.9 and 3.2)
=2r"c+nr"?((r-r)c — (r-c)r) (by the vector triple product)

=(2+n)r"c—nr"2(r-c)r

=7r"2c+nr
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