
Chapter 3

Differentiation of vectors

Chapter Summary

Objective Tools

Know and use the definition of grad, div and curl and
understand the meaning of vector and scalar fields

Nabla is the differential operator, ∇ =
(

∂
∂x ,

∂
∂y ,

∂
∂z

)
.

For a scalar field f , grad f = ∇f =
(

∂f
∂x ,

∂f
∂y ,

∂f
∂z

)
.

For a vector field F = (F1, F2, F3),

divF = ∇ · F = ∂F1

∂x + ∂F2

∂y + ∂F3

∂z ,

curlF = ∇ × F =
(

∂F3

∂y − ∂F2

∂z

)
i +

(
∂F1

∂z − ∂F3

∂x

)
j +(

∂F2

∂x − ∂F1

∂y

)
k .

Find the directional derivative ∂f
∂u = u · ∇f = u1

∂f
∂x + u2

∂f
∂y + u3

∂f
∂z . The formula

for a directional derivative can only be used for unit
vectors. To calculate the directional derivative in
the direction of a non-unit vector v, one must use
the unit vector with the same direction as v, one
must use the unit vector with the same direction as
v, that is u = v

|v| .

Know the definition of the Laplacian and be able to
calculate it.

Given a scalar field f , the Laplacian of f , writ-

ten ∇2f = ∇ · (∇f) = ∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2 .. This

definition may be extended to the Laplacian of
a vector field F = (F1, F2, F3), to give ∇2F =
(∇2F1,∇2F2,∇2F3) .

Prove the nabla identities and use them to prove
other results

Nabla identities:

grad(f + g) = grad f + grad g,
div(F+G) = divF+ divG,
curl(F+G) = curlF+ curlG,
grad(fg) = f(grad g) + (grad f)g,
div(fF) = f divF+ (grad f) · F,
curl(fF) = f curlF+ grad f × F,
curl grad f = 0, and div curlF = 0.

63



3.1 Vector-valued functions

In the previous chapters we have considered real functions of several (usually two) variables f : D → R,
where D is a subset of Rn, where n is the number of variables. These are scalar-valued functions in the sense
that the result of applying such a function is a real number, which is a scalar quantity. We now wish to
consider vector-valued functions f : D → Rm. In principal, m can be any positive integer, but we will only
consider the cases where m = 2 or 3, and the results of applying the function is either a 2D or 3D vector.

The simplest type of vector-valued function has the form f : I → R2, where I ⊂ R. Such a function
returns a 2D vector f(t) for each t ∈ I, which may be regarded as the position vector of some point on the
plane.

3.2 Vector and scalar fields

(Stewart (Ed. 7): Section 16.1, p1081.)

A function of two or three variables mapping to a vector is called a vector field. In contrast, a function
of two or three variables mapping to a scalar is called a scalar field. As we saw in Chapter 1 (using different
terminology), one can represent the graph of a scalar field as a curve or surface. A vector field F(x, y) (or
F(x, y, z)) is often represented by drawing the vector F(r) at point r for representative points in the domain.
A good example of a vector field is the velocity at a point in a fluid; at each point we draw an arrow (vector)
representing the velocity (the speed and direction) of fluid flow (see Figure 3.1). The length of the arrow
represents the fluid speed at each point.

Figure 3.1: Vector field representing fluid velocity
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3.3 Different types of derivative

(Stewart (Ed. 7): Section 14.6, p952.)

We have already discussed the derivatives and partial derivatives of scalar functions. Next we will consider
discuss other different types of “derivatives” of scalar and vector functions; in some cases the result is a scalar
and sometimes a vector.

Recall that if u, v, w are vectors and α is a scalar, there are a number of different products that can be
made;

Name of product Formula Type of result
Scalar multiplication αu Vector
Scalar or dot product u · v Scalar
Vector or cross product u× v Vector

.

Now consider the vector differential operator

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
.

This is read as del or nabla and is not to be confused with ∆, the capital Greek letter delta. One can form
“products” of this vector with other vectors and scalars, but because it is an operator, it always has to be
the first term if the product is to make sense. For example, if f is a scalar field, we can form the scalar
“multiple” with ∇ as the first term

∇f =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
,

the result being a vector.
Below we will introduce the “derivatives” corresponding to the product of vectors given in the above

table.

3.3.1 Gradient (“multiplication by a scalar”)

This is just the example given above. We define the gradient of a scalar field f to be

grad f = ∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

We will use both of the notation grad f and ∇f interchangeably.

Remark Note that f must be a scalar field for grad f to be defined and grad f itself is a vector field.
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Example 3.1 Find the gradient of the scalar field f(x, y, z) = x2y + x cosh yz. (Recall from 1S/1Y that

coshx = ex+e−x

2 is the hyperbolic cosine and the hyperbolic sine is given by sinhx = ex−e−x

2 .)

Solution :

Answer: grad f = (2xy + cosh yz, x2 + xz sinh yz, xy sinh yz). �

Example 3.2 Let r = (x, y, z) so that r = |r| =
√

x2 + y2 + z2. Show that

∇(rn) = nrn−2r,

for any integer n and deduce the values of grad(r), grad(r2) and grad(1/r).

Solution :
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Example 3.3 Determine grad(c · r), when c is a constant (vector).

Solution :

Answer: grad(c · r) = c �

Direction derivative This is the rate of change of a scalar field f in the direction of a unit vector
u = (u1, u2, u3). As with normal derivatives it is defined by the limit of a difference quotient, in this case
the direction derivative of f at p in the direction u is defined to be

lim
h→0+

f(p+ hu)− f(p)

h
, (∗)

(if the limit exists) and is denoted
∂f

∂u
(p).

This definition is rarely used directly. The key formula for the directional derivative of f in the direction
u is

∂f

∂u
= u · ∇f = u1

∂f

∂x
+ u2

∂f

∂y
+ u3

∂f

∂z
.

To prove this, first notice that

d

dt
f(p+ tu) = lim

h→0+

f(p+ (t+ h)u)− f(p+ tu)

h

so that (∗) can be obtained as
d

dt
f(p+ tu)

∣∣∣∣
t=0

.

Also, using the chain rule, we have

d

dt
f(p+ tu) = u1

∂f

∂x
(p+ tu) + u2

∂f

∂y
(p+ tu) + u3

∂f

∂z
(p+ tu) = u · ∇f(p+ tu).

Combining these results gives the required formula.

68



Remarks

1. The formula for a directional derivative can only be used for unit vectors. To calculate the directional
derivative along a non-unit vector v, one must use the unit vector having the same direction as v, that
is

u =
v

|v|
.

2. Partial derivatives are special cases of directional derivatives. For example, the partial x-derivative is
the directional derivative in the direction (1, 0, 0).

Example 3.4 Find the directional derivative of f = x2yz3 at the point P (3,−2,−1) in the direction of the
vector (1, 2, 2).

Solution :

Answer: The direction derivative is given by, ∂f
∂u (3,−2,−1) = −38. �

If we fix a point p and for a given function f , then by considering all possible directional derivatives of
f at the point p we can ask:
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• in which direction does f change fastest?

• what is the maximal rate of change?

The following theorem answers these questions.

Theorem Suppose f is a differentiable function for which ∇f(p) ̸= 0 then the maximal value of ∂f
∂u (p) is

∥∇f(p)∥ and occurs when u is in the same direction as ∇f .

Remark Proof: See Exercise Sheet 7, question F1.

Example 3.5 Consider f = ln(xy + z3) at the point P (1, 1, 1). In what direction does f have the maximal
rate of change? What is this maximal rate of change?

Solution :

Answer: Direction (1/2, 1/2, 3/2), maximal rate of change
√
11
2 . �
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3.3.2 Divergence of a vector field (“scalar product”)

(Stewart (Ed. 7): Section 16.5, p1118.)

The divergence of a vector field F = (F1, F2, F3) is the scalar obtained as the “scalar product” of ∇ and
F,

divF = ∇ · F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

It is so called, because it measures the tendency of a vector field to diverge (positive divergence) or converge
(negative divergence). In particular, a vector field is said to be incompressible (or solenoidal) if its divergence
is zero.

Figure 3.2 shows the vector fields F = (x, y, 0), G = (x,−y, 0) and H = (−x,−y, 0) in the xy-plane. We
have

divF =
∂x

∂x
+

∂y

∂y
= 2 > 0

and similarly, divG = 0 and divH = −2 < 0. Notice how the arrows on the plot of F diverge and on the
plot of H converge.

Figure 3.2: Positive and negative divergence

Example 3.6 Show that the divergence of F = (x− y2, z, z3) is positive at all points in R3.

Solution :

�
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A particular example of divergence is the Laplacian of a scalar field. Given a scalar field f , grad f = ∇f
is a vector field and the divergence of ∇f is the Laplacian of f , written ∇2f . This means that

∇2f = ∇ · (∇f) =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
.

This definition may be extended in a natural way to the Laplacian of a vector field F = (F1, F2, F3),

∇2F = (∇2F1,∇2F2,∇2F3) .

Example 3.7 Find the values of n for which ∇2(rn) = 0.

Solution :
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Answer: n = 0 or n = −1. �

3.3.3 Curl of a vector field (“vector product”)

(Stewart (Ed. 7): Section 16.5, p1115.)

The curl of a vector field F = (F1, F2, F3) is the vector obtained as the “vector product” of ∇ and F

curlF = ∇× F =

(
∂F3

∂y
− ∂F2

∂z

)
i+

(
∂F1

∂z
− ∂F3

∂x

)
j+

(
∂F2

∂x
− ∂F1

∂y

)
k .

Like any other vector product, curlF can be calculated using a 3× 3 determinant,

curlF =

∣∣∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z

F1 F2 F3

∣∣∣∣∣∣∣∣∣∣
=

(
∂F3

∂y
− ∂F2

∂z

)
i+

(
∂F1

∂z
− ∂F3

∂x

)
j+

(
∂F2

∂x
− ∂F1

∂y

)
k .

The curl of a vector field measures its tendency to rotate. In particular, a vector field is said to be
irrotational if its curl is the zero vector. Figure 3.3 shows the vector fields F = (−y, x, 0), G = (y, x, 0) and
H = (y,−x, 0). We have

curlF =

∣∣∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z

−y x 0

∣∣∣∣∣∣∣∣∣∣
= 2k

and similarly, curlG = 0 and curlH = −2k < 0. The coefficient of k in curlF being positive indicates
anticlockwise rotation.

Figure 3.3: Clockwise and anticlockwise rotation
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Example 3.8 Determine curlF when F = (x2y, xy2 + z, xy).

Solution :

Answer: curlF = (x− 1,−y, y2 − x2). �

74



Example 3.9 If c is a constant vector, find curl(c× r).

Solution :

Answer: curl(c× r) = 2c. �
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3.4 Nabla identities

(Stewart (Ed. 7): Section 16.5, p1118.)

There are analogues involving div, grad and curl of the elementary rules of differentiation such as linearity
(f + g)′(x) = f ′(x) + g′(x) the product rule (fg)′(x) = f(x)g′(x) + f ′(x)g(x).

Let f and g be smooth scalar fields and F and G smooth vector fields. Then all of the following are
straightforward to prove (as illustrated in Example 3.10) just using definitions

grad(f + g) = grad f + grad g grad(fg) = f(grad g) + (grad f)g,

div(F+G) = divF+ divG div(fF) = f divF+ (grad f) · F,
curl(F+G) = curlF+ curlG curl(fF) = f curlF+ grad f × F,

curl grad f = 0, div curlF = 0.

In particular, note the special cases

grad(cf) = c grad f, div(cF) = c divF, curl(cF) = c curlF,

when c is a (scalar) constant.
All of the identities are easier to remember if written using ∇. For example,

curl(fF) = ∇× (fF)

= f(∇× F) + (∇f)× F

= f curlF+ grad f × F.

Example 3.10 Prove the identities

(i) curl grad f = 0, (ii) curl(fF) = f curlF+ grad f × F, (iii) div(fF) = f divF+ (grad f) · F

Solution :
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Example 3.11 Let r = (x, y, z) denote a position vector with length r =
√
x2 + y2 + z2 and c is a constant

(vector). Determine

(i) div(rn(c× r)), (ii) curl(rn(c× r)).

Solution :

Answer: (i) div(rn(c× r)) = 0 and (ii) curl(rn(c× r)) = (n+ 2)rnc− n(r · c)rn−2r. �
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