
Chapter 4

Line and surface integrals: Solutions

Example 4.1 Find the work done by the force F(x, y) = x2i − xyj in moving a particle along the curve
which runs from (1, 0) to (0, 1) along the unit circle and then from (0, 1) to (0, 0) along the y-axis (see
Figure 4.1).

Figure 4.1: Shows the force field F and the curve C. The work done is negative because the field impedes
the movement along the curve.

Solution : Split the curve C into two sections, the curve C1 and the line that runs along the y-axis C2.
Then,

W =

∫
C

F · dr =

∫
C1

F · dr +

∫
C2

F · dr .

Curve C1: Parameterise C1 by r(t) = (x(t), y(t)) = (cos t, sin t), where 0 ≤ t ≤ π/2 and F = (x2,−xy) and
dr = (dx, dy). Hence,∫
C1

F · dr =

∫
C1

x2 dx− xy dy =

∫ π/2

0

cos2 t
dx

dt
dt−

∫ π/2

0

cos t sin t
dy

dt
dt = −

∫ π/2

0

2 cos2 t sin t dt = −2/3,
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by applying Beta functions to solve the integral where m = 2, n = 1 and K = 1.

Curve C2: Parameterise C2 by r(t) = (x(t), y(t)) = (0, t), where 0 ≤ t ≤ 1. Hence,∫
C2

F · dr =

∫ 0

1

0
dx

dt
dt−

∫ 0

1

0t
dy

dt
dt = 0.

So the work done, W = −2/3 + 0 = −2/3. Notice the order of limits must reflect the direction along the
curve. Work done is negative because the force field impedes the movement along the cure. �

Example 4.2 Evaluate the line integral
∫
C

(y2)dx+(x)dy, where C is the is the arc of the parabola x = 4−y2

from (−5,−3) to (0, 2)

Solution :

Parameterise C by r(t) = (x(t), y(t)) = (4− t2, t), where −3 ≤ t ≤ 2, since −3 ≤ y ≤ 2. C is illustrated
in Figure 4.2. F = (y2, x) and dr = (dx, dy). Hence,∫

C

F · dr =

∫
C

y2dx+ xdy =

∫ 2

−3

t2
dx

dt
dt−

∫ 2

−3

(4− t2)
dy

dt
dt =

∫ 2

−3

−2t3 + (4− t2)dt = 245/6.

Figure 4.2: Curve C, where C is the arc of the parabola x = 4− y2 from (−5, 3) to (0, 2).

�

Example 4.3 Evaluate the line integral,
∫
C

(x2 + y2)dx+ (4x+ y2)dy, where C is the straight line segment
from (6, 3) to (6, 0).

Solution : We can do this question without parameterising C since C does not change in the x-direction.
So dx = 0 and x = 6 with 0 ≤ y ≤ 3 on the curve. Hence

I =

∫
C

(x2 + y2)0 + (4x+ y2)dy =

∫ 0

3

24 + y2dy = −81.

�

Example 4.4 Use Green’s Theorem to evaluate
∫
C

(3y− esin x)dx+ (7x+
√
y4 + 1)dy, where C is the circle

x2 + y2 = 9.
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Solution : P (x, y) = 3y − esin x and Q(x, y) = 7x +
√
y4 + 1. Hence, ∂Q

∂x = 7 and ∂P
∂y = 3. Applying

Green’s Theorem where D is given by the interior of C, i.e. D is the disc such that x2 + y2 ≤ 9.∫
C

(3y − esin x)dx+ (7x+
√
y4 + 1)dy =

∫∫
D

(7− 3)dxdy =

∫ 2π

0

∫ 3

0

4rdrdθ =

∫ 2π

0

18dθ = 36π

The D integral is solved by using polar coordinates to describe D. �

Example 4.5 Evaluate
∫
C

(3x− 5y)dx+ (x− 6y)dy, where C is the ellipse x2

4 + y2 = 1 in the anticlockwise
direction. Evaluate the integral by (i) Green’s Theorem, (ii) directly.

Solution : i) Green’s Theorem: P (x, y) = 3x− 5y and Q(x, y) = x− 6y. Hence, ∂Q∂x = 1 and ∂P
∂y = −5.

Applying Green’s Theorem where D is given by the interior of C, i.e. D is the ellipse such that x2/4+y2 ≤ 1.∫
C

(3x− 5y)dx+ (x+ 6y)dy =

∫∫
D

(1− (−5))dxdy = 6

∫∫
D

1dxdy = 6× (Area of the ellipse) = 6× 2π.

See chapter 2 for calculating the area of an ellipse by change of variables for a double integral.

(ii) Directly: Parameterise C by x(t) = 2 cos t, y(t) = sin t, where 0 ≤ t ≤ 2π.

I =
∫ 2π

0
(6 cos t− 5 sin t)dxdt dt+ (2 cos t− 6 sin t)dydt dt

=
∫ 2π

0
18 cos t sin t+ 10 sin2 t+ 2 cos2 t dt

= 0 + 40
∫ π/2

0
sin2 t dt+ 8

∫ π/2
0

cos2 t dt

= 0 + 40π2 (1/2) + 8π2 (1/2) = 12π.

The integrals are calculated using symmetry properties of cos t and sin t and beta functions. Using the table

of signs below we see that
∫ 2π

0
sin2 t = 4

∫ π/2
0

sin t dt etc.

Quadrant 1 2 3 4 Total
cos t + − − +
sin t + + − −

cos t sin t + − + − 0
sin2 t + + + + 4
cos2 t + + + + 4

�

Example 4.6 Vector fields V and W are defined by

V = (2x− 3y + z,−3x− y + 4z, 4y + z)

W = (2x− 4y − 5z,−4x+ 2y,−5x+ 6z) .

One of these is conservative while the other is not. Determine which is conservative and denote it by F.
Find a potential function φ for F and evaluate ∫

C

F · dr ,

where C is the curve from A(1,0,0) to B(0,0,1) in which the plane x + z = 1 cuts the hemisphere given by
x2 + y2 + z2 = 1, y ≥ 0.
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Solution : We have

curlV =

∣∣∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z

2x− 3y + z −3x− y + 4z 4y + z

∣∣∣∣∣∣∣∣∣∣
=
(
0, 1, 0) 6= 0.

Since curlV 6= 0, V is NOT conservative.
We have

curlW =

∣∣∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z

2x− 4y − 5z −4x+ 2y −5x+ 6z

∣∣∣∣∣∣∣∣∣∣
=
(
0, 0, 0) = 0.

Since curlW = 0, W is conservative.
Suppose that gradφ = W. Then

∂φ

∂x
= 2x− 4y − 5z, (1)

∂φ

∂y
= −4x+ 2y, (2)

∂φ

∂z
= −5x+ 6z. (3)

Integrating (1) with respect to x, holding the other variables constant, we get

φ =

∫
y,z fixed

2x− 4y − 5z dx = x2 − 4yx− 5zx+A(y, z),

where A is an arbitrary function. Substituting this expression into (2) gives,

−4x+
∂A

∂y
= −4x+ 2y, i.e.

∂A

∂y
= 2y,

and therefore

A(y, z) =

∫
z fixed

(2y) dy = y2 +B(z),

where B is an arbitrary function, giving

φ = x2 − 4yx− 5zx+ y2 +B(z).

Finally, substituting this into (3) gives

−5x+
dB

dz
= −5x+ 6z, i.e.

dB

dz
= 6z,

so that B = 3z2 + C, where C is a constant. Hence, by taking C = 0 we obtain a potential

φ = x2 − 4yx− 5zx+ y2 + 3z2.
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Notice that the potential function is not unique; we may always add an arbitrary constant to a potential
and it remains a potential.

So the line integral is:∫
C

F · dr =

∫
C

gradφ · dr = φ(0, 0, 1)− φ(1, 0, 0) = 3− 1 = 2.

�

Example 4.7 Evaluate ∫∫
S

z2 dS

where S is the hemisphere given by x2 + y2 + z2 = 1 with z ≥ 0.

Solution : We first find ∂z
∂x etc. These terms arise because dS =

√
1 + ( ∂z∂x )2 + ( ∂z∂y )2 dxdy. Since this

Figure 4.3: Shows the hemisphere S and the projection D onto the xy-plane.

change of variables relates to the surface S we find these derivatives by differentiating both sides of the
surface x2 + y2 + z2 = 1 with respect to x, giving 2x+ 2z ∂z∂x = 0. Hence, ∂z

∂x = −x/z. Similarly, ∂z∂y = −y/z.
Hence, √

1 + (
∂z

∂x
)2 + (

∂z

∂y
)2 =

√
1 +

x2

z2
+
y2

z2
= 1/z.

Then the integral becomes the following, where D is the projection of the surface, S, onto the xy-plane. i.e.
D = {(x, y) : x2 + y2 ≤ 1}. (See Figure 4.3)∫∫

S

z2dS =

∫∫
D

z2 1

z
dxdy

=

∫∫
D

√
1− x2 − y2 dxdy

=

∫ 2π

0

dθ

∫ 1

0

√
1− r2 r dr

= −
∫ 2π

0

dθ

∫ 0

1

1

2

√
u du

=

∫ 2π

0

1

3
dθ

= 2π/3.
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Example 4.8 Find the area of the ellipse cut on the plane 2x + 3y + 6z = 60 by the circular cylinder
x2 + y2 = 2x.

Solution : The surface S lies in the plane 2x+3y+6z = 60 so we use this to calculate dS =
√

1 + ( ∂z∂x )2 + ( ∂z∂y )2 dxdy.

Figure 4.4: A sketch of the surface S and the projection onto the xy-plane.

Differentiating the equation for the plane with respect to x gives,

2 + 6
∂z

∂x
= 0 thus,

∂z

∂x
= −1/3.

Differentiating the equation for the plane with respect to y gives,

3 + 6
∂z

∂y
= 0 thus,

∂z

∂y
= −1/2.

Hence, √
1 + (

∂z

∂x
)2 + (

∂z

∂y
)2 =

√
1 +

1

9
+

1

4
= 7/6.

Then the area of S is found be calculating the surface integral over S for the function f(x, y, z) = 1. The the
projection of the surface, S, onto the x− y-plane is given by D = {(x, y) : x2− 2x+ y2 = (x− 1)2 + y2 ≤ 1}
(See Figure 4.4). Hence the area of S is given by∫∫

S

1 dS =

∫∫
D

1
7

6
dxdy

=
7

6

∫∫
D

1 dxdy

=
7

6
× Area of D =

7

6
π.

Note, since D is a circle or radius 1 centred at (1, 0) the area of D is the area of a unit circle which is π. �
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Example 4.9 Use Gauss’ Divergence Theorem to evaluate

I =

∫∫
S

x4y + y2z2 + xz2 dS,

where S is the entire surface of the sphere x2 + y2 + z2 = 1.

Solution : In order to apply Gauss’ Divergence Theorem we first need to determine F and the unit normal

n to the surface S. The normal is
(
∂f
∂x ,

∂f
∂y ,

∂f
∂z

)
= (2x, 2y, 2z), where f(z, y, z) = x2+y2+z2−1 = 0 describes

the surface S. We require the unit normal, so n = (2x, 2y, 2z)/|(2x, 2y, 2z)| = (2x, 2y, 2z)/2 = (x, y, z). To
find F = (F1, F2, F3) we note that

F · n = x4y + y2z2 + xz2

= F1x+ F2y + F3z

Hence, comparing terms we have F1 = x3y, F2 = yz2 and F3 = xz. Applying the Divergence Theorem
noting that V is the volume enclosed by the sphere S gives

I =

∫∫
S

F · ndS =

∫∫∫
V

divFdxdydz

=

∫∫∫
V

(3x2y + z2 + x) dxdydz

= 0 +

∫∫∫
V

z2 dxdydz + 0

=

∫ 2π

0

dθ

∫ π

0

dφ

∫ 1

0

ρ2 cos2 φ ρ2 sinφ dρ

= 2π

∫ π

0

cos2 φ sinφdφ

∫ 1

0

ρ4dρ

= 2π × 2× 1 · 1
3 · 1

× 1 =
4π

15
.

Remarks

1. As V is a sphere it is natural to use spherical polar coordinates to solve the integral. Thus, x =
ρ cos θ sinφ, y = ρ sinφ sin θ, and z = ρ cosφ and dxdydz = ρ2 sinφdρdθdφ.

2.
∫∫∫

V
3x2y dxdydz = 0 and

∫∫∫
V
x dxdydz = 0 from the symmetry of the cosine and sine functions.

We look at the signs in each quadrant as θ changes. Think about a fixed φ. cos θ and sin θ terms in
x2y and x then have the following signs

Quadrant 1 2 3 4 Total
cos θ + − − +
sin θ + + − −
x2y + + − − 0
x + + − − 0

The positive and negative contribution from the integral cancel out in these two cases so the integrals
are zero.

�

Example 4.10 Find I =
∫∫
S
F · n dS where F = (2x, 2y, 1) and where S is the entire surface consisting of

S2=the part of the paraboloid z = 1−x2− y2 with z = 0 together with S1=disc {(x, y) : x2 + y2 ≤ 1}. Here
n is the outward pointing unit normal.
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Solution : Applying the Divergence Theorem noting that V is the volume enclosed by S1 and S2 (see

Figure 4.5: Illustration of surfaces S1 and S2.

Figure 4.5) and divF = 2 + 2 + 0 gives

I =

∫∫
S

F · ndS =

∫∫∫
V

divFdxdydz

=

∫∫∫
V

4dxdydz

= 4

∫∫
{(x,y):x2+y2≤1}

dxdy

∫ 1−x2−y2

0

1dz

= 4

∫∫
{(x,y):x2+y2≤1}

1− x2 − y2dxdy

= 4

∫ 2π

0

dθ

∫ 1

0

(1− r2)r dr

= 4× 2π(1/2− 1/4) = 2π.

�
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