
Chapter 2

Double and triple integration

(Stewart (Ed. 7): Chapter 15, p998.)

Chapter Summary

Objective Tools
Double integration over regular domains Sketch the domain of integration, decide if the do-

main is type I or type II or both and with the
aid of the graph find the limits of integration on
the two integrals. If D is a type I domain de-
fined by g(x) ≤ y ≤ h(x) where a ≤ x ≤ b then∫∫
D
f(x, y) dxdy =

∫ b
a
dx
∫ h(x)
g(x)

f(x, y) dy. If D is the

type II domain defined by g(y) ≤ x ≤ h(y) where a ≤
y ≤ b then

∫∫
D
f(x, y) dxdy =

∫ b
a
dy
∫ h(y)
g(y)

f(x, y) dx.

Alternatively you may be asked to change the order
of integration to enable you to carry out the integral.
If the integrand is 1 then the double integral will give
the area of the domain.

Double integration using Polar Coordinates For domains or integrands that are related to circles
change to polar coordinates by setting x = r cos θ,
y = r sin θ and dx dy = r dr dθ. The limits on the
integral will now range over the radius, r and the
angle θ describing the domain. Beta functions can
be used to help you evaluate the resulting integral.∫ π/2
0

sinm x cosn x dx = (m−1)(m−3)...(n−1)(n−3)...
(m+n)(m+n−2)(m+n−4)... K

where K = 1 unless m and n are both even in which
case K = π/2.

19



Objective Tools
Change of variables for double integrals To change from the variables x, y to

u(x, y), v(x, y) then
∫∫
D
f(x, y) dxdy =∫∫

S
f(x(u, v), y(u, v))|J | dudv, where D is the

domain in the xy-plane and S is the corresponding
domain in the uv-plane, and |J | is absolute value of

J = 1

/
∂(u, v)

∂(x, y)
=

∣∣∣∣ux uy
vx vy

∣∣∣∣ = uxvy − uyvx.

Triple integration and Spherical Coordinates Triple integrals have the
form

∫∫∫
V
f(x, y, z) dxdydz =∫ b

a︸︷︷︸
Constants

dx

∫ h2(x)

h1(x)︸ ︷︷ ︸
Curves

dy

∫ g2(x,y)

g1(x,y)︸ ︷︷ ︸
Surfaces

f(x, y, z) dz. where

the domain is a volume. If the integrand is 1
the triple integral will give the volume of the
domain. If the integrand is a density then the
triple integral will give the mass of the volume.
For domains or integrands that are related to
spheres change to spherical coordinates by setting
x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ and
dx dy dz = ρ2 sinφdρ dθ dφ. The limits on the
integral will now range over the radius, ρ, the angle
θ ∈ [0, 2π) between the positive x-axis and the angle
φ ∈ [0, π) between the positive z-axis.

2.1 Area under a curve

Recall the way that definite integrals arise as “areas under curves”. We can approximate the area under the
curve y = g(x) on the interval [a, b] by the sum of areas of rectangles (called a Riemann sum) of widths δxi
and heights g(xi) as illustrated in Figure 2.1.

Figure 2.1: Approximating the area under a curve

If as the number of subintervals of [a, b], N , increases the Riemann sums tend to a limit, this is the
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definite integral ∫ b

a

g(x) dx = lim
N→∞

N∑
i=1

g(xi)δxi.

2.2 Double integration on rectangular domains

(Stewart (Ed. 7): Section 15.1, p998.)

We wish to extend this idea to define the “volume under a surface” z = f(x, y) on the set D ⊂ R2. We can
approximate this volume by the sum of the volumes of cuboids. For simplicity, first consider a rectangular
subset R = [a, b]× [c, d]. This is divided into subrectangles of area δAij = δxiδyj and the cuboid above this
has height f(xi, yj), as shown in Figure 2.2.

Figure 2.2: Approximating the volume under a surface

In this way, the whole volume is approximated by

N∑
i=1

M∑
j=1

f(xi, yj)δAij .

If the limit as M,N →∞ exists we say that f is integrable over R and write it as∫∫
R

f(x, y) dA or

∫∫
R

f(x, y) dxdy.

This is called the double integral of f over R and dA = dxdy is called the area element.
To evaluate the double integral we can think of the solid under the curve as made up of slices with y

fixed (see Figure 2.3.) The area under the curve in such a cross section is

I(y) =

∫ b

a

f(x, y) dx,

where y is fixed in the integrand.
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Figure 2.3: Cross sections through the solid under the surface

The sum of these areas ∫ d

c

I(y) dy

gives the volume under the surface. This means that∫∫
R

f(x, y) dxdy =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy.

By summing the areas of cross sections of the solid with x fixed, we also have∫∫
R

f(x, y) dxdy =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx.

Notation 2.1 We usually write∫ b

a

dx

∫ d

c

f(x, y) dy for

∫ b

a

(∫ d

c

f(x, y) dy

)
dx.

Example 2.1 Evaluate ∫∫
R

x2 + y2 dxdy

where R is [1, 3]× [2, 4].

Solution The integral may either be evaluated as∫∫
R

x2 + y2 dxdy =

∫ 3

1

dx

∫ 4

2

x2 + y2 dy

=

∫ 3

1

[
x2y +

1

3
y3
]4
2

dx

=

∫ 3

1

(4− 2)x2 +
56

3
dx

=

[
2

3
x3 +

56

3
x

]3
1

=
2(33 − 13) + 56(3− 1)

3
=

164

3
,
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or as ∫∫
R

x2 + y2 dxdy =

∫ 4

2

dy

∫ 3

1

x2 + y2 dx

=

∫ 4

2

[
1

3
x3 + xy2

]3
1

dy

=

∫ 4

2

(33 − 13)

3
+ (3− 1)y2 dy

=

[
26

3
y +

2

3
y3
]4
2

=
26(4− 2) + 2(43 − 23)

3
=

164

3
.

Not surprisingly, each method gives the same answer. �

2.3 Double integration on regular domains

(Stewart (Ed. 7): Section 15.3, p1012.)

Consider now a more complicated domain T which is the triangle with vertices (0, 0), (1, 0) and (1, 2)
shown in Figure 2.4.

Figure 2.4: Triangular domain T

The domain T is bounded by the lines y = 0, x = 1 and y = 2x. As for a rectangular domain, to evaluate
a double integral over T we could split T into a collection of vertical slices, integrate with respect to y and
then integrate the result with respect to x. The difference here is that the limits in the first integral depend
on x. A typical horizontal slice has end-points y = 0 and y = 2x, and there is a slice at each x from x = 0
to x = 1.

Hence we have ∫∫
T

f(x, y) dxdy =

∫ 1

0

dx

∫ 2x

0

f(x, y) dy.

Alternatively, we could begin by looking at horizontal slices, with end-points x = 1, x = 1
2y and summing

these from y = 0 to y = 2. This means that the integral is also∫∫
T

f(x, y) dxdy =

∫ 2

0

dy

∫ 1

1
2y

f(x, y) dx.
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Figure 2.5: Vertical and horizontal slices through T

Definition 2.1 Let D be a domain in the x, y-plane. D is said to be

• Type I (or y-simple) if it is bounded by lines x = a, x = b and curves y = g(x), y = h(x), the
intersection of any vertical line x = c, where c ∈ [a, b], is an interval or a single point,

• Type I (or x-simple) if it is bounded by curves x = g(y), x = h(y) and lines y = a, y = b, the
intersection of any horizontal line y = c, where c ∈ [a, b], is an interval or a single point,

. Typical examples are shown in Figure 2.6.

Type I and not type II

Type I and type II neither type I or type II

Figure 2.6: Type I and type II domains

D is said to be regular if it the union of finitely many disjoint type I and type II domains. Every type I
and type II domain is regular.

Example 2.2 State whether each of the domains shown in Figure 2.7 are type I and/or type II or regular.

Figure 2.7: Example domains
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Solution (a) Both horizontal and vertical lines intersect the triangle in an interval or a single point. Hence
this domain is both type I and type II.

(b) Vertical lines intersect this domain in an interval. Hence it is type I. The intersection with some
horizontal lines is a union of two intervals, hence it is not type II.

(c) Some horizontal and some vertical lines intersect the annulus in a union of intervals. Hence this
domain is neither type I nor type II. The domain may be divided into four type I and type II domains as
shown. Hence it is regular. �

Remark A double integral over a type I domain may be evaluated by integrating with respect to y over
vertical slices and then integrating with respect to x. Thus a double integral is evaluated by carrying out
two single integrals. For type II domains the order of integration is reversed.

If C ∩D = ∅ then ∫∫
C∪D

f(x, y) dxdy =

∫∫
C

f(x, y) dxdy +

∫∫
D

f(x, y) dxdy.

Hence a double integral over a regular domain can be split into a sum of double integral over type I or type
II domains.

Theorem If D is the type I domain defined by g(x) ≤ y ≤ h(x) where a ≤ x ≤ b then∫∫
D

f(x, y) dxdy =

∫ b

a

dx

∫ h(x)

g(x)

f(x, y) dy.

If D is the type II domain defined by g(y) ≤ x ≤ h(y) where a ≤ y ≤ b then∫∫
D

f(x, y) dxdy =

∫ b

a

dy

∫ h(y)

g(y)

f(x, y) dx.

The first integral performed (called the inner integral) may have limit depending on the other variable but
the second integral (the outer integral) has constant limits.

Example 2.3 Evaluate ∫∫
D

xy2 dxdy,

where D is the region in the first quadrant bounded by the curve y = 4x2, the x axis and the line x = 1.

Solution It is important to draw a sketch of the domain. This is given in Figure 2.8.
This domain is clearly both type I and type II but it is more readily thought of as type I; 0 ≤ y ≤ 4x2

where 0 ≤ x ≤ 1. Hence∫∫
D

xy2 dxdy =

∫ 1

0

dx

∫ 4x2

0

xy2 dy

=

∫ 1

0

[
1

3
xy3
]4x2

0

dx =

∫ 1

0

1

3
x((4x2)3 − 03) dx

=
64

3

∫ 1

0

x7 dx

=
64

3

1

8

[
x8
]1
0

=
8

3
.

�
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Figure 2.8: Type I domain Figure 2.9: Type II domain

Remark In the domain D above x ≥ 0 and so y = 4x2 ⇐⇒ x2 = y/4 ⇐⇒ x =
√
y/2. See Figure 2.9.

Hence the type II description of D is
√
y/2 ≤ x ≤ 1 where 0 ≤ y ≤ 4. Consequently,

∫∫
D

xy2 dxdy =

∫ 4

0

dy

∫ 1

√
y/2

xy2 dx.

The reader should verify that this evaluates to the same value, 8/3, as found above.

When a domain is both type I and type II it a matter of convenience which formulation is used.

Example 2.4 Evaluate

I =

∫∫
D

3x2 + y2 dxdy,

where D is the triangle with vertices (0, 0), (1, 1) and (2, 1).

Figure 2.10: Type II domain Figure 2.11: Two type I domains
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Solution The region is sketched in Figure 2.10 and is both type I and type II. The type II formulation is
easier

I =

∫ 1

0

dy

∫ 2y

y

3x2 + y2 dx

=

∫ 1

0

[
x3 + xy2

]2y
y
dy =

∫ 1

0

(2y)3 − y3 + (2y − y)y2 dy

= 8

∫ 1

0

y3 dy = 2
[
y4
]1
0

= 2.

�

Remark The type I formulation is more awkward. The function describing the lower curve is y = 1
2x and

the function describing the upper curve is

y =

{
x if 0 ≤ x ≤ 1

1 if 1 ≤ x ≤ 2.

To handle this it is best to split the domain into two pieces (see Figure 2.11) and evaluate the double integral
as

I =

∫∫
D1

3x2 + y2 dxdy +

∫∫
D2

3x2 + y2 dxdy =

∫ 1

0

dx

∫ x

1
2x

3x2 + y2 dy +

∫ 2

1

dx

∫ 1

1
2x

3x2 + y2 dy.

This is why the type II formulation is preferred.

Example 2.5 Evaluate

I =

∫ 1

0

dx

∫ 1

√
x

ey
2

√
x
dy.

Remark This double integral is expressed in type I form but it cannot be evaluated as it stands. The first
step would be to find an antiderivative for ey

2

but this cannot be done (in terms of known function such as
exp, log etc.).

The key to this example is to change the order of integration and convert the integral to type II form.
To make this conversion it is vital to draw a sketch of the domain.

Solution A sketch of the domain with type I and type II descriptions is given in Figure 2.12. Using this
sketch we can convert the double integral into type II form

I =

∫ 1

0

dy

∫ y2

0

ey
2

√
x
dx

=

∫ 1

0

[
2
√
xey

2
]y2
0
dy = 2

∫ 1

0

yey
2

dy.

Now we can use the substitution

u = y2, du = 2y dy,
y 0 1
u 0 1

,

to give

I =

∫ 1

0

eu du =
[
eu
]1
0

= e− 1.

�
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Figure 2.12: From type I to type II

Example 2.6 Find the volume of the tetrahedron T , bounded by the planes x+ 2y + z = 2, x = 2y, x = 0
and z = 0.

Figure 2.13: 3-D solid tetrahedron and the base, A.

Solution A sketch of the solid in 3-D and a sketch of the base, the planar region A over which we integrate
are given in Figure 2.13. Using this sketch we can write down a double integral which describes the volume
of the tetrahedron.

The plane x+ 2y + z = 2 intersects the xy-plane (z = 0) in the line x+ 2y = 2. So the tetrahedron lies
above the triangular region A in the xy-plane. A is bounded by x = 2y, x+ 2y = 2 and x = 0.

The plane x + 2y + z = 2 can be written as z = 2 − x − 2y. So the volume of the tetrahedron is the
volume that lies under the graph of the function z = 2 − x − 2y and above A, where A = {(x, y)|0 ≤ x ≤
1, x/2 ≤ y ≤ 1− x/2}.

T =

∫∫
A

(2− x− 2y) dydx =

∫ 1

0

∫ 1−x/2

x/2

(2− x− 2y) dydx

=

∫ 1

0

[
2y − xy − y2

]y=1−x/2
y=x/2

dx =

∫ 1

0

x2 − 2x+ 1 dx

=

[
x3

3
− x2 + x

]1
0

=
1

3
.

�
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Remark The area of a surface A ⊂ R2 is given by the double integral∫∫
A

1 dxdy.

2.4 Double integration in polar coordinates

(Stewart (Ed. 7): Section 15.4, p1021.)

The position of a point (x, y) on the cartesian plane can be specified by polar coordinates r, θ where

x = r cos θ, y = r sin θ.

θ ∈ [0, 2π) is the anti-clockwise angle between the positive x-axis and the line joining (x, y) to (0, 0) and
r ≥ 0 is the length of this line. See Figure 2.14.

Figure 2.14: Polar coordinates

Remarks

1. This change of variables is invertible since every point on the plane can be uniquely described by polar
coordinates.

2. Note that x2 + y2 = r2 cos2 θ + r2 sin2 θ = r2 so that expression involving x2 + y2 can be written in
terms of r alone.

In cartesian coordinates, the area of an elementary rectangle used in the Riemann sum is δA = δxδy
and for this reason the area element dA is dxdy. In polar coordinates, the area element is illustrated in
Figure 2.15 and has area δA ≈ rδrδθ.

For this reason in polar coordinates, dA = rdrdθ, i.e.,∫∫
D

f(x, y) dxdy =

∫∫
D

f(r cos θ, r sin θ)r drdθ.

When either the domain is circular or the integrand is written in terms of x2 + y2 (= r2), the double
integral should be rewritten in polar coordinates.

Example 2.7 Use polar coordinates to evaluate

I =

∫∫
D

x+ y dxdy,

where D is part of the annulus between circles of radius 1 and 2, centre (0, 0) lying in upper half plane.

29



Figure 2.15: The area element in Polar coordinates

Solution In polar coordinates the domain is 1 ≤ r ≤ 2, 0 ≤ θ ≤ π (see Figure 2.16.)

Figure 2.16: Annular domain

We have

I =

∫ π

0

dθ

∫ 2

1

(r cos θ + r sin θ)r dr =

∫ π

0

cos θ + sin θ dθ

∫ 2

1

r2 dr

=
[
sin θ − cos θ

]π
0

1

3

[
r3
]2
1

=
(
0− 0− (−1− 1)

) 1

3
(23 − 13) =

14

3
.

�

Example 2.8 Evaluate

I =

∫∫
D

y dxdy,

where D is the part of the disk of radius a (> 0) and centre (a, 0) lying in the first quadrant.

Solution The border of the disk has equation (x−a)2 + y2 = a2, i.e., x2 + y2 = 2ax. In polar coordinates,
this is

r2 = 2ar cos θ, i.e., r = 2a cos θ.

See Figure 2.17.
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Figure 2.17: Semicircular domain

The domain is 0 ≤ r ≤ 2a cos θ where 0 ≤ θ ≤ π/2 and so

I =

∫ π/2

0

dθ

∫ 2a cos θ

0

(r sin θ)r dr =

∫ π/2

0

dθ

∫ 2a cos θ

0

r2 sin θ dr

=
1

3

∫ π/2

0

sin θ
[
r3
]2a cos θ

0
dθ =

8a3

3

∫ π/2

0

sin θ cos3 θ dθ.

Using the change of variable

u = cos θ, du = − sin θ,
θ 0 π/2
u 1 0

,

we get

I = −8a3

3

∫ 0

1

u3 du =
8a3

3

1

4

[
u4
]1
0

=
2a3

3
.

�

2.5 Beta and Gamma functions

When dealing with polar coordinates we often need to integrate functions that involve powers of cosine and
sine. While we can happily do this using trigonometric identities and integration by substitution, it can
involve quite long calculations if the integrand involves very large powers of sine and cosine. To simplify
these calculations we can draw on some properties of two functions: Beta functions and Gamma functions.
We will not discuss these functions in depth here, this is dealt with in the second semester course 2D. Instead
we show how these functions can be used and use them to simplify integration.

Definition 2.2 • Beta function is defined by

B(p, q) =

∫ 1

0

xp−1(1− x)q−1dx, p > 0 and q > 0.

A particularly useful form that we shall use is,

B(p, q) = 2

∫ π/2

0

sin2p−1(y) cos2q−1(y) dy .

This is found by substituting x = sin2 y in the definition of the Beta function.

• Gamma function is defined by

Γ(k) =

∫ ∞
0

xk−1e−x dx, k > 0.
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2.5.1 Properties of Beta and Gamma functions

1. Γ(1) = 1, Γ(2) = 1, Γ(3) = 2 and in general Γ(n) = (n− 1)! for every positive integer n.

2. Γ(k) = (k − 1)Γ(k − 1) for all real numbers k > 1 Repeatedly applying the formula for Γ(k) gives a
formula in terms of Γ(k − p), where 0 < k − p ≤ 1, e.g. Γ(9/4) = 5

4
1
4Γ( 1

4 ).

3. For 0 < k < 1, Γ(k)Γ(1− k) = π/ sin(kπ).

4. Γ(1/2) =
√
π.

5. B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.

From these properties we can derive the following result that we will use in this course.

∫ π/2
0

sinm x cosn x dx =
(m− 1)(m− 3) . . . (n− 1)(n− 3) . . .

(m+ n)(m+ n− 2)(m+ n− 4) . . .
K

where K = 1 unless m and n are both even in which case K = π/2. The notation means that the factors
continue until 1 or 2 is reached. In the special cases, m = 0 or m = 1 none of the numerator factors involving
m appear.

For example,

∫ π/2

0

sin3 x cos6 x dx =
2.5.3.1

9.7.5.3.1
=

2

63
.

Now consider
∫ 2π

0
sin3 x cos6 x dx. We can use properties of the graphs of sine and cosine to help us to

simplify the integral before applying Beta functions. A definite integral calculates the area under the curve,
with areas below the x-axis making a negative contribution to the integral. From the translational symmetry
of sine and cosine functions seen in Figure 2.18 we can see that:∫ π

0

sinx dx = 2

∫ π/2

0

sinx dx;

∫ 2π

0

sinx dx = 0;

∫ π

0

cosx dx = 0;

∫ 2π

0

cosx dx = 0.

∫ π

0

sin2 x dx = 2

∫ π/2

0

sin2 x dx;

∫ 2π

0

sin2 x dx = 4

∫ π/2

0

sin2 x dx.

∫ π

0

cos2 x dx = 2

∫ π/2

0

cos2 x dx;

∫ 2π

0

cos2 x dx = 4

∫ π/2

0

cos2 x dx.

Similar rules apply to integrals where the integrand has the form sinm x cosn x, where m and n are non-
negative integers.

Example 2.9 Evaluate:

(a) I =

∫ π

0

sin3 x cos4 x dx, (b) I =

∫ π

0

sin3 x cos5 x dx, (c) I =

∫ 2π

0

sin2 x cos4 x dx.
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Figure 2.18: Graphs of sinx, cosx, sin2 x and cos2 x.

Solution In each case we make a table of sign first to indicate if the integrand is above (+) or below (–)
the x-axis in each quadrant. The symmetry of sine and cosine means that the absolute value of the area
under the curve in each quadrant is the same, so the total integral is given by summing the number of plus
signs minus the number of minus signs and multiplying the result by integral of the function over the first
quadrant.

(a)
Quadrant 1 2

sin3 x + +
cos4 x + +

sin3 x cos4 x + +

Total=+2.

Hence,

I = 2

∫ π/2

0

sin3 x cos4 x dx = 2 · 3 · 2 · 1
7 · 5 · 3 · 1·

=
4

35
.

(b)
Quadrant 1 2

sin3 x + +
cos5 x + –

sin3 x cos5 x + –

Total=0.

Hence,
I = 0.

(c)
Quadrant 1 2 3 4

sin2 x + + + +
cos4 x + + + +

sin2 x cos4 x + + + +

Total=+4.

Hence,

I = 4

∫ π/2

0

sin2 x cos4 x dx = 4 · 1 · 3 · 1
6 · 4 · 2

· π
2

=
π

8
.

�

33



We will put these tools to use in section 3.7 and in chapter 4.

2.6 Change of variables in double integration

(Stewart (Ed. 7): Section 15.10, p1064.)

The change to polar coordinates is a special case of the theorem stated below.

Definition 2.3 Consider a change of variables x, y to u, v. So x = x(u, v) and y = y(u, v). The Jacobian
∂(u, v)

∂(x, y)
is the determinant ∣∣∣∣ux uy

vx vy

∣∣∣∣ = uxvy − uyvx.

If the change of variables is invertible then the Jacobian is nonzero and

∂(x, y)

∂(u, v)
= 1

/
∂(u, v)

∂(x, y)
.

Theorem Let the change of variables x, y to u, v be invertible on the domain D. Then∫∫
D

f(x, y) dxdy =

∫∫
S

f(x(u, v), y(u, v))|J | dudv,

where D is the domain in the xy-plane and S is the corresponding domain in the uv-plane, and |J | is the

absolute value of
∂(x, y)

∂(u, v)
. Often it is convenient to use

J = 1

/
∂(u, v)

∂(x, y)

Remark The idea behind the change of variables is to transform curves in the xy-plane to lines (or
simpler curves such as circles) in the uv-plane. This transformation is illustrated in Figure 2.19. Under the

Figure 2.19: Domain in x, y and u, v coordinates

transformation x = x(u, v), y = y(u, v) the lines u = u0 and v = v0 in the uv-plane get mapped to the curves
x = x(u0, v), y = y(u0, v) and x = x(u, v0), y = y(u, v0) in the xy-plane. Let r = (x, y). The tangent vector
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at (x0, y0) to the curve (x(u, v0), y(u, v0)) is ru =
(
∂x
∂u ,

∂y
∂u

)
. Similarly the tangent vector at (x0, y0) to the

curve (x(u0, v), y(u0, v)) is rv =
(
∂x
∂v ,

∂y
∂v

)
.

We can consider what happens to a small element of the surface D under the change of variables by
approximating the element by a parallelogram with sides ∆u ru and ∆v rv determined by the tangent vectors.
This is illustrated in Figure 2.20.

Figure 2.20: Element of D in x, y and u, v coordinates

The area of the small element of D is ∆A and is approximated by the area of the parallelogram which is
given by the magnitude of the following cross product

∆u ru ×∆v rv = ∆u∆v

∣∣∣∣∣∣
i j k
∂x
∂u

∂y
∂u 0

∂x
∂v

∂y
∂v 0

∣∣∣∣∣∣ = ∆u∆v

∣∣∣∣ ∂x∂u ∂y
∂u

∂x
∂v

∂y
∂v

∣∣∣∣k
= ∆u∆v

∣∣∣∣ ∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣k = ∆u∆v (xuyv − xvyu)k = ∆u∆v
∂(x, y)

∂(u, v)
k.

Hence,

∆A = |∆u ru ×∆v rv| = |ru × rv|∆u∆v =

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ ∆u∆v .

Summing the elements that make up the region D allows us to approximate the double integral of f over D,∫∫
D

f(x, y) dxdy = lim
N, M→∞

N∑
i=1

M∑
j=1

f(xi, yj)∆A = lim
N, M→∞

N∑
i=1

M∑
j=1

f(x(ui, vj), y(ui, vj))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ ∆u∆v

This is a Riemann sum for the integral∫∫
S

f(x(u, v), y(u, v))|J | dudv.

Remark Note that for the change to polar coordinates,

J =

∣∣∣∣(r cos θ)r (r cos θ)θ
(r sin θ)r (r sin θ)θ

∣∣∣∣ =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r(cos2 θ + sin2 θ) = r,

giving the result ∫∫
D

f(x, y) dxdy =

∫∫
S

f(r cos θ, r sin θ)r drdθ,

derived in the previous section.
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Example 2.10 By making a suitable change of variables, evaluate∫∫
D

x+ 3y dxdy,

where D is the region bounded by the lines

y = x− 1, y = x+ 1, y = −x− 1, y = −x+ 3.

Remark The idea here is to choose variables u, v in which the domain is simply described, preferably with
constant limits.

Figure 2.21: Domain in x, y and u, v coordinates

Solution If we define u = x+y and v = x−y then the domain D is described by −1 ≤ u ≤ 3, −1 ≤ v ≤ 1.
See Figure 2.21.

We have
1

J
=
∂(u, v)

∂(x, y)
=

∣∣∣∣1 1
1 −1

∣∣∣∣ = −2.

Inverting the change of variable we get

x =
u+ v

2
, y =

u− v
2

,

and so the integrand is x+ 3y = 1
2

(
(u+ v) + 3(u− v)

)
= 2u− v.

Hence

I =

∫∫
D

(2u− v)

∣∣∣∣ 1

−2

∣∣∣∣ dudv
=

1

2

∫ 3

−1
du

∫ 1

−1
2u− v dv =

1

2

∫ 3

−1

[
2uv − 1

2
v2
]1
−1

du

=
1

2

∫ 3

−1
2
(
1− (−1)

)
u du =

∫ 3

−1
2u du =

[
u2
]3
−1

=
(
32 − (−1)2

)
= 8.

�

Example 2.11 Find the area bounded by the curves y = ex, y = 2ex, y = e−x and y = 2e−x.
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Figure 2.22: Domain in x, y and u, v coordinates

Solution Let this region be denoted by D then its area is

A =

∫∫
D

dxdy,

(cf. b − a = length of interval [a, b] =
∫ b
a
dx.) We use variables u = yex and v = ye−x so that D is defined

by 1 ≤ u ≤ 2 and 1 ≤ v ≤ 2. See Figure 2.22. Then

1

J
=
∂(u, v)

∂(x, y)
=

∣∣∣∣ yex ex

−ye−x e−x

∣∣∣∣ = 2y = 2
√
uv,

for y > 0. Hence

A =

∫∫
D

∣∣∣∣ 1

2
√
uv

∣∣∣∣ dudv
=

1

2

∫ 2

1

du√
u

∫ 2

1

dv√
v

=
1

2

([
2
√
u
]2
1

)2
= 2(
√

2−
√

1)2 = 2(2− 2
√

2 + 1)

= 2(3− 2
√

2).

�

2.7 Triple integration

(Stewart (Ed. 7): Section 15.7, p1041.)

As we defined double integrals for functions of two variables we can define triple integrals for functions
of three variables. Recall the definition of a double integral is given by∫∫

R

f(x, y) dxdy = lim
N, M→∞

N∑
i=1

M∑
j=1

f(xi, yj)δxiδyj .

For a triple integral instead of summing over an area δAij = δxiδyj , we sum over a volume δVijk = δxiδyjδzk
which leads us to ∫∫∫

V

f(x, y, z) dxdydz = lim
N, M, L→∞

N∑
i=1

M∑
j=1

L∑
k=1

f(xi, yj , zk)δxiδyjδzk.
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If the limit exists we say that f is integrable over V and we call this the triple integral of f over V and
dV = dxdydz is called the volume element.

Visualising a triple integral is not really possible, but they are useful as we see in the next section and
later in Chapter 4.

Figure 2.23: Illustration of V lying between two continuous functions of x and y, and its projection D onto
the xy-plane.

If V lies between two continuous functions of x and y, that is

V = {(x, y, z) : (x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y)}

where D is the projection of V onto the xy−plane and u1(x, y) is the upper boundary of V and u2(x, y) is
the lower boundary of V as illustrated in Figure 2.23. If D is a type I region then the general form for a
triple integral is given by∫∫∫

V

f(x, y, z) dxdydz =

∫∫
D

(∫ u2(x,y)

u1(x,y)

f(x, y, z) dz

)
dxdy =

∫ b

a︸︷︷︸
Constants

dx

∫ g2(x)

g1(x)︸ ︷︷ ︸
Curves

dy

∫ u2(x,y)

u1(x,y)︸ ︷︷ ︸
Surfaces

f(x, y, z) dz.

If D is a type II region then the general form for a triple integral is given by∫∫∫
V

f(x, y, z) dxdydz =

∫∫
D

(∫ u2(x,y)

u1(x,y)

f(x, y, z) dz

)
dxdy =

∫ d

c︸︷︷︸
Constants

dy

∫ h2(y)

h1(y)︸ ︷︷ ︸
Curves

dx

∫ u2(x,y)

u1(x,y)︸ ︷︷ ︸
Surfaces

f(x, y, z) dz.

We can generalise this further to deal with volumes V which lie between two continuous functions of y and
z giving ∫∫∫

V

f(x, y, z) dxdydz =

∫∫
D

(∫ u2(y,z)

u1(y,z)

f(x, y, z) dx

)
dydz,
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where D is the projection of V onto the yz-plane. Lastly, we can generalise to volumes V which lie between
two continuous functions of x and z give

∫∫∫
V

f(x, y, z) dxdydz =

∫∫
D

(∫ u2(x,z)

u1(x,z)

f(x, y, z) dy

)
dxdz,

where D is the projection of V onto the xz-plane.

Remarks

1. (See Stewart (ed. 7) p1046). The volume of a solid V ⊂ R3 is given by the following triple integral∫∫∫
V

1 dxdydz.

2. (See Stewart (ed. 7) p1047). Extending this further we define the mass of the solid V , where the
density f(x, y, z) of the solid varies across V by∫∫∫

V

f(x, y, z) dxdydz.

Example 2.12 Evaluate

I =

∫∫∫
V

z dxdydz,

where V is the solid tetrahedron bounded by the four planes x = 0, y = 0, z = 0 and x+ y + z = 1.

Solution We draw two pictures, one of V and one of the projection of V onto the xy-plane, as shown in
Figure 2.24.

Figure 2.24: Solid tetrahedron and the projection in the xy-plane.

Thus the domain of integration is 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x and 0 ≤ z ≤ 1− x− y.
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We have

I =

∫∫∫
V

z dxdydz =

∫ 1

x=0

∫ 1−x

y=0

∫ 1−x−y

z=0

z dzdydx

=

∫ 1

0

dx

∫ 1−x

0

[z2
2

]1−x−y
0

dy =

∫ 1

0

dx

∫ 1−x

0

(1− x− y)2

2
dy

=
−1

6

∫ 1

x=0

[
(1− x− y)3

]1−x
y=0

dx =
1

6

∫ 1

x=0

(1− x)3 dx

=
1

24

[
−(1− x)4

]1
x=0

=
1

24
.

�

Example 2.13 Set up (but do not evaluate) the integral for the volume of the solid that lies below the
paraboloid z = 9− x2 − y2 and above the plane z = 5.

Solution We draw two pictures, one of the volume V and one of the projection of V onto the xy-plane,
as shown in Figure 2.25.

Figure 2.25: Solid paraboloid and the projection in the xy-plane.

Thus the domain of integration is −2 ≤ x ≤ 2, −
√

4− x2 ≤ y ≤
√

4− x2 and 5 ≤ z ≤ 9− x2 − y2.
We have

Volume =

∫∫∫
V

1 dxdydz =

∫ 2

x=−2
dx

∫ √4−x2

y=−
√
4−x2

dy

∫ 9−x2−y2

z=5

1 dz

�

2.8 Triple integration in spherical coordinates

(Stewart (Ed. 7): Section 15.9, p1057.)
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The position of a point (x, y, z) in cartesian coordinates can be specified by spherical coordinates ρ, θ, φ
where

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

θ ∈ [0, 2π) is the anti-clockwise angle between the positive x-axis and the projection onto the xy-plane of the
line joining (x, y, z) to (0, 0, 0). The length of the line is ρ ≥ 0 and φ ∈ [0, π) is the clockwise angle between
the positive z-axis and the line joining (x, y, z) to (0, 0, 0). See Figure 2.26.

Figure 2.26: Spherical coordinates.

Remarks

1. Note that x2 +y2 +z2 = ρ2 sin2 φ cos2 θ+ρ2 sin2 φ sin2 θ+ρ2 cos2 φ = ρ2 so that expressions involving
x2 + y2 + z2 can be written in terms of ρ alone.

In cartesian coordinates, the volume of an elementary cuboid used in the Riemann sum is δV = δx δy δz
and for this reason the volume element dV is dx dy dz. In spherical coordinates, the volume element is
illustrated in Figure 2.27 and has volume δV ≈ ρ2 sinφ δθ δφ δρ.

For this reason in spherical coordinates, dV = ρ2 sinφdθ dφdρ, i.e.,∫∫∫
V

f(x, y, z) dxdydz =

∫∫∫
V

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) ρ2 sinφ dθdφdρ.

When either the domain is spherical or the integrand is written in terms of x2 + y2 + z2 (= ρ2), the triple
integral should be rewritten in spherical coordinates.

Example 2.14 Use spherical coordinates to evaluate

I =

∫∫∫
B

exp((x2 + y2 + z2)3/2) dxdydz,

where B is the unit ball, B = {(x, y, z)|x2 + y2 + z2 ≤ 1}.

Solution In spherical coordinates the domain is 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.
We have

I =

∫ π

0

∫ 2π

0

∫ 1

0

eρ
3

ρ2 sinφdρdθdφ =

∫ π

0

sinφdφ

∫ 2π

0

dθ

∫ 1

0

ρ2eρ
3

dρ.
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Figure 2.27: The volume element in spherical coordinates

Now we use the substitution

u = ρ3, du = 3ρ2dρ,
ρ 0 1
u 0 1

,

we get

I =

∫ π

0

sinφdφ

∫ 2π

0

dθ

∫ 1

0

eu

3
du

=
[
− cosφ

]π
0

[
θ
]2π
0

[1
3
eu
]1
0

= (−(−1)− (−1)) (2π)
(1

3
(e− 1)

)
=

4

3
π(e− 1).

�

Example 2.15 Find the volume of the solid that lies above the cone z =
√
x2 + y2 and below the sphere

x2 + y2 + z2 = z as illustrated in Figure 2.28.

Solution By completing the square we can rewrite the equation of the sphere as x2+y2+(z−1/2)2 = 1/4.
Thus the sphere is centered at (0, 0, 1/2) and has radius 1/2.

Using spherical coordinates the equation for the sphere becomes

ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ + ρ2 cos2 φ = ρ cosφ.

Hence, ρ = cosφ. So in describing the solid in spherical coordinates, we have 0 ≤ ρ ≤ cosφ.

Using spherical coordinates the equation for the cone and sphere meet when ρ cosφ = ρ sinφ. Hence
φ = π/4. So we have 0 ≤ φ ≤ π/4. Lastly, θ varies from 0 to 2π. See Figure 2.29
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Figure 2.28: Solid

Thus, the volume of the solid is given by,

I =

∫∫∫
V

1 dxdydz =

∫ 2π

0

∫ π/4

0

∫ cosφ

0

ρ2 sinφdρdφdθ =

∫ 2π

0

dθ

∫ π/4

0

sinφ

[
ρ3

3

]ρ=cosφ

ρ=0

dφ

=
2π

3

∫ π/4

0

sinφ cos3 φdφ =
2π

3

[− cos4 φ

4

]π/4
0

=
π

8
.

Figure 2.29: Finding the range of φ and θ.

�
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