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Tutorial Exercises

T1 By making the change of variables indicated, find the general
solution of each of the following partial differential equations.

a) x ∂ f
∂x + y ∂ f

∂y = 6xy. Change to u = y
x and v = x

b) 2x ∂ f
∂x − y ∂ f

∂y = 2xy. Change to u = xy2, and v = y

(a) The chain rule gives
∂ f
∂x

=
∂ f
∂u

∂u
∂x

+
∂ f
∂v

∂v
∂x

=
−y
x2

∂ f
∂u

+ 1 · ∂ f
∂v

.

∂ f
∂y

=
∂ f
∂u

∂u
∂y

+
∂ f
∂v

∂v
∂y

=
∂ f
∂u

1
x
+ 0 .

Therefore the PDE is

x
(
−y
x2

∂ f
∂u

+
∂ f
∂v

)
+ y

(
1
x

∂ f
∂u

)
= 6xy

i.e. fv = 6y = 6x y
x = 6uv. Integrating with respect to v gives f = 3uv2 + φ(u). Hence the general

solution is f = 3xy + φ( y
x ), where φ is an arbitrary function of one variable.

(b)
∂ f
∂x

=
∂ f
∂u

∂u
∂x

+
∂ f
∂v

∂v
∂x

= y2 ∂ f
∂u

+ 0 .

∂ f
∂y

=
∂ f
∂u

∂u
∂y

+
∂ f
∂v

∂v
∂y

= 2xy
∂ f
∂u

+ 1 · ∂ f
∂v

.

Therefore the PDE is
2xy2 ∂ f

∂u
− 2xy2 ∂ f

∂u
− y

∂ f
∂v

= 2xy

i.e. zv = −2x. Since x = u/y2 = u/v2, we have fv = −2u/v2 and f = 2u
v + φ(u). Hence the general

solution is f = 2xy + φ(xy2), where φ is an arbitrary function.

Solution

T2 Evaluate

(a)
∫ 1

0
dx
∫ 2

0
3y2 − 4x dy, (b)

∫ 1

0
dx
∫ 1

0
2x + 10y dy.

(a) We have∫ 1

0
dx
∫ 2

0
3y2 − 4x dy =

∫ 1

0

[
y3 − 4xy

]2
0 dx = 8

∫ 1

0
1− x dx = 4

[
2x− x2]1

0 = 4.

Solution
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(b) We have∫ 1

0
dx
∫ 1

0
2x + 10y dy =

∫ 1

0

[
2xy + 5y2]1

0 dx =
∫ 1

0
2x + 5 dx =

[
x2 + 5x

]1
0 = 6.

T3 Evaluate

(a)
∫ 2

1
dx
∫ x

1

1
x + y

dy, (b)
∫ π/2

0
dy
∫ 4

y
x sin y dx.

(a) The integral is∫ 2

1

[
log |x + y|

]x
1 dx =

∫ 2

1
log(2x)− log(x + 1) dx

=
[
x log(2x)− (x + 1) log(x + 1)

]2
1 = 5 log 2− 3 log 3.

Recall, that to calculate the integral of log x with respect to x you can express the function as 1× log x
and then use integration by parts. Please see revision sheet 0 and your 1S/1Y notes.

(b) The integral is∫ π/2

0

[
x2 sin y

]4
y dy =

1
2

∫ π/2

0
(16− y2) sin y dy

=
1
2
[
−18 cos y + y2 cos y− 2y sin y

]π/2
0 = 9− π

2
.

Solution

T4 Sketch the triangular domain T, bounded by the lines y = −x,
y = 0 and x = 1 and illustrate that it is both type I and type II.
Evaluate the double integral ∫∫

T
x dxdy,

using (a) the type I formulation of T and (b) the type II formulation
of T.1 1 The answers you get to (a) and (b)

should, of course, be the same.

type I type II

(a) Using the type I formulation the integral is∫∫
T

x dxdy =
∫ 1

0

(∫ 0

−x
x dy

)
dx =

∫ 1

0
x2 dx =

1
3

.

Solution
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(b) Using the type II formulation the integral is∫∫
T

x dxdy =
∫ 0

−1

(∫ 1

−y
x dx

)
dy =

1
2

∫ 0

−1
1− y2 dy =

1
3

.

T5 Evaluate ∫∫
D

ex+y dxdy,

where D is the triangle with vertices (0, 0), (1, 1) and (−1, 1).

The type II formulation is simpler and we get∫∫
D

ex+y dxdy =
∫ 1

0

(∫ y

−y
ex+y dx

)
dy =

∫ 1

0

[
ex+y]y

−y dy =
∫ 1

0
e2y − 1 dy

=
1
2
(e2 − 3).

Solution

Further Exercises

F1 By making the change of variables indicated, find the general
solution of each of the following partial differential equations.

a) x ∂ f
∂x + y ∂ f

∂y = 3y(y2 − x2). Change to u = x, v = y
x .

b) 2x ∂z
∂x + y ∂z

∂y = 6x4

y2 . Change to u = x
y2 , and v = x

c) x ∂z
∂x + y ∂z

∂y = 4x3

y . Change to u = x
y , v = x.

(a)
∂ f
∂x

=
∂ f
∂u

∂u
∂x

+
∂ f
∂v

∂v
∂x

=
∂ f
∂u

+
∂ f
∂v

(
−y
x2

)
.

∂ f
∂y

=
∂ f
∂u

∂u
∂y

+
∂ f
∂v

∂v
∂y

= 0 +
∂ f
∂v

1
x

.

Therefore the PDE is
x

∂ f
∂u
− y

x
∂ f
∂v

+
y
x

∂ f
∂v

= 3y(y2 − x2)

i.e. fu = 3 y
x (y

2− x2) = 3v((uv)2− u2) = 3u2v3− 3u2v and f = u3v3− u3v + φ(v). Hence the general
solution is f = y3 − x2y + φ( y

x ), where φ is an arbitrary function.

Solution
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(b)
∂z
∂x

=
1
y2

∂z
∂u

+
∂z
∂v

,
∂z
∂y

=
−2x
y3

∂z
∂u

.

Therefore the PDE is 2x
y2 zu + 2xzv − 2x

y2 zu = 6x4

y2 , i.e. zv = 3x3

y2 = 3uv2. Hence, z = uv3 + φ(u), i.e.

z = x4

y2 + φ
(

x
y2

)
.

(c)
∂z
∂x

=
1
y

∂z
∂u

+
∂z
∂v

,
∂z
∂y

=
−x
y2

∂z
∂u

.

Therefore the PDE is x
y zu + xzv − x

y zu = 4x3

y , i.e. zv = 4x2

y = 4uv. Hence, z = 2uv2 + φ(u), i.e.

z = 2 x3

y + φ
(

x
y

)
.

F2 Evaluate ∫ ∫
x2 + 2y dxdy

over the rectangle with vertices at (0, 0), (2, 0), (2, 3) and (0, 3).

We have ∫ 2

0
dx
∫ 3

0
x2 + 2y dy =

∫ 2

0

[
x2y + y2]3

0 dx =
∫ 2

0
3x2 + 9 dx =

[
x3 + 9x

]2
0 = 26.

Solution

F3 Evaluate ∫ ∫
xy dxdy

over the triangle enclosed by the lines y = 2x, y = 4 and the y-axis.

We have ∫ 2

0
dx
∫ 4

2x
xy dy =

∫ 2

0
x
[1

2
y2]4

2x dx =
∫ 2

0
8x− 2x3 dx =

[
4x2 − 2x4

4
]2

0 = 8.

Solution

F4 Evaluate ∫∫
D

xy dxdy,

where D is the finite region bounded by the curves y = x2 and x = y2.
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Using the type I formulation,

∫∫
D

xy dxdy =
∫ 1

0

(∫ √x

x2
xy dy

)
dx =

1
2

∫ 1

0

[
xy2]√x

x2 dx =
1
2

∫ 1

0
x2 − x5 dx

=
1

12
.

Solution

F5 Sketch the tetrahedron T formed by the plane x + 2y + 3z = 6
and the xy-, xz- and yz-planes. Show that the volume of T is

V =
1
3

∫∫
D

6− x− 2y dxdy,

where D is the finite region bounded by x = 0, y = 0 and x + 2y = 6.
Hence evaluate V.

The volume of T is the volume under the the surface z = 1
3 (6− x− 2y) and so

V =
∫∫

D
z dxdy =

1
3

∫∫
D

6− x− 2y dxdy,

where, as illustrated, D is the finite region bounded by x = 0, y = 0 and x + 2y = 6. Thus

V =
1
3

∫ 3

0

(∫ 6−2y

0
6− x− 2y dx

)
dy =

1
3

∫ 3

0

[
6x− 1

2 x2 − 2xy
]2(3−y)

0 dy

=
1
3

∫ 3

0
12(3− y)− 2(3− y)2 − 4y(3− y) dy =

∫ 3

0
6− 4y + 2

3 y2 dy = 6.

Solution
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F6 Evaluate ∫ ∫
x dx dy

over the trapezium with vertices at (0, 0), (4, 0), (3, 1) and (1, 1).

To avoid splitting up the domain, we treat it as type II and integrate with respect to x first.

∫ 1

0
dy
∫ 4−y

y
x dx =

∫ 1

0

[ x2

2
]4−y

y dy

=
1
2

∫ 1

0
(4− y)2 − y2 dy =

1
2

∫ 1

0
16− 8y dy =

1
2
[
16y− 4y2]1

0 = 6.

With the other order of integration we would have bee to split the domain into 3 pieces (see diagram).

Solution

F7 Evaluate ∫ ∫
e−(x+y) dx dy

over the region given by the inequalities y ≥ 0, y ≤ 1 and y ≤ x.

We have, ∫ 1

0
dy
∫ ∞

y
e−xe−y dx =

∫ 1

0
e−y[−e−x]∞

y dy

=
∫ 1

0
e−ye−y dy =

∫ 1

0
e−2y dy =

[
−1

2
e−2y]1

0 =
1
2
(1− e−2).

Solution

Harder challenge problems2

2 Only attempt these if you have been
able to do all the other problems suc-
cessfully.

F8 Find the volume of the given solid

a) Bounded by the cylinder y2 + z2 = 4 and the planes x = 2y, x = 0,
z = 0 in the first octant.

b) Bounded by the cylinders x2 + y2 = r2 and y2 + z2 = r2.
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a) We observe the solid bounded by the cylinder y2 + z2 = 4 and the planes x = 2y, x = 0, z = 0
in the first octant lies under the surface z =

√
4− y2 and above the triangle x/2 ≤ y ≤ 2 and

0 ≤ x ≤ 4, hence ∫ 4

0

∫ 2

x/2

√
4− y2 dy dx =

∫ 2

0

∫ 2y

0

√
4− y2 dx dy = 16/3.

b) Using symmetry we find the volume in the first octant and multiply the answer by 8 to get the
total volume of the solid. We observe that the solid bounded by the cylinders x2 + y2 = r2 and
y2 + z2 = r2 lies under the surface z =

√
r2 − y2 and above the quarter circle 0 ≤ y ≤ r and

0 ≤ x ≤
√

r2 − y2, hence the total volume of the solid is

8
∫ r

0

∫ √r2−y2

0

√
r2 − y2 dx dy = (16/3)r3.

Solution

F9 Use geometry or symmetry, or both, to evaluate the double
integral ∫∫

D
(2 + x2y3 − y2 sin x) dA,

where D = {(x, y)||x|+ |y| ≤ 1}.

D = {(x, y)||x|+ |y| ≤ 1} is a square with corners at (0, 1), (1, 0), (−1, 0) and (0,−1). We then look
at the symmetry of the integrand and notice that x2y3 is symmetrical about the y-axis and a rotation
by π about the x-axis, so the integral of this term must be zero. Similarly the y2 sin x is symmetrical
about the x-axis and a rotation by π about the y-axis, so the integral of this term is zero also. This
leaves

∫∫
D 2 dA. The symmetry of the domain means this integral is

4
∫ 1

0

∫ 1−x

0
2 dy dx = 4.

Solution


