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Chapter 1

Partial differentiation

(Stewart (Ed. 7): Chapter 14, p901.)

Chapter Summary

Objective Tools
Sketch and identify surfaces in 2-D and 3-D. Level curves are curves f(x,y) = ¢, where c is
a constant. They describe where the surface z =

f(z,y) intersects the plane z = ¢ and can be used to
build up a picture of the surface (think coutours of a
moutain on a map). Cross sections are a general-
isation of this, for example an x = 0 cross section is
found by setting z = 0 in the equation for the surface

z = f(x,y)

Find partial derivatives and use these to show simple
results, such as zu,+yu, = 0. Deduce related second
order formula such as z2u,, + 22YUgy + y2uyy =0.

7]
Partial derivatives are given by 8—f which means dif-
"

ferentiate f with respect to variable x; and treat the
other variables as constants. To find related second
order results differentiate the first order equations
again.

Apply the chain rule to functions of several variables

If F(x,y) = f(u(z,y),v(x,y)) then the chain rule

F F
states that e g—z% %%, similarly for aa—y
Note you need be happy with the idea that the func-

tion f might not be given explictly or it might be
the product of a known function and an unkown one
in which case you will need to use the product rule
too.

Solve partial differential equations, eg solve uz+u, =
0 to find u(zx,y).

(i) Integrate with respect to one variable while treat-
ing the other variables as constants. Remember in-
stead of a constant of integration we have an arbitary
function dependent on the variables that were held
constant.

(ii) Change variables by using the chain rule
for functions of several variables to rewrite the PDE
in the new variables, then proceed as in (i).




1.1 Functions of one variable

We begin by recalling some basic ideas about real functions of one variable. For example, the volume V of
a sphere only depends on its radius r and is given by the formula

_ 4.3
V—37T7“.

We write V' = f(r), where f(r) = 3mr® to emphasise the fact that volume is a function f of the radius
(only). Two related ideas should also be recalled.

Domain In general, the domain D is the set of points at which the formula is to be calculated. In the
present example, since the radius should be real and cannot be negative, the domain consists of all non-
negative real numbers, [0, 00) (it is debatable whether or not 0 should be included or excluded but this is
not an important issue).

To be precise when we define a real function f, we should specify not only the formula but also its domain
D by writing f: D — R. If we do not specify the domain, we assume that the domain is the mazimal domain,
that is the set of all points at which the formula makes sense. For the present example, f is defined by

f:]0,00) > R, where f(r)= 4mr’.
If we were to say simply that f was defined by
£r) = dmr,

then it would be assumed that the domain of f is the maximal domain which is R = (—o0,00) since the
formula makes sense for all real numbers r.

Graph In general, this is the set of all ordered pairs (a, f(a)) where a is a point in the domain. This
is usually shown as a curve in the cartesian plane. In the present example, the graph is the set of points

(r, 3mr3) for all 7 > 0 and is illustrated in Figure 1.1.

nr)

(a.fla))

(a,0) r
Figure 1.1: Graph of f: D - R
The volume V of a cylinder, on the other hand, depends on two dimensions, the radius r and the height

h. In this case we might write V = g(r, h), where g(r, h) = 7r?h defines a function of two variables. In the
next section we will extend the notions of domain and graph to functions of several variables.



1.2 Functions of several variables

We will only discuss the case of two variables but the main ideas are valid for any number of variables.

Let D be a subset of R?, that is, a region in a plane. A typical element of D is a point (z,y). A function
f: D — R is a rule which determines a unique real number z = f(z,y) for each (z,y) € D. The graph of
g is the set of points (a,b,c) € R3 such that (a,b) € D and ¢ = f(a,b). This is typically represented as a
surface in (three dimensional) space. Figure 1.2 illustrates this.

z=fxy)

(a,b,f(a,b))

(a, b 0)

Figure 1.2: Graph of f: D - R

Similar definitions exist for functions of any number of variables but the graph of a function of more than
two variables cannot be simply represented.

Remark As with real functions of one variable, we often don’t give the domain of a function f of several
variables explicitly; instead we assume that the domain of f is maximal.

Aids to visualisation of surfaces

In several parts of this course it will be important to be able to visualise a surface which is either the graph
of a function of two variables z = f(x,y) or, more generally, is a relation F(z,y,z) = 0. We will here give
several examples illustrating some useful techniques.

Example surfaces: Spheres

A sphere of radius r, centre (a,b,c) consists of those points (z,y,z) which are a distance r from (a,b,c).
Thus, by Pythagoras’s theorem, this sphere is defined by

(z—a)+(y—b)>+ (2 —¢)* =12
Furthermore, if we solve for z we get

z=c+ /12— (z—a)?— (y—b)2.

Because of this, for any given a, b, ¢, the graph of a function f(x,y) = ¢+ /72 — (z — a)? — (y — b)? is the
“northern” hemisphere and f(z,y) = ¢ — /72 — (z — a)? — (y — b)? the corresponding “southern” hemi-
sphere.




Given an equation
4P+ 22 +ax+By+yz+6=0,

one may always complete the square to write this in the form

(04300 + (y+ 367 + (s + 1) = 10>+ 62447 =0

which defines a sphere if and only if i(oz2 +B2++%) -6 >0.

Example 1.1 Sketch the graph of f(z,y) = —/1 — 22 — 22 — y2.

Solution
Let z = f(x,y). Completing the square, we have

P=1-20—-2—y =2 (xz+1)% 97

ie. (z+1)2+9%+ 22 = 2. This is the sphere with centre (—1,0,0) and radius v/2. The part given by
z=—4/1 -2z — 22 — 42 (< 0) is the hemisphere below the z,y-plane. See Figure 1.3.

Figure 1.3: Graph of f(z,y) = —\/1 — 2z — 22 — y?2

Cross-sections and level curves

The plane x = constant is parallel to the yz-plane and may, or may not, have a non-empty intersection
with the surface F(z,y, z) = 0. This intersection is called a cross-section of the surface (or Stewart uses the
term trace of the surface ). Typically, this cross-section will be a curve on the plane can give useful clues
to the overall nature of the surface. Similarly, we may take cross-section with the planes y = constant and
z = constant.

In particular, for a surface z = f(x,y), the cross-section with the plane z = ¢, where ¢ is a constant, is
the curve f(z,y) = ¢ and is called a level curve or contour. The second name is used because of the close
connection with contour lines on a map (lines linking points with the same height above sea-level). In this
analogy, z = f(z,y) represents part of the surface of the earth and each level curve represents a particular
contour line on a map.

For each choice of ¢ the level curve is denoted L. and is the set of points (z,y) in D for which f(z,y)
has the value c. For different choices of ¢, L. may be a curve, a point or points, or the empty set. Note that
each point in the domain of f lies on a particular level curve.



Example 1.2 By considering the level curves and the cross-sections x = 0 and y = 0, obtain a sketch of
z = /22 + 92

Solution : The level curves are defined by

L. ={(z,y) € R*: /a2 +y2 = c}.
For ¢ < 0, L. = 0 (since \/--- > 0), Lo = {(0,0)} (since 22 +y?> =0 = =z =y = 0) and for ¢ > 0,
L. = {(z,y) € R? : 2% + y? = ¢?}, the circle of radius ¢, centre (0,0).

Fixing x = 0 we get z = y/y? = |y| and fixing y = 0 we get z = |x|. These cross-sections are illustrated
in Figure 1.4.

Level curves y

)
&

x=0 cross-section y=0 cross-section

zZ zZ
z=ly| z=lx|

Y x
Figure 1.4: Cross sections

Putting this information together, we see that the surface defined by z = /22 + 2 is a (circular) cone

with vertex at (0,0) (Figure 1.5).
]

Example surfaces: Ellipsoid

An ellipsoid of radius r in the z-direction, 75 in the y-direction and r3 in the z-direction, with centre (a, b, ¢)
is defined by
(x—a)®  (y—b? 6 (z—0¢?
IR
It is called an ellipsoid because all the cross sections are ellipses. In the special case where 1 = ro = r3 we
recover the equation for the sphere.

=1




'y =0 cross-section

level curves

Figure 1.5: The cone z = y/x2 + y?

Example surfaces: Planes

Recall that a plane with normal vector n = («, /3,7) has equation ax + Sy ++z = . In particular, the graph
of f(z,y) = ax + by + c is the plane z = ax + by + ¢ with normal (a, b, —1) passing through the point (0,0, ¢).
Observe that the cross-sections of a plane are either straight lines (or §.)

Example 1.3 Sketch the part of the surface
20 +y+4z =1,

where z,y, z > 0.

Solution : We consider the cross-section with the coordinate planes = 0 (y, z-plane), y = 0 (z, z-plane)
and z = 0 (z,y-plane).

The cross-section of 2z + y + 4z = 1 with = 0 is the line y + 4z = 1 (lying in the y, z-plane). This
passed through the points (0, 0, i) and (0,1,0). In a similar way we obtain the cross-section with the other
coordinate planes; 2z +4z = 1 in the z, z-plane, passing through (0,0, 1) and (%,0,0) and 2z +y = 1 in the
x, y-plane, passing through (0,1,0) and (%,0, 0).

Answer: A sketch of the plane is shown in Figure 1.6. (]

Example surfaces: Circular Cylinder

A circular cylinder in R? of radius 7 centred at the origin lying parallel to z-axis, is defined by

2?42 =12,

Note this might look at first glance that this is the equation for a circle, it is not because the surface lies in
R3, so although z does not appear in the equation it can take any value, so the surface looks like a circle for
each height z, hence we obtain a cylinder. This is easily generalisable to cylinders centred at (a, b, c) and to
cylinders lying parallel to the x or y axes. Other standard surfaces are shown in Table 1 of (Stewart (Ed. 7):
Chapter 12, p854.)

Example 1.4 Sketch the region bounded by the paraboloid z = 4 — 22 — 2y and the plane z = 2.



2x+4z=1 y+dz=1
\ (o,o,%)/
(0,1,0)
/(%,0,0) o P
X 2x+y=1

Figure 1.6: The plane 2z +y + 4z =1

Solution : The level curves of the paraboloid for ¢ > 4 are L, = ) (since 4 — 22 — 2y? < 4). For ¢ < 4 are
defined by the ellispse
L.={(z,y) € R*: 4 — 2* — 2% = ¢}.

In particular, the level curve where the plane insects the paraboloid is given by Lo = {(z,y) € R? : 2 =
z? + 2y}

The cross section of the paraboloid when fixing = 0 is the curve z = 4 — 2y? and fixing y = 0 gives the
cross section z = 4 — x2. These cross-sections are both parabolas and are illustrated in Figure 1.7.

Level curves
y

. = i 2F
X=0 cross section y=0 CI’O? section
z

-5 -1.0 -05 05 10

2 1 o 1 2
Figure 1.7: Cross sections and level curves of the paraboloid z = 4 — 22 — 2y/?
Putting this information together, the region bounded by the parabolid and the plane is illustrated in

Figure 1.8.
]



Region bounded by the paraboloid and plane
2

Figure 1.8: The region bounded by the paraboloid z = 4 — 22 — 2y? and the plane z = 2.

1.3 Partial derivatives

(Stewart (Ed. 7): Section 14.3, p924.)

In this section we want to generalise, to functions of several variables, the notion of gradient as it is
understood for functions of one variable. Recall that if the limit

i 9@+ h) —g(a)
h—0 h

exists then this limit is called derivative of g at a. This is written as
dg
dx
and is the gradient of the tangent to the graph of g at a point (a, g(a)).

(a) or g'(a),

y éradient =g'(at)i

y

(a.g(a)) y=g(x)

Figure 1.9: Derivative of a function of one variable

Now consider f, a function of two variables. On the surface z = f(x,y), there is no single meaning of
gradient. Imagine this surface to be a mountainside. When walking or skiing straight down the mountain
the gradient may be very large but traversing the mountain the gradient is much less. Indeed by choosing
a direction one may make the gradient have any value in between. For this reason it is necessary to define
two gradients in terms of vertical cross-section of the surface in the x and y directions.



[gradient = g'(a)]

é radient = /'(b) /‘/

surface

z=fixy)

X
Yy

curve ‘curve

{Z =fx.b) = g(x) z=flay)= h(y)J

Figure 1.10: Gradients on cross-sections

As in Figure 1.10, consider a point (a,b, f(a,b)) on the surface. Taking the cross-sections x = a and
y = b through this point we obtain the graphs of two functions of one variable; z = f(x,b) = g(x) (say)
and z = f(a,y) = h(y) (say). For each of these functions we can (provided the derivatives exist) determine
gradients called the partial x and y derivatives of f at (a,b) and written as

g(a,b) = derivative of f(x,y) w.r.t. z with y held constant, evaluated at (z,y) = (a,b). This equals ¢'(a).
x

and
of o . . /
B ——(a,b) = derivative of f(z,y) w.r.t. y with « held constant, evaluated at (x,y) = (a,b). This equals h'(b).
Y
For a function f of n variables z1,xo,...,x, we define n partial derivatives
0
B derivative of f(z1,...,2,) w.r.t. 2; with all other variables held constant.
i

Remarks

1. It is important to distinguish the notation used for partial derivatives —f from ordinary derivatives

ox
daf
dz’
2. We also use subscript notation for partial derivatives. If f = f(x,y) then we may write

w=f=h =g =p

In general, the notation f,,, where n is a positive integer, means the derivative of f with respect to its
n-th argument, (with all other variables held constant). This notation is the direct analogue of the ’
notation for ordinary derivatives. Recall we can use the chain rule to calculate

d 2\ _ pl,.2 d 2\ 1(,.2
@) = @) (@) = 2 (@)

Below we carry out similar calculations involving partial derivatives.

10



3. Like ordinary derivatives, partial derivatives do not always exist at every point. In this module we will
always assume that derivatives exist unless it is otherwise stated.

4. If z = f(=x,y) then the partial derivatives g—i and gTJj can be interpreted as the gradients of the tangent
lines to the surface z = f(x,y) in the directions parallel to the x— and y—axes, respectively.

Formal definition of Partial Derivative

Suppose f is a suitably well behaved function of three variables x,y, z. Then at (a,b, c),

ai = lim f(a—i—h,b,c)—f(a,b,c).
ox h—0 h

This is by analogy with the definition of ordinary derivatives. Note how the y and z coordinates are
unaffected.

Example 1.5 Find g, g and % where
oz’ Oy ox
3,,2 -1
, — + z, b , = d s > 0.
(2) f(e,y) = 2%+, (b) 2(z,y) = sin (Hy) and 7,y

[Note that sin™! u is the inverse sine function (sometimes written as arcsinu), and not the reciprocal 1/ sin u.
The domain of sin~! is [~1,1] and, since x,y > 0, z/(z + ) lies in this domain.]

Solution : (a) To calculate the partial x derivative, we think of y as a constant and differentiate in the
usual way with respect to . Hence, we have

87f_ ZQ 3 ﬂ _ 2,2
8x—yax(x)+ax(x)—3my + 1.

For the y derivative, we think of x as a constant and differentiate with respect to y;
Of _ 30, 9, 0 3
= =z — —(z) = 227y.
5 =T 5 W)+ () = 2%

Answer: f, = 3z%y* +1 and f, = 223y.
(b) Let w = z/(x + y). So, by the chain rule

9z _ i(sinflu)%
or du Ox’
We have
.1 1 1 |z +yl T+Yy
I(sm u) = = = = —— = =,
) V1—u , < - >2 VE+y)?r-z V2xy 4y
r+y
since x,y > 0. Also, by the quotient rule,
0 0
b @y ety
or (z +y)>2 (g
Hence
0y 1
0r  x+y .\ 2wy +y?
Answer: z, = L O

vy 1
THY \2zy+y?

11



0
Example 1.6 Find 8—2 where z is defined implicitly as a function of  and y by the equation
x

ot 42y + 23 — 2%y = 1.

Solution : Differentiating implicitly with respect to x gives

0 0
42 4+ 0 + 3z2a—z — dxyz — 2x2y—z =0.
x ox

Rearranging to solve for % yields

% B 423 — dzyz
or  2a2y— 322"

Example 1.7 For r € Rt let u = f(r) where 2 = 22 + 3% + 22. Show that

Tuy + yuy + 2u, =1 (r).

Solution

By the chain rule,

oo oo
ui_@x_drax_ r@x’

and similarly,

or or
Y or _ g or
w = FG w5
Now
O 2y_ 90 2, 2, 2 or _
8x(r )_8x(x +y° +z%) ie., 2rax—2x.
Therefore
@_w
or 1’

and similarly,

Thus we have

2 2 22 22 4+ 2 + 22
v+ gy 4o = )+ )+ gy = )

as required.

12



1.4 Higher order derivatives

(Stewart (Ed. 7): Section 14.3, p930.)

Let u be a function of several variables x,y, .... Then w, (if it exists) is also a function of the same variables
and so may also have partial derivatives. We define
Pu 0 0%u 0
@ - %(ur) = Uggy = U11, ayax - aiy(ur) = Ugy = U12,
0u 0 Pu 0
920y = %(uy) = Uyg = U1, e = a—y(uy) = Uyy = Ug2, etc.

In general, usy.... denotes the result of taking the x-derivative, then the y-derivative, then the z-derivative,
. of u. The total number of partial derivatives taken is called the order of the derivative. For example,
Ugzy = U112 is a third order derivative.
There is no automatic guarantee that, for example, ug, = u,, but the following theorem (the proof
of which is omitted) states the conditions under which the order in which the derivatives are taken is
unimportant.

Theorem (Clairaut’s Theroem) Let u be a function of x,y such ugzy and uy, exist and are continuous
at a point (a,b). [Roughly speaking, this means that there are no holes or jumps in the graphs of uy, and
Uyg at (a,b).] Then,

Uy (@, 0) = uyz(a, b).

Remarks

1. This result extends to functions of any number of variables and to third and higher order derivatives.
For example, let u depend on three variables then, provided these derivatives exist and are continuous,

U1213 = U3211 = U2113 = *** = U1123-

2. Unless otherwise stated, functions considered in this module will be assumed to have continuous partial
derivatives of all orders. Hence the order in which we take partial derivatives will be unimportant.

Example 1.8 Determine all second order derivatives of u = sin zy and verify that uy, = uys.

Solution : We have first derivatives
Uy = YCOSTY, Uy = L COSTY.

Hence, the second derivatives are

0 0 5 .
—x(ux) = y%(cowsy) = —y“sinzy,

0
0 0 0 .
Uy = 8—y(ux) = a—y(y) cos Yy + ya—y(cosxy) = coszy — ysinzy,
0
0

Uye = — (uy) = Q(x) coszy + x=—(coszy) = cosxy — wy sin zy,
Y z Y Ox Oz
0 9 .
—(uy) = x=—(coszy) = —x“sinzy.
vy 3y( v) 8y( y) Y
Hence ugy = Uy, = coszy — xysinxy as required.
Answer: The second derivatives are uz, = —y?sinzy, Uyy = —22sinzy, and Ugy = Uyg = COSTY —
zy sin xy. ([l

13



Example 1.9 Let u = f(x/y), where f is an arbitrary (twice differentiable, with continuous second deriva-
tive) function of one variable. Show that
TUg + Yyuy = 0,
and deduce that
x2um + 2xyug, + y2uyy =0.

Solution
Using the chain rule, we have,

5

o (i) -1 )
w=r()56) -5 C)

1
Tuy + yuy = x—f' <x> - y%f/ (x> =0.
y Y Y y

[Although we could proceed by calculating ug,, uzy and wu,, and taking the appropriate combination, it is
much less work to deduce the final part as indicated below.]
Since rug + yu, = 0, its z- and y-derivatives must also equal 0. Hence

So,

TUgy + Uy + YUyz = 0, (1)

and
TUzy + YUyy + Uy = 0. (2)

Taking = x (1) +y x (2) [the need to have the correct coefficient for u,, and w,, dictates the choice of this
combination of (1) and (2)] we get

x2um + XUy + TYUyz + YTUgy + y2uyy + yuy = 0.
Since Uzy = Uyy and zug, + yu, = 0, we get

as required.

1.5 The chain rule for functions of several variables

(Stewart (Ed. 7): Section 14.5, p948.)

We have already made extensive use of the chain rule for functions of one variable. This is used to find the
derivative of a composition of functions; if F'(z) = f(u(z)) then

dF  dud
dr IZ% = u'(2) ' (u(2)).

We now want to extend this technique to functions of several variables.

Theorem Let F(z,y) = f(u(z,y),v(z,y)). Then

OF _ouds wor . OF _owos ovos
Or Oxou Ox v dy Oyou Oyov’

This is called the chain rule for functions of two variables.

14



Remarks

1. Observe the pattern

or _[ou] oy [0v] of
Ox 896 833’

[all terms on the right have df on top and dz on bottom and du or Jv which “cancels”.]

2. The chain rule is extended in an obvious way to functions of any number of variables. For example, if
F(I7 y? Z) = f(u(x7 y? Z)’ U(x7 y? Z)’ w(x’ y7 Z)) then
OF _oudf ovof  owof
or Oxdu Oxrdv Oz dw’

3. There are two special cases of this formula. First, the one variable chain rule that we used above; if
F(z,y) = f(u(z,y)) then
or _ ou df
0r Oz du’
Second, if F(z) = f(u(z),v(z)) then
dF _ dudf | dvof
der  dxou drov’
Notice that the partial derivatives in the formula become ordinary derivatives wherever the function

being differentiated is a function of only one variable.

Example 1.10 Let w = u? 4+ v? where u = sin§ and v = cos ¢. Use the chain rule to calculate wy and wy
in terms of # and ¢.

Solution
Using the chain rule, we have

Ooudw  Ovow

wy = 99 9u + 2090 cos0.2u + 0.2v = 2 cos O sin § = sin 20,
and Ou 0 ov 0
Wy = 37;57111: + 37;57:1)) =0.2u+ (—sin¢).2v = —2sin ¢ cos ¢ = —2in 2¢.
Answer: wy = sin26 and wg = — sin 2¢. |

1.6 Partial differential equations

A differential equation is a relation between an unknown function and its derivatives. Such equations are
extremely important in all branches of science; mathematics, physics, chemistry, biochemistry, economics,. . .
Typical examples are

e Newton’s law of cooling which states that

the rate of change of temperature of an object is proportional to the temperature difference
between it and that of its surroundings.

15



This is formulated in mathematical terms as the differential equation

dT
© KT -T
dt ( O)a

where T'(t) is the temperature of the body at time ¢, Ty the temperature of the surroundings (a
constant) and k a constant of proportionality,

e the wave equation,

Pu  ,0%u

g _ 22t
ot? 0z

where u(x,t) is the displacement (from a rest position) of the point x at time ¢ and ¢ is the wave speed.

The first example has unknown function T' depending on one variable ¢ and the relation involves the first

dr
order (ordinary) derivative —. This is a ordinary differential equation, abbreviated to ODE.

dt
The second example has unknown function u depending on two variables x and ¢t and the relation involves
0%u 0%u
the second order partial derivatives 922 and EEh This is a partial differential equation, abbreviated to PDE.
r

The order of a differential equation is the order of the highest derivative that appears in the relation.

The unknown function is called the dependent variable and the variable or variables on which it depends
are the independent variables.

A solution of a differential equation is an expression for the dependent variable in terms of the independent
one(s) which satisfies the relation. The general solution includes all possible solutions and typically includes
arbitrary functions (in the case of a PDE.) A solution without arbitrary functions is called a particular
solution. Often we find a particular solution to a differential equation by giving extra conditions in the form
of initial or boundary conditions.

Example 1.11 Find the general solution of the PDE,

O oy,
Ox

where f is a function of two independent variables  and y.

Solution : Integrating with respect to = and treating y as fixed gives
2 a’
f:/ 2 +y+9de = — +zy+ 9x + Ay),
y fixed 3

where A is an arbitrary function depending on the fixed variable y. |

Example 1.12 Find the general solution of the PDE,

*f
oxdy

2x,

where f is a function of two independent variables  and y.

16



Solution : The PDE can be expressed as

ga—f—Qx
ox\oy)

Integrating with respect to = and treating y as fixed gives

of

= = 2zdr = 2° 4+ A(y)
8y y fixed

where A is an arbitrary function depending on the fixed variable y. Integrating with respect to y, holding x
fixed then gives

f= a? + Ay)dy = «*y + / A(y)dy + B(x) = 2%y + C(y) + B(x).
x fixed x fixed

B is an arbitrary function of the fixed variable x. Since A was an arbitrary function of y its intergral is also

and arbitrary function of y so let’s call this function C(y) = fm fixed Ay)dy. O

Solutions to PDEs by change of variable

In this section certain first order PDEs will be solved by means of a change of variables. Although there is
a theory which may be used to determine the appropriate change of variable (see Mathematics 3H Mathe-
matical Methods), in this module the change of variable will always be given.

We will make a change of independent variables from z,y to u,v (say). If z = f(z,y) and we introduce
new variables u = u(z,y), v = v(z, y) then the chain rule gives

0z _ouoz , o0z
dr  Odxdu Oxdv

More generally, this shows that for any expression * that is to be thought of as a function of z,y or of u, v,
0 Ou 0 ov 0

%(*):%%(*)‘F%%(*)' (1)

This general form of the chain rule is useful when calculating second order derivatives.

Example 1.13 By changing variables from (z,y) to (u,v), where u = zy, v = x/y, solve the PDE

To + ya—y = 222 sin(zy).

Solution By the chain rule,

0z Oudz Ovoz 0z 10z

or  oxou T owov You T you

and

0z  Oudz 0OvOz 0z T 0z

dy ~ oyou  oyow ou Pov

o y@y_z Y ou y Ov Y\ ou y2ov ) You

Inverting the change of variables we have
r=vuv, Y= \/Ea
v
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Therefore,



and so, after the change of variable the PDE becomes,

0z

2u— = 2uvsinu,

ou
ie.,

0z )

— =wvsinu.

ou
Then

z:/ vsinudu = —vcosu + A(v),
v fixed

and in terms of x and y this is Answer: z = f% cos(zy) + A (%) , where A is an arbitrary function. O

Example 1.14 By changing variables from (x, ) to (u,v), where u = 23 /y, v = z, find % and % in terms
y
of parital derivatives with respect to u and v. Hence, solve the PDE

of . Of 65

Solution By the chain rule,

3f78u%+8vg73x287f+1ﬁ

or Oz ou  dxdv  y Ou ov’

and
of _oudf Ovof —z*of . of

dy  Oyou  dydv  y? ou ov’

Therefore,
of of 3z20f Of —23 0f _of
xaﬂ?’ya@,—m(* T a) e

Inverting the change of variables we have

and so, after the change of variable the PDE becomes,

va—f = 6uv?,

ov

ie.,

a—f = 6uw.

ou
Then

f= 6uv dv = 3v*u + A(u),
u fixed

and in terms of z and y this is f = 3%5 + A (”;—3) , where A is an arbitrary function.

Answer: f = % + A (%) , where A is an arbitrary function. O
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