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Teaching arrangements

» This section, 2A3, always meets at 11 a.m. on Tuesday in
Lecture Theatre 208 Sir Alexander Stone Building and 11am
on Thursday in room 224 (Main Lecture Theatre) Graham
Kerr Building.

» Other section meets at 9am and 10am.
» This week: Lectures on Tuesday and Thursday
- no tutorial this week

» Other weeks: Lectures on Tuesday and Thursday and a
tutorial on Monday
- students come to tutorials every other week. Go to
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Tutorials
» Tutorial questions on the exercise sheets should be done each
week before the tutorial

» Do this work even if you don’t have a tutorial that week

» Tutors will ask to see your tutorial work so make sure you
have your attempts with you. If you couldn’t do a question
make sure to have a note written down about why you
couldn’t do the question.

> Seek help with these (and other problems) from tutors

» Bring lecture notes to tutorials!
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Organisation of the class

Tutorials

>

Tutorial questions on the exercise sheets should be done each
week before the tutorial

Do this work even if you don't have a tutorial that week

Tutors will ask to see your tutorial work so make sure you
have your attempts with you. If you couldn’t do a question
make sure to have a note written down about why you
couldn’t do the question.

Seek help with these (and other problems) from tutors
Bring lecture notes to tutorials!

Tutorials are an important resource and opportunity for
getting feedback. Be proactive and ask tutors to look at your
work and ask them questions.
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Organisation of the class

Other arrangements

» Office hours: Office number 505 Mathematics Building.
Office hours: Monday 12-1, Tuesday 12-1, Wednesday 1-2 (or
by arrangement)

» Continuous assessment:

» weekly online assignment, from WebAssign (due weeks 2-11,
Saturday 3am).

» The 2A Assignment 1 is due 3am Saturday 5th October

» together these make up 20% of final grade

> in calculating your continuous assessment grade we discard
your worst TWO submissions

» course work cannot be reassessed. This means there is no
second attempts at assignments

» Degree Examination: End of December (date not set yet)

» worth 80% of final assessment

» Recommended course book: James Stewart, Multivariable
Calculus Internation Edition, (Seventh Edition),Brooks Cole
/Cengage .
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Lecture notes

» Exercise sheets are available on Moodle at midday on Monday
each week, except Excercise Sheet 1 which is available in the
first lecture
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Lecture notes

» Exercise sheets are available on Moodle at midday on Monday
each week, except Excercise Sheet 1 which is available in the
first lecture

» Exercises and solutions and printed lecture notes available at

(Also given in Level-2 General Information)

» Solutions to exercise sheets and solutions to examples given in
lectures will appear on Moodle once each Chapter has been
taught and not before.

» Only the Chapter 1 lecture notes will be given out in class.
You need to download the notes for Chapters 2,3 and 4 from
Moodle yourself in advance.
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Syllabus of 2A - Multivariate Calculus

General theme: differentiation and integration of functions of
several variables and its applications.

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Syllabus of 2A - Multivariate Calculus

General theme: differentiation and integration of functions of
several variables and its applications.

» Chapter 1 - Partial differentiation

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Syllabus of 2A - Multivariate Calculus

General theme: differentiation and integration of functions of
several variables and its applications.

» Chapter 1 - Partial differentiation
» Chapter 2 - Double and triple integration

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Syllabus of 2A - Multivariate Calculus

General theme: differentiation and integration of functions of
several variables and its applications.

» Chapter 1 - Partial differentiation
» Chapter 2 - Double and triple integration

» Chapter 3 - Differentiation of vectors

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Syllabus of 2A - Multivariate Calculus

General theme: differentiation and integration of functions of
several variables and its applications.

» Chapter 1 - Partial differentiation

» Chapter 2 - Double and triple integration
» Chapter 3 - Differentiation of vectors

» Chapter 4 - Line and surface integrals

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Syllabus of 2A - Multivariate Calculus

General theme: differentiation and integration of functions of
several variables and its applications.

» Chapter 1 - Partial differentiation

» Chapter 2 - Double and triple integration
» Chapter 3 - Differentiation of vectors

» Chapter 4 - Line and surface integrals

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Syllabus of 2A - Multivariate Calculus

General theme: differentiation and integration of functions of
several variables and its applications.

» Chapter 1 - Partial differentiation

» Chapter 2 - Double and triple integration
» Chapter 3 - Differentiation of vectors

» Chapter 4 - Line and surface integrals

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Partial differentiation
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» Recall ideas for functions of one variable
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Chapter 1: Partial differentiation

» Recall ideas for functions of one variable
» extend to functions of two variables,

» introduce partial derivatives,

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Partial differentiation

Chapter 1: Partial differentiation

» Recall ideas for functions of one variable
» extend to functions of two variables,
> introduce partial derivatives,

» chain rule for partial derivatives.
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Partial differentiation

Functions of one variable

For example, volume V of a sphere is a function of one variable, its
radius r,

We write V = £(r), where the rule is f(r) = 37r3.
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Partial differentiation

Functions of one variable

For example, volume V of a sphere is a function of one variable, its
radius r,

We write V = £(r), where the rule is f(r) = 37r3.

Domain of f

v

the set of points D at which rule is used,

v

radius should be real and non-negative, so D = [0, c0),

v

if no domain were given, we use the maximal domain - set of
points at which the rule could legitimately be used,

the maximal domain of f is R.

v
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Partial differentiation

Functions of one variable

Graph

The set of all ordered pairs (a, f(a)) where a € D. Usually shown
as a curve in the plane.
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Partial differentiation

Functions of one variable

Graph
The set of all ordered pairs (a, f(a)) where a € D. Usually shown
as a curve in the plane.

Present example - the set of point (r, %7‘1’!’3) for all r > 0.
V(r)

(a.fa))

(a,0) r
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Partial differentiation

Functions of two variables

Example

Volume V of a cylinder depends on two dimensions, the radius r
and the height h- V = f(r, h), where f(r, h) = wr?h defines a
function of two variables.
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Partial differentiation

Functions of two variables

Example

Volume V of a cylinder depends on two dimensions, the radius r
and the height h- V = f(r, h), where f(r, h) = wr?h defines a
function of two variables.

Domain
Subset D of of R?, i.e., a region in a plane.
If not specified, the maximal domain is assumed.
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Partial differentiation

Functions of two variables

Graph
The set of points (a, b, c) € R3 where (a,b) € D and ¢ = f(a, b) -
a surface.
z =fxy)
(a.b,f(a,b))
S it

2 X
(a,b,0)
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Partial differentiation

Visualisation of surfaces - Spheres

» Radius r, centre (a, b, c) - points (x, y, z) a distance r from
(a, b, c). Pythagoras's theorem —

(x—aP+(y—b)?+(z—c)* =1
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Partial differentiation

Visualisation of surfaces - Spheres

» Radius r, centre (a, b, c) - points (x, y, z) a distance r from
(a, b, c). Pythagoras's theorem —

(x—a)* +(y = b+ (z—c)* =17,

» solving for z

z:c:lz\/r2—(x—a)2—(y—b)2,
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Partial differentiation

Visualisation of surfaces - Spheres

» Radius r, centre (a, b, c) - points (x, y, z) a distance r from
(a, b, c). Pythagoras's theorem —

(x—a)* +(y = b+ (z—c)* =17,

» solving for z

z:ci\/r2—(x—a)2—(y—b)27

» + means “northern” hemisphere
— means “southern” hemisphere.
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Partial differentiation

Visualisation of surfaces - Spheres

» Given
2 2 2 e _
xX“+y " +z2+tax+Py+yz+0=0,

complete the square to write as
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» Given
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Partial differentiation

Visualisation of surfaces - Spheres

» Given
2., .2, 2 _
X“+y ' +z24+ax+ Py +vz+6=0,

complete the square to write as

1
(x+30)" +(y+38) +(z+37)* = 2(a®+8°+9%) =4,

» sphere if and only if %(a2 + B2 ++%)-d5>0.
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Partial differentiation

Visualisation of surfaces - Spheres

Example 1
Sketch the graph of f(x,y) = —\/1 —2x — x2 — y2.
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Partial differentiation

Visualisation of surfaces - Spheres

Example 1
Sketch the graph of f(x,y) = —/1 — 2x — x2 — y2.

Answer
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Visualisation of surfaces - Cross-sections

» For a surface z = f(x, y) the set of points satisfying,
f(x,y) =c, is a level curve or contour,
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Partial differentiation

Visualisation of surfaces - Cross-sections

» For a surface z = f(x, y) the set of points satisfying,
f(x,y) =c, is a level curve or contour,

» think of z = f(x, y) as part of the surface of the earth - each
level curve represents a particular contour line on its map.
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Partial differentiation

Visualisation of surfaces - Cross-sections

> More generally, the intersection of plane x = constant or
y = constant or z = constant and surface F(x,y,z) =0 is
called a cross-section,
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Partial differentiation

Visualisation of surfaces - Cross-sections

» More generally, the intersection of plane x = constant or
y = constant or z = constant and surface F(x,y,z) =0 is
called a cross-section,

» level curve L. is the set of points (x,y) in D for which
f(x,y) =c,
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Partial differentiation

Visualisation of surfaces - Cross-sections

» More generally, the intersection of plane x = constant or
y = constant or z = constant and surface F(x,y,z) =0 is
called a cross-section,

> level curve L. is the set of points (x, y) in D for which
f(x,y) =c,

» for different ¢, L. may be a curve, a point or points, or the
empty set,

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Partial differentiation

Visualisation of surfaces - Cross-sections

» More generally, the intersection of plane x = constant or
y = constant or z = constant and surface F(x,y,z) =0 is
called a cross-section,

> level curve L. is the set of points (x, y) in D for which
f(x,y) =c,

» for different ¢, L. may be a curve, a point or points, or the
empty set,

» each point in D lies on one level curve.

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Partial differentiation

Visualisation of surfaces - Cross-sections

Example 2

By considering the level curves and the cross-sections x = 0 and
y =0, obtain a sketch of z = 1/x2 + y2.
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Partial differentiation

Visualisation of surfaces - Cross-sections

Example 2

By considering the level curves and the cross-sections x = 0 and
y =0, obtain a sketch of z = 1/x2 + y2.

Answer
Level curves y
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Partial differentiation

Visualisation of surfaces - Cross-sections

Example 2

By considering the level curves and the cross-sections x = 0 and
y =0, obtain a sketch of z = 1/x2 + y2.

Answer
x=0 cross-section

z
z=y|

y
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Partial differentiation

Visualisation of surfaces - Cross-sections

Example 2

By considering the level curves and the cross-sections x = 0 and
y =0, obtain a sketch of z = 1/x2 + y2.

Answer
y=0 cross-section

z
z=|x|
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Partial differentiation

Visualisation of surfaces - Cross-sections

Example 2

By considering the level curves and the cross-sections x = 0 and
y = 0, obtain a sketch of z = J)ﬁy2

Answer
z

v =0 cross-section

-

x = 0 cross-section|

\

\level curves
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Partial differentiation

Visulatisation of surfaces - Ellipsoid

» An ellipsoid of radius r; in the x-direction, ry in the
y-direction and r3 in the z-direction, with centre (a, b, ¢) is
defined by

(x—a)  (y—b3  (z—c¢)?
(r1)? * (r2)? N (r3)?

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Partial differentiation

Visulatisation of surfaces - Ellipsoid

» An ellipsoid of radius r; in the x-direction, r»> in the
y-direction and r3 in the z-direction, with centre (a, b, c) is
defined by

(x—a2  (y—b?  (z—c)
(2 (e (n)p

» The cross sections are ellipses, hence the name ellipsoid.

=1
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Partial differentiation

Visulatisation of surfaces - Ellipsoid

» An ellipsoid of radius r; in the x-direction, r»> in the
y-direction and r3 in the z-direction, with centre (a, b, c) is
defined by

(x—a2  (y—b?  (z—c)
(2 (e (n)p

» The cross sections are ellipses, hence the name ellipsoid.

=1

» When 1 = r» = r3 we recover the equation for the sphere.
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Partial differentiation

Visualisation of surfaces - Planes

» Recall: a plane with normal vector n = («a, 3,7) has equation
ax+ By +vyz =9,
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Partial differentiation

Visualisation of surfaces - Planes

» Recall: a plane with normal vector n = («, 3,) has equation
ax + By +vz =14,

» the graph of f(x,y) = ax + by + c is the plane
z = ax + by + ¢ with normal (a, b, —1) passing through the
point (0,0, c).
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Partial differentiation

Visualisation of surfaces - Planes

Example 3
Sketch the part of the surface 2x +y + 4z = 1 where x,y,z > 0.
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Partial differentiation

Visualisation of surfaces - Planes

Example 3
Sketch the part of the surface 2x +y + 4z = 1 where x,y,z > 0.
Answer
z
2x+4z=1 yraz=l
\ (0,0,%)/
(0,1,0)
/(%,0,0) N
2x+y=1
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Partial differentiation

Visualisation of surfaces - Circular cylinder

» A circular cylinder in R3 of radius r centred at the origin
lying parallel to z-axis, is defined by

X2y =2
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Partial differentiation

Visualisation of surfaces - Circular cylinder

» A circular cylinder in R3 of radius r centred at the origin
lying parallel to z-axis, is defined by

X2y =2

» This is NOT the equation for a circle, because the surface lies
in R3.
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Partial differentiation

Visualisation of surfaces - Circular cylinder

» A circular cylinder in R3 of radius r centred at the origin
lying parallel to z-axis, is defined by

2 +y2 — 2

» This is NOT the equation for a circle, because the surface lies
in R3.

» Generalisable to cylinders centred at (a, b, ¢), cylinders lying

parallel to the x or y axes and cyclinders with ellispes as cross
sections.
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Partial differentiation

Visualisation of surfaces - Paraboloid

Example 4

Sketch the region bounded by the paraboloid z = 4 — x> — 2y? and
the plane z = 2.
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Partial differentiation

Visualisation of surfaces - Paraboloid

Example 4
Sketch the region bounded by the paraboloid z = 4 — x> — 2y? and
the plane z = 2.

Answer

Level curves
y

x=0 cross section y=0 cross section 2
z

- : ~ | "/3 \ | 1
{/i\\ //i o )

/

5T 05 F o5 1o 15 L ! x
2 = 1 2
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Partial differentiation

Visualisation of surfaces - Paraboloid

Example 4

Sketch the region bounded by the paraboloid z = 4 — x> — 2y? and
the plane z = 2.
Answer

Region bounded by the paraboloid and plane
2

2
y oo
/
-1
2
f
|
4\\
\
|
z \\
7.\
|
h
\
o,
’2\\<
“_
R
o S
l\ \<\\
2
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Partial differentiation

Ordinary derivative

» Recall:

i E@+h) —g(2)
h—0 h

(if it exists) is the derivative of g at a,
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Partial differentiation

Ordinary derivative

» Recall:

i gla+h) —g(a)
h—0 h

(if it exists) is the derivative of g at a,

» written as

%0) o &),
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Partial differentiation

Ordinary derivative

» Recall:

i gla+h) —g(a)
h—0 h

(if it exists) is the derivative of g at a,

> written as

% (5)

™ or g'(a),

» gradient of the tangent to the graph of g at a point (a, g(a)).
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Partial differentiation

Ordinary derivative

» gradient of the tangent to the graph of g at a point (a, g(a)).

y \gradient Zg'(a};

y

(a.(a)) y=gx)
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Partial differentiation

Partial derivatives

» On surface z = f(x, y), there is no single meaning of gradient,
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Partial differentiation

Partial derivatives

» On surface z = f(x,y), there is no single meaning of gradient,

> straight down a mountain side gradient may be very large and
traversing the mountain the gradient is much less,
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Partial differentiation

Partial derivatives

» On surface z = f(x,y), there is no single meaning of gradient,

» straight down a mountain side gradient may be very large and
traversing the mountain the gradient is much less,

» necessary to define two gradients on cross-section of the
surface in the x and y directions.
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Partial differentiation

Partial derivatives

Taking cross-sections x = a and y = b we get the graphs of two
functions of one variable - z = f(x, b) = g(x) and

z=f(a,y) = h(y)
gradient = g'(a)|

gradient = 4'(b)

\

‘surface
z=fxy)
e

1(@ b.fa:b))

X
y
curve curve
z=flx,b) = g(x) ‘z =flay) = h(y)
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Partial differentiation

Partial derivatives

» The gradients to z = g(x) and z = h(y) are called the partial
x and y derivatives of f at (a, b)
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Partial differentiation

Partial derivatives

» The gradients to z = g(x) and z = h(y) are called the partial
x and y derivatives of f at (a, b)

» written as

of

O—(a, b) = derivative w.r.t. x with y constant - equals g’(a),
)x

of I . /

8—(a, b) = derivative w.r.t. y with x constant - equals h'(b),
Yy
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Partial differentiation

Partial derivatives

» The gradients to z = g(x) and z = h(y) are called the partial
x and y derivatives of f at (a, b)

> written as

of o :
g(a, b) = derivative w.r.t. x with y constant - equals g’(a),
of o . /
@(a7 b) = derivative w.r.t. y with x constant - equals h'(b),
» for a function of x1, X2, ..., x,
of oL _ :
I = derivative w.r.t. x; with all other variables constant.
Xi
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Partial differentiation

Partial derivatives

» Important to distinguish notation used for ordinary and partial
derivatives.

df 0
Ordinary derivative : —,  partial derivative : —,
dx 0x
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Partial differentiation

Partial derivatives

» Important to distinguish notation used for ordinary and partial
derivatives.

df of
Ordinary derivative : —, partial derivative : —,
dx Ox

» subscript notation for partial derivatives
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Partial differentiation

Partial derivatives

Example 5
Find £, f, and z, where

(a) f(x,y) = x3y?+x, (b)z(x,y) =sin"! ( ) and x,y > 0.

X+Yy
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Partial differentiation

Partial derivatives

Example 5
Find £, f, and z, where

(a) f(x,y) = x3y?+x, (b)z(x,y) =sin"! ( ) and x,y > 0.

X+Yy

[sin~! u is the inverse sine function and not the reciprocal 1/ sin w.
Domain of sin™! is [~1,1] and x/(x + y) lies in this domain.]
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Partial differentiation

Partial derivatives

Example 5

Find £, f, and z, where
a) f(x,y) = x3y%+x, (b ,:s'_1< )ad,>0.
(@) Fxy) = ¥ytx (O)zlxy) =sint {2 ) andxy

Answer
(a) fr =3x%y% + 1, f, = 2x3y.
(b) ze = —

X+Y/2xy + y?
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Partial differentiation

Partial derivatives

Example 5

Find £, f, and z, where
a) f(x,y) = x3y%+x, (b ,:s'_1< )ad,>0.
(@) Fxy) = ¥ytx (O)zlxy) =sint {2 ) andxy

Chain rule
Recall from Level-1:
9 Fg(x)) = F(g(x)g'(x)
dx ’
We used

0
af(g(xay)) = f,(g(X,y))gX(X,y).



Partial differentiation

Partial derivatives

Example 6

Find z, where z is defined implicitly as a function of x and y by
the equation

X2y 422 —2xPyz =1
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Partial differentiation

Partial derivatives

Example 6

Find z, where z is defined implicitly as a function of x and y by
the equation

X2y 422 —2xPyz =1
Answer

_ 4x3 — 4xyz

= 2x2y — 322
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Partial differentiation

Partial derivatives

Example 7
For r € R, let u = f(r) where r?> = x> + y2 + z?. Show that

xuy + yuy + zu, = rf'(r).
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Partial differentiation

Higher order derivatives

Let u be a function of x,y,... then uy and u, are functions of
X,¥,... and so may define
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Partial differentiation

Higher order derivatives

Let u be a function of x,y,... then uy and u, are functions of
X,¥,... and so may define
0%u 0 0%u 0

@ = 87(UX) = Uxx, m = @(Ux) = Uxy,
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Partial differentiation

Higher order derivatives

Let u be a function of x,y,... then uy and u, are functions of
X,¥,... and so may define
0%u 0 0%u 0

@ = 87(UX) = Uxx, m = @(Ux) = Uxy,

Ou _Q( ) = @_ﬁ( )=
Oxdy  Ox ty) =ty dy2 Oy ) =ty

etc.
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Partial differentiation

Higher order derivatives

There is no automatic guarantee that u,, = uy but. ..
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Partial differentiation

Higher order derivatives

There is no automatic guarantee that u,, = uyx

» Theorem:
Let u be a function of x,y such u,, and uy, exist and are
continuous at a point (a, b). Then,

uxy(a, b) = uyx(a, b).
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Partial differentiation

Higher order derivatives

There is no automatic guarantee that u,, = uyx

» Theorem:
Let u be a function of x,y such u,, and uy, exist and are
continuous at a point (a, b). Then,

uxy(a, b) = uyx(a, b).

» Also for functions of more variables and higher order
derivatives - e.g. if u = u(x,y,z) then

Uxyxz = Uzyxx = Uyxxz = ' = Uxxyz,
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Partial differentiation

Higher order derivatives

There is no automatic guarantee that u,, = uyx

» Theorem:
Let u be a function of x,y such u,, and uy, exist and are
continuous at a point (a, b). Then,

uxy(a, b) = uyx(a, b).

» Also for functions of more variables and higher order
derivatives - e.g. if u = u(x,y, z) then

Uxyxz = Uzyxx = Uyxxz = **+ = Uxxyz,

> in 2A, we assume the order of taking partial derivatives is
unimportant.
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Partial differentiation

Higher order derivatives

Example 8
Determine all second order derivatives of u = sin xy and verify that

Uxy = Uyx.
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Partial differentiation

Higher order derivatives

Example 8
Determine all second order derivatives of u = sin xy and verify that
Uxy = Uyy.
Answers
_ 2
Uxx = =y sinXxy,

Uy, = COS Xy — yxsinXxy,
Uyx = COS Xy — Xy Sin Xy,

— 2
Uyy = —X~sin xy.
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Partial differentiation

Higher order derivatives

Example 9
Let u = f(x/y), where f is an arbitrary (twice differentiable, with
continuous second derivative) function of one variable. Show that

xuy + yu, = 0,
and deduce that

x? Uxx + 2Xylyy, + y2 uy,, = 0.
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Partial differentiation

Two variable chain rule

» Chain rule for functions of one variable - used to find
derivative of F(x) = f(u(x)) -

dF  dudf , .
a = &E = u (X)f (U(X))
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Partial differentiation

Two variable chain rule

» Chain rule for functions of one variable - used to find
derivative of F(x) = f(u(x)) -
dF  dudf y
Ox  dedu u'(x)f'(u(x)).

» extend this technique to functions of several variables
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Partial differentiation

Two variable chain rule

» Chain rule for functions of one variable - used to find
derivative of F(x) = f(u(x)) -

dF  dudf

- dids = U (x)f(u(x)).

» extend this technique to functions of several variables

» Theorem
Let F(x,y) = f(u(x,y),v(x,y)). Then

OF B Oug 8vg

oF _ 0uof ov 8F_8u0f ov Of
Ox  OxOu Ox0Ov

By dyou oyov

This is called the chain rule for functions of two variables.
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Partial differentiation

Two variable chain rule
» Observe the pattern

or (@l or (o] or
(9X_(9X ax’
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Partial differentiation

Two variable chain rule

» Observe the pattern

oF |ou] of +8f

8X_8X 8x’

» extends in an obvious way to functions of any number of
variables - if F(x,y,z) = f(u(x,y, z),v(x,y,z),w(x,y, z))
then

OF _ouor ovor _owor
Ox  OxOu ' OxOv ' Ox ow’
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Partial differentiation

Two variable chain rule - Special cases
» if F(x,y) = f(u(x,y)) then

OF _ udf
Ox  Oxdu’
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Partial differentiation

Two variable chain rule - Special cases
» if F(x,y) = f(u(x,y)) then
OF _ 0u df
Ox  Oxdu’
> if F(x) = f(u(x), v(x)) then

GF _ dudf avor
dx dxOu dxov’
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Partial differentiation

Two variable chain rule - Special cases
» if F(x,y) = f(u(x,y)) then
OF _oudr
Ox  Oxdu’
» if F(x) = f(u(x),v(x)) then
dF _duor  dvor
dx dxOu dxOv’

Partial derivatives are written as ordinary derivatives when used on
functions of one variable.
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Partial differentiation

Two variable chain rule

Example 10

Let w = u® + v? where u = sin@ and v = cos ¢. Use the chain rule
to calculate wy and wy in terms of 6 and ¢.
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Partial differentiation

Two variable chain rule
Example 10

Let w = u® + v? where u = sin@ and v = cos ¢. Use the chain rule
to calculate wy and wy in terms of 6 and ¢.

Answer

wyg =sin20, wg = —sin2¢.
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Partial differentiation

Examples of ODEs and PDEs

» An ordinary differential equation (ODE) is a relationship
between a function of one variable and its derivatives
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Partial differentiation

Examples of ODEs and PDEs

» An ordinary differential equation (ODE) is a relationship
between a function of one variable and its derivatives

» e.g Newton's law of cooling states that
“the rate of change of temperature of an object is proportional
to the temperature difference between it and its surroundings”
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Partial differentiation

Examples of ODEs and PDEs

» An ordinary differential equation (ODE) is a relationship
between a function of one variable and its derivatives

» e.g Newton's law of cooling states that
“the rate of change of temperature of an object is proportional
to the temperature difference between it and its surroundings”

» in mathematical terms this is the differential equation

dT

(T = To),
™ ( 0);

where T(t) is the temperature, Tp the temperature of the
surroundings and k a constant
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Partial differentiation

Examples of ODEs and PDEs

» A partial differential equation (PDE) is a relationship between
a function of more than one variable and its partial derivatives
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Partial differentiation

Examples of ODEs and PDEs

> A partial differential equation (PDE) is a relationship between
a function of more than one variable and its partial derivatives

» e.g. the wave equation,
0%u ,0%u
-5 — C 7 )
ot2 Ox?

where u(x, t) is the displacement (from a rest position) of the
point x at time t and c is the wave speed.
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Partial differentiation

Definitions

» The order of a differential equation is the order of the highest
derivative

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Partial differentiation

Definitions

» The order of a differential equation is the order of the highest
derivative

» the unknown function is called the dependent variable
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Partial differentiation

Definitions
» The order of a differential equation is the order of the highest
derivative
» the unknown function is called the dependent variable

» the variable or variables on which it depends are the
independent variable(s)
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Partial differentiation

Definitions
» The order of a differential equation is the order of the highest
derivative
» the unknown function is called the dependent variable

» the variable or variables on which it depends are the
independent variable(s)

» a solution is an expression for the dependent variable which
satisfies the relation
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Partial differentiation

Definitions
» The order of a differential equation is the order of the highest
derivative
» the unknown function is called the dependent variable

» the variable or variables on which it depends are the
independent variable(s)

> a solution is an expression for the dependent variable which
satisfies the relation

> the general solution includes all possible solutions—includes
arbitrary constants (ODE) or arbitrary functions (PDE)
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Partial differentiation

Definitions

>

The order of a differential equation is the order of the highest
derivative

the unknown function is called the dependent variable

the variable or variables on which it depends are the
independent variable(s)

a solution is an expression for the dependent variable which
satisfies the relation

the general solution includes all possible solutions—includes
arbitrary constants (ODE) or arbitrary functions (PDE)

a solution without arbitrary constants/functions is called a
particular solution. This may be found by giving extra
conditions in the form of initial or boundary conditions.
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Partial differentiation

First order PDEs

Example 11
Find the general solution of the PDE,

of
Fo =Xy 49,
Ox

where f is a function of two independent variables x and y.
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Partial differentiation

First order PDEs

Example 11
Find the general solution of the PDE,

f 2
a—x +y+9,

where f is a function of two independent variables x and y.

Answers
Solution is

1
§x3 + xy + 9x + A(y)

where A is an arbitrary function.
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Partial differentiation

First order PDEs

Example 12
Find the general solution of the PDE,

Pf

=2
Ox0y X

)

where f is a function of two independent variables x and y.
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Partial differentiation

First order PDEs

Example 12
Find the general solution of the PDE,

Pf

=2
Ox0y X

)

where f is a function of two independent variables x and y.

Answers
Solution is

X%y + Aly) + B(x),

where A and B are arbitrary functions.

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Partial differentiation

Solving PDEs using change of variable

» In this section we solve some first and second order PDEs by
using a change of independent variables to write it in a
simpler form
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Partial differentiation

Solving PDEs using change of variable

> In this section we solve some first and second order PDEs by
using a change of independent variables to write it in a
simpler form

» suppose the dependent variable is z and independent variables
are x, y
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Partial differentiation

Solving PDEs using change of variable

> In this section we solve some first and second order PDEs by
using a change of independent variables to write it in a
simpler form
» suppose the dependent variable is z and independent variables
are x, y
» if we change from x,y to u, v then the chain rule gives
dz Ouoz . ov 0z
Ox Ox0u OxOv’
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Partial differentiation

Solving PDEs using change of variable

> In this section we solve some first and second order PDEs by
using a change of independent variables to write it in a
simpler form

» suppose the dependent variable is z and independent variables
are x, y

» if we change from x,y to u, v then the chain rule gives

0: _0u0z  0voz
Ox OxO0u Ox0Ov’
» in fact, for any expression E (e.g. a derivative of z)

0 ou 0 ov 0
67( )—(:TX%(E)JF((TX@*V(E) (1)

this is used when we consider second order PDEs.
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Partial differentiation

First order PDEs

Example 13
By changing variables from (x, y) to (u, v), where u = xy,
v = x/y, solve the PDE

82 0z
Xon +ya = 2x%sin(xy).
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Partial differentiation

First order PDEs

Example 13
By changing variables from (x, y) to (u, v), where u = xy,
v = x/y, solve the PDE

82 0z
Xon +ya = 2x%sin(xy).

Answers
Solution is

7= —3 cos(xy) + A(x/y),

where A is an arbitrary function.
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Partial differentiation

First order PDEs

Example 14
By changing variables from (x, y) to (u, v), where u = x3/y,
v = x, find % and % in terms of partial derivatives with respect

to u and v. Hence, solve the PDE
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Partial differentiation

First order PDEs

Example 14

By changing variables from (x, y) to (u, v), where u = x3/y,
v = x, find % and g—; in terms of partial derivatives with respect
to u and v. Hence, solve the PDE

Answers
Solution is

5
=2 ALy,

where A is an arbitrary function.
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Chapter 2: Double and triple integration

» Double integration on regular domains,
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Chapter 2: Double and triple integration

» Double integration on regular domains,

» Double integration in polar coordinates (and Beta functions),
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Chapter 2: Double and triple integration

» Double integration on regular domains,
» Double integration in polar coordinates (and Beta functions),

» Double integration and general change of variables,
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Chapter 2: Double and triple integration

v

Double integration on regular domains,

v

Double integration in polar coordinates (and Beta functions),

v

Double integration and general change of variables,

v

Triple integration on regular domains,
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Chapter 2: Double and triple integration

v

Double integration on regular domains,

v

Double integration in polar coordinates (and Beta functions),

v

Double integration and general change of variables,

v

Triple integration on regular domains,

v

Triple integration in spherical coordinates,
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Chapter 2: Double and triple integration

» Double integration on regular domains,
» Double integration in polar coordinates (and Beta functions),

» Double integration and general change of variables,

v

Triple integration on regular domains,

v

Triple integration in spherical coordinates,

v

Using integrals to calculate area, volume and mass.
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Area under curves

» In first year definite integrals arise as “areas under curves”.
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Double and triple integration

Area under curves

> In first year definite integrals arise as “areas under curves”.
» We approximate the area under the curve the sum of areas of
rectangles (called a Riemann sum)

j/\ (:(;,E!ffi}) Y=g

//
= >
o x; b 7
A
Sy
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Double and triple integration

Area under curves

> In first year definite integrals arise as “areas under curves”.
» We approximate the area under the curve the sum of areas of
rectangles (called a Riemann sum)

j/\ (:(;,E!ffi}) Y=g

//
= >
o x; b 7
A
Sy
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Double and triple integration

Area under curves

> In first year definite integrals arise as “areas under curves”.
» We approximate the area under the curve the sum of areas of
rectangles (called a Riemann sum)

j/\ (:(;,E!ffi}) Y=g

//
= >
o x; b 7
A
Sy

b
= | )d
| et e N@ngx, -
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Double integration on rectangular domains

» Similarly, the “volume under a surface” z = f(x,y) on the set
D C R? is approximated by the sum of the volumes of
cuboids.
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Double and triple integration

Double integration on rectangular domains

» Similarly, the “volume under a surface” z = f(x,y) on the set

D C R? is approximated by the sum of the volumes of
cuboids.

» Divide R = [a, b] X [c, d] into subrectangles of area
dAjj = 6x;dy; and the cuboid above this has height f(x;, y;).

ZT c:t(.‘:l&:‘;{“t'."{Iﬂ
d
a _{/ - '5

-oh%
“

~
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Double and triple integration

Double integration on rectangular domains

ZIE Ieh gy B0

7{;\ ‘J"j

7 s
[

» The whole volume is approximated by

[firtnon= [ risoes = 33 sy

*
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Double and triple integration

Double integration on rectangular domains

ZIE Ieh gy B0

7{;\ ‘J"j

7 s
[

» The whole volume is approximated by

//Rf(X,)/)dA://Rf(x,y)dxdy:M’lI{IriOOiZ:Zf(thj)(SAU‘

» If the limit as M, N — oo exists we say that f is integrable
over R and dA = dxdy is called the area element.

*
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Double and triple integration

Double integration on rectangular domains

The solid under the curve is made up of slices with y fixed

N

Stice wndh 4 Rixed
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Double and triple integration

Double integration on rectangular domains

The solid under the curve is made up of slices with y fixed

N

Stice wndh 4 Rixed

The area under the curve in such a cross section is

b
I(y) =/ f(x,y)dx,

where y is fixed in the integrand.
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Double and triple integration

Double integration on rectangular domains

The solid under the curve is made up of slices with y fixed

N

Stice wndh 4 Rixed

The area under the curve in such a cross section is

b
I(y) =/ f(x,y)dx,

where y is fixed in the integrand. The volume under the surface is
then

//Rf(x’Y)dXdYZ/cd/(y)dyz/cd </abf(x,y)dx> dy.
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Double integration on rectangular domains

Instead, summing the areas of cross sections of the solid with x
fixed, we have

/ /R F(x, y) dxdy = / ’ ( / " fxy) dy> .

d
frea= T)=], Feumdy

Notation:
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Double integration on rectangular domains

Instead, summing the areas of cross sections of the solid with x
fixed, we have

/ /R F(x, y) dxdy = / ’ ( / " fxy) dy> .

d
frea= T)=], Feumdy

Slice weith = Fixed

Notation:

/abdx/cdf(x,y)dy for /ab (/Cdf(x,y)dy> dx.
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Double and triple integration

Double integration on rectangular domains

Example 1

Evaluate // x* + y? dxdy
R

where R is [1,3] x [2,4].
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Double and triple integration

Double integration on rectangular domains

Example 1

Evaluate // x* + y? dxdy
R

where R is [1,3] x [2,4].

Answer

164

3
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Double integration on regular domains

Consider a more complicated domain T which is the triangle with
vertices (0,0), (1,0) and (1,2).

L] T‘ 5N
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Double integration on regular domains

Consider a more complicated domain T which is the triangle with
vertices (0,0), (1,0) and (1,2).

L] T‘ 5N

yrd

x

(1,0

The domain T is bounded by the lines y =0, x =1 and y = 2x.
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Double and triple integration

Double integration on regular domains

To evaluate a double integral over T we could split T into a
collection of vertical slices,

3
L Tspiw«L
verticed  ax .
slice =L - dy
—_—

| x

integrate with respect to y and then integrate the result with
respect to x.
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Double and triple integration

Double integration on regular domains

To evaluate a double integral over T we could split T into a
collection of vertical slices,

3
L Tspiw«L
verticed  ax .
slice =L - dy
—_—

integrate with respect to y and then integrate the result with
respect to x.

/ /T F(x, y) dxdy = /O i /0 " fy) dy.

Notice that the limits in the first integral depend on x.
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Double and triple integration

Double integration on regular domains

Alternatively, looking at horizontal slices, with end-points x = %y,

x =1, and summing these from y =0 to y = 2.
5 4

T:.[pirni

K/horlbodn{- |

— sliee = | . dx
L'

7x
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Double and triple integration

Double integration on regular domains

Alternatively, looking at horizontal slices, with end-points x =

1
2V
x =1, and summing these from y =0to y =2
5 A
T:.[pirni
K/horlbodn{- |
— sliee = [ . d=
L'
} 7x
Y f

Thus the integral is also

/ /T F(x, y) dxdy = /O "y /1 * fy) .

2_)/
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Double and triple integration

Double integration on regular domains

Definition
Let D be a domain in the x, y-plane. D is said to be
» Type | (y-simple) if it is bounded by lines x = a, x = b and
curves y = g(x), y = h(x), the intersection of any vertical
line x = ¢, where ¢ € [a, b], is an interval or a single point,
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Double and triple integration

Double integration on regular domains

Definition
Let D be a domain in the x, y-plane. D is said to be
» Type | (y-simple) if it is bounded by lines x = a, x = b and
curves y = g(x), y = h(x), the intersection of any vertical
line x = ¢, where ¢ € [a, b], is an interval or a single point,
» Type Il (x-simple) if it is bounded by curves x = g(y),
x = h(y) and lines y = a, y = b, the intersection of any
horizontal line y = ¢, where ¢ € [a, b], is an interval or a
single point,
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Double and triple integration

Double integration on regular domains

Definition
Let D be a domain in the x, y-plane. D is said to be
» Type | (y-simple) if it is bounded by lines x = a, x = b and
curves y = g(x), y = h(x), the intersection of any vertical
line x = ¢, where ¢ € [a, b], is an interval or a single point,
» Type Il (x-simple) if it is bounded by curves x = g(y),
x = h(y) and lines y = a, y = b, the intersection of any
horizontal line y = ¢, where ¢ € [a, b], is an interval or a
single point,
» regular if it the union of finitely many disjoint type | and type
Il domains. Every type | and type Il domain is regular.
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Double and triple integration

Double integration on regular domains

Example
/s v v . 7 s I
v o / f‘/‘ Y
— of SN v X
X . G . sl
| l/ v
-

Type | and type Il neither type | or type Il

Type | and not type Il
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Double and triple integration

Double integration on regular domains

Example 2

State whether each of the domains shown below are type | and/or
type Il or regular.

ANt A &
&
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Double and triple integration

Double integration on regular domains

Example 2
State whether each of the domains shown below are type | and/or
type Il or regular.

ANt A &
&

Answers
(a) Both, (b) Type I only, (c) Neither.
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Double and triple integration

Double integration on regular domains
Theorem

If D is the type | domain defined by g(x) <y < h(x) where
a < x < b then

b h(x)
// f(x,y)dxdy = / dx/ f(x,y)dy.
D a g(x)
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Double and triple integration

Double integration on regular domains

Theorem

If D is the type | domain defined by g(x) <y < h(x) where
a < x < b then

b h(x)
// f(x,y)dxdy = / dx/ f(x,y)dy.
D a g(x)

If D is the type Il domain defined by g(y) < x < h(y) where
a <y < bthen

b h(y)
// f(x,y)dxdy = / dy/ f(x,y)dx.
D a g(y)
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Double and triple integration

Double integration on regular domains

Theorem
If D is the type | domain defined by g(x) <y < h(x) where
a < x < b then

b h(x)
// f(x,y)dxdy = / dx/ f(x,y)dy.
D a g(x)

If D is the type Il domain defined by g(y) < x < h(y) where
a <y < bthen

b h(y)
// f(x,y)dxdy = / dy/ f(x,y)dx.
D a g(y)

The inner integral may have a limit depending on the other
variable but the outer integral) has constant limits.
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Double and triple integration

Double integration on regular domains

Example 3
Evaluate

// xy? dxdy,
D

where D is the region in the first quadrant bounded by the curve
y = 4x2, the x axis and the line x = 1.

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Double integration on regular domains

Example 3
Evaluate

// xy? dxdy,
D

where D is the region in the first quadrant bounded by the curve
y = 4x2, the x axis and the line x = 1.

Answer

e x=8p 04
Y

i x

wiEl 4

S
?
-3
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Double and triple integration

Double integration on regular domains

Example 3
Evaluate

// xy? dxdy,
D

where D is the region in the first quadrant bounded by the curve
y = 4x2, the x axis and the line x = 1.

Answer
w2 x=8p 04
RV
, 8
3

i x

wiEl 4

S
?
-3
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Double and triple integration

Double integration on regular domains

Example 4
Evaluate

| = // 3x2 + y? dxdy,
D

where D is the triangle with vertices (0,0), (1,1) and (2,1).
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Double and triple integration

Double integration on regular domains

Example 4
Evaluate

| = // 3x2 + y? dxdy,
D

where D is the triangle with vertices (0,0), (1,1) and (2,1).

Answer
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Double and triple integration

Double integration on regular domains

Example 4
Evaluate

| = // 3x2 + y? dxdy,
D

where D is the triangle with vertices (0,0), (1,1) and (2,1).

Answer

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Double and triple integration

Double integration on regular domains

Example 5
Evaluate

1 1 ey2
I—/ dx/ —dy.
0 Jx VX
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Double and triple integration

Double integration on regular domains

Example 5
Evaluate
/ / a / 1 ey2d
= Ix — dy.
0 Jx VX
Answer
U 3 4 '
] I
Ry Fe 3 Rexey®
&+
= | = 0 y? G
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Double and triple integration

Double integration on regular domains

Example 5
Evaluate
/ / a / e d
= Ix —dy.
0 Jx VX
Answer
U 3 4 '
I I
Ry Fe 3 Rexey®
&+
= | = 0 y? G
| =e—1.
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Double and triple integration

Double integration on regular domains

Example 6

Find the volume of the tetrahedron T, bounded by the planes
XxX4+2y+z=2,x=2y,x=0and z=0.
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Double and triple integration

Double integration on regular domains

Example 6

Find the volume of the tetrahedron T, bounded by the planes
XxX4+2y+z=2,x=2y,x=0and z=0.
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Double and triple integration

Double integration on regular domains

Example 6

Find the volume of the tetrahedron T, bounded by the planes
XxX4+2y+z=2,x=2y,x=0and z=0.

3 Base A,
L\ i
Il 37""7'—‘77-

T {14

! )
|t
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Double integration in polar coordinates

The position of a point (x,y) on the cartesian plane can be
specified by r, 8 which are

x=rcos, y=rsinf, 60¢€l0,2r), r>0.
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Double integration in polar coordinates

The position of a point (x,y) on the cartesian plane can be
specified by r, 6 which are

x=rcos, y=rsinf, 60¢€l0,2r), r>0.

Y A (x4) = (TesE, rs5wnd)

£

)

N
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Double integration in polar coordinates

In cartesian coordinates, the area of an elementary rectangle using
in the Riemann sum is dA = dxdy. In polar coordinates, the area
element has area A = rdrdf.
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Double integration in polar coordinates

In cartesian coordinates, the area of an elementary rectangle using
in the Riemann sum is dA = dxdy. In polar coordinates, the area
element has area A = rdrdf.

~ B+50
YT Arelegt —y Az 50 5
= T 86 / ’ _A e
450
r Lengfh =t
—>x

For this reason in polar coordinates, dA = rdrd9, i.e.,

// f(x,y)dxdy = // f(rcos@,rsinf)rdrdf.
D D
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Double integration in polar coordinates

In cartesian coordinates, the area of an elementary rectangle using
in the Riemann sum is dA = dxdy. In polar coordinates, the area

element has area dA = rdré0.
ars0

s
YT Arelegt —y Az 50 5
=80 TN e
450
r Lengfh =t
—>x

For this reason in polar coordinates, dA = rdrd9, i.e.,

// f(x,y)dxdy = // f(rcos@,rsinf)rdrdf.
D D

When either the domain is circular or the integrand is written in
terms of x2 + y2 (= r?), use polar coordinates.
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Double and triple integration

Double integration in polar coordinates

Example 7

Use polar coordinates to evaluate

I://x+ydxdy,
D

where D is part of the annulus between circles of radius 1 and 2,
centre (0, 0) lying in upper half plane.
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Double and triple integration

Double integration in polar coordinates

Example 7
Use polar coordinates to evaluate

I://x+ydxdy,
D

where D is part of the annulus between circles of radius 1 and 2,
centre (0, 0) lying in upper half plane.

Answer
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Double and triple integration

Double integration in polar coordinates

Example 7
Use polar coordinates to evaluate

I://x+ydxdy,
D

where D is part of the annulus between circles of radius 1 and 2,
centre (0, 0) lying in upper half plane.

Answer

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Double and triple integration

Double integration in polar coordinates

Example 8
Evaluate

I:// y dxdy,
D

where D is the part of the disk of radius a (> 0) and centre (a,0)
lying in the first quadrant.
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Double and triple integration

Double integration in polar coordinates

Example 8
Evaluate

I:// y dxdy,
D

where D is the part of the disk of radius a (> 0) and centre (a,0)
lying in the first quadrant.

Answer
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Double and triple integration

Double integration in polar coordinates

Example 8
Evaluate

I:// y dxdy,
D

where D is the part of the disk of radius a (> 0) and centre (a,0)
lying in the first quadrant.

Answer
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Beta and Gamma functions

Beta functions can help us easily integrate functions that involve
powers of cosine and sine.

» Beta function:

1

B(p,q) = / xP71(1 — x)9Ldx, p>0andg>0.

Jo
A particularly useful form is,
w/2

B(p.q) = 2/ sin??~*(y) cos®¥ ™ (y) dy .

Jo

This is found by substituting x = sin? y in the definition of the
Beta function.
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Beta and Gamma functions

Beta functions can help us easily integrate functions that involve
powers of cosine and sine.

» Beta function:
B(p,q) = /01 xP71(1 — x)97Ldx, p>0and g>0.
A particularly useful form is,
B(p.q) =2 /om sin®?~(y) cos1 () dy .
This is found by substituting x = sin® y in the definition of the

Beta function.
» Gamma function:
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Double and triple integration

Properties of Beta and Gamma functions

1. 1(1)=1,T(2)=1,T(3) =2 and in general T'(n) = (n—1)!
for every positive integer n.
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Double and triple integration

Properties of Beta and Gamma functions
1. (1) =1,T(2) =1,T(3) =2 and in general ['(n) = (n — 1)!
for every positive integer n.

2. T'(k) =(k—1)I(k —1) for all real numbers k > 1 Repeatedly
applying the formula for (k) gives a formula in terms of
F(k—p), where 0 < k—p <1, eg [(9/4)=21(3).
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Double and triple integration

Properties of Beta and Gamma functions
1. (1) =1,T(2) =1,T(3) =2 and in general ['(n) = (n — 1)!
for every positive integer n.

2. (k) =(k—1)I'(k —1) for all real numbers k > 1 Repeatedly
applying the formula for (k) gives a formula in terms of
1r(1
[(k —p), where 0 < k — p <1, e.g. [(9/4) =211 (3).
3. For0< k <1, T(k)[(1 — k) =7/sin(km).
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Double and triple integration

Properties of Beta and Gamma functions
1. (1) =1,T(2) =1,T(3) =2 and in general ['(n) = (n — 1)!
for every positive integer n.

2. (k) =(k—1)I'(k —1) for all real numbers k > 1 Repeatedly
applying the formula for (k) gives a formula in terms of
1r(1
[(k —p), where 0 < k — p <1, e.g. [(9/4) =211 (3).
3. For0< k <1, T(k)[(1 — k) =7/sin(km).

4. T(1)2) = .
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Double and triple integration

Properties of Beta and Gamma functions
1. (1) =1,T(2) =1,T(3) =2 and in general ['(n) = (n — 1)!
for every positive integer n.

2. (k) =(k—1)I'(k —1) for all real numbers k > 1 Repeatedly
applying the formula for (k) gives a formula in terms of
1r(1
[(k —p), where 0 < k — p <1, e.g. [(9/4) =211 (3).
3. For0< k <1, T(k)[(1 — k) =7/sin(km).

4. T(1)2) = 7.
5. B(p,q) = M-
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Double and triple integration

Properties of Beta and Gamma functions

Result
From the properties of Gamma functions we can derive the
following result:

. . _(m—=1)(m—=3)...(n—1)(n—3)...
/0 sin™ x cos” x dx = (mtn)(mtn—2)(m+n—4)... K

where K =1 unless m and n are both even in which case K = /2.
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Double and triple integration

Properties of Beta and Gamma functions

Result
From the properties of Gamma functions we can derive the
following result:

. . _(m—=1)(m—=3)...(n—1)(n—3)...
/0 sin™ x cos” x dx = (mtn)(mtn—2)(m+n—4)... K

where K =1 unless m and n are both even in which case K = /2.

In the special cases, m = 0 or m = 1 none of the numerator factors
involving m appear.
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Double and triple integration

Properties of Beta and Gamma functions

Result
From the properties of Gamma functions we can derive the
following result:

. . _(m—=1)(m—=3)...(n—1)(n—3)...
/0 sin™ x cos” x dx = (mtn)(mtn—2)(m+n—4)... K

where K =1 unless m and n are both even in which case K = /2.

In the special cases, m = 0 or m = 1 none of the numerator factors
involving m appear.
For example,

/2 2.5.3.1 2
/0 sin> x cos® x dx:%:@.
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Simplifying sine and cosine integrals

Properties of the graphs of sine and cosine seen in 1S/X simplify
the integral before applying Beta functions.
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Double and triple integration

Simplifying sine and cosine integrals

Properties of the graphs of sine and cosine seen in 1S/X simplify
the integral before applying Beta functions.

(B SN |

kY

o ﬁ\a\lr/'/;/ T R AN A T
A \ﬁs\ H = LA X
ﬁ¢ Cm&a‘.r..
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Double and triple integration

Simplifying sine and cosine integrals

Properties of the graphs of sine and cosine seen in 1S/X simplify
the integral before applying Beta functions.

(B SN |

kY

o ﬁ\a\lr/'/;/ T R AN A T
A \ﬁs\ H = LA X
ﬁ¢ Cm&a‘.r..

We deduce

T w/2 27 ™
/ sin x dx_2/ sin x dx; / sinx dx = 0; / cosx dx = 0;
0 0 0 0 y

T /2 ™ w/2
/ sin® x dx:2/ sin® x dx; / cos® x dx:2/ cos® x dx .. .et
0 0 0 0
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Double and triple integration

Beta functions

Example 9
Evaluate:

/ sin® x cos* x dx, (b)I:/ sin3 x cos® x dx,
0 0

27
/ sin® x cos”* x dx.
0
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Double and triple integration

Beta functions

Example 9
Evaluate:

(a) / :/ sind x cos* x dx, (b) / :/ sin3 x cos® x dx,
0 0
2

(c) I = / sin x cos* x dx.
0

Answers
(a) I:%, (b) I =0, (c) I =3.
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Double and triple integration

Change of variables in double integration

Definition
Consider a change of variables x, y to u,v. So x = x(u, v) and
. O(u,v) . .
y = y(u,v). The Jacobian (u,v) is the determinant
A(x,y)
u
vj: j// = UyxVy — Uy Vx.
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Double and triple integration

Change of variables in double integration

Definition
Consider a change of variables x, y to u,v. So x = x(u, v) and
. O(u,v) . .
y = y(u,v). The Jacobian (u,v) is the determinant
A(x,y)
ue uy| B
v ow|= Uy Vy — Uy Vy.

If the change of variables is invertible then the Jacobian is nonzero
and

ox,y) d(u,v)
2 =1 o)
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Change of variables in double integration
Theorem

Let the change of variables x, y to u, v be invertible on the domain
D. Then

// F(x, y) dxdy = // uv))‘m

where D is the domain in the xy-plane and S is the corresponding
domain in the uv-plane.

dudyv,
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Double and triple integration

Change of variables in double integration

Theorem

Let the change of variables x, y to u, v be invertible on the domain
D. Then

// F(x, y) dxdy = // uv))‘m

where D is the domain in the xy-plane and S is the corresponding
domain in the uv-plane.
Often it is convenient to use

oxy) . /uv)
o, v) 1/ 3(x.y)

dudyv,
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Double and triple integration

Change of variables in double integration

» The idea here is to choose variables u, v in which the domain

is simply described, preferably with constant limits, e.g.
L

vﬂxmiﬂﬁ ;
: =
f [
o
TSN
}a..u eI L 11
--------- S S
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Double and triple integration

Change of variables in double integration

» The idea here is to choose variables u, v in which the domain

is simply described, preferably with constant limits, e.g.
L

vﬂxmiﬂﬁ ;
: =
¥ T
Wevadilits)
2 S 2 v, A- ~r§rr—rr-r|4~!r¢':;___{ug,%‘
}a..u eI L 11
--------- S S
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Double and triple integration

Change of variables in double integration

» The idea here is to choose variables u, v in which the domain

is simply described, preferably with constant limits, e.g.
L
whringe {né

4 Y
\ d |

\m
| SO
T

|
T e

The lines u = ug and v = vy in the uv-plane get mapped to
curves x = x(ug, v), y = y(uo, v) and x = x(u, vp),
y = y(u, vo) in the xy-plane.
» The idea behind the proof of the theorem is to show that the
a(x,
C Gua.
d(u, v)
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Double and triple integration

Change of variables in double integration

» The idea here is to choose variables u, v in which the domain

is simply described, preferably with constant limits, e.g.
L
whringe {né

4 Y
\ d |

\m
| SO
T

|
T e

The lines u = ug and v = vy in the uv-plane get mapped to
curves x = x(ug, v), y = y(uo, v) and x = x(u, vp),
y = y(u, vo) in the xy-plane.
» The idea behind the proof of the theorem is to show that the
0
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Double and triple integration

Change of variables in double integration

» The idea here is to choose variables u, v in which the domain

is simply described, preferably with constant limits, e.g.
L
whringe {né

4 Y
\ d |

\m
| SO
T

|
T e

The lines u = ug and v = vy in the uv-plane get mapped to
curves x = x(ug, v), y = y(uo, v) and x = x(u, vp),
y = y(u, vo) in the xy-plane.
» The idea behind the proof of the theorem is to show that the
0
CN| .
A(u,v)
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area element is




Change of variables in double integration
» Let r = (x,y). The tangent vector at (xp, yo) to the curve

(x(u,v), y(u,vo)) is ry = (g—’; %)
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Change of variables in double integration

» Let r = (x,y). The tangent vector at (xo, yo) to the curve

(x(u,v), y(u,vo)) is ry = (%, %)

» The tangent vector at (xp, yp) to the curve (x(ug, v), y(uo, v))

isr, = (ﬁ(%)
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Change of variables in double integration

» Let r = (x,y). The tangent vector at (xo, yo) to the curve

(x(u, vo), y(u, o)) is vy = (2, %)

» The tangent vector at (xp, yo) to the curve (x(uo, v), y(uo, v))

: _ (0x Oy
Isr, = v ov |-

» The area of the small element of D is AA and is
approximated by the area of the parallelogram which is given
by the magnitude of the following cross product

9(x,y)
(u, v)k'

Aur,x Avr, = AulAv(x,y, —xvyu)k = Aulv

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Change of variables in double integration

» Let r = (x,y). The tangent vector at (xo, yo) to the curve

(x(u, vo), y(u, o)) is vy = (2, %)

» The tangent vector at (xp, yo) to the curve (x(uo, v), y(uo, v))

: _ (0x Oy
Isr, = v ov |-

> The area of the small element of D is AA and is
approximated by the area of the parallelogram which is given
by the magnitude of the following cross product

9(x,y)
A(u,v) k.

Auryx Avr, = Aulv(xyy, —xvyu)k = AulAv
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Change of variables in double integration

» Let r = (x,y). The tangent vector at (xo, yo) to the curve

(x(u, vo), y(u, o)) is vy = (2, %)

» The tangent vector at (xp, yo) to the curve (x(uo, v), y(uo, v))

: _ (0x Oy
Isr, = v ov |-

> The area of the small element of D is AA and is
approximated by the area of the parallelogram which is given
by the magnitude of the following cross product

9(x,y)
A(u,v) k.

Auryx Avr, = Aulv(xyy, —xvyu)k = AulAv
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Change of variables in double integration

» Summing the elements that make up the region D

. N M
J[ fxyady = im 33" rx)an

i=1 j=1
N M
= lim ZZ;‘(X(U- vi), y(ui, vj)) O(x.y) AulAv
N, Moo 4 4 DI O, v)

which is the Riemann sum for [[¢ f(x(u,v), y(u,v))|J| dudv.
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Double and triple integration

Change of variables in double integration
» Summing the elements that make up the region D

N M
//D f(x,y)dxdy = N, I/\I/Inloozz f(xi,yj)AA

i=1 j=1

i SO Fd ) vl vy | 269)
= lim Z:Zf(x(u,,vj),y(unVJ))a AuAv

N, M—o0 (u,v)

i=1 j=1
which is the Riemann sum for [ ¢ f(x(u,v), y(u,v))|J| dudv.
» For the change to polar coordinates,

cosf) —rsin0
sinf rcosf

(rcosf), (rcosf)y
(rsind), (rsinf)g

‘ = r(cos? +sin?0) = r,
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Double and triple integration

Change of variables in double integration

» Summing the elements that make up the region D

N M
//D f(x,y)dxdy = N, Il\l/lnloozz f(xi,yj)AA

i=1 j—=1
Ses A(x.y)
- ir 3 () ) G2 | By

which is the Riemann sum for [ ¢ f(x(u,v), y(u,v))|J| dudv.
» For the change to polar coordinates,

cosf —rsinf
sinf rcos@

_ |(rcos®), (rcosf)y
~|(rsin®), (rsinf)y

‘ = r(cos? +sin?0) = r,
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Double and triple integration

Change of variables in double integration

» Summing the elements that make up the region D

//Df(x,y)dxdy:N Il\l/lnl\OOZfo,,yj

i=1 j=1
Ses A(x.y)
- ir 3 () ) G2 | By

which is the Riemann sum for [ ¢ f(x(u,v), y(u,v))|J| dudv.
» For the change to polar coordinates,

_ |(rcos®), (rcosf)y
~|(rsin®), (rsinf)y

giving the result

// f(x,y)dxdy:// f(rcos@,rsin@)rdrdf.
D S

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)

cosf —rsinf
sinf rcos@

= r(cos? +sin?0) = r,




Double and triple integration

Change of variables in double integration

Example 10
By making a suitable change of variables, evaluate

// x + 3y dxdy,
D

where D is the region bounded by the lines

y=x-1 y=x41 y=-x—-1y=—x+3.
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Double and triple integration

Change of variables in double integration

Example 10
By making a suitable change of variables, evaluate

// x + 3y dxdy,
D

where D is the region bounded by the lines

y=x-1 y=x41 y=-x—-1y=—x+3.

Answer
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Double and triple integration

Change of variables in double integration

Example 10
By making a suitable change of variables, evaluate

// x + 3y dxdy,
D

where D is the region bounded by the lines

y=x-1 y=x41 y=-x—-1y=—x+3.

Answer
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Double and triple integration

Change of variables in double integration

Example 11

X

Find the area bounded by the curves y = €*, y =2e*, y = e~
and y = 2e™%.
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Double and triple integration

Change of variables in double integration

Example 11
Find the area bounded by the curves y = e*, y =2e*, y = e~
and y = 2e™%.
The area of a surface A C R? is given by the double integral
// 1 dxdy.
A
Answer
v
2 =
L}
T t —>u
1 2 :
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Double and triple integration

Change of variables in double integration

Example 11

Find the area bounded by the curves y = €*, y =2e*, y = e~
and y = 2e™%.

The area of a surface A C R? is given by the double integral

// 1 dxdy.
A

Answer

X
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Triple integration

Define triple integrals for functions of three variables.
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Triple integration

Define triple integrals for functions of three variables. Recall the
definition of a double integral is given by

N M
//R f(x,y) dxdy = N, II\I/InLooZ Z f(xi, yj)0xidy;.

i=1 j=1
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Triple integration

Define triple integrals for functions of three variables. Recall the
definition of a double integral is given by

//R f(x,y) dxdy = Il\l/,nLOOZZf Xiy Yj)OxiOy;.

For a triple integral instead of summing over an area dA;; = dx;dy;,
we sum over a volume ¢ Vjj = 6x;0y;dz, which leads us to

L
///\/ f(x,y,z) dxdydz = N, I\/llir?aooz Z Z f(xi,Yj, 2k)0xi0yj0 z.
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Double and triple integration

Triple integration

» If V lies between two continuous functions of x and y then

: uz(x,y)
/// f(x,y,z) dxdydz = // / f(x,y,z) dz | dxdy
JJV JD ui(x,y)

where D is the projection of V onto the xy plane.

1= v

t/‘cz:ﬁg

Y
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Double and triple integration

Triple integration

» If V lies between two continuous functions of x and y then

/// X, y,z) dxdydz = // (/ y;/) (x,y,2) dz) dxdy

where D is the projection of V onto the xy plane.

=
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Double and triple integration

Triple integration

» If V lies between two continuous functions of x and y then

/// X, y,z) dxdydz = // (/ y;/) (x,y,2) dz) dxdy

where D is the projection of V onto the xy plane.

=
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Triple integration

» If V lies between two functions of y and z then

/// XyZdXdde_// </ o) Xy,z)dx>dydz,

where D is the projection of V' onto the yz plane.
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Double and triple integration

Triple integration

» If V lies between two functions of y and z then

ua(y, Z)
/// X,y,z)dxdydz = // / ) f(x,y,z) dx | dydz,
(v,z

where D is the projection of V onto the yz plane.

» Lastly if V lies between two functions of x and z then

uz(x, z)
/// x,y,z)dxdydz = // (/ f(x,y,z) dy) dxdz,
u1(x,z)

where D is the projection of V onto the xz plane.
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Double and triple integration

Triple integration

» If V lies between two functions of y and z then

ua(y, Z)
/// X,y,z)dxdydz = // / ) f(x,y,z) dx | dydz,
(v,z

where D is the projection of V onto the yz plane.

> Lastly if V lies between two functions of x and z then

up(x,2)
/// f(x,y,z) dxdydz = // / f(x,y,z) dy | dxdz,
vV D u1(x,2)

where D is the projection of V onto the xz plane.
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Double and triple integration

Triple integration

» If V lies between two functions of y and z then

ua(y, Z)
/// X,y,z)dxdydz = // / ) f(x,y,z) dx | dydz,
(v,z

where D is the projection of V onto the yz plane.

> Lastly if V lies between two functions of x and z then

up(x,2)
/// f(x,y,z) dxdydz = // / f(x,y,z) dy | dxdz,
vV D u1(x,2)

where D is the projection of V onto the xz plane.
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Triple integration

In general if V lies between two continuous functions of x and y
then

ha(x) &2(xy)
/// x,y,z) dxdydz = / dx/ / f(x,y,z)dz.
h gl(ny)

Constants Cu rves Surfaces
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Triple integration

» The volume of a solid V C R3 is given by the following triple
integral

[ vaxaye.
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Triple integration

» The volume of a solid V C R3 is given by the following triple
integral

J[] vaxaye.

» The mass of the solid V, where the density f(x,y, z) of the
solid varies across V is

///V f(x,y,z) dxdydz.
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Triple integration

» The volume of a solid V C R3 is given by the following triple
integral

J[] vaxaye.

» The mass of the solid V, where the density f(x,y, z) of the
solid varies across V is

///\/ f(x,y, z) dxdydz.
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Triple integration

» The volume of a solid V C R3 is given by the following triple
integral

J[] vaxaye.

» The mass of the solid V, where the density f(x,y, z) of the
solid varies across V is

///\/ f(x,y, z) dxdydz.
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Double and triple integration

Triple integration

Example 12
Evaluate

| = /// z dxdydz,
v

where V is the solid tetrahedron bounded by the four planes
x=0,y=0,z=0and x+y+z=1.
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Double and triple integration

Triple integration

Example 12
Evaluate

| = /// z dxdydz,
v

where V is the solid tetrahedron bounded by the four planes
x=0,y=0,z=0and x+y+z=1.

Answer
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Double and triple integration

Triple integration

Example 12
Evaluate

| = /// z dxdydz,
v

where V is the solid tetrahedron bounded by the four planes
x=0,y=0,z=0and x+y+z=1.

Answer
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Double and triple integration

Triple integration

Example 13
Set up (but do not evaluate) the integral for the volume of the
solid that lies below the paraboloid z = 9 — x? — y? and above the

plane z = 5.
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Double and triple integration

Triple integration

Example 13

Set up (but do not evaluate) the integral for the volume of the
solid that lies below the paraboloid z = 9 — x? — y? and above the
plane z = 5.

Answer

ProJecho'n of V oto
the xy-plone .
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Double and triple integration

Triple integration

Example 13

Set up (but do not evaluate) the integral for the volume of the
solid that lies below the paraboloid z = 9 — x? — y? and above the
plane z = 5.

Answer

ProJecho'n of V oto
the xy-plone .
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Triple integration in spherical coordinates

The position of a point (x,y, z) in cartesian coordinates can be
specified by p, 8, ¢ which are

x = psin¢gcosh, y=psingsinf, z= pcosa.

6 €10,27), ¢ € [0,7), p> 0.
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Triple integration in spherical coordinates

The position of a point (x,y, z) in cartesian coordinates can be
specified by p, 8, ¢ which are

x = psin¢gcosh, y=psingsinf, z= pcosa.

6 €10,27), ¢ € [0,7), p> 0.
?'F"w\

*2?1, By, v

o A4 !
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Double and triple integration

Triple integration in spherical coordinates

In cartesian coordinates, the volume of an elementary cuboid used
in the Riemann sum is 0V = §x dy dz. In spherical coordinates, the
volume element is §V ~ p? sin ¢ 660 ¢ 0p.
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Double and triple integration

Triple integration in spherical coordinates

In cartesian coordinates, the volume of an elementary cuboid used
in the Riemann sum is 0V = §x dy dz. In spherical coordinates, the
volume element is §V ~ p? sin ¢ 660 ¢ 0p.

T e
PRI &duta
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Double and triple integration

Triple integration in spherical coordinates

In cartesian coordinates, the volume of an elementary cuboid used
in the Riemann sum is 0V = §x dy dz. In spherical coordinates, the
volume element is §V ~ p? sin ¢ 660 ¢ 0p.

T e
PRI &duta

g
/// f(x,y,z)dxdydz =
v

/// f(psin ¢ cos B, psin ¢sinf, pcos @) p*sin ¢ dfdpdp.
v

When either the domain is spherical or the integrand is written in
terms of x? + y? + z2 (= p?), use spherical coordinates.
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Double and triple integration

Triple integration in spherical coordinates

Example 14

Use spherical coordinates to evaluate

I = /// exp((x2 4 y? 4 2%)*/?) dxdydz,
B

where B is the unit ball, B = {(x,y, z)|x? + y? + z2 < 1}.
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Double and triple integration

Triple integration in spherical coordinates

Example 14

Use spherical coordinates to evaluate

I = /// exp((x2 4 y? 4 2%)*/?) dxdydz,
B

where B is the unit ball, B = {(x,y, z)|x? + y? + z2 < 1}.

Answer

4
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Double and triple integration

Triple integration in spherical coordinates

Example 15

Find the volume of the solid that lies above the cone
z = +/x2 + y2 and below the sphere x?> + y? 4+ z%2 = z.
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Double and triple integration

Triple integration in spherical coordinates

Example 15
Find the volume of the solid that lies above the cone
z = +/x2 + y2 and below the sphere x?> + y? 4+ z%2 = z.

Answer

L4

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Double and triple integration

Triple integration in spherical coordinates

Example 15
Find the volume of the solid that lies above the cone
z = +/x2 + y2 and below the sphere x?> + y? 4+ z%2 = z.

Answer

L4

|3

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Chapter 3: Differentiation of vectors

» Scalar- and vector-valued functions
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Chapter 3: Differentiation of vectors

» Scalar- and vector-valued functions

» vector and scalar fields
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Chapter 3: Differentiation of vectors

» Scalar- and vector-valued functions
» vector and scalar fields

» types of derivative—grad, div and curl
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Scalar- and vector-valued functions

» In Chapters 1 and 2 we considered functions of several
variables f : D — R where D C R”
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Vector calculus

Scalar- and vector-valued functions

» In Chapters 1 and 2 we considered functions of several
variables f : D — R where D C R"

> these are scalar-valued functions—the result of applying the
functions is a real number (a scalar)
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Vector calculus

Scalar- and vector-valued functions

» In Chapters 1 and 2 we considered functions of several
variables f : D — R where D C R”

> these are scalar-valued functions—the result of applying the
functions is a real number (a scalar)

» next we consider functions f : D — R™ where m =2 or 3
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Vector calculus

Scalar- and vector-valued functions
» In Chapters 1 and 2 we considered functions of several
variables f : D — R where D C R"

> these are scalar-valued functions—the result of applying the
functions is a real number (a scalar)

» next we consider functions f : D — R™ where m=2or 3

» they are vector-valued functions—the result is a 2- or 3-vector
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Scalar- and vector-valued functions
» In Chapters 1 and 2 we considered functions of several

variables f : D — R where D C R”

> these are scalar-valued functions—the result of applying the
functions is a real number (a scalar)

> next we consider functions f : D — R™ where m =2 or 3
> they are vector-valued functions—the result is a 2- or 3-vector

» examples include velocity as a function of time and direction
of the Earth’s magnetic field.
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Parametric equations of curves

» The simplest vector-valued functions have the form
f: 1 — R?2 where | C R, an interval of the real line
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Vector calculus

Parametric equations of curves

» The simplest vector-valued functions have the form
f: 1 — R?, where | C R, an interval of the real line

» for each t € [, f(t) is the position vector of a point in the
plane; the set of all such points forms a curve.
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Parametric equations of curves
» The simplest vector-valued functions have the form

f: 1 — R?, where | C R, an interval of the real line

» for each t € [, f(t) is the position vector of a point in the
plane; the set of all such points forms a curve.

> position as a function of time is one example. We will revisit
parametric equations in Chapter 4.
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Scalar and vector fields

» A function f(r) where r = (x, y) or (x,y,z) (mapping a
vector to a scalar) is called a scalar field.
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Scalar and vector fields

» A function f(r) where r = (x,y) or (x,y,z) (mapping a
vector to a scalar) is called a scalar field.

» A function F(r) where r = (x,y) or (x, y,z) (mapping a
vector to another vector) is called a vector field.
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Scalar and vector fields

» A function f(r) where r = (x,y) or (x,y,z) (mapping a
vector to a scalar) is called a scalar field.

» A function F(r) where r = (x,y) or (x, y, z) (mapping a
vector to another vector) is called a vector field.

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



_ Organisation of the class Partial differentiation Double and triple integration Vector caleulus
Scalar and vector fields

» A function f(r) where r = (x,y) or (x,y,z) (mapping a
vector to a scalar) is called a scalar field.

» A function F(r) where r = (x,y) or (x, y, z) (mapping a
vector to another vector) is called a vector field.

A typical vector field

y

DAV SR RVANAN

N R R R S A

A A N R e R R VA

I N VI VY

I N R I R e.g. velocity at different points
VY Yy ey vy YN % ina fluid.

I N Y R VI VY

A R N R R R R VAN

N R R R R R VAV

DN SR RN
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Different types of derivative

» We can define several types of derivative of scalar and vector
fields, expressed in terms of

o o0 0
V= <(f)x7(f)y’@z>
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Different types of derivative

» We can define several types of derivative of scalar and vector
fields, expressed in terms of

o 0 0
V—<ax’ay’az>

» pronounced del or nabla (not to be confused with A)
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Vector calculus

Different types of derivative

» We can define several types of derivative of scalar and vector
fields, expressed in terms of

o0 0 0
7= (5riy 32)
» pronounced del or nabla (not to be confused with A)

» can form “products” of this vector with other vectors and
scalars, but because it is an operator, it always has to be the
first term if the product is to make sense.
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Vector calculus

Different types of derivative

» We can define several types of derivative of scalar and vector
fields, expressed in terms of

o0 0 0
7= (5riy 32)
» pronounced del or nabla (not to be confused with A)

» can form “products” of this vector with other vectors and
scalars, but because it is an operator, it always has to be the
first term if the product is to make sense.
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Vector calculus

Different types of derivative

» We can define several types of derivative of scalar and vector
fields, expressed in terms of

o0 0 0
7= (5riy 32)
» pronounced del or nabla (not to be confused with A)

» can form “products” of this vector with other vectors and
scalars, but because it is an operator, it always has to be the
first term if the product is to make sense.

Name of product Formula | Type of result | Derivative
Scalar multiplication au Vector \Y43
Scalar or dot product u-v Scalar V-F
Vector or cross product | u X v Vector V xF
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Gradient of a scalar field

The gradient of a scalar field f is

prad f — Vf — <af of 8;‘)

x’ 9y’ 0z
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Gradient of a scalar field

The gradient of a scalar field f is

prad f — Vf — <af of 8;‘)

x’ 9y’ 0z

Example 1
Find the gradient of the scalar field f(x,y,z) = x?y + x cosh yz.
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Gradient of a scalar field

The gradient of a scalar field f is

prad f — Vf — <af of 8;‘)

x’ 9y’ 0z

Example 1
Find the gradient of the scalar field f(x,y,z) = x?y + x cosh yz.

Answer

grad f = (2xy + cosh yz, x2 + xzsinh yz, xy sinh yz).
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Vector calculus

Gradient of a scalar field

Example 2
Let r = (x,y,z) so that r = |r| = \/x% + y? + z2. Show that

v(r"y = nr""?r,

for any integer n and deduce the values of grad(r), grad(r?) and
grad(1/r).
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Vector calculus

Gradient of a scalar field

Example 2
Let r = (x,y,z) so that r = |r| = \/x% + y? + z2. Show that

v(r"y = nr""?r,

for any integer n and deduce the values of grad(r), grad(r?) and
grad(1/r).

Answers
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Vector calculus

Gradient of a scalar field

Example 3

Determine grad(c - r), when c is a constant (vector).
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Vector calculus

Gradient of a scalar field

Example 3

Determine grad(c - r), when c is a constant (vector).
Answer

grad(c-r) =c.
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Directional derivative

» This is the rate of change of a scalar field f in the direction of
a unit vector u = (uy, uy, u3).
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Directional derivative

» This is the rate of change of a scalar field f in the direction of
a unit vector u = (uy, up, u3).
» defined by the limit of a difference quotient

of , . f(p+ hu)—f(p)
Ou( B hlLrH+ h ' (2)

(if the limit exists)
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Directional derivative

» This is the rate of change of a scalar field f in the direction of
a unit vector u = (uy, up, u3).
» defined by the limit of a difference quotient

OF () = f(p + hu) — (p)

= lim 2
du P h—>0+ h ’ (2)
(if the limit exists)
> the key formula is:
of of of of
— fe e
0 =u-V U1a + up— Dy + uz— 9z
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Directional derivative

» This is the rate of change of a scalar field f in the direction of
a unit vector u = (uy, up, u3).
» defined by the limit of a difference quotient

of ) = lim f(p+ hu) —f(p)
du P _h—>0+ h ’

(if the limit exists)
> the key formula is:
of of of of

aiu Vf‘_U187‘i‘UQa +U3az

()

» Important: only valid for unit vectors u
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Directional derivative

» This is the rate of change of a scalar field f in the direction of
a unit vector u = (uy, up, u3).
defined by the limit of a difference quotient

OF () = f(p + hu) — (p)

v

= lim 2
du P h—>0+ h ’ (2)
(if the limit exists)
> the key formula is:
of of of of
aiu -VFf = UI87+UZ8 +U3az

v

Important: only valid for unit vectors u

> Partial derivatives are directional derivatives, e.g.
of  of
i Ox’
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Vector calculus

Directional derivative

Example 4

Find the directional derivative of f = x2yz3 at the point
P(3,—2,—1) in the direction of the vector (1,2,2).
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Vector calculus

Directional derivative

Example 4
Find the directional derivative of f = x2yz3 at the point
P(3,—2,—1) in the direction of the vector (1,2,2).

Answer

of

Fg(32-1) =38
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Vector calculus

Directional derivative

» If we fix a point p and are given a function f, then by
considering all possible directional derivatives of f at the point
p we can ask:
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Vector calculus

Directional derivative

» If we fix a point p and are given a function f, then by
considering all possible directional derivatives of f at the point
p we can ask:

» in which direction does f change fastest?
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Vector calculus

Directional derivative

» If we fix a point p and are given a function f, then by
considering all possible directional derivatives of f at the point
p we can ask:
» in which direction does f change fastest?
» what is the maximal rate of change?
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Vector calculus

Directional derivative

» If we fix a point p and are given a function f, then by
considering all possible directional derivatives of f at the point
p we can ask:

» in which direction does f change fastest?
» what is the maximal rate of change?

» The following theorem answers these questions.
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Vector calculus

Directional derivative

» If we fix a point p and are given a function f, then by
considering all possible directional derivatives of f at the point
p we can ask:

» in which direction does f change fastest?
» what is the maximal rate of change?

» The following theorem answers these questions.

» Theorem: Suppose f is a differentiable function for which
Vf(p) # 0 then the maximal value of %(p) is |[Vf(p)| and
occurs when u is in the same direction as Vf.
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Vector calculus

Directional derivative

» If we fix a point p and are given a function f, then by
considering all possible directional derivatives of f at the point
p we can ask:

» in which direction does f change fastest?
» what is the maximal rate of change?

» The following theorem answers these questions.

» Theorem: Suppose f is a differentiable function for which
V£ (p) # 0 then the maximal value of %(p) is |[Vf(p)| and
occurs when u is in the same direction as V.
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Vector calculus

Directional derivative

» If we fix a point p and are given a function f, then by
considering all possible directional derivatives of f at the point
p we can ask:

» in which direction does f change fastest?
» what is the maximal rate of change?

» The following theorem answers these questions.

» Theorem: Suppose f is a differentiable function for which
V£ (p) # 0 then the maximal value of %(p) is |[Vf(p)| and
occurs when u is in the same direction as V.
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Vector calculus

Directional derivative

Example 5

Consider f = In(xy + z3) at the point P(1,1,1). In what direction
does f have the maximal rate of change? What is this maximal
rate of change?
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Vector calculus

Directional derivative

Example 5

Consider f = In(xy + z3) at the point P(1,1,1). In what direction
does f have the maximal rate of change? What is this maximal
rate of change?

Answer
Direction is (1/2,1/2,3/2). Maximal rate of change is

11
IVF(1,1,1)| = \C
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Divergence of a vector field

» The divergence of a vector field F = (Fi, F2, F3) is the scalar
obtained as the “scalar product” of V and F,

, OF1 0F, O0F3
divF=V -F=—+—+—|
v v ox + dy + 0z |
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Divergence of a vector field

» The divergence of a vector field F = (Fy, F2, F3) is the scalar
obtained as the “scalar product” of V and F,

. B _0R  OF  0R
divF=V.F= I + Dy + a7 I

» so called, because it measures the tendency of a vector field
to diverge (positive divergence) or converge (negative
divergence)
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Divergence of a vector field

» The divergence of a vector field F = (Fy, F2, F3) is the scalar
obtained as the “scalar product” of V and F,

oF1 O0Fy O0F3

ivF=V.F= A AR
div v (9x+8y+8z’

» so called, because it measures the tendency of a vector field
to diverge (positive divergence) or converge (negative
divergence)

» a vector field is said to be incompressible (or solenoidal) if its
divergence is zero.
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Vector calculus

Divergence of a vector field
» Consider F = (x,y,0), G= (x,—y,0) and H = (—x, —y,0)

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Vector calculus

Divergence of a vector field
» Consider F = (x,y,0), G=(x,—y,0) and H = (—x, —y,0)
» we have
Ox Oy

divF=—+4+-—=—=2>0, divG=0 and divH=-2<0.
Ox 0Oy
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Divergence of a vector field
» Consider F = (x,y,0), G = (x,—y,0) and H = (—x,—y,0)
> we have

diVF:% 8—)/:2>0, divG=0 and divH=-2<0.
Ox 0Oy

R 4|0 2 2 A 2L LYY MYV IELv
KRR K §|P 2 AA R YN WYL R

W R |0 2D PR ey vy Py e w22
L Y = =) Ee e | s D DD e | 2 &
e e |y v DD G n s|s 2D e s & &
P sy vy LSRN 3 R = ANA 2 s RAD

P22 LYY SN RRR AP 2053 JA22ERRK
747V R AN AN RRRE(P2FA AP THERRN

F, positive divergence G, incompressible H, negative divergence
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Vector calculus

Divergence of a vector field

Example 6

Show that the divergence of F = (x — y?, z, z3) is positive at all
points in R3.
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Laplacian

» A particular example of divergence is the Laplacian of a scalar
field
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Laplacian

» A particular example of divergence is the Laplacian of a scalar
field f

» grad f = Vf is a vector field and so we can take its divergence
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Laplacian

» A particular example of divergence is the Laplacian of a scalar
field f

» grad f = Vf is a vector field and so we can take its divergence

» this is the Laplacian of f, written V?f
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Vector calculus

Laplacian

» A particular example of divergence is the Laplacian of a scalar
field f

» grad f = Vf is a vector field and so we can take its divergence

» this is the Laplacian of f, written V2f

» we have

0*f  0*f  O*f
2f V. (Vf)= — 4+ 2 4 =
\Y V- (Vf) (,)X2+(,)y2+(,)22
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Laplacian

» A particular example of divergence is the Laplacian of a scalar
field f
grad f = Vf is a vector field and so we can take its divergence

this is the Laplacian of f, written V2f

v

v

» we have

0*f  0*f  O%f
2 — . = —_— [ PR
Vef =V - (VF) 8X2+8y2+822 .

v

Can be extended in a natural way to the Laplacian of a vector
field F = (Fl7 Fz, F3),

V?F = (V2F1, V2 F,, V2F3) |
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Vector calculus

Laplacian

Example 7
Find the values of n for which V2(r") = 0.
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Vector calculus

Laplacian

Example 7
Find the values of n for which V2(r") = 0.

Answer
V2(r")=0if and only if n =0 or n= —1.
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Curl of a vector field

» The curl of a vector field F = (Fy, F2, F3) is the vector
obtained as the “vector product” of V and F
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Curl of a vector field

» The curl of a vector field F = (F1, Fp, F3) is the vector
obtained as the "vector product” of V and F

» the formula is

OFz  O0Fy\. OF1 OF3\., oF, 0F
N 1F = _  — —_— — —_— —
o <(9y (’)z>l+<82 0x>1+((‘)x 0y>k
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Vector calculus

Curl of a vector field

» The curl of a vector field F = (F1, Fp, F3) is the vector
obtained as the "vector product” of V and F
> the formula is

~(0F, 0F)\, [(0F 0F\. (0F OF
CurlF_(@y 62>I+<8z 6X>J+<8X 8y>k'

» can be calculated using a 3 x 3 determinant,

i j k
0 0 0
curl F = I @ EHE

Fr F R
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Curl of a vector field

» Curl of a vector field measures its tendency to rotate
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Curl of a vector field

» Curl of a vector field measures its tendency to rotate

» a vector field is said to be irrotational if its curl is the zero
vector

D. Bourne Mathematics 2A—Multivariate Calculus (2013/14)



Curl of a vector field

» Curl of a vector field measures its tendency to rotate

» a vector field is said to be irrotational if its curl is the zero
vector

» consider F = (—y,x,0), G = (y,x,0) and H= (y, —x,0)
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Vector calculus

Curl of a vector field

v

Curl of a vector field measures its tendency to rotate

» a vector field is said to be irrotational if its curl is the zero
vector

consider F = (—y,x,0), G = (y,x,0) and H = (y, —x,0)

» we have

v

curl F =2k, curlG=0 and curlH = —2k
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Curl of a vector field

» Curl of a vector field measures its tendency to rotate

» a vector field is said to be irrotational if its curl is the zero

vector
» consider F = (—y,x,0), G=(y,x,0) and H = (y, —x,0)
» we have
curlF =2k, curlG=0 and curlH = —2k
>
P2 2 P SRR MDD I AA A= NM
e elen R TS VRPN Y ) RAA S8y
UL e elan gy YYe s|eanp PRasss Yy
Lae |58 4%g L% s R IR
o |- 7270 T3+ O Tas -3¢0
YYuslaapp dde«le n g RRs «le e
YMusraaR Ve elen g RR& slewv
MM S D> 3 AR e SN R & &2l
F, anticlockwise rotation G, irrotational H, clockwise rotation
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Vector calculus

Curl of a vector field

Example 8
Determine curl F when F = (x2y, xy? + z, xy).
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Vector calculus

Curl of a vector field

Example 8
Determine curl F when F = (x2y, xy? + z, xy).

Answer
curl F = (x — 1, —y, y?2 — x?).
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Vector calculus

Curl of a vector field

Example 9

If c is a constant vector, find curl(c x r).
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Vector calculus

Curl of a vector field

Example 9
If c is a constant vector, find curl(c x r).

Answer
curl(c x r) = 2c.
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Nabla identities

Analogues involving div, grad and curl of the elementary rules of
differentiation such as linearity (f + g)'(x) = f'(x) + g’(x) the
product rule (fg)'(x) = f(x)g'(x) + f'(x)g(x).
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Nabla identities

Analogues involving div, grad and curl of the elementary rules of
differentiation such as linearity (f + g)'(x) = f'(x) + g’(x) the
product rule (fg)'(x) = f(x)g'(x) + f'(x)g(x).

grad(f + g) = grad f + gradg grad(fg) = f(grad g) + (grad f)g,
div(F + G) = divF + divG div(fF) = f divF + grad f - F,

curl(F + G) = curl F 4+ curlG  curl(fF) = f curl F 4+ grad f x F,
curlgrad f =0, divcurl F = 0.
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Nabla identities

» Note the special cases
grad(cf) = cgrad f, div(cF) = cdivF, curl(cF)= ccurlF,

when c is a (scalar) constant.
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Nabla identities

» Note the special cases
grad(cf) = cgrad f, div(cF) = cdivF, curl(cF)= ccurlF,

when c is a (scalar) constant.
> all of the identities are easier to remember if written using V
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Nabla identities
» Note the special cases
grad(cf) = cgrad f, div(cF) = cdivF, curl(cF)= ccurlF,

when c is a (scalar) constant.

> all of the identities are easier to remember if written using V
> eg.
curl(fF) = V x (fF)
=f(VxF)+(Vf)xF
= fcurlF 4+ grad f x F.
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Nabla identities

Example 10
Prove the identities

(i) curlgrad f =0, (ii) curl(fF) = fcurl F +gradf x F

(iii) div(fF) = fdivF + (grad f) - F.
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Nabla identities

Example 11

Let ¢ be a constant vector and r = (x, y, z) so that

r=1r| = /x?+ y? + z2. Determine

(i) div(r"(c x r)), (i) curl(r"(c x r)).
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Nabla identities

Example 11

Let ¢ be a constant vector and r = (x, y, z) so that

r=1r| = /x?+ y? + z2. Determine

(i) div(r"(c x r)), (i) curl(r"(c x r)).

Answers
(i) div(r"(c x ¥)) = 0
(i) curl(r"(c x r)) = (n+2)r"c — n(r - ¢)r"2r.
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