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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Teaching arrangements

I This section, 2A2, always meets at 10 a.m. in this room (354,
Stevenson Lecture Theatre, James Watt South) on Tuesday
and Thursday.

I Other section meets at 9am and 11 a.m. (Further details see
course information sheet)

I This week: Lectures on Tuesday and Thursday
- no tutorial this week

I Other weeks: Lectures on Tuesday and Thursday and a
tutorial on Monday
- students come to tutorials every other week. Go to
MyCampus for information on which tutorial group you are in
and which weeks you have a tutorial.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Tutorials

I Tutorial questions on the exercise sheets should be done each
week before the tutorial

I Do this work even if you don’t have a tutorial that week

I Tutors will ask to see your tutorial work so make sure you
have your attempts with you. If you couldn’t do a question
make sure to have a note written down about why you
couldn’t do the question.

I Seek help with these (and other problems) from tutors

I Bring lecture notes to tutorials!

I Tutorials are an important resource and opportunity for
getting feedback. Be proactive and ask tutors to look at your
work and ask them questions.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Other arrangements

I Office hours: Office number 508 Mathematics Building.
Office hours: Monday 2-3, Tuesday 3-4, Thursday 3-4 (or by
arrangement)

I Continuous assessment:

I weekly online assignment, from WebAssign (due weeks 2-11,
Saturday 3am).

I The 2A Assignment 1 is due 3am Saturday 5th October
I together these make up 20% of final grade
I in calculating your continuous assessment grade we discard

your worst TWO submissions
I course work cannot be reassessed. This means there is no

second attempts at assignments

I Degree Examination: End of December (date not set yet)

I worth 80% of final assessment

I Recommended course book: James Stewart, Multivariable
Calculus Internation Edition, (Seventh Edition),Brooks Cole
/Cengage .
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Lecture notes

I Exercise sheets are available on Moodle at midday on Monday
each week, except Excercise Sheet 1 which is available in the
first lecture

I Exercises and solutions and printed lecture notes available at

http://moodle.gla.ac.uk/fims/moodle

(Also given in Level-2 General Information)

I Solutions to exercise sheets and solutions to examples given in
lectures will appear on Moodle once each Chapter has been
taught and not before.

I Only the Chapter 1 lecture notes will be given out in class.
You need to download the notes for Chapters 2,3 and 4 from
Moodle yourself in advance.

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)

http://moodle.gla.ac.uk/fims/moodle


Organisation of the class Partial differentiation Double and triple integration Vector calculus

Lecture notes

I Exercise sheets are available on Moodle at midday on Monday
each week, except Excercise Sheet 1 which is available in the
first lecture

I Exercises and solutions and printed lecture notes available at

http://moodle.gla.ac.uk/fims/moodle

(Also given in Level-2 General Information)

I Solutions to exercise sheets and solutions to examples given in
lectures will appear on Moodle once each Chapter has been
taught and not before.

I Only the Chapter 1 lecture notes will be given out in class.
You need to download the notes for Chapters 2,3 and 4 from
Moodle yourself in advance.

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)

http://moodle.gla.ac.uk/fims/moodle


Organisation of the class Partial differentiation Double and triple integration Vector calculus

Lecture notes

I Exercise sheets are available on Moodle at midday on Monday
each week, except Excercise Sheet 1 which is available in the
first lecture

I Exercises and solutions and printed lecture notes available at

http://moodle.gla.ac.uk/fims/moodle

(Also given in Level-2 General Information)

I Solutions to exercise sheets and solutions to examples given in
lectures will appear on Moodle once each Chapter has been
taught and not before.

I Only the Chapter 1 lecture notes will be given out in class.
You need to download the notes for Chapters 2,3 and 4 from
Moodle yourself in advance.

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)

http://moodle.gla.ac.uk/fims/moodle


Organisation of the class Partial differentiation Double and triple integration Vector calculus

Lecture notes

I Exercise sheets are available on Moodle at midday on Monday
each week, except Excercise Sheet 1 which is available in the
first lecture

I Exercises and solutions and printed lecture notes available at

http://moodle.gla.ac.uk/fims/moodle

(Also given in Level-2 General Information)

I Solutions to exercise sheets and solutions to examples given in
lectures will appear on Moodle once each Chapter has been
taught and not before.

I Only the Chapter 1 lecture notes will be given out in class.
You need to download the notes for Chapters 2,3 and 4 from
Moodle yourself in advance.

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)

http://moodle.gla.ac.uk/fims/moodle


Organisation of the class Partial differentiation Double and triple integration Vector calculus

Syllabus of 2A - Multivariate Calculus

General theme: differentiation and integration of functions of
several variables and its applications.

I Chapter 1 - Partial differentiation

I Chapter 2 - Double and triple integration

I Chapter 3 - Differentiation of vectors

I Chapter 4 - Line and surface integrals
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Chapter 1: Partial differentiation

I Recall ideas for functions of one variable

I extend to functions of two variables,

I introduce partial derivatives,

I chain rule for partial derivatives.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Functions of one variable

For example, volume V of a sphere is a function of one variable, its
radius r ,

V = 4
3πr3.

We write V = f (r), where the rule is f (r) = 4
3πr3.

Domain of f

I the set of points D at which rule is used,

I radius should be real and non-negative, so D = [0,∞),

I if no domain were given, we use the maximal domain - set of
points at which the rule could legitimately be used,

I the maximal domain of f is R.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Functions of one variable

Graph

The set of all ordered pairs (a, f (a)) where a ∈ D. Usually shown
as a curve in the plane.

Present example - the set of point (r , 43πr3) for all r ≥ 0.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Functions of two variables

Example

Volume V of a cylinder depends on two dimensions, the radius r
and the height h - V = f (r , h), where f (r , h) = πr2h defines a
function of two variables.

Domain
Subset D of of R2, i.e., a region in a plane.
If not specified, the maximal domain is assumed.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Functions of two variables

Graph

The set of points (a, b, c) ∈ R3 where (a, b) ∈ D and c = f (a, b) -
a surface.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Visualisation of surfaces - Spheres

I Radius r , centre (a, b, c) - points (x , y , z) a distance r from
(a, b, c). Pythagoras’s theorem =⇒

(x − a)2 + (y − b)2 + (z − c)2 = r2,

I solving for z

z = c ±
√

r2 − (x − a)2 − (y − b)2,

I + means “northern” hemisphere
− means “southern” hemisphere.
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I + means “northern” hemisphere
− means “southern” hemisphere.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Visualisation of surfaces - Spheres

I Given

x2 + y2 + z2 + αx + βy + γz + δ = 0,

complete the square to write as

(x + 1
2α)2 + (y + 1

2β)2 + (z + 1
2γ)2 =

1

4
(α2 +β2 +γ2)− δ,

I sphere if and only if 1
4(α2 + β2 + γ2)− δ > 0.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Visualisation of surfaces - Spheres

Example 1

Sketch the graph of f (x , y) = −
√

1− 2x − x2 − y2.

Answer
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Visualisation of surfaces - Cross-sections

I For a surface z = f (x , y) the set of points satisfying,
f (x , y) = c, is a level curve or contour,

I think of z = f (x , y) as part of the surface of the earth - each
level curve represents a particular contour line on its map.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Visualisation of surfaces - Cross-sections

I More generally, the intersection of plane x = constant or
y = constant or z = constant and surface F (x , y , z) = 0 is
called a cross-section,

I level curve Lc is the set of points (x , y) in D for which
f (x , y) = c,

I for different c, Lc may be a curve, a point or points, or the
empty set,

I each point in D lies on one level curve.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Visualisation of surfaces - Cross-sections

Example 2

By considering the level curves and the cross-sections x = 0 and
y = 0, obtain a sketch of z =

√
x2 + y2.

Answer
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Visulatisation of surfaces - Ellipsoid

I An ellipsoid of radius r1 in the x-direction, r2 in the
y -direction and r3 in the z-direction, with centre (a, b, c) is
defined by

(x − a)2

(r1)2
+

(y − b)2

(r2)2
+

(z − c)2

(r3)2
= 1.

I The cross sections are ellipses, hence the name ellipsoid.

I When r1 = r2 = r3 we recover the equation for the sphere.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Visualisation of surfaces - Planes

I Recall: a plane with normal vector n = (α, β, γ) has equation
αx + βy + γz = δ,

I the graph of f (x , y) = ax + by + c is the plane
z = ax + by + c with normal (a, b,−1) passing through the
point (0, 0, c).
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Visualisation of surfaces - Planes

Example 3

Sketch the part of the surface 2x + y + 4z = 1 where x , y , z ≥ 0.

Answer
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Example 3
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Visualisation of surfaces - Circular cylinder

I A circular cylinder in R3 of radius r centred at the origin
lying parallel to z-axis, is defined by

x2 + y2 = r2.

I This is NOT the equation for a circle, because the surface lies
in R3.

I Generalisable to cylinders centred at (a, b, c), cylinders lying
parallel to the x or y axes and cyclinders with ellispes as cross
sections.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Visualisation of surfaces - Paraboloid

Example 4

Sketch the region bounded by the paraboloid z = 4− x2 − 2y2 and
the plane z = 2.

Answer
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Visualisation of surfaces - Paraboloid

Example 4
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the plane z = 2.

Answer

:

-1.5 -1.0 -0.5 0.5 1.0 1.5
y

1

2

3

4
z

x=0 cross section

,

-2 -1 1 2
x

1

2

3

4
z

y=0 cross section

,

-2 -1 0 1 2
-2

-1

0

1

2

x

y
Level curves

>

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Visualisation of surfaces - Paraboloid

Example 4

Sketch the region bounded by the paraboloid z = 4− x2 − 2y2 and
the plane z = 2.

Answer
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Ordinary derivative

I Recall:

lim
h→0

g(a + h)− g(a)

h

(if it exists) is the derivative of g at a,

I written as

dg

dx
(a) or g ′(a),

I gradient of the tangent to the graph of g at a point (a, g(a)).
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Ordinary derivative

I gradient of the tangent to the graph of g at a point (a, g(a)).
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Partial derivatives

I On surface z = f (x , y), there is no single meaning of gradient,

I straight down a mountain side gradient may be very large and
traversing the mountain the gradient is much less,

I necessary to define two gradients on cross-section of the
surface in the x and y directions.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Partial derivatives

Taking cross-sections x = a and y = b we get the graphs of two
functions of one variable - z = f (x , b) = g(x) and
z = f (a, y) = h(y)
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Partial derivatives

I The gradients to z = g(x) and z = h(y) are called the partial
x and y derivatives of f at (a, b)

I written as

∂f

∂x
(a, b) = derivative w.r.t. x with y constant - equals g ′(a),

∂f

∂y
(a, b) = derivative w.r.t. y with x constant - equals h′(b),

I for a function of x1, x2, . . . , xn

∂f

∂xi
= derivative w.r.t. xi with all other variables constant.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Partial derivatives

I Important to distinguish notation used for ordinary and partial
derivatives.

Ordinary derivative :
df

dx
, partial derivative :

∂f

∂x
,

I subscript notation for partial derivatives

∂f

∂x
≡ fx , and

∂f

∂y
≡ fy ,
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Partial derivatives

Example 5

Find fx , fy and zx where

(a) f (x , y) = x3y2+x , (b)z(x , y) = sin−1
(

x

x + y

)
and x , y > 0.

Chain rule
Recall from Level-1:

d

dx
f (g(x)) = f ′(g(x))g ′(x).

We used

∂

∂x
f (g(x , y)) = f ′(g(x , y))gx(x , y).
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(a) f (x , y) = x3y2+x , (b)z(x , y) = sin−1
(

x

x + y

)
and x , y > 0.

[sin−1 u is the inverse sine function and not the reciprocal 1/ sin u.
Domain of sin−1 is [−1, 1] and x/(x + y) lies in this domain.]

Chain rule
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∂x
f (g(x , y)) = f ′(g(x , y))gx(x , y).

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Partial derivatives

Example 5

Find fx , fy and zx where

(a) f (x , y) = x3y2+x , (b)z(x , y) = sin−1
(

x

x + y

)
and x , y > 0.

Answer
(a) fx = 3x2y2 + 1, fy = 2x3y .

(b) zx =
y

x + y

1√
2xy + y2

.

Chain rule
Recall from Level-1:

d

dx
f (g(x)) = f ′(g(x))g ′(x).

We used

∂

∂x
f (g(x , y)) = f ′(g(x , y))gx(x , y).
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Partial derivatives

Example 6

Find zx where z is defined implicitly as a function of x and y by
the equation

x4 + 2y2 + z3 − 2x2yz = 1

Answer

zx =
4x3 − 4xyz

2x2y − 3z2
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Partial derivatives

Example 7

For r ∈ R+, let u = f (r) where r2 = x2 + y2 + z2. Show that

xux + yuy + zuz = rf ′(r).

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Higher order derivatives

Let u be a function of x , y , . . . then ux and uy are functions of
x , y , . . . and so may define

∂2u

∂x2
=

∂

∂x
(ux) = uxx ,

∂2u

∂y∂x
=

∂

∂y
(ux) = uxy ,

∂2u

∂x∂y
=

∂

∂x
(uy ) = uyx ,

∂2u

∂y2
=

∂

∂y
(uy ) = uyy ,

etc.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Higher order derivatives

There is no automatic guarantee that uxy = uyx but. . .

I Theorem:
Let u be a function of x , y such uxy and uyx exist and are
continuous at a point (a, b). Then,

uxy (a, b) = uyx(a, b).

I Also for functions of more variables and higher order
derivatives - e.g. if u = u(x , y , z) then

uxyxz = uzyxx = uyxxz = · · · = uxxyz ,

I in 2A, we assume the order of taking partial derivatives is
unimportant.
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uxyxz = uzyxx = uyxxz = · · · = uxxyz ,

I in 2A, we assume the order of taking partial derivatives is
unimportant.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Higher order derivatives

Example 8

Determine all second order derivatives of u = sin xy and verify that
uxy = uyx .

Answers

uxx = −y2 sin xy ,

uxy = cos xy − yx sin xy ,

uyx = cos xy − xy sin xy ,

uyy = −x2 sin xy .
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Higher order derivatives

Example 9

Let u = f (x/y), where f is an arbitrary (twice differentiable, with
continuous second derivative) function of one variable. Show that

xux + yuy = 0,

and deduce that

x2uxx + 2xyuxy + y2uyy = 0.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Two variable chain rule

I Chain rule for functions of one variable - used to find
derivative of F (x) = f (u(x)) -

dF

dx
=

du

dx

df

du
= u′(x)f ′(u(x)).

I extend this technique to functions of several variables

I Theorem
Let F (x , y) = f

(
u(x , y), v(x , y)

)
. Then

∂F

∂x
=
∂u

∂x

∂f

∂u
+
∂v

∂x

∂f

∂v
and

∂F

∂y
=
∂u

∂y

∂f

∂u
+
∂v

∂y

∂f

∂v
.

This is called the chain rule for functions of two variables.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Two variable chain rule

I Observe the pattern

∂F

∂x
=

∂u

∂x

∂f

∂u
+

∂v

∂x

∂f

∂v
,

I extends in an obvious way to functions of any number of
variables - if F (x , y , z) = f

(
u(x , y , z), v(x , y , z),w(x , y , z)

)
then

∂F

∂x
=
∂u

∂x

∂f

∂u
+
∂v

∂x

∂f

∂v
+
∂w

∂x

∂f

∂w
.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Two variable chain rule - Special cases

I if F (x , y) = f (u(x , y)) then

∂F

∂x
=
∂u

∂x

df

du
;

I if F (x) = f (u(x), v(x)) then

dF

dx
=

du

dx

∂f

∂u
+

dv

dx

∂f

∂v
.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Two variable chain rule - Special cases

I if F (x , y) = f (u(x , y)) then

∂F

∂x
=
∂u

∂x

df

du
;

I if F (x) = f (u(x), v(x)) then

dF

dx
=

du

dx

∂f

∂u
+

dv

dx

∂f

∂v
.

Partial derivatives are written as ordinary derivatives when used on
functions of one variable.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Two variable chain rule

Example 10

Let w = u2 + v2 where u = sin θ and v = cosφ. Use the chain rule
to calculate wθ and wφ in terms of θ and φ.

Answer

wθ = sin 2θ, wφ = − sin 2φ.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Examples of ODEs and PDEs

I An ordinary differential equation (ODE) is a relationship
between a function of one variable and its derivatives

I e.g Newton’s law of cooling states that
“the rate of change of temperature of an object is proportional
to the temperature difference between it and its surroundings”

I in mathematical terms this is the differential equation

dT

dt
= k(T − T0),

where T (t) is the temperature, T0 the temperature of the
surroundings and k a constant
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Examples of ODEs and PDEs

I A partial differential equation (PDE) is a relationship between
a function of more than one variable and its partial derivatives

I e.g. the wave equation,

∂2u

∂t2
= c2∂

2u

∂x2
,

where u(x , t) is the displacement (from a rest position) of the
point x at time t and c is the wave speed.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Definitions

I The order of a differential equation is the order of the highest
derivative

I the unknown function is called the dependent variable

I the variable or variables on which it depends are the
independent variable(s)

I a solution is an expression for the dependent variable which
satisfies the relation

I the general solution includes all possible solutions—includes
arbitrary constants (ODE) or arbitrary functions (PDE)

I a solution without arbitrary constants/functions is called a
particular solution. This may be found by giving extra
conditions in the form of initial or boundary conditions.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

First order PDEs

Example 11

Find the general solution of the PDE,

∂f

∂x
= x2 + y + 9,

where f is a function of two independent variables x and y .

Answers
Solution is

1

3
x3 + xy + 9x + A(y)

where A is an arbitrary function.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

First order PDEs

Example 12

Find the general solution of the PDE,

∂2f

∂x∂y
= 2x ,

where f is a function of two independent variables x and y .

Answers
Solution is

x2y + A(y) + B(x),

where A and B are arbitrary functions.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Solving PDEs using change of variable

I In this section we solve some first and second order PDEs by
using a change of independent variables to write it in a
simpler form

I suppose the dependent variable is z and independent variables
are x , y

I if we change from x , y to u, v then the chain rule gives

∂z

∂x
=
∂u

∂x

∂z

∂u
+
∂v

∂x

∂z

∂v
.

I in fact, for any expression E (e.g. a derivative of z)

∂

∂x
(E ) =

∂u

∂x

∂

∂u
(E ) +

∂v

∂x

∂

∂v
(E ) (1)

this is used when we consider second order PDEs.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

First order PDEs

Example 13

By changing variables from (x , y) to (u, v), where u = xy ,
v = x/y , solve the PDE

x
∂z

∂x
+ y

∂z

∂y
= 2x2 sin(xy).

Answers
Solution is

z = −x

y
cos(xy) + A(x/y),

where A is an arbitrary function.
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First order PDEs

Example 14

By changing variables from (x , y) to (u, v), where u = x3/y ,
v = x , find ∂f

∂x and ∂f
∂y in terms of partial derivatives with respect

to u and v . Hence, solve the PDE

x
∂f

∂x
+ 3y

∂f

∂y
=

6x5

y
.

Answers
Solution is

f =
3x5

y
+ A(x3/y),

where A is an arbitrary function.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Chapter 2: Double and triple integration

I Double integration on regular domains,

I Double integration in polar coordinates (and Beta functions),

I Double integration and general change of variables,

I Triple integration on regular domains,

I Triple integration in spherical coordinates,

I Using integrals to calculate area, volume and mass.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Area under curves

I In first year definite integrals arise as “areas under curves”.

I We approximate the area under the curve the sum of areas of
rectangles (called a Riemann sum)

∫ b

a
g(x) dx = lim

N→∞

N∑
i=1

g(xi )δxi .
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration on rectangular domains

I Similarly, the “volume under a surface” z = f (x , y) on the set
D ⊂ R2 is approximated by the sum of the volumes of
cuboids.

I Divide R = [a, b]× [c , d ] into subrectangles of area
δAij = δxiδyj and the cuboid above this has height f (xi , yj).
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration on rectangular domains

I The whole volume is approximated by∫∫
R

f (x , y) dA =

∫∫
R

f (x , y) dxdy = lim
M,N→∞

N∑
i=1

M∑
j=1

f (xi , yj)δAij .

I If the limit as M,N →∞ exists we say that f is integrable
over R and dA = dxdy is called the area element.
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The solid under the curve is made up of slices with y fixed

The area under the curve in such a cross section is

I (y) =

∫ b

a
f (x , y) dx ,

where y is fixed in the integrand. The volume under the surface is
then∫∫

R
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c
I (y) dy =
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration on rectangular domains

Example 1

Evaluate

∫∫
R

x2 + y2 dxdy

where R is [1, 3]× [2, 4].

Answer

164

3
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration on regular domains

Consider a more complicated domain T which is the triangle with
vertices (0, 0), (1, 0) and (1, 2).

The domain T is bounded by the lines y = 0, x = 1 and y = 2x .
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration on regular domains

To evaluate a double integral over T we could split T into a
collection of vertical slices,

integrate with respect to y and then integrate the result with
respect to x .

∫∫
T

f (x , y) dxdy =

∫ 1

0
dx

∫ 2x

0
f (x , y) dy .

Notice that the limits in the first integral depend on x .
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration on regular domains

Alternatively, looking at horizontal slices, with end-points x = 1
2y ,

x = 1, and summing these from y = 0 to y = 2.

Thus the integral is also∫∫
T

f (x , y) dxdy =

∫ 2

0
dy

∫ 1

1
2
y

f (x , y) dx .

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration on regular domains

Alternatively, looking at horizontal slices, with end-points x = 1
2y ,

x = 1, and summing these from y = 0 to y = 2.

Thus the integral is also∫∫
T

f (x , y) dxdy =

∫ 2

0
dy

∫ 1

1
2
y

f (x , y) dx .

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration on regular domains

Definition
Let D be a domain in the x , y -plane. D is said to be

I Type I (y-simple) if it is bounded by lines x = a, x = b and
curves y = g(x), y = h(x), the intersection of any vertical
line x = c , where c ∈ [a, b], is an interval or a single point,

I Type II (x-simple) if it is bounded by curves x = g(y),
x = h(y) and lines y = a, y = b, the intersection of any
horizontal line y = c , where c ∈ [a, b], is an interval or a
single point,

I regular if it the union of finitely many disjoint type I and type
II domains. Every type I and type II domain is regular.

.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration on regular domains

Example

Type I and not type II

Type I and type II neither type I or type II
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration on regular domains

Example 2

State whether each of the domains shown below are type I and/or
type II or regular.

Answers
(a) Both, (b) Type I only, (c) Neither.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration on regular domains

Theorem
If D is the type I domain defined by g(x) ≤ y ≤ h(x) where
a ≤ x ≤ b then∫∫

D
f (x , y) dxdy =

∫ b

a
dx

∫ h(x)

g(x)
f (x , y) dy .

If D is the type II domain defined by g(y) ≤ x ≤ h(y) where
a ≤ y ≤ b then∫∫

D
f (x , y) dxdy =

∫ b

a
dy

∫ h(y)

g(y)
f (x , y) dx .

The inner integral may have a limit depending on the other
variable but the outer integral) has constant limits.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration on regular domains

Example 3

Evaluate∫∫
D

xy2 dxdy ,

where D is the region in the first quadrant bounded by the curve
y = 4x2, the x axis and the line x = 1.

Answer

I =
8

3
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration on regular domains

Example 4

Evaluate

I =

∫∫
D

3x2 + y2 dxdy ,

where D is the triangle with vertices (0, 0), (1, 1) and (2, 1).

Answer

I = 2.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration on regular domains

Example 5

Evaluate

I =

∫ 1

0
dx

∫ 1

√
x

ey
2

√
x

dy .

Answer

I = e − 1.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration on regular domains

Example 6

Find the volume of the tetrahedron T , bounded by the planes
x + 2y + z = 2, x = 2y , x = 0 and z = 0.

Answer

T =
1

3
.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration in polar coordinates

The position of a point (x , y) on the cartesian plane can be
specified by r , θ which are

Polar coordinates

x = r cos θ, y = r sin θ, θ ∈ [0, 2π), r ≥ 0.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration in polar coordinates

In cartesian coordinates, the area of an elementary rectangle using
in the Riemann sum is δA = δxδy . In polar coordinates, the area
element has area δA ≈ rδrδθ.

For this reason in polar coordinates, dA = rdrdθ, i.e.,∫∫
D

f (x , y) dxdy =

∫∫
D

f (r cos θ, r sin θ)r drdθ.

When either the domain is circular or the integrand is written in
terms of x2 + y2 (= r2), use polar coordinates.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration in polar coordinates

Example 7

Use polar coordinates to evaluate

I =

∫∫
D

x + y dxdy ,

where D is part of the annulus between circles of radius 1 and 2,
centre (0, 0) lying in upper half plane.

Answer

I =
14

3
.
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Double integration in polar coordinates

Example 8

Evaluate

I =

∫∫
D

y dxdy ,

where D is the part of the disk of radius a (> 0) and centre (a, 0)
lying in the first quadrant.

Answer

I =
2a3

3
.

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration in polar coordinates

Example 8

Evaluate

I =

∫∫
D

y dxdy ,

where D is the part of the disk of radius a (> 0) and centre (a, 0)
lying in the first quadrant.

Answer

I =
2a3

3
.

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Double integration in polar coordinates

Example 8

Evaluate

I =

∫∫
D

y dxdy ,

where D is the part of the disk of radius a (> 0) and centre (a, 0)
lying in the first quadrant.

Answer

I =
2a3

3
.

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Beta and Gamma functions

Beta functions can help us easily integrate functions that involve
powers of cosine and sine.

I Beta function:

B(p, q) =

∫ 1

0
xp−1(1− x)q−1dx , p > 0 and q > 0.

A particularly useful form is,

B(p, q) = 2

∫ π/2

0
sin2p−1(y) cos2q−1(y) dy .

This is found by substituting x = sin2 y in the definition of the
Beta function.

I Gamma function:

Γ(k) =

∫ ∞
0

xk−1e−x dx , k > 0.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Properties of Beta and Gamma functions

1. Γ(1) = 1, Γ(2) = 1, Γ(3) = 2 and in general Γ(n) = (n − 1)!
for every positive integer n.

2. Γ(k) = (k − 1)Γ(k − 1) for all real numbers k > 1 Repeatedly
applying the formula for Γ(k) gives a formula in terms of
Γ(k − p), where 0 < k − p ≤ 1, e.g. Γ(9/4) = 5

4
1
4Γ(14).

3. For 0 < k < 1, Γ(k)Γ(1− k) = π/ sin(kπ).

4. Γ(1/2) =
√
π.

5. B(p, q) =
Γ(p)Γ(q)

Γ(p + q)
.
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applying the formula for Γ(k) gives a formula in terms of
Γ(k − p), where 0 < k − p ≤ 1, e.g. Γ(9/4) = 5

4
1
4Γ(14).

3. For 0 < k < 1, Γ(k)Γ(1− k) = π/ sin(kπ).

4. Γ(1/2) =
√
π.

5. B(p, q) =
Γ(p)Γ(q)

Γ(p + q)
.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Properties of Beta and Gamma functions

Result
From the properties of Gamma functions we can derive the
following result:

Property of Beta functions

∫ π/2

0
sinm x cosn x dx =

(m − 1)(m − 3) . . . (n − 1)(n − 3) . . .

(m + n)(m + n − 2)(m + n − 4) . . .
K

where K = 1 unless m and n are both even in which case K = π/2.

In the special cases, m = 0 or m = 1 none of the numerator factors
involving m appear.
For example,∫ π/2

0
sin3 x cos6 x dx =

2.5.3.1

9.7.5.3.1
=

2

63
.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Simplifying sine and cosine integrals

Properties of the graphs of sine and cosine seen in 1S/X simplify
the integral before applying Beta functions.

We deduce∫ π

0
sin x dx = 2

∫ π/2

0
sin x dx ;

∫ 2π

0
sin x dx = 0;

∫ π

0
cos x dx = 0;

∫ 2π

0
cos x dx = 0.∫ π

0
sin2 x dx = 2

∫ π/2

0
sin2 x dx ;

∫ π

0
cos2 x dx = 2

∫ π/2

0
cos2 x dx . . . etc.

Similar rules apply to integrals where the integrand has the form
sinm x cosn x , where m and n are non-negative integers.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Beta functions

Example 9

Evaluate:

(a) I =

∫ π

0
sin3 x cos4 x dx , (b) I =

∫ π

0
sin3 x cos5 x dx ,

(c) I =

∫ 2π

0
sin2 x cos4 x dx .

Answers
(a) I = 4

35 , (b) I = 0, (c) I = π
8 .
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Change of variables in double integration

Definition
Consider a change of variables x , y to u, v . So x = x(u, v) and

y = y(u, v). The Jacobian
∂(u, v)

∂(x , y)
is the determinant

∣∣∣∣ux uy

vx vy

∣∣∣∣ = uxvy − uyvx .

If the change of variables is invertible then the Jacobian is nonzero
and

∂(x , y)

∂(u, v)
= 1

/
∂(u, v)

∂(x , y)
.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Change of variables in double integration

Theorem
Let the change of variables x , y to u, v be invertible on the domain
D. Then∫∫

D
f (x , y) dxdy =

∫∫
S

f (x(u, v), y(u, v))

∣∣∣∣∂(x , y)

∂(u, v)

∣∣∣∣ dudv ,

where D is the domain in the xy -plane and S is the corresponding
domain in the uv -plane.

Often it is convenient to use

∂(x , y)

∂(u, v)
= 1

/
∂(u, v)

∂(x , y)

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Change of variables in double integration

Theorem
Let the change of variables x , y to u, v be invertible on the domain
D. Then∫∫

D
f (x , y) dxdy =

∫∫
S

f (x(u, v), y(u, v))

∣∣∣∣∂(x , y)

∂(u, v)

∣∣∣∣ dudv ,

where D is the domain in the xy -plane and S is the corresponding
domain in the uv -plane.
Often it is convenient to use

∂(x , y)

∂(u, v)
= 1

/
∂(u, v)

∂(x , y)

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Change of variables in double integration

I The idea here is to choose variables u, v in which the domain
is simply described, preferably with constant limits, e.g.

The lines u = u0 and v = v0 in the uv -plane get mapped to
curves x = x(u0, v), y = y(u0, v) and x = x(u, v0),
y = y(u, v0) in the xy -plane.

I The idea behind the proof of the theorem is to show that the

area element is

∣∣∣∣∂(x , y)

∂(u, v)

∣∣∣∣ dudv .
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Change of variables in double integration

I Let r = (x , y). The tangent vector at (x0, y0) to the curve

(x(u, v0), y(u, v0)) is ru =
(
∂x
∂u ,

∂y
∂u

)
.

I The tangent vector at (x0, y0) to the curve (x(u0, v), y(u0, v))

is rv =
(
∂x
∂v ,

∂y
∂v

)
.

I The area of the small element of D is ∆A and is
approximated by the area of the parallelogram which is given
by the magnitude of the following cross product

∆u ru×∆v rv = ∆u∆v(xuyv−xvyu)k = ∆u∆v
∂(x , y)

∂(u, v)
k.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Change of variables in double integration

I Summing the elements that make up the region D∫∫
D

f (x , y) dxdy = lim
N, M→∞

N∑
i=1

M∑
j=1

f (xi , yj)∆A

= lim
N, M→∞

N∑
i=1

M∑
j=1

f (x(ui , vj), y(ui , vj))

∣∣∣∣∂(x , y)

∂(u, v)

∣∣∣∣ ∆u ∆v

which is the Riemann sum for
∫∫

S f (x(u, v), y(u, v))|J| dudv .

I For the change to polar coordinates,

J =

∣∣∣∣(r cos θ)r (r cos θ)θ
(r sin θ)r (r sin θ)θ

∣∣∣∣ =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r(cos2 θ+sin2 θ) = r ,

giving the result∫∫
D

f (x , y) dxdy =

∫∫
S

f (r cos θ, r sin θ)r drdθ.

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Change of variables in double integration

I Summing the elements that make up the region D∫∫
D

f (x , y) dxdy = lim
N, M→∞

N∑
i=1

M∑
j=1

f (xi , yj)∆A

= lim
N, M→∞

N∑
i=1

M∑
j=1

f (x(ui , vj), y(ui , vj))

∣∣∣∣∂(x , y)

∂(u, v)

∣∣∣∣ ∆u ∆v

which is the Riemann sum for
∫∫

S f (x(u, v), y(u, v))|J| dudv .
I For the change to polar coordinates,

J =

∣∣∣∣(r cos θ)r (r cos θ)θ
(r sin θ)r (r sin θ)θ

∣∣∣∣ =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r(cos2 θ+sin2 θ) = r ,

giving the result∫∫
D

f (x , y) dxdy =

∫∫
S

f (r cos θ, r sin θ)r drdθ.

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Change of variables in double integration

I Summing the elements that make up the region D∫∫
D

f (x , y) dxdy = lim
N, M→∞

N∑
i=1

M∑
j=1

f (xi , yj)∆A

= lim
N, M→∞

N∑
i=1

M∑
j=1

f (x(ui , vj), y(ui , vj))

∣∣∣∣∂(x , y)

∂(u, v)

∣∣∣∣ ∆u ∆v

which is the Riemann sum for
∫∫

S f (x(u, v), y(u, v))|J| dudv .
I For the change to polar coordinates,

J =

∣∣∣∣(r cos θ)r (r cos θ)θ
(r sin θ)r (r sin θ)θ

∣∣∣∣ =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r(cos2 θ+sin2 θ) = r ,

giving the result∫∫
D

f (x , y) dxdy =

∫∫
S

f (r cos θ, r sin θ)r drdθ.

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Change of variables in double integration

I Summing the elements that make up the region D∫∫
D

f (x , y) dxdy = lim
N, M→∞

N∑
i=1

M∑
j=1

f (xi , yj)∆A

= lim
N, M→∞

N∑
i=1

M∑
j=1

f (x(ui , vj), y(ui , vj))

∣∣∣∣∂(x , y)

∂(u, v)

∣∣∣∣ ∆u ∆v

which is the Riemann sum for
∫∫

S f (x(u, v), y(u, v))|J| dudv .
I For the change to polar coordinates,

J =

∣∣∣∣(r cos θ)r (r cos θ)θ
(r sin θ)r (r sin θ)θ

∣∣∣∣ =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r(cos2 θ+sin2 θ) = r ,

giving the result∫∫
D

f (x , y) dxdy =

∫∫
S

f (r cos θ, r sin θ)r drdθ.

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Change of variables in double integration

Example 10

By making a suitable change of variables, evaluate∫∫
D

x + 3y dxdy ,

where D is the region bounded by the lines

y = x − 1, y = x + 1, y = −x − 1, y = −x + 3.

Answer

I = 8.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Change of variables in double integration

Example 11

Find the area bounded by the curves y = ex , y = 2ex , y = e−x

and y = 2e−x .

The area of a surface A ⊂ R2 is given by the double integral∫∫
A

1 dxdy .

Answer

Area = 2(3− 2
√

2).

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Change of variables in double integration

Example 11

Find the area bounded by the curves y = ex , y = 2ex , y = e−x

and y = 2e−x .

The area of a surface A ⊂ R2 is given by the double integral∫∫
A

1 dxdy .

Answer

Area = 2(3− 2
√

2).

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Change of variables in double integration

Example 11

Find the area bounded by the curves y = ex , y = 2ex , y = e−x

and y = 2e−x .

The area of a surface A ⊂ R2 is given by the double integral∫∫
A

1 dxdy .

Answer

Area = 2(3− 2
√

2).
C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Triple integration

Define triple integrals for functions of three variables.

Recall the
definition of a double integral is given by∫∫

R
f (x , y) dxdy = lim

N, M→∞

N∑
i=1

M∑
j=1

f (xi , yj)δxiδyj .

For a triple integral instead of summing over an area δAij = δxiδyj ,
we sum over a volume δVijk = δxiδyjδzk which leads us to

∫∫∫
V

f (x , y , z) dxdydz = lim
N, M, L→∞

N∑
i=1

M∑
j=1

L∑
k=1

f (xi , yj , zk)δxiδyjδzk .
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Triple integration

I If V lies between two continuous functions of x and y then∫∫∫
V

f (x , y , z) dxdydz =

∫∫
D

(∫ u2(x ,y)

u1(x ,y)
f (x , y , z) dz

)
dxdy

where D is the projection of V onto the xy plane.
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Triple integration

In general if V lies between two continuous functions of x and y
then
Triple integral

∫∫∫
V

f (x , y , z) dxdydz =

∫ b

a︸︷︷︸
Constants

dx

∫ h2(x)

h1(x)︸ ︷︷ ︸
Curves

dy

∫ g2(x ,y)

g1(x ,y)︸ ︷︷ ︸
Surfaces

f (x , y , z) dz .
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Triple integration

I The volume of a solid V ⊂ R3 is given by the following triple
integral∫∫∫

V
1 dxdydz .

I The mass of the solid V , where the density f (x , y , z) of the
solid varies across V is∫∫∫

V
f (x , y , z) dxdydz .
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Triple integration

Example 12

Evaluate

I =

∫∫∫
V

z dxdydz ,

where V is the solid tetrahedron bounded by the four planes
x = 0, y = 0, z = 0 and x + y + z = 1.

Answer

I =
1

24
.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Triple integration

Example 13

Set up (but do not evaluate) the integral for the volume of the
solid that lies below the paraboloid z = 9− x2 − y2 and above the
plane z = 5.

Answer
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Triple integration in spherical coordinates

The position of a point (x , y , z) in cartesian coordinates can be
specified by ρ, θ, φ which are

Spherical coordinates

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

θ ∈ [0, 2π), φ ∈ [0, π), ρ ≥ 0.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Triple integration in spherical coordinates
In cartesian coordinates, the volume of an elementary cuboid used
in the Riemann sum is δV = δx δy δz . In spherical coordinates, the
volume element is δV ≈ ρ2 sinφ δθ δφ δρ.

∫∫∫
V

f (x , y , z) dxdydz =∫∫∫
V

f (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) ρ2 sinφ dθdφdρ.

When either the domain is spherical or the integrand is written in
terms of x2 + y2 + z2 (= ρ2), use spherical coordinates.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Triple integration in spherical coordinates

Example 14

Use spherical coordinates to evaluate

I =

∫∫∫
B

exp((x2 + y2 + z2)3/2) dxdydz ,

where B is the unit ball, B = {(x , y , z)|x2 + y2 + z2 ≤ 1}.

Answer

I =
4

3
π(e − 1).
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Triple integration in spherical coordinates

Example 15

Find the volume of the solid that lies above the cone
z =

√
x2 + y2 and below the sphere x2 + y2 + z2 = z .

Answer

V =
π

8
.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Chapter 3: Differentiation of vectors

I Scalar- and vector-valued functions

I vector and scalar fields

I types of derivative—grad, div and curl
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Scalar- and vector-valued functions

I In Chapters 1 and 2 we considered functions of several
variables f : D → R where D ⊂ Rn

I these are scalar-valued functions—the result of applying the
functions is a real number (a scalar)

I next we consider functions f : D → Rm where m = 2 or 3

I they are vector-valued functions—the result is a 2- or 3-vector

I examples include velocity as a function of time and direction
of the Earth’s magnetic field.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Parametric equations of curves

I The simplest vector-valued functions have the form
f : I → R2, where I ⊂ R, an interval of the real line

I for each t ∈ I , f(t) is the position vector of a point in the
plane; the set of all such points forms a curve.

I position as a function of time is one example. We will revisit
parametric equations in Chapter 4.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Scalar and vector fields

I A function f (r) where r = (x , y) or (x , y , z) (mapping a
vector to a scalar) is called a scalar field.

I A function F(r) where r = (x , y) or (x , y , z) (mapping a
vector to another vector) is called a vector field.

A typical vector field

e.g. velocity at different points
in a fluid.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Different types of derivative

I We can define several types of derivative of scalar and vector
fields, expressed in terms of

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

I pronounced del or nabla (not to be confused with ∆)

I can form “products” of this vector with other vectors and
scalars, but because it is an operator, it always has to be the
first term if the product is to make sense.

Name of product Formula Type of result Derivative

Scalar multiplication αu Vector ∇f
Scalar or dot product u · v Scalar ∇ · F
Vector or cross product u× v Vector ∇× F

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Different types of derivative

I We can define several types of derivative of scalar and vector
fields, expressed in terms of

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
I pronounced del or nabla (not to be confused with ∆)

I can form “products” of this vector with other vectors and
scalars, but because it is an operator, it always has to be the
first term if the product is to make sense.

Name of product Formula Type of result Derivative

Scalar multiplication αu Vector ∇f
Scalar or dot product u · v Scalar ∇ · F
Vector or cross product u× v Vector ∇× F

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Different types of derivative

I We can define several types of derivative of scalar and vector
fields, expressed in terms of

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
I pronounced del or nabla (not to be confused with ∆)

I can form “products” of this vector with other vectors and
scalars, but because it is an operator, it always has to be the
first term if the product is to make sense.

Name of product Formula Type of result Derivative

Scalar multiplication αu Vector ∇f
Scalar or dot product u · v Scalar ∇ · F
Vector or cross product u× v Vector ∇× F

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Different types of derivative

I We can define several types of derivative of scalar and vector
fields, expressed in terms of

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
I pronounced del or nabla (not to be confused with ∆)

I can form “products” of this vector with other vectors and
scalars, but because it is an operator, it always has to be the
first term if the product is to make sense.

Name of product Formula Type of result Derivative

Scalar multiplication αu Vector ∇f
Scalar or dot product u · v Scalar ∇ · F
Vector or cross product u× v Vector ∇× F

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Different types of derivative

I We can define several types of derivative of scalar and vector
fields, expressed in terms of

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
I pronounced del or nabla (not to be confused with ∆)

I can form “products” of this vector with other vectors and
scalars, but because it is an operator, it always has to be the
first term if the product is to make sense.

Name of product Formula Type of result Derivative

Scalar multiplication αu Vector ∇f
Scalar or dot product u · v Scalar ∇ · F
Vector or cross product u× v Vector ∇× F

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Gradient of a scalar field

The gradient of a scalar field f is

grad f = ∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

Example 1

Find the gradient of the scalar field f (x , y , z) = x2y + x cosh yz .

Answer

grad f = (2xy + cosh yz , x2 + xz sinh yz , xy sinh yz).
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Gradient of a scalar field

Example 2

Let r = (x , y , z) so that r = |r| =
√

x2 + y2 + z2. Show that

∇(rn) = nrn−2r,

for any integer n and deduce the values of grad(r), grad(r2) and
grad(1/r).

Answers

grad(r) =
r

r
,

grad(r2) = 2r,

grad(1/r) = − r

r3
.

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Gradient of a scalar field

Example 2

Let r = (x , y , z) so that r = |r| =
√

x2 + y2 + z2. Show that

∇(rn) = nrn−2r,

for any integer n and deduce the values of grad(r), grad(r2) and
grad(1/r).

Answers

grad(r) =
r

r
,

grad(r2) = 2r,

grad(1/r) = − r

r3
.

C. A Cobbold Mathematics 2A—Multivariate Calculus (2013/14)



Organisation of the class Partial differentiation Double and triple integration Vector calculus

Gradient of a scalar field

Example 3

Determine grad(c · r), when c is a constant (vector).

Answer
grad(c · r) = c.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Directional derivative

I This is the rate of change of a scalar field f in the direction of
a unit vector u = (u1, u2, u3).

I defined by the limit of a difference quotient

∂f

∂u
(p) = lim

h→0+

f (p + hu)− f (p)

h
, (2)

(if the limit exists)
I the key formula is:

∂f

∂u
= u · ∇f = u1

∂f

∂x
+ u2

∂f

∂y
+ u3

∂f

∂z
.

I Important: only valid for unit vectors u
I Partial derivatives are directional derivatives, e.g.

∂f

∂i
=
∂f

∂x
.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Directional derivative

Example 4

Find the directional derivative of f = x2yz3 at the point
P(3,−2,−1) in the direction of the vector (1, 2, 2).

Answer

∂f

∂u
(3,−2,−1) = −38.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Directional derivative

I If we fix a point p and are given a function f , then by
considering all possible directional derivatives of f at the point
p we can ask:

I in which direction does f change fastest?
I what is the maximal rate of change?

I The following theorem answers these questions.

I Theorem: Suppose f is a differentiable function for which
∇f (p) 6= 0 then the maximal value of ∂f

∂u (p) is |∇f (p)| and
occurs when u is in the same direction as ∇f .
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Directional derivative

Example 5

Consider f = ln(xy + z3) at the point P(1, 1, 1). In what direction
does f have the maximal rate of change? What is this maximal
rate of change?

Answer
Direction is (1/2, 1/2, 3/2). Maximal rate of change is

|∇f (1, 1, 1)| =

√
11

2
.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Divergence of a vector field

I The divergence of a vector field F = (F1,F2,F3) is the scalar
obtained as the “scalar product” of ∇ and F,

divF = ∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
,

I so called, because it measures the tendency of a vector field
to diverge (positive divergence) or converge (negative
divergence)

I a vector field is said to be incompressible (or solenoidal) if its
divergence is zero.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Divergence of a vector field

I Consider F = (x , y , 0), G = (x ,−y , 0) and H = (−x ,−y , 0)

I we have

divF =
∂x

∂x
+
∂y

∂y
= 2 > 0, divG = 0 and divH = −2 < 0.

I
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Divergence of a vector field

Example 6

Show that the divergence of F = (x − y2, z , z3) is positive at all
points in R3.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Laplacian

I A particular example of divergence is the Laplacian of a scalar
field f

I grad f = ∇f is a vector field and so we can take its divergence

I this is the Laplacian of f , written ∇2f

I we have

∇2f = ∇ · (∇f ) =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

I Can be extended in a natural way to the Laplacian of a vector
field F = (F1,F2,F3),

∇2F = (∇2F1,∇2F2,∇2F3) .
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Laplacian

Example 7

Find the values of n for which ∇2(rn) = 0.

Answer
∇2(rn) = 0 if and only if n = 0 or n = −1.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Curl of a vector field

I The curl of a vector field F = (F1,F2,F3) is the vector
obtained as the “vector product” of ∇ and F

I the formula is

curlF =

(
∂F3

∂y
− ∂F2

∂z

)
i +

(
∂F1

∂z
− ∂F3

∂x

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k .

I can be calculated using a 3× 3 determinant,

curlF =

∣∣∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z

F1 F2 F3

∣∣∣∣∣∣∣∣∣∣
.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Curl of a vector field

I Curl of a vector field measures its tendency to rotate

I a vector field is said to be irrotational if its curl is the zero
vector

I consider F = (−y , x , 0), G = (y , x , 0) and H = (y ,−x , 0)

I we have

curlF = 2k, curlG = 0 and curlH = −2k

I
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Curl of a vector field

Example 8

Determine curlF when F = (x2y , xy2 + z , xy).

Answer
curlF = (x − 1,−y , y2 − x2).
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Curl of a vector field

Example 9

If c is a constant vector, find curl(c× r).

Answer
curl(c× r) = 2c.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Nabla identities

Analogues involving div, grad and curl of the elementary rules of
differentiation such as linearity (f + g)′(x) = f ′(x) + g ′(x) the
product rule (fg)′(x) = f (x)g ′(x) + f ′(x)g(x).

grad(f + g) = grad f + grad g grad(fg) = f (grad g) + (grad f )g ,

div(F + G) = divF + divG div(f F) = f divF + grad f · F,
curl(F + G) = curlF + curlG curl(f F) = f curlF + grad f × F,

curl grad f = 0, div curlF = 0.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Nabla identities

I Note the special cases

grad(cf ) = c grad f , div(cF) = c divF, curl(cF) = c curlF,

when c is a (scalar) constant.

I all of the identities are easier to remember if written using ∇
I e.g.

curl(f F) = ∇× (f F)

= f (∇× F) + (∇f )× F

= f curlF + grad f × F.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Nabla identities

Example 10

Prove the identities

(i) curl grad f = 0, (ii) curl(f F) = f curlF + grad f × F

(iii) div(f F) = f divF + (grad f ) · F.
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Organisation of the class Partial differentiation Double and triple integration Vector calculus

Nabla identities

Example 11

Let c be a constant vector and r = (x , y , z) so that
r = |r| =

√
x2 + y2 + z2. Determine

(i) div(rn(c× r)), (ii) curl(rn(c× r)).

Answers
(i) div(rn(c× r)) = 0 ,
(ii) curl(rn(c× r)) = (n + 2)rnc− n(r · c)rn−2r.
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