
Chapter 4

Line and surface integrals

Chapter Summary

Objective Tools
Parametric equations of curves The position vector of a point on the curve is

(x, y, z) = f(t), t ∈ R. This is called a paramet-
ric description of the curve and t is called a parame-
ter. This may also be written in component form; if
f = (f1, f2, f3) then

x = f1(t), y = f2(t), z = f3(t), t ∈ R

A simple starting place for finding the parametric
equation is try setting x = t and see what the equa-
tion for y becomes after substituting x = t into it.
You also want to be on the look out for curves which
are circular as these are best parameterised by polar
coordinates.

Line integrals and work done In R2 the work done by moving a particle along the
curve C is:∫

C

F · dr =

∫
C

P (x, y)dx+Q(x, y)dy ,

where P (x, y) is the force in the x direction and
Q(x, y) is the force in the y direction. To do the
integrals on the right parameterise C using parame-
ter t say and change variables on the integrals on the
right to integrals involving t. If C is a closed curve
you might be able to use Green’s theorem instead.

Conservative vector fields and path independence If there exists a scalar field φ such that the vector
field F = gradφ, we say that F is conservative and
φ is called a potential for F. When F is conservative
then the line integral

∫
C

F · dr is path independent
and is equal to φ(r(b)) − φ(r(a)), where r(t) is the
parameterised curve and the parameter t satisfies a ≤
t ≤ b.
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Objective Tools
Green’s Theorem Deals with integrating over closed curves C. Green’s

Theorem states∫
C

P (x, y)dx+Q(x, y)dy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy .

where D is the region enclosed by the curve C. Ap-
plying Green’s theorem means you are left with a
double integral like those in Chapter 2, so you now
need to use methods from that chapter to do the
integration.

Surface integrals The surface integrals describe the flux or flow across
a surface S as follows,∫∫

S

f(x, y, z)dS =

∫∫
D

f(x, y, z)

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dx dy ,

where D is the projection of S onto the xy-plane.
To do the integral on the right we use methods from
Chapter 2 to integrate a double integral.

Gauss’ Divergence Theorem Deals with integrating over closed surfaces. Let V
be a closed bounded volume on R3 with boundary
surface S, given with positive (outward) orientation.
Let F be a vector field. Then∫∫

S

F · n dS =

∫∫∫
V

div F dx dy dz ,

where n denotes the outward pointing unit normal
at each point on the surface S. The resulting integral
is a triple integral so we need to use methods from
Chapter 2 to do the integration. Questions involving
this theorem will either require you to first find F
and n, given you know what their dot product is, or
F will be explicitly given. In both cases you need to
use Chapter 3 to help you find divF.
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4.1 Line integrals of a vector field in two dimensions

(Stewart (Ed. 7): Section 16.2, p1087.)

Instead of integrating over an interval [a, b] we can integrate over a curve C. Such integrals are called
line integrals. They were invented in the early 19th century to solve problems involving forces, fluid flow
and magnetism. Before studying these integrals we recall the notion of parametric equations which allow us
to describe the curves we wish to integrate over.

4.1.1 Parametric equations of curves

(Stewart (Ed. 7): Section 13.1, p864.)

The simplest type of vector-valued function has the form f : I → R2, where I ⊂ R. Such a function
returns a 2D vector f(t) for each t ∈ I, which may be regarded as the position vector of some point on the
plane.

For example, recall the Section Formula from Level 1. This states that the position vector of any point
P on the line through points A and B is

p =
αa + βb

α+ β
,

for any scalars α, β. If we define t = β/(α+ β), then this may be rewritten as

p(t) = (1− t)a + tb.

As t changes, we get different points on the line through A and B and in particular, p(0) = a and p(1) = b.
In general, a curve, in 2D or 3D space, can be represented as the image of a vector-valued function on

an interval I; the position vector of a point on the curve is

r = f(t), t ∈ I.

This is called a parametric description of the curve and t is called a parameter. This may also be written in
component form; if r = (x, y, z) and f = (f1, f2, f3) then

x = f1(t), y = f2(t), z = f3(t), t ∈ I.

Standard types of parametric curve

Circle and ellipse The circle (x−a)2+(y−b)2 = r2, having centre (a, b) and radius r, can be parameterised
using polar coordinates x− a = r cos θ and y− b = r sin θ. Recall that θ is the angle between the radius and
the positive x-axis, measured in an anti-clockwise direction. Hence the circle has parametric form

x = a+ r cos θ, y = b+ r sin θ, θ ∈ [0, 2π).

If this circle were to be thought of as a curve on the xy-plane in 3D space then it would be

x = a+ r cos θ, y = b+ r sin θ, z = 0, θ ∈ [0, 2π).

In a similar way, the ellipse
(x− a)2

A2
+

(y − b)2

B2
= 1,

has parametric form
x = a+A cos θ, y = b+B sin θ, θ ∈ [0, 2π).
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Parabola The parabola y2 = 4ax can be parametrised as

x = at2, y = 2at, t ∈ (−∞,∞).

To show that the parametric curve is identical to the parabola we must prove that every point on the
parametric curve lies on the parabola and vice versa. For any t, let x = at2 and y = 2at then y2 = 4a2t2 =
4a(at2) = 4ax so that every point on the parametric curve lies on the parabola. Also, given any point (x, y)
on the parabola, define t = y/2a so that y = 2at and then x = y2/4a = at2, so that (x, y) also lies on the
parametric curve.

Line We have already seen that
r = (1− t)a + tb, t ∈ [0, 1],

is the parametric form of the line segment joining A(a1, a2, a3) and B(b1, b2, b3). This may also be written
in component form as

x = (1− t)a1 + tb1, y = (1− t)a2 + tb2, z = (1− t)a3 + tb3, t ∈ [0, 1].

Also, if one is given a point a on the line and a direction vector d for the line then the parametric form
is

r = a + td, t ∈ R.

4.1.2 Differentiation of vector-valued functions

Let us imagine that C is the path taken by a particle and t is time. The vector r(t) is the position vector of
the particle at time t and r(t + h) is the position vector at a later time t + h. The average velocity of the
particle in the time interval [t, t+ h] is then

displacement vector

length of time interval
=

r(t+ h)− r(t)

h
.

See Figure 4.1. In terms of the components of r this is
(
x(t+h)−x(t)

h , y(t+h)−y(t)
h , z(t+h)−z(t)

h

)
. If each of the

Figure 4.1: Velocity

scalar functions x, y and z are differentiable, then this vector has a limit(
dx

dt
,
dy

dt
,
dz

dt

)
= (ẋ, ẏ, ż),
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which is the instantaneous velocity of the particle v = dr
dt . This means that (if the motion is smooth) then

dr

dt
= lim
h→0

r(t+ h)− r(t)

h
=

d

dt
r(t) = ṙ(t).

This vector lies along the tangent to the curve at r.

4.1.3 Work Done and line integrals of vector fields

In order to understand how line integrals arise we begin by recalling some basic ideas about work done. The
work done W , by a variable force f(x) in moving a particle from a point a to a point b along the x-axis is

W =

∫ b

a

f(x)dx =
∑

f(x)δx = Force × distance=Work.

We now generalise this idea to a particle moving a long a general curve C and this gives a line integral.

Suppose that the force is given by the vector F in the direction
⇀

PR pointing as shown in Figure 4.2. If

the force moves the object from P to Q, then the displacement vector is D =
⇀

PQ. The work done done by
this force is defined to be the product of the component of the force along D (i.e. |F| cos θ), and the distance
moved (i.e. |D|), giving:

W = |D||F| cos θ = F ·D ,

Figure 4.2: The force acting in the
⇀

PQ direction is |F| cos θ

So then if r(t) = (x(t), y(t)) describes the parameterised curve C, it follows that dr is a small step along
that curve and hence

W =

∫
C

F · dr = Force × distance .

The notation is as follows, dr = (dx, dy) and F = (P (x, y), Q(x, y)). For the purposes of this section we only
consider two dimensions, but this can easily be extended to higher dimensions. So in two dimensions the
work done by moving a particle along the curve C is:∫

C

F · dr =

∫
C

P (x, y)dx+Q(x, y)dy ,

where P (x, y) is the force in the x direction and Q(x, y) is the force in the y direction.

58



It is usually helpful to parameterise the curve C using a parameter t, say. Starting with a plane curve C
the parametric equations are given by

x = x(t), y = y(t) a ≤ t ≤ b

thus, r(t) = x(t)i + y(t)j. So we can change variables on the line integral by writing dr = dr
dtdt. This gives∫

C

F · dr =

∫ b

a

F(r(t)) · dr
dt
dt =

∫ b

a

P (x(t), y(t))
dx

dt
dt+

∫ b

a

Q(x(t), y(t))
dy

dt
dt .

Example 4.1 Find the work done by the force F(x, y) = x2i − xyj in moving a particle along the curve
which runs from (1, 0) to (0, 1) along the unit circle and then from (0, 1) to (0, 0) along the y-axis (see
Figure 4.3).

Figure 4.3: Shows the force field F and the curve C. The work done is negative because the field impedes
the movement along the curve.

Solution : Split the curve C into two sections, the curve C1 and the line that runs along the y-axis C2.
Then,

W =

∫
C

F · dr =

∫
C1

F · dr +

∫
C2

F · dr .

Curve C1: Parameterise C1 by r(t) = (x(t), y(t)) = (cos t, sin t), where 0 ≤ t ≤ π/2 and F = (x2,−xy) and
dr = (dx, dy). Hence,∫
C1

F · dr =

∫
C1

x2 dx− xy dy =

∫ π/2

0

cos2 t
dx

dt
dt−

∫ π/2

0

cos t sin t
dy

dt
dt = −

∫ π/2

0

2 cos2 t sin t dt = −2/3,

by applying Beta functions to solve the integral where m = 2, n = 1 and K = 1.

Curve C2: Parameterise C2 by r(t) = (x(t), y(t)) = (0, t), where 0 ≤ t ≤ 1. Hence,∫
C2

F · dr =

∫ 0

t

0
dx

dt
dt−

∫ 0

1

0t
dy

dt
dt = 0.
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So the work done, W = −2/3 + 0 = −2/3. Notice the order of limits must reflect the direction along the
curve. Work done is negative because the force field impedes the movement along the cure. �

Example 4.2 Evaluate the line integral
∫
C

(y2)dx+(x)dy, where C is the is the arc of the parabola x = 4−y2

from (−5,−3) to (0, 2)

Solution :
Parameterise C by r(t) = (x(t), y(t)) = (4− t2, t), where −3 ≤ t ≤ 2, since −3 ≤ y ≤ 2. C is illustrated

in Figure 4.4. F = (y2, x) and dr = (dx, dy). Hence,∫
C

F · dr =

∫
C

y2dx+ xdy =

∫ 2

−3

t2
dx

dt
dt−

∫ 2

−3

(4− t2)
dy

dt
dt =

∫ 2

−3

−2t3 + (4− t2)dt = 245/6.

Figure 4.4: Curve C, where C is the arc of the parabola x = 4− y2 from (−5, 3) to (0, 2).

�

Remark When the curve C is something simple like a straight line then it is often easier to not parameterise
the curve and instead use

∫
C

F · dr =
∫
C
P (x, y)dx+Q(x, y)dy as it stands, as we shall see in the following

example.

Example 4.3 Evaluate the line integral,
∫
C

(x2 + y2)dx+ (4x+ y2)dy, where C is the straight line segment
from (6, 3) to (6, 0).

Solution : We can do this question without parameterising C since C does not change in the x-direction.
So dx = 0 and x = 6 with 0 ≤ y ≤ 3 on the curve. Hence

I =

∫
C

(x2 + y2)0 + (4x+ y2)dy =

∫ 0

3

24 + y2dy = −81.

�

4.2 Green’s Theorem

(Stewart (Ed. 7): Section 16.4, p1108.)

If the plane curve C is a simple closed curve then we can use Green’s Theorem to calculate the integral.
Green’s Theorem gives the relationship between a line integral around a simple closed curve C and a double
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integral over the plane D bounded by C. (See Figure 4.5. We assume that D consists of all points inside C as
well as all points on C). In stating Green’s Theorem we use the convention that the positive orientation
of a simple closed curve C refers to moving round C in an anticlockwise direction. The region D is always
on the left as we move round C. (Warning: if you move round C in the clockwise direction you get negative
the integral you get when you go round in the anticlockwise direction).

Figure 4.5: Closed curves C.

4.2.1 Green’s Theorem in two dimensions

Theorem Let C be a positively oriented simple closed curve in the plane and let D be the region bounded
by C. If P (x, y) and Q(x, y) have continuous partial derivatives on an open region that contains D, then∫

C

P (x, y)dx+Q(x, y)dy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy .

Proof For simplicity, we will only prove the theorem in the case where the regions are both type I and
type II. The key element of the proof is to show that∫

C

P (x, y)dx = −
∫∫

D

∂P

∂y
dxdy and

∫
C

Q(x, y)dy = −
∫∫

D

∂Q

∂x
dxdy. (4.1)

To prove the first expression in equation 4.1 we view D as an type I domain and let C1 and C2 be the lower
and upper boundary curves of D. Then∫

C

P (x, y)dx =

∫
C1

P (x, y)dx+

∫
C2

P (x, y)dx =

∫
C1

P (x, y)dx−
∫
−C2

P (x, y)dx (4.2)

The curves C1 and C2 can be expressed parametrically as, C1 is x = t, y = g1(t), where a ≤ t ≤ b and C2

is x = t, y = g2(t), where a ≤ t ≤ b. In both cases a is the x-coordinate of C that is on the far left of the
domain and B is the point on the far right of C. We can then use this to rewrite equation 4.2.∫

C

P (x, y)dx =

∫ b

a

P (t, g1(t))
dx

dt
dt−

∫ b

a

P (t, g2(t))
dx

dt
dt

=

∫ b

a

P (t, g1(t))dt−
∫ b

a

P (t, g2(t))dt = −
∫ b

a

[P (t, y)]
y=g2(t)
y=g1(t) dt

= −
∫ b

a

[∫ g2(t)

g1(t)

∂P

∂y
dy

]
dt = −

∫ b

a

[∫ g2(x)

g1(x)

∂P

∂y
dy

]
dx = −

∫∫
D

∂P

∂y
dxdy

The proof of the second expression in equation 4.1 is obtained in a similar way, but treating D as type II. �

61



Example 4.4 Use Green’s Theorem to evaluate
∫
C

(3y− esin x)dx+ (7x+
√
y4 + 1)dy, where C is the circle

x2 + y2 = 9.

Solution : P (x, y) = 3y − esin x and Q(x, y) = 7x +
√
y4 + 1. Hence, ∂Q

∂x = 7 and ∂P
∂y = 3. Applying

Green’s Theorem where D is given by the interior of C, i.e. D is the disc such that x2 + y2 ≤ 9.∫
C

(3y − esin x)dx+ (7x+
√
y4 + 1)dy =

∫∫
D

(7− 3)dxdy =

∫ 2π

0

∫ 3

0

4rdrdθ =

∫ 2π

0

18dθ = 36π

The D integral is solved by using polar coordinates to describe D. �

Example 4.5 Evaluate
∫
C

(3x− 5y)dx+ (x− 6y)dy, where C is the ellipse x2

4 + y2 = 1 in the anticlockwise
direction. Evaluate the integral by (i) Green’s Theorem, (ii) directly.

Solution : i) Green’s Theorem: P (x, y) = 3x− 5y and Q(x, y) = x− 6y. Hence, ∂Q∂x = 1 and ∂P
∂y = −5.

Applying Green’s Theorem where D is given by the interior of C, i.e. D is the ellipse such that x2/4+y2 ≤ 1.∫
C

(3x− 5y)dx+ (x+ 6y)dy =

∫∫
D

(1− (−5))dxdy = 6

∫∫
D

1dxdy = 6× (Area of the ellipse) = 6× 2π.

See chapter 2 for calculating the area of an ellipse by change of variables for a double integral.

(i) Directly: Parameterise C by x(t) = 2 cos t, y(t) = sin t, where 0 ≤ t ≤ 2π.

I =
∫ 2π

0
(6 cos t− 5 sin t)dxdt dt+ (2 cos t− 6 sin t)dydt dt

=
∫ 2π

0
18 cos t sin t+ 10 sin2 t+ 2 cos2 t dt

= 0 + 40
∫ π/2

0
sin2 t dt+ 8

∫ π/2
0

cos2 t dt

= 0 + 40π2 (1/2) + 8π2 (1/2) = 12π.

The integrals are calculated using symmetry properties of cos t and sin t and beta functions. Using the table

of signs below we see that
∫ 2π

0
sin2 t = 4

∫ π/2
0

sin t dt etc.

Quadrant 1 2 3 4 Total
cos t + − − +
sin t + + − −

cos t sin t + − + − 0
sin2 t + + + + 4
cos2 t + + + + 4

�

4.3 Line integrals of vector fields in R3

In section 4.1 we considered line integrals of the form
∫
C

F ·dr where C was a curve in R2 this formula works
equally well in three dimensions. Take F = (P (x, y, z), Q(x, y, z), R(x, y, z)) and dr = (dx, dy, dz) and now
consider C as a curve in R3. This integral now represents the work done to move a particle along a curve in
R3.
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4.3.1 Independence of path

(Stewart (Ed. 7): Section 16.3, p1099.)

If we consider two curves C1 and C2 (which are called paths) with the same initial point A and the same
end point B. We know that in general

∫
C1

F · dr 6=
∫
C2

F · dr since the work done to move a particle along
one route to B may not be the same as another route because the forces impeding or assisting the movement
may be different in the two regions of space where the two routes lie. However when F = ∇φ for some
continuous scalar-valued function φ then we have

∫
C1

F · dr =
∫
C2

F · dr and we say that the line integral is
path independent.

When we can find a scalar-valued function φ such that F = ∇φ we say that F is a conservative
vector field and we denote φ as the potential function. The fact that F is conservative ensures the
independence of path and gives an integral that is related to the Fundamental Theorem of Calculus which

states
∫ b
a
F ′(x)dx = F (b)− F (a). In fact, we have the following theorem,

Theorem Let C be a smooth curve given by the vector function r(t), a ≤ t ≤ b. Let φ by a differentiable
scalar function of 2 or 3 variables whose gradient vector ∇φ is continuous on C. Then∫

C

F · dr =

∫
C

∇φ · dr = φ(r(b))− φ(r(a))

Proof ∫
C

F · dr =

∫ b

a

∇φ(r(t)) · dr
dt
dt

=

∫ b

a

(
∂φ

∂x

dx

dt
+
∂φ

∂y

dy

dt
+
∂φ

∂z

dz

dt

)
dt =

∫ b

a

d

dt
φ(r(t)) dt (by the chain rule)

=φ(r(b))− φ(r(a)). �.

4.3.2 Conservative vector fields

(Stewart (Ed. 7): Section 16.3, p1099.)

The grad of every smooth scalar field is a vector field. It is natural to ask whether all vector fields are
the grad of some scalar field. In general, the answer is “no”, but we can characterise those vector fields F
for which this is the case. If there exists a scalar field φ such that the vector field F = gradφ = ∇φ, we say
that F is conservative and φ is called a potential for F.

These names reflect an application of this notion in physics; a force (vector field) that does not expend
energy is said to be conservative and can be written as the gradient of a potential energy (scalar field).
Gravitational force is a conservative force, whereas friction is not.

We have already seen (See Example 3.10) that curl gradφ = 0 for all smooth scalar fields φ. This means
that if F = gradφ for some φ then curl F = 0. This is a necessary condition for F to be conservative (i.e. if
F is to be conservative then we must have curl F = 0). For a vector field that is defined everywhere then it
is also sufficient (i.e. if F is defined everywhere and curl F = 0 then F is conservative).

Example 4.6 Vector fields V and W are defined by

V = (2x− 3y + z,−3x− y + 4z, 4y + z)

W = (2x− 4y − 5z,−4x+ 2y,−5x+ 6z) .
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One of these is conservative while the other is not. Determine which is conservative and denote it by F.
Find a potential function φ for F and evaluate ∫

C

F · dr ,

where C is the curve from A(1,0,0) to B(0,0,1) in which the plane x + z = 1 cuts the hemisphere given by
x2 + y2 + z2 = 1, y ≥ 0.

Solution : We have

curl V =

∣∣∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z

2x− 3y + z −3x− y + 4z 4y + z

∣∣∣∣∣∣∣∣∣∣
=
(
0, 1, 0) 6= 0.

Since curl V 6= 0, V is NOT conservative.
We have

curl W =

∣∣∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z

2x− 4y − 5z −4x+ 2y −5x+ 6z

∣∣∣∣∣∣∣∣∣∣
=
(
0, 0, 0) = 0.

Since curl W = 0, W is conservative.
Suppose that gradφ = W. Then

∂φ

∂x
= 2x− 4y − 5z, (1)

∂φ

∂y
= −4x+ 2y, (2)

∂φ

∂z
= −5x+ 6z. (3)

Integrating (1) with respect to x, holding the other variables constant, we get

φ =

∫
y,z fixed

2x− 4y − 5z dx = x2 − 4yx− 5zx+A(y, z),

where A is an arbitrary function. Substituting this expression into (2) gives,

−4x+
∂A

∂y
= −4x+ 2y, i.e.

∂A

∂y
= 2y,

and therefore

A(y, z) =

∫
z fixed

(2y) dy = y2 +B(z),

where B is an arbitrary function, giving

φ = x2 − 4yx− 5zx+ y2 +B(z).

64



Finally, substituting this into (3) gives

−5x+
dB

dz
= −5x+ 6z, i.e.

dB

dz
= 6z,

so that B = 3z2 + C, where C is a constant. Hence, by taking C = 0 we obtain a potential

φ = x2 − 4yx− 5zx+ y2 + 3z2.

Notice that the potential function is not unique; we may always add an arbitrary constant to a potential
and it remains a potential.

So the line integral is:∫
C

F · dr =

∫
C

gradφ · dr = φ(0, 0, 1)− φ(1, 0, 0) = 3− 1 = 2.

�

4.4 Surface integrals

(Stewart (Ed. 7): Section 16.7, p1134.)

Instead of integrating over a domain that lies in the xy-plane as we did when doing double integration
in Chapter 2 we can integrate over a domain that is a surface in R3, this gives a surface integral.

Consider a crop growing on a hillside S, suppose that the crop yield per unit surface area varies across
the surface of the hillside and that it has the value f(x, y, z) at the point (x, y, z). We may then ask what
is the total yield of the crop over the whole surface of the hillside, a surface integral will give the answer to
this question. Let a small element of surface ∆S contain the point (x, y, z). Then assuming that f is well
behaved the contribution to the total crop from this small element of surface is f(x, y, z)∆S. Summing over
all elements of surface and taking the limit as ∆S → 0 we obtain the surface integral of f over the surface
S. ∫∫

S

f(x, y, z)dS .

Evaluating a surface integral We need to relate ∆S to the area of an element at the base ∆x∆y as
shown in Figure 4.6. For a curved surface this relationship changes with x and y. In the special case where
the surface S can be expressed as z = z(x, y), or r = (x, y, z(x, y)) the plane tangent to the surface at a
point approximates a small piece of surface very well. The vector tangent to the surface in the x-direction is
rx = (1, 0, ∂z∂x ). The vector tangent to the surface in the y-direction is ry = (0, 1, ∂z∂y ). The area of the tangent
plane is then the area of the plane with sides of length ∆x and ∆y and direction given by the two tangent
vectors. The area is the area of a parallelogram, with sides ∆xrx and ∆yry. The area of a parallelogram is
given by the magnitude of the cross product which is given by

∆S ≈ |rx∆x× ry∆y| = |rx × ry|∆x∆y =

∣∣∣∣(−∂z∂x,−∂z∂y , 1)

∣∣∣∣∆x∆y =

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

∆x∆y.
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Figure 4.6: Shows the surface S and the tangent plane.

4.4.1 Rule for evaluating surface integrals

Using the above explanation we can replace dS by

√
1 +

(
∂z
∂x

)2
+
(
∂z
∂y

)2

dxdy in the surface integral

∫∫
S

f(x, y, z)dS =

∫∫
D

f(x, y, z)

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dx dy ,

where D is the projection of S onto the xy-plane.

Example 4.7 Evaluate ∫∫
S

z2 dS

where S is the hemisphere given by x2 + y2 + z2 = 1 with z ≥ 0.

Solution : We first find ∂z
∂x etc. These terms arise because dS =

√
1 + ( ∂z∂x )2 + ( ∂z∂y )2 dxdy. Since this

change of variables relates to the surface S we find these derivatives by differentiating both sides of the
surface x2 + y2 + z2 = 1 with respect to x, giving 2x+ 2z ∂z∂x = 0. Hence, ∂z

∂x = −x/z. Similarly, ∂z∂y = −y/z.
Hence, √

1 + (
∂z

∂x
)2 + (

∂z

∂y
)2 =

√
1 +

x2

z2
+
y2

z2
= 1/z.
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Figure 4.7: Shows the hemisphere S and the projection D onto the xy-plane.

Then the integral becomes the following, where D is the projection of the surface, S, onto the xy-plane. i.e.
D = {(x, y) : x2 + y2 ≤ 1}. (See Figure 4.7)∫∫

S

z2dS =

∫∫
D

z2 1

z
dxdy

=

∫∫
D

√
1− x2 − y2 dxdy

=

∫ 2π

0

dθ

∫ 1

0

√
1− r2 r dr

= −
∫ 2π

0

dθ

∫ 0

1

1

2

√
u du

=

∫ 2π

0

1

3
dθ

= 2π/3.

�

Remark A surface integral can also be used to calculate the area of a surface S.∫∫
S

1 dS = Area of surface S

An intuition for this can be obtained be thinking about the crop analogy again. If the crop density is
1kg/square metre (f = 1), and the total crop is 65kg (

∫∫
S

1 dS = 65), then the area of the crop is 65 square
metres (Area of S=65).

Example 4.8 Find the area of the ellipse cut on the plane 2x + 3y + 6z = 60 by the circular cylinder
x2 + y2 = 2x.

Solution : The surface S lies in the plane 2x+3y+6z = 60 so we use this to calculate dS =
√

1 + ( ∂z∂x )2 + ( ∂z∂y )2 dxdy.

Differentiating the equation for the plane with respect to x gives,

2 + 6
∂z

∂x
= 0 thus,

∂z

∂x
= −1/3.
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Figure 4.8: A sketch of the surface S and the projection onto the xy-plane.

Differentiating the equation for the plane with respect to y gives,

3 + 6
∂z

∂y
= 0 thus,

∂z

∂y
= −1/2.

Hence, √
1 + (

∂z

∂x
)2 + (

∂z

∂y
)2 =

√
1 +

1

9
+

1

4
= 7/6.

Then the area of S is found be calculating the surface integral over S for the function f(x, y, z) = 1. The the
projection of the surface, S, onto the x− y-plane is given by D = {(x, y) : x2− 2x+ y2 = (x− 1)2 + y2 ≤ 1}
(See Figure 4.8). Hence the area of S is given by∫∫

S

1 dS =

∫∫
D

1
7

6
dxdy

=
7

6

∫∫
D

1 dxdy

=
7

6
× Area of D =

7

6
π.

Note, since D is a circle or radius 1 centred at (1, 0) the area of D is the area of a unit circle which is π. �

4.5 Surface integral of a vector field

4.5.1 Normal direction to a surface

(Stewart (Ed. 7): Section 16.7, p1140.)

In order to define surface integrals of vector fields, we need to consider orientable surfaces (2 -sided). The
möbius strip is an example of a nonorientable surface (1-sided). (You can construct a möbius strip by taking
a long strip of paper and give a half twist and the tape the two short ends together.) We use the normal
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to the surface to give the surface orientation. The normal to the surface at a given point is the direction
perpendicular to the tangent plane at that point. There are two possible normals, one points in the opposite
direction to the other. So there are two possible orientations for any orientable surface (see Figure 4.9).

Figure 4.9: The two orientations of an orientable surface.

Remarks

1. For a surface in the form f(x, y, z) = 0 the normal vector is given by

n =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

2. For a surface in the form z = z(x, y) the normal vector is given by

n =

(
∂z

∂x
,
∂z

∂y
,−1

)
This one follows from the fact that rx × ry is normal to the vectors rx and ry which lie in the tangent
plane (see section 4.3).

Examples

1. For the plane 2x+ 7y + 3z = 50 we have f(x, y, z) = 2x+ 7y + 3z − 50 = 0, so the normal is,

n =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
= (2, 7, 3)

as expected.

2. For the sphere x2 + y2 + z2− a2 = 0, the normal is, (2x, 2y, 2z) or (x, y, z) or (x/a, y/a, z/a) i.e. along
the radius vector from the centre of the sphere.

4.5.2 Surface integral of a vector field

Imagine a fluid flowing through a surface S. (Think of S as an imaginary fishing net, so it doesn’t impede
the flow). F is the force field and it is related to the velocity and density of the fluid flowing through the
surface. A measure of the total flux (flow) across the surface is given by∫∫

S

F · n dS,

where n is the unit normal. F · n dS tells us the mass of fluid flowing across a region dS in the direction of
n.
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Remark Some books use the alternative notation∫∫
F · dS

for
∫∫
S

F · n dS. Notice in the alternative notation that dS is a vector.

4.5.3 Gauss’ Divergence Theorem

(Stewart (Ed. 7): Section 16.9, p1152.)

Gauss’ Divergence Theorem will help us calculate
∫∫
S

F·n dS There are some similarities between Green’s
Theorem on R2 and Gauss’ Divergence Theorem in R3 in the following respects:

Green’s Theorem: Line integral round a boundary curve C of a closed region in R2=Double integral over
the enclosed 2-dimensional region.

Gauss’ Theorem: Surface integral over a boundary surface S of a closed region in R3=Triple integral over
the enclosed 3-dimensional region.

Remark Note that for Green’s Theorem the curve must be a closed curve and for Gauss’ Theorem the
surface must be a closed surface. Gauss’s Divergence Theorem is named after Gauss (1777-1855) who
discovered it during his work on electrostatics. In Eastern Europe the Divergence Theorem is known as
Ostrogradsky’s Theorem after the Russian mathematician who also discovered and published this result in
1826.

Gauss’ Divergence Theorem

Theorem Let V be a closed bounded volume on R3 with boundary surface S, given with positive (outward)
orientation. Let F be a vector field whose component functions have continuous partial derivatives on an
open region containing V . Then ∫∫

S

F · n dS =

∫∫∫
V

div F dx dy dz ,

where n denotes the outward pointing unit normal at each point on the surface S.

Proof As with Green’s theorem we only consider simple domains where V is a simple xy-solid and yz-solid
and zx-solid a more general solid is to difficult to present here. Let F = (F1(x, y, z), F2(x, y, x), F3(x, y, z))
then we can express the main statement of the theorem as∫∫

S

(F1(x, y, z)i + F2(x, y, z)j + F3(x, y, z)k) · n dS =

∫∫∫
V

(
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

)
dV

so suffices to prove ∫∫
S

F1(x, y, z)i · n dS =

∫∫∫
V

(
∂F1

∂x

)
dV (4.3)

and similarly for the F2 and F3 terms. Since the proofs of all three equalities are similar, we will prove only
the third.
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Suppose that V has upper surface z = g2(x, y), lower surface z = g1(x, y), and projection D onto the
xy-plane. Let S1 denote the lower surface, S2 the upper surface, and S3 denote the lateral surface. If the
upper surface and lower surface meet then there is no lateral surface. The proof will allow for both cases.∫∫∫

V

∂F3

∂z
dV =

∫∫
D

[∫ g2(x,y)

g1(x,y)

∂F3

∂z
dz

]
dA =

∫∫
D

[F3(x, y, z)]
z=g2(x,y)
z=g1(x,y) dA

hence, ∫∫∫
V

∂F3

∂z
dV =

∫∫
D

F3(x, y, g2(x, y))− F3(x, y, g1(x, y)) dA.

We now want to evaluate the surface integral in equation 4.3 by integrating over each surface of S separately.
If there is a lateral surface S3, then at each point of the surface k · n = 0. Thus,∫∫

S3

F3(x, y, z)k · n dS = 0.

Therefore regardless of whether S has a lateral surface, we can write∫∫
S

F3(x, y, z)k · n dS =

∫∫
S1

F3(x, y, z)k · n dS +

∫∫
S2

F3(x, y, z)k · n dS

on the upper surface S2, the outer normal is upward and given by n =
(
− ∂z
∂x ,−

∂z
∂y , 1

)
, and on the lower

surface S1, the outer normal is a downward normal given by n =
(
∂z
∂x ,

∂z
∂y ,−1

)
, hence∫∫

S2

F3(x, y, z)k · n dS =

∫∫
D

F3(x, y, g2(x, y)) dA

and ∫∫
S2

F3(x, y, z)k · n dS = −
∫∫

D

F3(x, y, g1(x, y)) dA

Hence, ∫∫
S

F3(x, y, z)k · n dS =

∫∫
D

F3(x, y, g2(x, y))− F3(x, y, g1(x, y)) dA

and equation 4.3 follows. �

Example 4.9 Use Gauss’ Divergence Theorem to evaluate

I =

∫∫
S

x4y + y2z2 + xz2 dS,

where S is the entire surface of the sphere x2 + y2 + z2 = 1.

Solution : In order to apply Gauss’ Divergence Theorem we first need to determine F and the unit normal

n to the surface S. The normal is
(
∂f
∂x ,

∂f
∂y ,

∂f
∂z

)
= (2x, 2y, 2z), where f(z, y, z) = x2+y2+z2−1 = 0 describes

the surface S. We require the unit normal, so n = (2x, 2y, 2z)/|(2x, 2y, 2z)| = (2x, 2y, 2z)/2 = (x, y, z). To
find F = (F1, F2, F3) we note that

F · n = x4y + y2z2 + xz2

= F1x+ F2y + F3z
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Hence, comparing terms we have F1 = x3y, F2 = yz2 and F3 = xz. Applying the Divergence Theorem
noting that V is the volume enclosed by the sphere S gives

I =

∫∫
S

F · ndS =

∫∫∫
V

div Fdxdydz

=

∫∫∫
V

(3x2y + z2 + x) dxdydz

= 0 +

∫∫∫
V

z2 dxdydz + 0

=

∫ 2π

0

dθ

∫ π

0

dφ

∫ 1

0

ρ2 cos2 φ ρ2 sinφ dρ

= 2π

∫ π

0

cos2 φ sinφdφ

∫ 1

0

ρ4dρ

= 2π × 2× 1 · 1
3 · 1

× 1 =
4π

15
.

Remarks

1. As V is a sphere it is natural to use spherical polar coordinates to solve the integral. Thus, x =
ρ cos θ sinφ, y = ρ sinφ sin θ, and z = ρ cosφ and dxdydz = ρ2 sinφdρdθdφ.

2.
∫∫∫

V
3x2y dxdydz = 0 and

∫∫∫
V
x dxdydz = 0 from the symmetry of the cosine and sine functions.

We look at the signs in each quadrant as θ changes. Think about a fixed φ. cos θ and sin θ terms in
x2y and x then have the following signs

Quadrant 1 2 3 4 Total
cos θ + − − +
sin θ + + − −
x2y + + − − 0
x + + − − 0

The positive and negative contribution from the integral cancel out in these two cases so the integrals
are zero.

�

Example 4.10 Find I =
∫∫
S

F · n dS where F = (2x, 2y, 1) and where S is the entire surface consisting of
S2=the part of the paraboloid z = 1−x2− y2 with z = 0 together with S1=disc {(x, y) : x2 + y2 ≤ 1}. Here
n is the outward pointing unit normal.

Solution : Applying the Divergence Theorem noting that V is the volume enclosed by S1 and S2 (see
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Figure 4.10: Illustration of surfaces S1 and S2.

Figure 4.10) and div F = 2 + 2 + 0 gives

I =

∫∫
S

F · ndS =

∫∫∫
V

div Fdxdydz

=

∫∫∫
V

4dxdydz

= 4

∫∫
{(x,y):x2+y2≤1}

dxdy

∫ 1−x2−y2

0

1dz

= 4

∫∫
{(x,y):x2+y2≤1}

1− x2 − y2dxdy

= 4

∫ 2π

0

dθ

∫ 1

0

(1− r2)r dr

= 4× 2π(1/2− 1/4) = 2π.

�
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