
Chapter 1

Partial differentiation

Example 1.1 Sketch the graph of f(x, y) = −
√
1− 2x− x2 − y2.

Solution : Let z = f(x, y). Completing the square, we have

z2 = 1− 2x− x2 − y2 = 2− (x+ 1)2 − y2,

i.e. (x + 1)2 + y2 + z2 = 2. This is the sphere with centre (−1, 0, 0) and radius
√
2. The part given by

z = −
√

1− 2x− x2 − y2 (≤ 0) is the hemisphere below the x, y-plane. See Figure 1.1. �

Figure 1.1: Graph of f(x, y) = −
√
1− 2x− x2 − y2

Example 1.2 By considering the level curves and the cross-sections x = 0 and y = 0, obtain a sketch of
z =

√
x2 + y2.

Solution : The level curves are defined by

Lc = {(x, y) ∈ R2 :
√
x2 + y2 = c}.

For c < 0, Lc = ∅ (since
√
· · · ≥ 0), L0 = {(0, 0)} (since x2 + y2 = 0 =⇒ x = y = 0) and for c > 0,

Lc = {(x, y) ∈ R2 : x2 + y2 = c2}, the circle of radius c, centre (0, 0).

Fixing x = 0 we get z =
√
y2 = |y| and fixing y = 0 we get z = |x|. These cross-sections are illustrated

in Figure 1.2.
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Figure 1.2: Cross sections

Putting this information together, we see that the surface defined by z =
√
x2 + y2 is a (circular) cone

with vertex at (0, 0) (Figure 1.3).

�

Example 1.3 Sketch the part of the surface

2x+ y + 4z = 1,

where x, y, z ≥ 0.

Solution : We consider the cross-section with the coordinate planes x = 0 (y, z-plane), y = 0 (x, z-plane)
and z = 0 (x, y-plane).

The cross-section of 2x + y + 4z = 1 with x = 0 is the line y + 4z = 1 (lying in the y, z-plane). This
passed through the points (0, 0, 1

4 ) and (0, 1, 0). In a similar way we obtain the cross-section with the other
coordinate planes; 2x+4z = 1 in the x, z-plane, passing through (0, 0, 1

4 ) and ( 12 , 0, 0) and 2x+ y = 1 in the
x, y-plane, passing through (0, 1, 0) and ( 12 , 0, 0).

A sketch of the plane is shown in Figure 1.4. �

Example 1.4 Sketch the region bounded by the paraboloid z = 4− x2 − 2y2 and the plane z = 2.

2



Figure 1.3: The cone z =
√
x2 + y2

Figure 1.4: The plane 2x+ y + 4z = 1

Solution : The level curves of the paraboloid for c > 4 are Lc = ∅ (since 4− x2 − 2y2 ≤ 4). For c ≤ 4 are
defined by the ellispse

Lc = {(x, y) ∈ R2 : 4− x2 − 2y2 = c}.
In particular, the level curve where the plane insects the paraboloid is given by L2 = {(x, y) ∈ R2 : 2 =
x2 + 2y2}.

The cross section of the paraboloid when fixing x = 0 is the curve z = 4− 2y2 and fixing y = 0 gives the
cross section z = 4− x2. These cross-sections are both parabolas and are illustrated in Figure 1.5.

Putting this information together, the region bounded by the parabolid and the plane is illustrated in
Figure 1.6.

�

Example 1.5 Find
∂f

∂x
,
∂f

∂y
and

∂z

∂x
where

(a) f(x, y) = x3y2 + x, (b) z(x, y) = sin−1

(
x

x+ y

)
and x, y > 0.

[Note that sin−1 u is the inverse sine function (sometimes written as arcsinu), and not the reciprocal 1/ sinu.
The domain of sin−1 is [−1, 1] and, since x, y > 0, x/(x+ y) lies in this domain.]
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Figure 1.5: Cross sections and level curves of the paraboloid z = 4− x2 − 2y2

Figure 1.6: The region bounded by the paraboloid z = 4− x2 − 2y2 and the plane z = 2.

Solution : (a) To calculate the partial x derivative, we think of y as a constant and differentiate in the
usual way with respect to x. Hence, we have

∂f

∂x
= y2

∂

∂x
(x3) +

∂

∂x
(x) = 3x2y2 + 1.

For the y derivative, we think of x as a constant and differentiate with respect to y;

∂f

∂y
= x3 ∂

∂y
(y2) +

∂

∂y
(x) = 2x3y.

Answer: fx = 3x2y2 + 1 and fy = 2x3y.
(b) Let u = x/(x+ y). So, by the chain rule

∂z

∂x
=

d

du
(sin−1 u)

∂u

∂x
.

We have
d

du
(sin−1 u) =

1√
1− u2

=
1√

1−
(

x

x+ y

)2
=

|x+ y|√
(x+ y)2 − x2

=
x+ y√
2xy + y2

,
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since x, y > 0. Also, by the quotient rule,

∂u

∂x
=

∂

∂x
(x).(x+ y)− x.

∂

∂x
(x+ y)

(x+ y)2
=

y

(x+ y)2
.

Hence
∂z

∂x
=

y

x+ y

1√
2xy + y2

.

Answer: zx = y
x+y

1√
2xy+y2

. �

Example 1.6 Find
∂z

∂x
where z is defined implicitly as a function of x and y by the equation

x4 + 2y2 + z3 − 2x2yz = 1.

Solution : Differentiating implicitly with respect to x gives

4x3 + 0 + 3z2
∂z

∂x
− 4xyz − 2x2y

∂z

∂x
= 0.

Rearranging to solve for ∂z
∂x yields

∂z

∂x
=

4x3 − 4xyz

2x2y − 3z2
.

�

Example 1.7 For r ∈ R+, let u = f(r) where r2 = x2 + y2 + z2. Show that

xux + yuy + zuz = rf ′(r).

Solution : By the chain rule,

ux =
∂u

∂x
=

df

dr

∂r

∂x
= f ′(r)

∂r

∂x
,

and similarly,

uy = f ′(r)
∂r

∂y
, uz = f ′(r)

∂r

∂z
.

Now
∂

∂x
(r2) =

∂

∂x
(x2 + y2 + z2) i.e., 2r

∂r

∂x
= 2x.

Therefore
∂r

∂x
=

x

r
,

and similarly,
∂r

∂y
=

y

r
,

∂r

∂z
=

z

r
.

Thus we have

xux + yuy + zuz =
x2

r
f ′(r) +

y2

r
f ′(r) +

z2

r
f ′(r) =

(x2 + y2 + z2)

r
f ′(r) = rf ′(r),

as required. �

Example 1.8 Determine all second order derivatives of u = sinxy and verify that uxy = uyx.
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Solution : We have first derivatives

ux = y cosxy, uy = x cosxy.

Hence, the second derivatives are

uxx =
∂

∂x
(ux) = y

∂

∂x

(
cosxy

)
= −y2 sinxy,

uxy =
∂

∂y
(ux) =

∂

∂y
(y). cosxy + y

∂

∂y

(
cosxy

)
= cosxy − yx sinxy,

uyx =
∂

∂x
(uy) =

∂

∂x
(x). cosxy + x

∂

∂x

(
cosxy

)
= cosxy − xy sinxy,

uyy =
∂

∂y
(uy) = x

∂

∂y

(
cosxy

)
= −x2 sinxy.

Hence uxy = uyx = cosxy − xy sinxy as required. �

Example 1.9 Let u = f(x/y), where f is an arbitrary (twice differentiable, with continuous second deriva-
tive) function of one variable. Show that

xux + yuy = 0,

and deduce that
x2uxx + 2xyuxy + y2uyy = 0.

Solution : Using the chain rule, we have,

ux = f ′
(
x

y

)
∂

∂x

(
x

y

)
=

1

y
f ′

(
x

y

)
,

uy = f ′
(
x

y

)
∂

∂y

(
x

y

)
= − x

y2
f ′

(
x

y

)
.

So,

xux + yuy = x
1

y
f ′

(
x

y

)
− y

x

y2
f ′

(
x

y

)
= 0.

[Although we could proceed by calculating uxx, uxy and uyy and taking the appropriate combination, it is
much less work to deduce the final part as indicated below.]

Since xux + yuy = 0, its x- and y-derivatives must also equal 0. Hence

xuxx + ux + yuyx = 0, (1)

and
xuxy + yuyy + uy = 0. (2)

Taking x× (1) + y × (2) [the need to have the correct coefficient for uxx and uyy dictates the choice of this
combination of (1) and (2)] we get

x2uxx + xux + xyuyx + yxuxy + y2uyy + yuy = 0.

Since uxy = uyx and xux + yuy = 0, we get

x2uxx + 2xyuxy + y2uyy = 0.

as required.
�

Example 1.10 Let w = u2 + v2 where u = sin θ and v = cosϕ. Use the chain rule to calculate wθ and wϕ

in terms of θ and ϕ.
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Solution : Using the chain rule, we have

wθ =
∂u

∂θ

∂w

∂u
+

∂v

∂θ

∂w

∂v
= cos θ.2u+ 0.2v = 2 cos θ sin θ = sin 2θ,

and

wϕ =
∂u

∂ϕ

∂w

∂u
+

∂v

∂ϕ

∂w

∂v
= 0.2u+ (− sinϕ).2v = −2 sinϕ cosϕ = −2 sin 2ϕ.

�

Example 1.11 Find the general solution of the PDE,

∂f

∂x
= x2 + y + 9,

where f is a function of two independent variables x and y.

Solution : Integrating with respect to x and treating y as fixed gives

f =

∫
y fixed

x2 + y + 9dx =
x3

3
+ xy + 9x+A(y) ,

where A is an arbitrary function depending on the fixed variable y. �

Example 1.12 Find the general solution of the PDE,

∂2f

∂x∂y
= 2x,

where f is a function of two independent variables x and y.

Solution The PDE can be expressed as

∂

∂x

(
∂f

∂y

)
= 2x,

Integrating with respect to x and treating y as fixed gives

∂f

∂y
=

∫
y fixed

2xdx = x2 +A(y) ,

where A is an arbitrary function depending on the fixed variable y. Integrating with respect to y, holding x
fixed then gives

f =

∫
x fixed

x2 +A(y)dy = x2y +

∫
x fixed

A(y)dy +B(x) = x2y + C(y) +B(x).

B is an arbitrary function of the fixed variable x. Since A was an arbitrary function of y its intergral is also
and arbitrary function of y so let’s call this function C(y) =

∫
x fixed

A(y)dy. �

Example 1.13 By changing variables from (x, y) to (u, v), where u = xy, v = x/y, solve the PDE

x
∂z

∂x
+ y

∂z

∂y
= 2x2 sin(xy).
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Solution By the chain rule,
∂z

∂x
=

∂u

∂x

∂z

∂u
+

∂v

∂x

∂z

∂v
= y

∂z

∂u
+

1

y

∂z

∂v
,

and
∂z

∂y
=

∂u

∂y

∂z

∂u
+

∂v

∂y

∂z

∂v
= x

∂z

∂u
− x

y2
∂z

∂v
.

Therefore,

x
∂z

∂x
+ y

∂z

∂y
= x

(
y
∂z

∂u
+

1

y

∂z

∂v

)
+ y

(
x
∂z

∂u
− x

y2
∂z

∂v

)
= 2xy

∂z

∂u
.

Inverting the change of variables we have

x =
√
uv, y =

√
u

v
,

and so, after the change of variable the PDE becomes,

2u
∂z

∂u
= 2uv sinu,

i.e.,
∂z

∂u
= v sinu.

Then

z =

∫
v fixed

v sinu du = −v cosu+A(v),

and in terms of x and y this is z = −x
y cos(xy) +A

(
x
y

)
, where A is an arbitrary function. �

Example 1.14 By changing variables from (x, y) to (u, v), where u = x3/y, v = x, find ∂f
∂x and ∂f

∂y in terms
of parital derivatives with respect to u and v. Hence, solve the PDE

x
∂f

∂x
+ 3y

∂f

∂y
=

6x5

y
.

Solution By the chain rule,

∂f

∂x
=

∂u

∂x

∂f

∂u
+

∂v

∂x

∂f

∂v
=

3x2

y

∂f

∂u
+ 1

∂f

∂v
,

and
∂f

∂y
=

∂u

∂y

∂f

∂u
+

∂v

∂y

∂f

∂v
=

−x3

y2
∂f

∂u
− 0

∂f

∂v
.

Therefore,

x
∂f

∂x
+ 3y

∂f

∂y
= x

(
3x2

y

∂f

∂u
+

∂f

∂v

)
+ y

(
−x3

y

∂f

∂u

)
= x

∂f

∂v
.

Inverting the change of variables we have

x = v, y =
v3

u
,

and so, after the change of variable the PDE becomes,

v
∂f

∂v
= 6uv2,
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i.e.,
∂f

∂u
= 6uv.

Then

f =

∫
u fixed

6uv dv = 3v2u+A(u),

and in terms of x and y this is f = 3x5

y +A
(

x3

y

)
, where A is an arbitrary function. �
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