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Tutorial Exercises

T1 Sketch the wedge shaped region W (in the first octant) enclosed
by the five planes x = 0, y = 0, z = 0, x = 1 and y + z = 1. Then
evaluate ∫∫∫

W
xy dxdydz.

Hence the integral is

I =
∫ 1

0
dx
∫ 1

0
dy
∫ 1−y

0
xy dz =

∫ 1

0
x dx

∫ 1

0
y
[
z
]1−y

0 dy

=
∫ 1

0
x dx

∫ 1

0
y− y2 dy =

∫ 1

0
x
[y2

2
− y3

3
]1

0 dx

=
∫ 1

0

1
6

x dx =
1
6
[ x2

2
]1

0 =
1

12
.

Solution

T2 Sketch the solids whose volume is given by the following inte-
grals

(a)
∫ 2

0
dx
∫ 3−3x/2

0
dy
∫ 6−3x−2y

0
1 dz (b)

∫ 1

−1
dx
∫ 1−x

0
dy
∫ 1−x2

0
1 dz

(a)

Solution
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(b)

T3 A solid shell of variable density is in the form of the region
lying between the spheres x2 + y2 + z2 = 1 and x2 + y2 + z2 = 9.
The density ρ of the shell at the point (x, y, z) is given by ρ(x, y, z) =√

x2 + y2 + z2. Find the mass of the shell.

Mass is given by the triple integral of the density (
√

x2 + y2 + z2) over the volume V. Hence,

Mass =
∫ ∫ ∫

V

√
x2 + y2 + z2 dxdydz =

∫ 2π

0
dθ
∫ π

0
dφ
∫ 3

1
ρ3 sin φ dρ

= 2π
∫ π

0
sin φ dφ

∫ 3

1
ρ3 dρ = 4π

[ρ4

4
]3

1 = 80π.

Solution

T4 Evaluate ∫∫∫
z2 dxdydz

throughout

a) the part of the sphere x2 + y2 + z2 = a2 (a > 0) in the first octant,

b) the complete interior of the sphere x2 + y2 + z2 = a2 (a > 0).

(a) Hence the integral is

I =
∫ π/2

0
dθ
∫ π/2

0
dφ
∫ a

0
ρ4 cos2 φ sin φ dρ

=
∫ π/2

0
dθ
∫ π/2

0
cos2 φ sin φ dφ

∫ a

0
ρ4 dρ =

π

2
.
1.1
3.1
[ρ5

5
]a

0 =
πa5

30
.

Solution
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(b) Hence the integral is

I =
∫ 2π

0
dθ
∫ π

0
dφ
∫ a

0
ρ4 cos2 φ sin φ dρ

=
∫ 2π

0
dθ
∫ π

0
cos2 φ sin φ dφ

∫ a

0
ρ4 dρ

= 4π
∫ π/2

0
cos2 φ sin φ dφ.

a5

5
=

4πa5

5
.
1.1
3.1

=
4πa5

15
.

T5 Find grad f at the point P for

(a) f = x2 + y2− 3yz, P(1, 2, 1), (b) (b) f = ex log(yz), P(0, 2, 3),

(c) f = cos(yz) log(xz), P(1, 0, 3).

(a) grad f = (2x, 2y− 3z,−3y) = (2, 1,−6) at P(1, 2, 1).
(b) grad f = (log(yz), ex/y, ex, z) = (log 6, 1

2 , 1
3 ) at P(0, 2, 3).

(c) grad f = (cos(yz)/x,−z sin(yz) log(xz),−y sin(yz) log(xz)+ cos(yz)/z) = (1, 0, 1
3 ) at P(1, 0, 3).

Solution

Further Exercises

F1 Evaluate ∫∫∫
T

y dxdydz

throughout the tetrahedron T given by x ≥ 0, y ≥ 0, z ≥ 0, x+ y+ z ≤
1.

Solution
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Hence the integral is

I =
∫ 1

0
dx
∫ 1−x

0
dy
∫ 1−x−y

0
y dz =

∫ 1

0
dx
∫ 1−x

0
y
[
z
]1−x−y

0 dy

=
∫ 1

0
dx
∫ 1−x

0
y((1− x)− y) dy =

∫ 1

0

[1
2

y2(1− x)− 1
3

y3]1−x
0 dx

=
∫ 1

0

1
6
(1− x)3 dx = −1

6
[ (1− x)4

4
]1

0 =
1

24
.

F2 Use triple integtration to express the volume of the solid that is
bounded by the given surfaces and evaluate the volume:

a) z = x2 + y2 − 3, z = −x2 − y2 + 5,

b) y = x2, z = −y + 4, z = 0.

(a) The projection of the volume onto the x, y-plane is given by a circle centre 0 radius 2. This is because
the two surfaces meet at the widest point of the volume. They meet when x2 + y2 − 3 = −x2 − y2 + 5,
rearranging this gives x2 + y2 = 4. We will call this region D. As we wish to find a volume the
integrand is 1.

Volume =
∫∫

D
dx dy

∫ −x2−y2+5

x2+y2−3
1 dz =

∫∫
D
−2x2 − 2y2 + 8 dxdy

Since D is a disc we carryout the remaining double integral using polar coordinates. D can be
described by 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π giving:

volume =
∫ 2π

0
d θ
∫ 2

0
(−2r2 + 8)r dr = 2π

[
−2r4

4
+ 4r2]2

0 = 16π.

(b) The projection of the volume onto the x, y-plane is given by x2 ≤ y ≤ 4 and −2 ≤ x ≤ 2. This
is because the widest point where z = −y + 4 meets the plane y = x2 is at z = 0. The top and bottom
of the volume are given by the surfaces z = −y + 4 and z = 0 respectively. Taking the inegrand to be
1 becaue we wish to find the volume gives:

Volume =
∫ 2

−2
dx
∫ 4

x2
dy
∫ −y+4

0
1 dz =

∫ 2

−2
dx
∫ 4

x2
−y + 4 dy

=
∫ 2

−2

[
−y2

2
+ 4y

]4

x2
dx =

∫ 2

−2
8 +

x4

2
− 4x2 dx =

256
15

Solution

F3 Find the mass of the solid of constant density ρ that is bounded
by the parabolic cylinder x = y2 and the planes x = z, z = 0 and
z = 1.
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The mass is found by integrating the density over the volume.

mass =
∫∫∫

ρ dV =
∫ 1

−1
dy
∫ 1

y2
dx
∫ x

0
ρ dz

=ρ
∫ 1

−1
dy
∫ 1

y2
x dx = ρ

∫ 1

−1

[
x2

2

]1

y2
dy

=
ρ

2

∫ 1

−1
1− y4 dy =

4ρ

5
.

Solution

F4 Evaluate∫∫∫
R

√
x2 + y2 + z2e−(x2+y2+z2) dxdydz

where R is the interior of the sphere x2 + y2 + z2 = 1.

I =
∫ 2π

0
dθ
∫ π

0
dφ
∫ 1

0
ρ3e−ρ2

sin φ dρ

= 2π
∫ π

0
sin φ dφ

∫ 1

0
ρ3e−ρ2

dρ

= 4π
∫ 1

0
ue−u 1

2
du, (using u = ρ2 and

1
2

du = ρ dρ)

= 2π
[
−ue−u +

∫
e−u.1 du

]1
0, (using integration by parts.)

= 2π
[
−ue−u − e−u]1

0 = 2π
[
1− 2

e
]
.

Solution

F5 Let V be the interior of the sphere x2 + y2 + z2 = 1. Without
doing any integration, explain why∫∫∫

V
x2 dxdydz =

∫∫∫
V

y2 dxdydz =
∫∫∫

V
z2 dxdydz,

and why ∫∫∫
V

z dxdydz = 0 and
∫∫∫

V
z3 dxdydz = 0.

∫ ∫ ∫
z2 dxdydz gives the mass of a sphere x2 + y2 + z2 ≤ 1, which is symmetrical about (0, 0, 0) and

has density z2 at (x, y, z). Turning the x, y, z axes so that x becomes the y, the y the z, and z the x, then
in the new coordinates the density will be x2 at (x, y, z), but the mass of the sphere will be unchanged,
because all we have done is change coordinates. The mass is now expressed as

∫ ∫ ∫
x2 dxdydz in the

new coordinates and so the two integrals are equal. Similarly for y2.
For

∫ ∫ ∫
z dxdydz the integrand is as often positive as it is negative, and in a symmetrical way. So

Solution



2a multivariable calculus 6

the answer is zero. For the same reason, the same is true when the integrand is any odd power of z.

F6 Evaluate ∫∫∫
R

z√
x2 + y2 + z2

dxdydz

where R is the interior of the sphere x2 + y2 + z2 = 2z.

Since, x2 + y2 + z2 = 2z, in polar coordinates this is r = 2 cos φ.

I =
∫ 2π

0
dθ
∫ π/2

0
dφ
∫ 2 cos φ

0
ρ2 cos φ sin φ dρ

= 2π
∫ π/2

0
cos φ sin φ dφ

∫ 2 cos φ

0
ρ2 dρ = 2π

∫ π/2

0
cos φ sin φ

[ρ3

3
]2 cos φ

0 dφ

= 2π
∫ π/2

cos φ sin φ
8 cos3 φ

3
dφ =

16π

3

∫ π/2

0
cos4 φ sin φ dφ =

16π

3
3.1

5.3.1
=

16π

15
.

Solution

F7 Evaluate ∫∫
R

1
(x2 + y2 + z2)2 dxdydz

where R is the region in the first octant outside the sphere x2 + y2 +

z2 = 1.

I =
∫ π/2

0
dθ
∫ π/2

0
dφ
∫ ∞

1

1
ρ2 sin φ dρ

=
π

2

∫ π/2

0
sin φ dφ

∫ ∞

1

1
ρ2 dρ =

π

2
.
1
1
[−1

ρ

]∞
1 =

π

2
.

Solution

F8 Find grad f for

(a) f = x sin(y), (b) (b) f = x log(x+ 3z), (c) f =
√

zy cot(x+ y).

(a) grad f = (sin(y), x cos(y), 0).
(b) grad f = (log(x + 3z) + x

x+3z , 0, 3x
x+3z ).

(c) grad f = (−√zy sec2(x + y),−√zy sec2(x + y) +
√

z/(4y) cot(x + y),
√

y/(4z) cot(x + y)).

Solution

Harder challenge problems1



2a multivariable calculus 7

1 Only attempt these if you have been
able to do all the other problems suc-
cessfully.

F9 Find the volume of the region lying inside the cylinder x2 +

4y2 = 4 above the xy-plane, and below the plane 2 + x.

Volume =
∫ ∫ ∫

V
1 dxdydz =

∫ 2

−2
dx
∫ √1−x2/4

−
√

1−x2/4
dy
∫ 2+x

0
1dz

=
∫ 2

−2

[
2y + xy

]y=
√

1−x2/4
y=−

√
1−x2/4

dx = 4π.

The final integral can be done using the substitution x = 2 cos u.

Solution

F10 Find
∫∫∫

R z dV, over the region R satisfying x2 + y2 ≤ z ≤√
2− x2 − y2.

The domain of integration consists of a paraboloid with a spherical top. So we use spherical polar
coordinates to solve the problem. To do the integration we split up the domain into two sections,
A and B. Firstly the sphere meets the paraboloid when x2 + y2 = z =

√
2− x2 − y2 =

√
2− z, so

z2 + z− 2 = 0, since z ≥ 0 we have z = 1 is the only solution. Considering the x = 0 cross section of
the paraboloid we determine y = 1 when z = 1, hence the sphere and paraboloid meet at the angle
φ = π/4. So region A is given by 0 ≤ ρ ≤

√
2, 0 ≤ φ ≤ π/4 and 0 ≤ θ ≤ 2π. For φ > π/4 the radius

is determined by the paraboloid, z = x2 + y2, in spherical polar coordinates this gives ρ = cos φ

sin2 ρ
. So

the second section of the domain, B, is given by 0 ≤ ρ ≤ cos φ

sin2 ρ
, π/4 ≤ φ ≤ π/2 and 0 ≤ θ ≤ 2π.

Hence,
∫∫∫

V z dxdydz =
∫∫∫

A z dxdydz +
∫∫∫

B z dxdydz

∫∫∫
A

z dxdydz =
∫ 2π

0
dθ
∫ π/4

0
dφ
∫ √2

0
ρ3 cos φ sin φ dρ

=2π
∫ π/4

0
cos φ sin φ dφ

[ρ4

4
]√2

0 = π/2.

∫∫∫
B

z dxdydz =
∫ 2π

0
dθ
∫ π/2

π/4
dφ
∫ cos φ

sin2 φ

0
ρ3 cos φ sin φ dρ

=2π
∫ π/2

π/4
cot5 φ cosec2φ dφ = π/(12).

(The last integral is calculated using the substitution u = cot φ.) Hence the integral is π/2 + π/12 =

7π/12.

Solution


