Chapter 4

Line and surface integrals: Solutions

Example 4.1 Find the work done by the force F(z,y) = 2%i — 2yj in moving a particle along the curve

which runs from (1,0) to (0,1) along the unit circle and then from (0,1) to (0,0) along the y-axis (see
Figure 4.1).

Figure 4.1: Shows the force field F and the curve C'. The work done is negative because the field impedes
the movement along the curve.

Solution : Split the curve C into two sections, the curve C; and the line that runs along the y-axis Cs.

Then,
W:/F~dr:/ F~dr+/ F.dr.
c Joy Cs

Curve Cy: Parameterise Cy by r(t) = (z(t),y(t)) = (cost,sint), where 0 < t < 7/2 and F = (22, —zy) and
dr = (dz,dy). Hence,

w/2 dx w/2 dy w/2
/ F-drz/ xzdx—xydy:/ coth—dt—/ costsint—dt:—/ 2cos? tsintdt = —2/3,
Cq C1 0 dt 0 dt 0
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by applying Beta functions to solve the integral where m =2, n =1 and K = 1.

Curve Cy: Parameterise Cy by r(t) = (z(t),y(t)) = (0,t), where 0 < ¢ < 1. Hence,

0
/F~dr:/ Od—zdt /Otd—ydt:().
Cy 1 dt 1 dt

So the work done, W = —2/3 + 0 = —2/3. Notice the order of limits must reflect the direction along the
curve. Work done is negative because the force field impedes the movement along the cure. O

Example 4.2 Evaluate the line integral [,.(y oy 2)dx+(z)dy, where C is the is the arc of the parabola z = 4—y?
from (—5,—3) to (0,2)

Solution
Parameterise C' by r(t) = (z(t),y(t)) = (4 — t2,t), where —3 <t < 2, since —3 <y < 2. C is illustrated
in Figure 4.2. F = (y?,7) and dr = (dz,d ) Hence

2 dr 2 dy 2
/F~dr:/ yzder;vdy:/ tQ—dtf/ (47t2)—dt:/ —2t3 + (4 — t*)dt = 245/6.
c c 3 dt -3 dt -3

Figure 4.2: Curve C, where C is the arc of the parabola x = 4 — 32 from (-5, 3) to (0, 2).

Example 4.3 Evaluate the line integral, [ (z* 4 y?)dx + (42 + y®)dy, where C'is the straight line segment
from (6, 3) to (6,0).

Solution : We can do this question without parameterising C' since C' does not change in the z-direction.
So dxr =0 and x = 6 with 0 < y < 3 on the curve. Hence

0
IZ/($2+y2)0+(4x+y2)dy=/ 24 + y2dy = —81.
¢ 3

Example 4.4 Use Green’s Theorem to evaluate [, (3y — e )dx + (7z + /y* + 1)dy, where C is the circle
2?2 +y%=09.
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Solution : P(z,y) = 3y — "% and Q(x,y) = 7x + /y*+ 1. Hence, g—g = 7 and 88—1; = 3. Applying
Green’s Theorem where D is given by the interior of C, i.e. D is the disc such that 22 4+ 2 < 9.

2m 3 2
/ (3y — %) dx 4 (Tx + /y* + 1)dy = // (7 —3)dxdy = / / 4rdrdf = / 18d60 = 367
c D o Jo 0

The D integral is solved by using polar coordinates to describe D. |
Example 4.5 Evaluate fc (3z — by)dz + (x — 6y)dy, where C is the ellipse % +y? =1 in the anticlockwise
direction. Evaluate the integral by (i) Green’s Theorem, (ii) directly.

Solution : i) Green’s Theorem: P(z,y) = 3z — 5y and Q(z,y) = x — 6y. Hence, 86—(3 =1 and %—I; = —5.

Applying Green’s Theorem where D is given by the interior of C, i.e. D is the ellipse such that 22 /4+y? < 1.
/C(Sx — 5y)dz + (z + 6y)dy = //D(l — (=5))dzdy = 6//D 1dzdy = 6 x (Area of the ellipse) = 6 x 27.
See chapter 2 for calculating the area of an ellipse by change of variables for a double integral.
(ii) Directly: Parameterise C' by x(t) = 2cost, y(t) = sint, where 0 < ¢ < 2.
I= 027T(6COSt —5sint)%dt + (2cost — 6sint)%dt
- fo% 18costsint + 10sin® t + 2 cos? t dt

= 0440 f0”/2 sin? t dt + 8f07r/2 cos? tdt

= 0+40%(1/2) +8%(1/2) = 12m.
The integrals are calculated using symmetry properties of cost and sint and beta functions. Using the table
of signs below we see that f027r sin?t = 4f07r/2 sint dt etc.

Quadrant 1 2 3 4 Total
cost + - - +
sint + + - -
costsint + — + — 0
sin®t 4+ + 4+ + 4
cos?t + + + + 4

Example 4.6 Vector fields V and W are defined by
V=_2z—-3y+z2 -3c—y+4z,4y + z)
W = (2¢ — 4y — 5z, —4x + 2y, —5x + 62) .

One of these is conservative while the other is not. Determine which is conservative and denote it by F.
Find a potential function ¢ for F and evaluate
/ F.dr,
c

where C is the curve from A(1,0,0) to B(0,0,1) in which the plane x 4+ z = 1 cuts the hemisphere given by
2?4yt +22=1,y>0.
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Solution : We have
i j k
ve| 2 9 9
v = ox dy 0z
2r —3y+z —Bxr—y+4z dy+z
=(0,1,0) # 0.
Since curl V # 0, V is NOT conservative.
We have
i j k
wo| 2 9 9
cur N ox oy 0z
20 —4y — 5z —4dx+2y —bxr+62
= (070,0) =0.
Since curl W = 0, W is conservative.
Suppose that grad ¢ = W. Then
%sz—4y—5z, (1)
¢
— =—4x+2 2
3y T+ 2y, (2)
% = —5z + 62. (3)

Integrating (1) with respect to x, holding the other variables constant, we get
QS:/ 20 — 4y — bzdr = 2 — dyx — Szx + Ay, 2),
y,z fixed
where A is an arbitrary function. Substituting this expression into (2) gives,

—4x + % = —4x + 2y, ie. %

and therefore
Aly,z) = / (2y) dy = y* + B(2),
z fixed
where B is an arbitrary function, giving
¢ = x® — dyxr — 5zx +y* + B(2).
Finally, substituting this into (3) gives

—bx + @ = -5z + 6z, 1ie. @ = 62,
dz dz

so that B = 322 4+ C, where C is a constant. Hence, by taking C = 0 we obtain a potential

¢ = x? — dyx — Szx + y* + 322
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Notice that the potential function is not unique; we may always add an arbitrary constant to a potential
and it remains a potential.
So the line integral is:

/F-dr:/grad¢-dr:¢(0,0,1)—¢(1,0,0):3—1:2.
c c

Example 4.7 Evaluate

//Sfds

where S is the hemisphere given by x2 + y? + 22 = 1 with z > 0.

Solution : We first find 9% etc. These terms arise because dS = \/1 +(8)2+ (%f/)z dzdy. Since this

Figure 4.3: Shows the hemisphere S and the projection D onto the zy-plane.

change of variables relates to the surface S we find these derivatives by differentiating both sides of the

surface 22 +y? + 22 = 1 with respect to z, giving 2x + 22% = 0. Hence, % = —x/z. Similarly, g—; = —y/z.

Hence,
0z 0z / x2 2
—)2 —)2 = 4+ =
\/1+(8x)+(8y) 1+Z2+Z2 1/z.

Then the integral becomes the following, where D is the projection of the surface, S, onto the zy-plane. i.e.
D = {(x,y) : 2% + y* < 1}. (See Figure 4.3)

1
// szSZ// 22 = dxdy
s D

:// V1—a2—y2dzdy
D
27 1
:/ d9/ V1—rZrdr
0 0

27 0 1
:7/ d0/ ~Vudu
0 1 2

271'1
= —do
|

= 2m/3.
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Example 4.8 Find the area of the ellipse cut on the plane 2x + 3y + 6z = 60 by the circular cylinder
22 + 9% = 2z.

Solution : The surface S lies in the plane 22+43y+6z = 60 so we use this to calculate dS = \/1 + (%)2 + (g—;)2 dzdy.

l
-—

pla

Figure 4.4: A sketch of the surface S and the projection onto the xy-plane.

Differentiating the equation for the plane with respect to = gives,

0z 0z
24+6— =0 thus, — = —1/3.
+ Ox e /
Differentiating the equation for the plane with respect to y gives,
0z 0z
3+6— =0 thus, — =-1/2.
+ 3y us By /

Hence,

7] 0 1 1
\/1+(6;)2+(a;)2=\/1+9+4:7/6.

Then the area of S is found be calculating the surface integral over S for the function f(z,y,2) = 1. The the
projection of the surface, S, onto the x — y-plane is given by D = {(z,y) : 22 =22+ 3% = (z — 1)2 + 32 < 1}
(See Figure 4.4). Hence the area of S is given by

//1dS:// 1zdxdy
s p 6
7
—6//Dldxdy

:zx AreaofD:ZW.
6 6

Note, since D is a circle or radius 1 centred at (1,0) the area of D is the area of a unit circle which is 7. O
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Example 4.9 Use Gauss’ Divergence Theorem to evaluate

I:// aty + 222 + 222 dS,
S

where S is the entire surface of the sphere x2 + y? + 22 = 1.

Solution : In order to apply Gauss’ Divergence Theorem we first need to determine F and the unit normal

n to the surface S. The normal is (%, g—g, %) = (2x,2y,22), where f(z,y, 2) = 22 +y?>+22—1 = 0 describes

the surface S. We require the unit normal, so n = (2z, 2y, 2z)/|(2z, 2y, 22)| = (2z,2y,22)/2 = (z,y,2). To
find F = (Fy, Fy, F3) we note that

F-n=2z'y+y%22 + 222
= Fix + Fyy + Fsz

Hence, comparing terms we have Fy, = 23y, Fy = yz? and F3 = xz. Applying the Divergence Theorem
noting that V' is the volume enclosed by the sphere S gives

I://F-ndS:/// div Fdzdydz
s 1%
:/// (32%y + 2* + x) dedydz
1%
:O—|—/// 2% drdydz + 0
v

2 ™ 1
= / d9/ d(b/ p?cos? ¢ p?sing dp
0 0 0

™ 1
:27r/ COSQ¢SiH¢d¢/ ptdp
0 0

4

:27r><2><£><1:—.
3-1 15

Remarks

1. As V is a sphere it is natural to use spherical polar coordinates to solve the integral. Thus, = =
pcosfsing, y = psin¢sinf, and z = pcos ¢ and drdydz = p? sin ¢ dpdfde.

2. [[[, 32%y dadydz = 0 and [[[, z dedydz = 0 from the symmetry of the cosine and sine functions.
We look at the signs in each quadrant as 6 changes. Think about a fixed ¢. cosf and sin terms in
2%y and z then have the following signs

Quadrant 1 2 3 4 Total
cos 6 + - - +
sin 6 + 4+ - -
2y + + - - 0
x + + - - 0
The positive and negative contribution from the integral cancel out in these two cases so the integrals

are zero.
]

Example 4.10 Find I = ffs F -n dS where F = (22, 2y, 1) and where S is the entire surface consisting of
So=the part of the paraboloid z = 1 — 2% — y? with z = 0 together with S;=disc {(z,y) : 22 +y? < 1}. Here
n is the outward pointing unit normal.
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Solution : Applying the Divergence Theorem noting that V' is the volume enclosed by S; and S (see

2PN
e

A

P L

=
e S
.

L=

Figure 4.5: Illustration of surfaces S; and Ss.

Figure 4.5) and divF = 24 2 + 0 gives

[://F~ndS:/// div Fdxdydz
S v
= /// 4dzxdydz
Jv
1—z2—y?
= 4// dgcdy/ 1dz
{(z,y):x2+y2<1} 0
:4// 1 — 2% — y2dady
{(z,y):z2+y2<1}

2m 1
:4/ d@/ (1 —r%)rdr
0 0

=4 x2m(1/2 — 1/4) = 2.
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