Chapter 2

Double and triple integration

(Stewart (Ed. 7): Chapter 15, p998.)

Chapter Summary

Objective

Tools

Double integration over regular domains

Sketch the domain of integration, decide if the do-
main is type I or type II or both and with the
aid of the graph find the limits of integration on
the two integrals. If D is a type I domain de-
fined by g(z) < y < h(z) where a < z < b then

b h(z .
ffD flz,y)dedy = fa dx fg((x)) f(x,y)dy. If D is the
type IT domain defined by g(y) < x < h(y) where a <

y < bthen [[, f(z,y)dedy = fab dy fgh(;y)) f(x,y)dx.
Alternatively you may be asked to change the order
of integration to enable you to carry out the integral.
If the integrand is 1 then the double integral will give

the area of the domain.

Double integration using Polar Coordinates

For domains or integrands that are related to circles
change to polar coordinates by setting x = rcos#,
y = rsinf and dexdy = rdrdf. The limits on the
integral will now range over the radius, r» and the
angle 0 describing the domain. Beta functions can
be used to help you evaluate the resulting integral.

T/2 . m n _ (m—=1)(m=3)...(n—1)(n—-3)...
fO sin™ x cos" x dz = ((m+72)((m+7)1,—£)(7n3—(n—4))... K

where K = 1 unless m and n are both even in which
case K = 7/2.
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Objective Tools
Change of variables for double integrals To change from the Variables z,y to
u(x,y),v(z,y) then  [[, f(z,y)dxdy =
[fs f(@(u,v),y(u,v))|J| dudv, where D is the
domain in the zy-plane and S is the corresponding
domain in the uv-plane, and |J| is absolute value of
— O(u,v) _ Jug  uy| _
J_l/(?(z,y) = v, oy = UgVy — UyVsg.

Triple integration and Spherical Coordinates Triple integrals have the
form fffv x,y, z) dedydz =

g2(z,y)
/ dcc/ / f(z,y,z)dz.  where

hl(r) gl(x Y)

Constants Curves Surface%

the domain is a volume. If the integrand is 1
the triple integral will give the volume of the
domain. If the integrand is a density then the
triple integral will give the mass of the volume.
For domains or integrands that are related to
spheres change to spherical coordinates by setting

= psingcosf, y = psingsind, z = pcos¢ and
dedydz = p?singdpdfde. The limits on the
integral will now range over the radius, p, the angle
6 € [0,27) between the positive z-axis and the angle
¢ € 0, 7) between the positive z-axis.

2.1 Area under a curve

Recall the way that definite integrals arise as “areas under curves”. We can approximate the area under the
curve y = g(x) on the interval [a,b] by the sum of areas of rectangles (called a Riemann sum) of widths dx;
and heights ¢g(z;) as illustrated in Figure 2.1.

ﬂ,h (sl(.alic\\) Y=g

‘_)’
N _\
a €’ b 7
oyt

Sap

Figure 2.1: Approximating the area under a curve

If as the number of subintervals of [a,b], N, increases the Riemann sums tend to a limit, this is the
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definite integral

b N
/a g(x) da = ngnoogg(xi)éxi.

2.2 Double integration on rectangular domains

(Stewart (Ed. 7): Section 15.1, p998.)

We wish to extend this idea to define the “volume under a surface” z = f(z,y) on the set D C R%2. We can
approximate this volume by the sum of the volumes of cuboids. For simplicity, first consider a rectangular
subset R = [a, b] X [c,d]. This is divided into subrectangles of area 0A4;; = dx;dy; and the cuboid above this
has height f(z;,y;), as shown in Figure 2.2.

x, ‘53.“""%\)

A

Figure 2.2: Approximating the volume under a surface

In this way, the whole volume is approximated by

N M

SN fliyyi)d A

i=1 j=1

If the limit as M, N — oo exists we say that f is integrable over R and write it as

J[ r@wia o [[ s dody

This is called the double integral of f over R and dA = dxdy is called the area element.
To evaluate the double integral we can think of the solid under the curve as made up of slices with y
fixed (see Figure 2.3.) The area under the curve in such a cross section is

b
Hw:/fmmm,

where y is fixed in the integrand.
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Figure 2.3: Cross sections through the solid under the surface

/Cdf(y)dy

gives the volume under the surface. This means that

/ /R f(a, ) dedy = / ' < / fa) dw) dy.

By summing the areas of cross sections of the solid with z fixed, we also have

/ /R f(a, ) dudy = / b ( / ") dy) dz.

Notation 2.1 We usually write

/abd:c/cdf(x,y)dy for /ab </cdf(l‘,y)dy> dr.
//R$2+y2dxdy

Solution The integral may either be evaluated as

3 4
// x2+y2d9:dy:/ dw/ 2%+ y* dy
R 1 2

3 R
:/ {;pzeryB} dx

1 37 1y

3

:/(472)12+@d:¢

1 3

= gx?’—k@xg
IRE 37,
2(3% —1%) +56(3 - 1) 164

3 3’

The sum of these areas

Example 2.1 Evaluate

where R is [1,3] x [2,4].
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or as

4 3
//x2+y2dxdy:/ dy/ 1:2+y2dx
R 2 1
3

471
— / [x3 + myQ} dy
2 |3 1

:/4 Lt +(B-1)y*dy

3
26 2 ,*
- B }
C26(4—2)+2(4*—2%) 164
B 3 T3
Not surprisingly, each method gives the same answer. O

2.3 Double integration on regular domains

(Stewart (Ed. 7): Section 15.3, p1012.)

Consider now a more complicated domain T which is the triangle with vertices (0,0), (1,0) and (1,2)
shown in Figure 2.4.

[4

Y1 (5,2)

Y=dx

(1,0 =

Figure 2.4: Triangular domain T’

The domain T is bounded by the lines y = 0, x = 1 and y = 2x. As for a rectangular domain, to evaluate
a double integral over T" we could split T" into a collection of vertical slices, integrate with respect to y and
then integrate the result with respect to . The difference here is that the limits in the first integral depend
on x. A typical horizontal slice has end-points y = 0 and y = 2z, and there is a slice at each x from x = 0

to x = 1.
1 2x
/ f(%y)d:vdy:/ dx f(z,y)dy
T 0 0

Hence we have
Alternatively, we could begin by looking at horizontal slices, with end-points z = 1, x = %y and summing
these from y = 0 to y = 2. This means that the integral is also

//f:cydwdy—/dy . f(z,y)dz
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Figure 2.5: Vertical and horizontal slices through T'

Definition 2.1 Let D be a domain in the x, y-plane. D is said to be

e Type I (or y-simple) if it is bounded by lines x = a, x = b and curves y = g(z), y = h(z), the
intersection of any vertical line x = ¢, where ¢ € [a, b], is an interval or a single point,

= h(y) and lines y = a, y = b, the

e Type I (or xz-simple) if it is bounded by curves x = g¢(y), =
intersection of any horizontal line y = ¢, where ¢ € [a, b], is an interval or a single point,

. Typical examples are shown in Figure 2.6.
X

v

TN L AT
AN A7
s

Type | and type Il

v

AN NN

neither type | or type Il

Type | and not type Il
Figure 2.6: Type I and type II domains

D is said to be regular if it the union of finitely many disjoint type I and type II domains. Every type I

and type II domain is regular.

Example 2.2 State whether each of the domains shown in Figure 2.7 are type I and/or type II or regular

(© I (b) ‘

Figure 2.7: Example domains
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Solution (a) Both horizontal and vertical lines intersect the triangle in an interval or a single point. Hence
this domain is both type I and type II.

(b) Vertical lines intersect this domain in an interval. Hence it is type I. The intersection with some
horizontal lines is a union of two intervals, hence it is not type II.

(¢) Some horizontal and some vertical lines intersect the annulus in a union of intervals. Hence this
domain is neither type I nor type II. The domain may be divided into four type I and type II domains as
shown. Hence it is regular. a

Remark A double integral over a type I domain may be evaluated by integrating with respect to y over
vertical slices and then integrating with respect to x. Thus a double integral is evaluated by carrying out
two single integrals. For type II domains the order of integration is reversed.

If CND =( then
//CUD f(x,y) dxdyZ//Cf(w,y) dxdy+/Df(:c,y) dady.

Hence a double integral over a regular domain can be split into a sum of double integral over type I or type
IT domains.

Theorem If D is the type I domain defined by g(z) < (z) where a <z < b then

/Df(x,y)dxdy: /g(w f(z,y)d

If D is the type II domain defined by g(y) < x < h(y) where a <y < b then

b h(y)
/Df(xyy)dl‘dy=/a dy/g(y) f(z,y)dx

The first integral performed (called the inner integral) may have limit depending on the other variable but
the second integral (the outer integral) has constant limits.

// zy? dzdy,
D

where D is the region in the first quadrant bounded by the curve y = 422, the z axis and the line z = 1.

Example 2.3 Evaluate

Solution It is important to draw a sketch of the domain. This is given in Figure 2.8.
This domain is clearly both type I and type II but it is more readily thought of as type I; 0 < y < 422
where 0 < x < 1. Hence

1 4z
// zy? dedy = / dx/ zy? dy
D 0 0
1 1 4z 1 1
= / [zy?’} dzx = / —x((42?)% - 0%) dx
o 37 o o 3

:% 27 dx
3 Jo
641, g1 8
=350 =73
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Figure 2.8: Type I domain Figure 2.9: Type II domain

Remark In the domain D above x > 0 and so y = 422 <= 12 =y/4 <= x = V/2. See Figure 2.9.
Hence the type II description of D is \/y/2 < 2 <1 where 0 <y < 4. Consequently,

4 1
// xy? dedy = / dy/ zy? d.
D 0 Vi/2

The reader should verify that this evaluates to the same value, 8/3, as found above.

When a domain is both type I and type II it a matter of convenience which formulation is used.

Example 2.4 Evaluate

I:// 322 + 2 dady,
JJD

where D is the triangle with vertices (0,0), (1,1) and (2, 1).

Figure 2.10: Type II domain Figure 2.11: Two type I domains

26



Solution The region is sketched in Figure 2.10 and is both type I and type II. The type II formulation is

easier
1 2y
I:/ dy/ 322 + y? dx
0 Y
1

1
2
2/‘h3+xfhywﬁj/(%P—y3+@y—wfdy
0 0

1
:8/0 v dy =2[y"],
=2
]

Remark The type I formulation is more awkward. The function describing the lower curve is y = %x and
the function describing the upper curve is

= ifo<z<1
Y71 if1<z<2

To handle this it is best to split the domain into two pieces (see Figure 2.11) and evaluate the double integral

as
1 T 2 1

I:// 3x2+y2dxdy+// 3x2+y2d3:dy:/ dx/ 3x2+y2dy+/ das/ 327 4 32 dy.
Dy Do 0 I 1 I

This is why the type II formulation is preferred.

Example 2.5 Evaluate

0 vz VT

Remark This double integral is expressed igl type I form but it cannot be evaluated as it stands. The first
step would be to find an antiderivative for e¥" but this cannot be done (in terms of known function such as
exp, log etc.).

The key to this example is to change the order of integration and convert the integral to type II form.
To make this conversion it is vital to draw a sketch of the domain.

Solution A sketch of the domain with type I and type II descriptions is given in Figure 2.12. Using this
sketch we can convert the double integral into type II form

1 y2 ey2
I = / dy / —dx
0 0o VT

1 2 y° 1 2
:/ [2\/:563’ } dy = 2/ ye¥” dy.
0 0 0

Now we can use the substitution

<
[en) Naw)
— =

to give
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Figure 2.12: From type I to type II

Example 2.6 Find the volume of the tetrahedron T, bounded by the planes x +2y+ 2 =2, x =2y, =0
and z = 0.

5 A Base /i .

R P %“}"L‘gﬁ =g,

Figure 2.13: 3-D solid tetrahedron and the base, A.

Solution A sketch of the solid in 3-D and a sketch of the base, the planar region A over which we integrate
are given in Figure 2.13. Using this sketch we can write down a double integral which describes the volume
of the tetrahedron.

The plane x 4 2y 4+ z = 2 intersects the zy-plane (z = 0) in the line z + 2y = 2. So the tetrahedron lies
above the triangular region A in the zy-plane. A is bounded by z =2y, x + 2y = 2 and z = 0.

The plane = + 2y + z = 2 can be written as z = 2 —  — 2y. So the volume of the tetrahedron is the
volume that lies under the graph of the function z = 2 — 2 — 2y and above A, where A = {(z,9)|0 < z <

Liz/2<y<1-—ux/2}.
1 pl—z/2
T=//(2—x—2y)dyda::// (2 — 2z —2y) dydx
A 0 Ja/2
1 1

z/ [2y—a:y—y2]yi;;;/2dx:/ 22 — 2z + 1dx
0 v= 0

3

T 9 b
=|l-—-z+x| =2
3 0 3
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Remark The area of a surface A C R? is given by the double integral

// 1dzdy.
A

2.4 Double integration in polar coordinates

(Stewart (Ed. 7): Section 15.4, p1021.)

The position of a point (x,y) on the cartesian plane can be specified by polar coordinates r,0 where
x=rcosf, y=rsind.

6 € [0,2m7) is the anti-clockwise angle between the positive x-axis and the line joining (z,y) to (0,0) and
r > 0 is the length of this line. See Figure 2.14.

I A (3,4) = (Fe0s6, (5nO)

£

6)

(U4

Figure 2.14: Polar coordinates

Remarks

1. This change of variables is invertible since every point on the plane can be uniquely described by polar
coordinates.

2. Note that 22 + 2 = r2cos? 0 4+ r2sin® # = r? so that expression involving 2 + y? can be written in
terms of r alone.

In cartesian coordinates, the area of an elementary rectangle used in the Riemann sum is 64 = dxdy
and for this reason the area element dA is dxdy. In polar coordinates, the area element is illustrated in
Figure 2.15 and has area d A ~ rdrdf.

For this reason in polar coordinates, dA = rdrd0, i.e.,

//D f(z,y) dedy = //D f(rcos@,rsin@)rdrdd.

When either the domain is circular or the integrand is written in terms of x? + y* (= r?), the double
integral should be rewritten in polar coordinates.

Example 2.7 Use polar coordinates to evaluate

I:// x + y dady,
D

where D is part of the annulus between circles of radius 1 and 2, centre (0,0) lying in upper half plane.
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Figure 2.15: The area element in Polar coordinates

Solution In polar coordinates the domain is 1 <r <2, 0 <6 < 7 (see Figure 2.16.)

7

31
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Figure 2.16: Annular domain

We have

g 2 ™ 2
I:/ d0/ (T‘COSQ+7'SiH€)Td7':/ cos@+sin9d9/ 2 dr
0 1 Jo 1

2

= [sin@ — COS 9}3 é[rB] 1

14

=(0-0-(-1-1)) %(23713): 3

Example 2.8 Evaluate

I = // ydxdy,
D

where D is the part of the disk of radius a (> 0) and centre (a,0) lying in the first quadrant.

Solution The border of the disk has equation (z —a)?+y? = a?, i.e., 2% +y? = 2ax. In polar coordinates,
this is

r? = 2arcosf, i.e., r=2acosé.

See Figure 2.17.
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r=o o =0

Figure 2.17: Semicircular domain

The domain is 0 < r < 2acos where 0 < 0 < 7/2 and so

/2 2a cos 6 /2 2a cos 6
I:/ d9/ (rsin@)rdrz/ d@/ 72 sin 0 dr
0 0 0 0

1 w/2 n 20 cos 3 w/2
= - / sin 6 [1"3](2) a9 = 8a” sin 6 cos® 6 d.
3 Jo 3 Jo
Using the change of variable
u =cosf, du= —sin6, 010 m/2 A
1 0
we get
8a® [ ., 8a®1, 41 2a°
I:—?/l’ll/dll/: *[U]OZT.

2.5 Beta and Gamma functions

When dealing with polar coordinates we often need to integrate functions that involve powers of cosine and
sine. While we can happily do this using trigonometric identities and integration by substitution, it can
involve quite long calculations if the integrand involves very large powers of sine and cosine. To simplify
these calculations we can draw on some properties of two functions: Beta functions and Gamma functions.
We will not discuss these functions in depth here, this is dealt with in the second semester course 2D. Instead
we show how these functions can be used and use them to simplify integration.

Definition 2.2 e Beta function is defined by
1
B(p,q) = / P71 — )9 e, p>0and g > 0.
0
A particularly useful form that we shall use is,
/2
Blpa) =2 [ s (g) costt 1) dy
0

This is found by substituting = = sin® y in the definition of the Beta function.

e Gamma function is defined by

I'(k) :/ 2l dx, k> 0.
0
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2.5.1 Properties of Beta and Gamma functions

1. (1) =1,T(2) =1, I'(3) = 2 and in general I'(n) = (n — 1)! for every positive integer n.

2. T'(k) = (k — 1)I'(k — 1) for all real numbers k& > 1 Repeatedly applying the formula for I'(k) gives a
formula in terms of I'(k — p), where 0 < k —p < 1, e.g. I'(9/4) = 21I'(3).

3. For0< k<1, T'(k)T'(1 — k) = «/sin(km).
4. T(1/2) = /7.

L'(p)T'(q)

B0 =1, 1)

From these properties we can derive the following result that we will use in this course.

(m—1)(m—=3)...(n—1)(n—=3)...
(m+n)(m+n—-2)((m+n—4)...

/2 .
fo/ sin™ z cos™ z dx = K

where K = 1 unless m and n are both even in which case K = 7/2. The notation means that the factors
continue until 1 or 2 is reached. In the special cases, m = 0 or m = 1 none of the numerator factors involving
m appear.

For example,

/2 2.5.3.1 2
i . 5.3.

3 S d = —-——=

/0 SULCOS LAt = 97531~ 63

Now consider f027r sin® x cos® & dz. We can use properties of the graphs of sine and cosine to help us to
simplify the integral before applying Beta functions. A definite integral calculates the area under the curve,
with areas below the z-axis making a negative contribution to the integral. From the translational symmetry
of sine and cosine functions seen in Figure 2.18 we can see that:

T w/2 27 ™ 27
/ sinxdx:Z/ sinz dz; / sinz dx = 0; / cosz dxr = 0; / cosz dxr = 0.
0 0 0 0 0
™ /2 27 /2
/ sin’ x do = 2/ sin? z dx; / sin® z dor = 4/ sin? z dx.
0 0 0 0

T w/2 27 /2
/ cos?z dx = 2/ cos? z du; / cos’z dr = 4/ cos® z dz.
0 0 0 0

Similar rules apply to integrals where the integrand has the form sin™ x cos™ x, where m and n are non-
negative integers.

Example 2.9 Evaluate:

™ ™ 2
(a) I = / sin®zcos?x dz, (b)I= / sin®zcos® x dx, (c)I= / sin? z cos z da.
0 0 0
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Figure 2.18: Graphs of sinz, cosz, sin® z and cos? .

Solution In each case we make a table of sign first to indicate if the integrand is above (4) or below (-)
the z-axis in each quadrant. The symmetry of sine and cosine means that the absolute value of the area
under the curve in each quadrant is the same, so the total integral is given by summing the number of plus
signs minus the number of minus signs and multiplying the result by integral of the function over the first
quadrant.

(a)

‘ Quadrant ‘

sin® x

1

+

costx +
+

Total=+2.

sin® z cost x

Hence,

o+ |

3:-2-1 4

/2
I=2 sinfzeostrdr=2- —"—"— = —.
/0 SIn- r Cos T axr 7.5.3.1. 35

(b)
‘ Quadrant ‘

sin® x

1
+

cos® x + | -
+

Total=0.

sin® z cos® x

Hence,

(c)
‘ Quadrant ‘

sin?z

1

+

costx +
+

Total=+4.

sin? z cost x

Hence,

+ o+ |
o+ A+
o+ |-

[y
w
—_

/2
I:4/ sinzcos*r dr =4-
0

o
i
[\}
oS
|3

33



We will put these tools to use in section 3.7 and in chapter 4.

2.6 Change of variables in double integration

(Stewart (Ed. 7): Section 15.10, p1064.)

The change to polar coordinates is a special case of the theorem stated below.

Definition 2.3 Consider a change of variables z,y to u,v. So x = z(u,v) and y = y(u,v). The Jacobian

A(u,v)
9(x,y)

is the determinant

Up Uy

= UyVy — UyVsp.
Uy Uy *7Y v

If the change of variables is invertible then the Jacobian is nonzero and

ey) . /0uv)
3w, v) ‘1/ o)

Theorem Let the change of variables x,y to u,v be invertible on the domain D. Then

//D f<x’y)dxdy://s f(x(u, ), y(u,0))|J| dudv,

where D is the domain in the xy-plane and S is the corresponding domain in the uv-plane, and |J| is the

9(z,y)
A(u,v)

. Often it is convenient to use

J — 1 /a(u,'[})

A(z,y)
Remark The idea behind the change of variables is to transform curves in the zy-plane to lines (or
simpler curves such as circles) in the uv-plane. This transformation is illustrated in Figure 2.19. Under the

absolute value of

-ﬁifacm@e:

viwiogplas
¥
E:;, - 4 ‘q’\
' J
u"‘.% ’ b \.;\ - ™ E.Y'_ {-.‘4:_ i 1
‘ ", A \ 'b"‘,“..—Vm E H / w3
: ;J.( g A Sl *T:i_»* R
y ‘f i \ E I
EL—-'LM-“M {ﬁw g;:‘ ) I ; dee
- 4 1
oy i X
~ = LA
e e

Figure 2.19: Domain in z,y and u,v coordinates

transformation « = x(u,v), y = y(u,v) the lines u = up and v = vg in the uv-plane get mapped to the curves
x = x(ug,v), y = y(ug,v) and x = z(u,vy), y = y(u, vg) in the zy-plane. Let r = (x,y). The tangent vector
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at (xo,y0) to the curve (x(u,vo), y(u,vo)) is r,, = (%, g—fi). Similarly the tangent vector at (zg,yo) to the

curve (z(ug,v),y(ug,v)) is r, = (%’ %)'

We can consider what happens to a small element of the surface D under the change of variables by

approximating the element by a parallelogram with sides Aur, and Avr, determined by the tangent vectors.
This is illustrated in Figure 2.20.

Figure 2.20: Element of D in z,y and u, v coordinates

The area of the small element of D is AA and is approximated by the area of the parallelogram which is
given by the magnitude of the following cross product

i j k

oz Oy
Aur, X Avr, = AuAv gi B—Z 0| =Aulv |§v Gulk
v v
Oz Oz O(z,y)
=Aulv |§2 Gy ’ k = AuAv (2,yy — Tyyu)k = AuAv T2k,
az ,97?1 I(u,v)
Hence,
I(z,y)

AA = |Aur, X Avr,| = |ry, X ry| Aulv = AuAv .

O(u,v)

Summing the elements that make up the region D allows us to approximate the double integral of f over D,

N M N M
T Ty N2
//D fz,y) dedy = N, 11511»0 o jﬂf(%#/g)AA N 1}\14Hi>oo L2 fa(ui, v5), y(ui, v5)) ’8(u,v)‘ AuAv

This is a Riemann sum for the integral

//g F(@(u,v),y(u, )| dud.

Remark Note that for the change to polar coordinates,

cos) —rsinf
sinf  rcos6

//D f(@,y) dedy = //S f(rcosf,rsind)rdrdd,

derived in the previous section.

(rcosf), (rcosf)g
(rsin®), (rsinf)g

= = = r(cos? § +sin® ) = r,

giving the result
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Example 2.10 By making a suitable change of variables, evaluate

// x + 3y dzdy,
D

y=z—-1, y=z+1, y=-x-1, y=-z+3.

where D is the region bounded by the lines

Remark The idea here is to choose variables u, v in which the domain is simply described, preferably with

constant limits.

Figure 2.21: Domain in z,y and u,v coordinates

(S
1
e /
-y S
e d - e
e .
hY
- 7u
-] Ve p
/ g
Ve ;
. A - -
-

Solution If we define u = x+y and v = x — y then the domain D is described by —1 <u <3, -1 <v < 1.

See Figure 2.21.
We have

1 Owwv) |11 _ o
Jo O(xy) |1 -1 '
Inverting the change of variable we get
U+ v uU—v
xr = =
2 ) y 2 )

and so the integrand is z 4+ 3y = 1 ((u +v) + 3(u — v)) = 2u — v.

Hence
// (2u — v)
3 1
/ / 2u7vdv—1/ {2uvlvz] du
2/, 20|,
3 3
/ udu—/ 2udu:[u2}71
—1

— ’ dudv

N\H

w\»—*

/\
v
OO

Example 2.11 Find the area bounded by the curves y = e®, y = 2e*, y = e~ " and y = 2e~
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Figure 2.22: Domain in z,y and u,v coordinates

Solution Let this region be denoted by D then its area is

A= // dzxdy,
D

(cf. b — a = length of interval [a,b] = f dz.) We use variables u = ye® and v = ye~? so that D is defined
byl<u<2and 1 <v<2. SeeF1gure222 Then

=2y = 2+/uv,

x

1 o(u,v) | ye® e

J o Axy)
for y > 0. Hence

%\

%/
Vi)

—V1)2=202-2V2+1)
(3—2[).

\}—*1\3\
S/‘\\

I
[\ [\3[\9

2.7 'Triple integration

(Stewart (Ed. 7): Section 15.7, p1041.)

As we defined double integrals for functions of two variables we can define triple integrals for functions
of three variables. Recall the definition of a double integral is given by

//fxydxdyf hnLOOZfo“yJ 0x;0Y;.

=1 j=1

For a triple integral instead of summing over an area 6A;; = dz;dy;, we sum over a volume §V;;i, = 0x;0y;02
which leads us to

N M L
// Vf(m,y,z) dxdydz = ]&le_WOZZZf Ti, Yj, 2k ) 020y 02,

i=1 j=1 k=1
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If the limit exists we say that f is integrable over V and we call this the triple integral of f over V and
dV = dzxdydz is called the volume element.

Visualising a triple integral is not really possible, but they are useful as we see in the next section and
later in Chapter 4.

z

——

Figure 2.23: Illustration of V' lying between two continuous functions of x and y, and its projection D onto
the zy-plane.

If V lies between two continuous functions of « and y, that is
V= {(I,y,Z) : (xay) € D7 U1<-’I/',y) <z< u?(xay)}
where D is the projection of V' onto the xy—plane and wu;(x,y) is the upper boundary of V' and us(z,y) is

the lower boundary of V' as illustrated in Figure 2.23. If D is a type I region then the general form for a
triple integral is given by

U2(!L”y b g2(z) uz(w,y)
// f(z,y, 2) dedydz = // / (z,y,2) dz | dedy = / dz/ dy/ flz,y,2)dz.
ur(z,y) a g1() w1 (z,y)
~~ —— ———

Constants Curves Surfaces

If D is a type II region then the general form for a triple integral is given by

us(w, y) hz(y) uz(z,y)
// f(z,y, z)dedydz = // / f(z,y,2) dz | dedy = / dy/ / f(z,yy, 2)dz.
by (y) m(r )

Constants Curvcs Surfaces

We can generalise this further to deal with volumes V' which lie between two continuous functions of y and

z giving
us(y,z)
// f(z,y, z) dedydz = // (/ flz,y, 2) dm) dydz,
u1(y,2)
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where D is the projection of V' onto the yz-plane. Lastly, we can generalise to volumes V' which lie between
two continuous functions of x and z give

///V f(z,y, 2) dvdydz = //D (/uz(z,z)

[y, 2) dy> dxdz,
uy (z,z)

where D is the projection of V' onto the xz-plane.

Remarks

1. (See Stewart (ed. 7) p1046). The volume of a solid V' C R? is given by the following triple integral

J[[ vasaye

2. (See Stewart (ed. 7) pl047). Extending this further we define the mass of the solid V', where the
density f(x,y, z) of the solid varies across V' by

///v f(z,y, 2) dedydz.

Example 2.12 Evaluate
1= /// z dxdydz,
1%
where V is the solid tetrahedron bounded by the four planes z =0,y =0, z=0and z +y+ 2z = 1.

Solution We draw two pictures, one of V and one of the projection of V' onto the xy-plane, as shown in
Figure 2.24.

A ?:' 5 ’T’
t -
1
Z b‘\ T B BT
P L
“/ ~]

Figure 2.24: Solid tetrahedron and the projection in the xy-plane.

Thus the domain of integrationis 0 <z <1,0<y<l—zand0<2<1—z—y.
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We have

1 1—x l—-x—y
1= /// z dxdydz :/ / / z dzdydx
\4 =0 Jy=0 z=0
1 11—z _2 1 1—x 2
2 1amy (1—z—y)
= dx/ — dy:/ dac/ —=dy
/0 0 [ 2 ]0 0 0 2

1 ! 1

- 1
5 1::0[( z=y)*],pde =g z:O( )" dx

1 Ml 1
S

Example 2.13 Set up (but do not evaluate) the integral for the volume of the solid that lies below the
paraboloid z = 9 — 22 — y? and above the plane z = 5.

Solution We draw two pictures, one of the volume V and one of the projection of V onto the xy-plane,
as shown in Figure 2.25.

J D
2
N
2
A
X pro\jed:loh op V oto
He xg-PLo/UL .

Figure 2.25: Solid paraboloid and the projection in the xy-plane.

Thus the domain of integration is —2 <2 <2, —vV4—22<y<+V4—z2and 5 < 2 <9 —z2 — 42

We have
2 Vi—z2 9—z? _y?
Volume = /// ldxdydz = / dac/ dy/ 1dz
v ==2 y=—v4—x? 2=5

2.8 Triple integration in spherical coordinates

(Stewart (Ed. 7): Section 15.9, p1057.)
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The position of a point (z,y, z) in cartesian coordinates can be specified by spherical coordinates p, 6, ¢
where
x =psingcosh, y=psingsinfh, 2z = pcosda.
6 € [0, 27) is the anti-clockwise angle between the positive z-axis and the projection onto the xy-plane of the
line joining (z,y, z) to (0,0,0). The length of the line is p > 0 and ¢ € [0, 7) is the clockwise angle between
the positive z-axis and the line joining (x,y, z) to (0,0,0). See Figure 2.26.
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Figure 2.26: Spherical coordinates.

Remarks

1. Note that 22 +y? + 22 = p? sin® ¢ cos? 0+ p? sin? ¢ sin® 0+ p? cos? ¢ = p? so that expressions involving
22 + 3% + 22 can be written in terms of p alone.

In cartesian coordinates, the volume of an elementary cuboid used in the Riemann sum is §V = dx dy dz
and for this reason the volume element dV is dzdydz. In spherical coordinates, the volume element is
illustrated in Figure 2.27 and has volume 6V a p? sin ¢ 66 §¢ 6p.

For this reason in spherical coordinates, dV = p? sin ¢ df dodp, i.e.,

///V f(z,y, z)dedydz = ///V f(psin g cosh, psin ¢sin b, pcos ¢) p* sin ¢ dOdepdp.

When either the domain is spherical or the integrand is written in terms of 2 +y% + 22 (= p?), the triple
integral should be rewritten in spherical coordinates.

Example 2.14 Use spherical coordinates to evaluate
I= /// exp((@? + 92 + 22)*/?) dedydz,
B
where B is the unit ball, B = {(z,y, 2)|2? + y? + 22 < 1}.

Solution In spherical coordinates the domainis0 < p<1,0<0 <27, 0< ¢ <.

We have - ) )
I= / / / ep3p2 sin ¢ dpdfd¢p = / sinqbd(b/ d¢9/ pze”3 dp.
o Jo Jo 0 0 0
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Figure 2.27: The volume element in spherical coordinates

Now we use the substitution

u:p37 du = 3p2dp7 Z

T 27 1 u
I={ singd a9 [ S a
/Osmqb (b/o /0 3 u
™ T 1u
= [—cosg]] (012" [2e¥]}

= (~(=1) = (~1)) (2n) (5(e ~ 1)) = (e~ D)

o O
= =

we get

Example 2.15 Find the volume of the solid that lies above the cone z = /22 + y2 and below the sphere
22 + 1% + 22 = 2 as illustrated in Figure 2.28.

Solution By completing the square we can rewrite the equation of the sphere as x2 +y?+ (2 —1/2)% = 1/4.
Thus the sphere is centered at (0,0,1/2) and has radius 1/2.
Using spherical coordinates the equation for the sphere becomes

p2sin? ¢ cos? 0 + p? sin? ¢ sin? 6 4 p? cos® ¢ = pcos ¢.
Hence, p = cos ¢. So in describing the solid in spherical coordinates, we have 0 < p < cos ¢.

Using spherical coordinates the equation for the cone and sphere meet when pcos¢ = psin¢. Hence
¢ =m/4. So we have 0 < ¢ < /4. Lastly, 0 varies from 0 to 2w. See Figure 2.29
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Figure 2.28: Solid

Thus, the volume of the solid is given by,

B e IR o

—cos ¢
:? ; sln(bCOS (std)—i[ 4 }0/4_g'
=
AN
9= 21
Seh <0
¢=T¢

Figure 2.29: Finding the range of ¢ and 6.
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