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Tutorial Exercises

T1 State the type of surface given by each of the following equations
in three dimensional space.

(a) 4x + 5y− 2z = 20, (b) x2 + y2 = 1, (c) x2 + y2 + z2 − 2x = 10,

(d) x2 +
y2

4
+

z2

9
= 1, (e) 25x2 + 4y2 + z2 = 100, (f) x2 + y2 + z2 = 16.

(a) Plane, (b) Cylinder, (c) Sphere centre (1, 0, 0), radius
√

11, as seen by completing the square in the
x terms, (x2 − 2x + 1) + y2 + z2 = 10 + 1 giving (x− 1)2 + y2 + z2 = 11, (d) Ellipsoid, (e) Ellipsoid –
Divide the equation by 100 to reduce to standard form:

x2

4
+

y2

25
+

z2

100
= 1

(f) Sphere.

Solution

T2 Sketch the part of the plane 3x + 2y + z = 3, that lies in the first
octant (= {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0}.)

Solution

T3 Match the graphs in Figure 1 with its corresponding contour-
maps (cross-sections) from Figure 2. Give reasons for your choices.

A-(c), B-(d) , C-(a), D-(b).

Solution
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Figure 1: Cross sections of 4 graphs (See
question T3).
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Figure 2: Cross sections of 4 graphs (See
question T3).
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T4 Find all partial derivatives of the functions

(a) f (x, y) = x cos(xy + x), (b) g(s, t) =
st

s + t
, (c) r(u, v) = (uv + v)3,

(d) h(x, y, z) =
yz + zx + xy

xyz
, (e) q(x, y, z) = xe−(x2+y2).

Can you find a way to rewrite h(x, y, z) in (d) so that calculating its
partial derivatives is very easy?

(a) fx = cos(xy + x)− x(y + 1) sin(xy + x), fy = −x2 sin(xy + x),

(b) gs =
t(s + t)− st.1

(s + t)2 =
t2

(s + t)2 , gt =
s2

(s + t)2 .

(c) ru = 3v(uv + v)2, rv = 3(u + 1)(uv + v)2.

(d) h =
1
x
+

1
y
+

1
z

. Hence hx = − 1
x2 , hy = − 1

y2 and hz = −
1
z2 .

(e) qx = (1− 2x2)e−(x2+y2), qy = −2xye−(x2+y2) and qz = 0.

Solution

Further Exercises

F1 Complete the square in each of the following expressions

(a) x2 + y2 + z2 + 2 = 2(x + y + z), (b) z =
√

2x + 2y− x2 − y2 − 1.

and hence describe and sketch the surfaces they represent.

(a) We have x2 − 2x + y2 − 2y + z2 − 2z + 2 = 0 and so completing the square gives (x− 1)2 + (y−
1)2 + (z− 1)2 = 1, the sphere with centre (1, 1, 1) and radius 1.

(b) We have z ≥ 0 and (x− 1)2 + (y− 1)2 + z2 = 1, the upper hemisphere with centre (1, 1, 0) and
radius 1.

Solution

F2 By considering the level curves and cross sections x = 0 and
y = 0, sketch the surfaces

(a) x2 + y2 − z2 = 0, (b) z = x2 + y2, (c) 2x2 + y2 + z2 = 1.
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Which surface is the paraboloid and which is the ellipsoid?

(a) Cross section x = 0: z = ±y; Cross section y = 0: z = ±x; Level curves: x2 + y2 = c2, so that
L0 = {(0, 0)} or Lc is the circle centre (0, 0), radius |c| for c 6= 0.

Solution
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(b) Cross section x = 0: z = y2 (parabola); Cross section y = 0: z = x2 (parabola); Level curves:
x2 + y2 = c, so that Lc = ∅ for c < 0 or L0 = {(0, 0)} or Lc is the circle centre (0, 0), radius

√
c for

c > 0. This is paraboloid.
(c) Cross section x = 0: y2 + z2 = 1 (circle); Cross section y = 0: 2x2 + z2 = 1 (ellipse); Level

curves: 2x2 + y2 = 1− c2, so that L±1 = {(0, 0)}, Lc is an ellipse for |c| ≤ 1 or Lc = ∅ for |c| > 1.
This is an ellipsoid.

F3 Sketch the region bounded by the cylinder x2 + y2 = 1 and the
planes x− y + z = 1 and z = 2.
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Solution

F4 Find ∂φ
∂x and ∂φ

∂y where

(a) φ(x, y) = g(x + y), (b) φ(x, y) = f (x)g(y),

where f and g are differentiable functions of one variable.

(a) ∂φ
∂x = g′(x + y), ∂φ

∂y = g′(x + y), (b) ∂φ
∂x = f ′(x)g(y), ∂φ

∂x = f (x)g′(y)

Solution

F5 Let u(x, y) = x2 − y2, v(x, y) = 2xy. Show that

∂u
∂x

∂v
∂y
− ∂v

∂x
∂u
∂y

= 4(x2 + y2).

∂u
∂x

∂v
∂y −

∂v
∂x

∂u
∂y = 2x · 2x− 2y · (−2y) = 4(x2 + y2).

Solution

F6 Let f (x, y, z) = xyz
r2 , where r2 = x2 + y2 + z2. Prove that

x
∂ f
∂x

+ y
∂ f
∂y

+ z
∂ f
∂z

= f .
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Since r2 = x2 + y2 + z2, we have 2r · ∂r
∂x = 2x, so ∂r

∂x = x/r. Similarly, ∂r
∂y = y/r and ∂r

∂z = z/r. Then

∂ f
∂x

=
∂

∂x

(
xyz

1
r2

)
= yz

1
r2 + xyz

(
−2
r3

)
∂r
∂x

=
yz
r2 −

2xyz
r3

x
r
=

yz
r2 −

2x2yz
r4 .

Similarly, by symmetry, we have

∂ f
∂y

=
xz
r2 −

2xy2z
r4 ,

∂ f
∂z

=
xy
r2 −

2xyz2

r4 .

So,

x
∂ f
∂x

+ y
∂ f
∂y

+ z
∂ f
∂z

=
xyz
r2 −

2x3yz
r4 +

xyz
r2 −

2xy3z
r4 +

xyz
r2 −

2xyz3

r4

=
3xyz

r2 − 2xyzr2

r4 =
3xyz

r2 − 2xyz
r2 =

xyz
r2 = f

as required.

Solution

F7 Let f (x, y) = xy2 sin( x
y ). Prove that

x
∂ f
∂x

+ y
∂ f
∂y

= 3 f .

∂ f
∂x

= y2 sin
(

x
y

)
+ xy2 cos

(
x
y

)
· 1

y
= y2 sin

(
x
y

)
+ yx cos

(
x
y

)
.

∂ f
∂y

= 2xy sin
(

x
y

)
− xy2 cos

(
x
y

)
x
y2 = 2xy sin

(
x
y

)
− x2 cos

(
x
y

)
.

So,

x
∂ f
∂x

+ y
∂ f
∂y

= xy2 sin
(

x
y

)
+ yx2 cos

(
x
y

)
+ 2xy2 sin

(
x
y

)
− yx2 cos

(
x
y

)
= 3xy2 sin

(
x
y

)
= 3 f .

Solution


