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Double-diffusive convection, driven by both thermal and compositional buoyancy, in a rotating spherical
shell can behave in a rather large number of distinct ways, often distinct from that of the single diffusive
system. In order to understand how the differences in thermal and compositional molecular diffusivities
determine the dynamics of thermo-compositional convection we investigate numerically the linear onset
of convective instability in a double-diffusive setup. We construct an alternative equivalent formulation of
the non-dimensional equations where the linearised double-diffusive problem is described by an effective
Rayleigh number, Ra, measuring the amplitude of the combined buoyancy driving, and a second parameter,
α, measuring the mixing of the thermal and compositional contributions. This formulation is useful in that
it allows for the analysis of several limiting cases and reveals dynamical similarities in the parameters space
which are not obvious otherwise. We analyse the structure of the critical curves in this Ra − α space,
explaining asymptotic behaviours in α, transitions between inertial and diffusive regimes, and transitions
between large scale (fast drift) and small scale (slow drift) convection. We perform this analysis for a variety
of diffusivities, rotation rates and shell aspect ratios showing where and when new modes of convection take
place.
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1. Introduction

Convection in a rotating spherical fluid shell provides one of the fundamental models we have
for understanding the large-scale motions and the magnetic fields of many geophysical, plan-
etary and astrophysical systems, see (Glatzmaier 2013, Jones 2011, Busse and Simitev 2015).
In Earth’s outer core, for instance, convection is driven by both thermal and compositional
buoyancy. Earth’s core is composed mostly of iron and nickel, alloyed to lighter elements, sup-
posedly sulphur, oxygen and hydrogen (Jeanloz 1990). Heat is continually lost to outer space
causing secular cooling and establishing a thermal gradient that can drive thermal convection
in the outer core. In addition, secular cooling causes freezing of iron onto the inner core, a
process in which both latent heat and light material are released giving rise to additional
thermal and chemical buoyancy (Jacobs 1953, Braginsky 1963). Both buoyancy components
are important when modelling the geodynamo. Indeed, recent estimates of thermal conduc-
tivity for iron at core conditions (Pozzo et al. 2012, Davies et al. 2015) confirm that outer
core convection cannot be driven by thermal buoyancy alone. It is estimated that the com-
positional contribution to the buoyancy flux in the Earth’s core is around 80% (Lister and
Buffett 1995). To model thermo-compositional convection Braginsky and Roberts (1995) and
simultaneously Lister and Buffett (1995) suggested that temperature and concentration can be
combined into an single “co-density” field. The co-density formulation has since been widely
used in numerical simulations of the geodynamo and planetary dynamos, see reviews (Jones
2011, Christensen and Wicht 2015). However, the co-density formulation requires that a single
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set of effective boundary conditions, a single effective distribution of sources and a single effec-
tive value of the diffusility of the co-density variable must be used. While various modelling
assumptions to that effect can be made, e.g. see attempts of Hori et al. (2012) to propose
models for geophysically realistic thermo-compositional boundary conditions, of Olson et al.
(2017), Takehiro and Sasaki (2018) to model stratification, and of Christensen (2015) to model
a snow zone on Ganymede, it is not clear how well these can capture the distinct properties of
separate heat and composition which diffuse at significantly different rates. Only handful of
studies have employed a ’double-diffusive’ formulation where both temperature and composi-
tion are included as separate fields. Breuer et al. (2010) and Trümper et al. (2012) found that
the convective flows change significantly depending on the dominant driving component and
reported that dynamo structures are also affected. In a double-diffusive model of Mercury’s
dynamo Manglik et al. (2010) observed that when thermal and compositional buoyancy are of
equal intensity, finger convection penetrates the upper layer enhancing the poloidal magnetic
field as compared to co-density cases. Exploring a geodynamo model Takahashi (2014) also
concluded that the morphology of the obtained poloidal field is determined by the balance of
thermal and compositional driving.

A systematic study of the linear onset of rotation double-diffusive convection is needed as
a prerequisite for a detailed understanding of the behaviour of turbulent dynamos driven by
thermal and compositional buoyancy. Indeed it is often found that the properties of convection
at onset provide much insight to finite-amplitude convection (Simitev and Busse 2003, Busse
and Simitev 2006). While the study of purely thermal convection has a long and distinguished
history, without prejudice we only refer to the recent monograph of Zhang and Liao (2017)
and the extensive list of references therein, the thermo-compositional case has received little
attention in this context. By taking into account that heat diffuses much faster than chemical
elements Busse (2002) used the small gap rotating cylindrical annulus model to show that
the interaction of two components can significantly facilitate convection. Investigating the
linear onset of double-diffusive convection in a rotating cylindrical annulus with conical caps
Simitev (2011) found that the neutral surface describing the onset of convection in this case
has an essentially different topology from that of the well-studied purely thermal case. In
particular, due to an additional “double-diffusive” eigenmode, neutral curves are typically
multi-valued and form regions of instability in the parameter space which may be entirely
disconnected from each other. It was also observed that while known asymptotic expressions
for the critical Rayleigh number and frequency derived by Busse (2002) describe the onset of
convection over an extended range of non-asymptotic parameter values but do not capture
the full complexity of the critical curves. Net et al. (2012) studied numerically the influence of
an externally enforced compositional gradient on the onset of convection of a mixture of two
components in a rotating fluid spherical shell. These authors considered both positive and
negative compositional gradients and found that the influence of the mixture is significant
in both cases. The aim of the present article is to extend and complement the latter studies
and to contribute to a detailed linear analysis of the double-diffusive convection problem in
the geometry of a rotation spherical shell. Indeed, this is needed as both the parameter space
and the space of valid modelling assumptions that can be made is very large. Our model is
mathematically similar to these of Busse (2002) and Simitev (2011) but is set in a spherical
geometry. In contrast to Net et al. (2012), we consider the stress-free case for the velocity
boundary conditions and internal rather than differential heating. Similarly to Net et al.
(2012) we allow for both a stabilizing compositional gradient which may occur for instance,
in lower main-sequence stars with heated helium-rich core surrounded by lighter hydrogen
layers (Kippenhahn et al. 2012), as well as destabilising compositional gradients relevant,
for instance, in the in the case of the Earth’s core where solidification with release of light
component takes place.

The article is organised as follows. We start by reviewing the mathematical set-up used
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to estimate the parameters of the system at onset in section 2. In section 3 we introduce a
formalism that allows us to measure the combined effect of the thermal and compositional
buoyancy and to better understand the convective processes that occur. Section 4 proceeds
to describe the competition of eigenmodes that leads to the formation of the global critical
curves for onset. The remaining sections 5, 6 and 7 are devoted to describing the onset of
convection depending on the Prandtl and Coriolis numbers and aspect ratio, respectively. A
summary of the results and conclusions is presented in section 8.

2. Mathematical formulation and numerical solution

We investigate the onset of thermo-compositional convection in a rotating spherical shell. The
shell has thickness d = ro − ri, where ro and ri are the inner and the outer radii, respectively
and rotates about an axis aligned with the z direction at a constant rate Ω. The unit vectors
pointing in the z-direction and in the radial direction are denoted by k and r, respectively
and rr is then the position vector. The material within the spherical shell is assumed to be an
incompressible fluid solution, with constant kinematic viscosity ν, thermal diffusivity κ, and
chemical diffusivity D. The density ρ of the fluid is assumed to depend linearly on changes in
composition and temperature with first order expansion coefficients αC and αT , respectively.
We employ the Boussinesq approximation where the variation in density is assumed important
only when they affect the gravitational force −ργrr, with γ a constant. In order to study the
effects induced by the very different values of the thermal and of the chemical diffusivity
in isolation from other effects, we follow (Busse 2002, Net et al. 2012) and disregard any
differences in boundary conditions and in source-sink distribution for the temperature and
concentration. Static profiles T (r) and C(r) of temperature and concentration with radial
gradients ∂rT = −βT r and ∂rC = −βCr, where βT and βC are constant densities of uniformly
distributed sources, exists when temperatures and concentrations are fixed at the boundaries.

Using d2/ν as the unit of time, d as the unit of length, T ∗ = βTd
2ν/κ as the unit of

temperature and C∗ = βCd
2ν/D as the of concentration arrive at the following linearised

equations in adimensional units,

∂tu = −τk× u−∇π + (RtΘ + Rcχ)rr +∇2u, (1a)

∂tΘ = Pr−1∇2Θ− u · ∇T, (1b)

∂tχ = Sc−1∇2χ− u · ∇C, (1c)

where u is the flow velocity, π is the generalized pressure, Θ is the temperature anomaly and
χ is the compositional anomaly from the static reference states T and C, respectively. The
non-dimentional parameters that appear in the equations are defined in Table 1. Note that,
here, the scale for the composition, C∗, is inversely proportional to D. This is in contrast
with the work of Simitev (2011) who scales C∗ with κ. As a consequence, the compositional
Rayleigh numbers present in this paper must be scaled by a factor of the Lewis number,
Le = κ/D, when compared to the latter work. Temperature and composition anomalies are
set to vanish at the spherical boundaries and stress-fee boundary conditions are imposed for
velocity. Except when otherwise mentioned, the equations are solved for a spherical shell with
an inner to outer radius ratio of η = 0.35.

Since the velocity vector is solenoidal, we take advantage of the poloidal-toroidal decompo-
sition

u = uP + uT = ∇×∇× S(rr, t)r +∇× T (rr, t)r, (2)

so that the poloidal and toroidal components uP and uT of the velocity u can be represented
by a toroidal scalar function T (rr, t) and a poloidal scalar function S(rr, t) similarly to the
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Parameter Definition

Coriolis Number τ = Ωd2/ν

Thermal Rayleigh Number Rt = αTγd
4T ∗/ν2

Compositional Rayleigh Number Rc = αCγd
4C∗/ν2

Thermal Prandtl Number Pr = ν/κ

Compositional Prandtl Number (Schmidt Number) Sc = ν/D

Radius Ratio η = ri/ro

Table 1. Adimensional model parameters. For brevity in the text we often speak of “Prandtl numbers” when we refer to both

the Prandtl and the Schmidt numbers.

temperature and the compositional anomaly Θ(rr, t) and χ(rr, t). Each scalar quantity is then
assumed to obey the linear Fourier mode ansatz in time

X (rr, t) = X̃ (rr, ω) exp(it(ω − iΓ)),

where ω is the frequency of oscillation (or drift rate) and Γ is the growth rate. The system will
be stable so that any perturbation will decay if Γ is less than zero. Otherwise, a perturbation
will grow exponentially over time, in which case the system is convectively unstable. Operating
on Equation (1a) by r ·∇× and by r ·∇×∇× four scalar equations describing the system are
obtained

(iω + Γ)(∇2 − 2r∂r)(∇2
H S̃) (3a)

= −τr · ∇ ×∇× (k× ũ) +∇2
H(RtΘ̃ + Rcχ̃) + r · ∇ × (∇× (∇2ũ)),

(iω + Γ)(∇2
H T̃ ) = −τr · ∇ × (k× ũ) + r · ∇ × (∇2ũ), (3b)

(iω + Γ)Θ̃ = Pr−1∇2Θ̃− ũ · ∇T, (3c)

(iω + Γ)χ̃ = Sc−1∇2χ̃− ũ · ∇C, (3d)

where the horizontal Laplacian is defined as

∇2
Hf = ∇2f − 1

r2

∂

∂r

(
r2∂f

∂r

)
,

and where for brevity in the text we have left some terms with ũ unexpanded.
To find the marginal convective stability where Γ = 0, each scalar quantity is further ex-

panded in terms of spherical harmonics for the angular part. Due to the linearity of the
equations and of the orthogonality properties of spherical harmonics individual azimuthal
wave numbers m decouple and can be investigated one at a time. To complete the spatial
discretisation of the problem in the radial direction we follow (Zhang and Busse 1987, Ardes
et al. 1997) and expand all scalar unknowns X̃ (rr) are trigonometric functions obeying the
boundary conditions. After computing the appropriate Galerkin projection integrals numeri-
cally Equations (3) take the matrix form

(iω + Γ) [A]n,l




s̃n,l,m
t̃n,l,m
θ̃n,l,m
χ̃n,l,m


 = [B]n,l




s̃n,l,m
t̃n,l,m
θ̃n,l,m
χ̃n,l,m


 , (4)

for fixedm, with sums being carried out over the degree of the associated Legendre polynomials
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l and the index of the radial functions n. Matrices A and B are of the form

[A]n,l =




� ∅ ∅ ∅
∅ � ∅ ∅
∅ ∅ � ∅
∅ ∅ ∅ �


 , [B]n,l =




� � � �
� � ∅ ∅
� ∅ � ∅
� ∅ ∅ �


 , (5)

where squares represent non-null blocks. A triangular truncation of the sums is chosen such
that the same number of radial functions and associated Legendre polynomials is used (Zhang
and Busse 1987, Ardes et al. 1997),

2n+ l −m+ 2 ≤ 3 + 2N, (6)

with N an integer bigger than 2. N represents the required resolution for the calculation
and always set to values higher than 10 and as close as feasibly possible to m. Equation (4)
can then be solved for the complex eigenvalues (iω + Γ) using standard numerical eigenvalue
methods implemented in the NAG library1.

Once the eigenvalue problem (4) is solved for a set of fixed parameter values non-trivial
numerical extremization and continuation problems must be tackled in order to follow the
critical threshold curve in the parameter space. The numerical code for the solution of the
problem can be obtained via (Silva and Simitev 2018).

3. An effective Rayleigh-number formalism

Multivalued critical curves for the onset of thermo-compositional convection in related prob-
lems were reported by Simitev (2011) and Net et al. (2012). Our analysis confirms that this
is the case in the present setting as illustrated by Figure 1 below. In this section, we propose
a new adimensional parameter, Ra, that, similarly to the pure thermal case, can be used to
measure criticality with respect to the onset of convection while at the same time to avoid the
difficulties associated with finding the extrema of multivalued critical curves. The associated
transformation of the governing linearised equations has the further advantage in addressing
two important limiting cases.

The momentum equation (1a) can be transformed by representing the buoyancy force in
the form

(Rt Θ + Rc χ) rr = Ra (cosα Θ + sinα χ) rr, (7)

with α varying between −π and π and Ra being an effective positive Rayleigh number related
to the thermal and the compositional Rayleigh numbers by

Ra =

√
Rt

2 + Rc
2. (8)

We refer to α the Rayleigh angle as it corresponds to an angle in the Rt-Rcplane. It is computed
from the thermal and the compositional Rayleigh numbers using

α = atan2(Rc/Rt),

where the function atan2(x, y) is defined for x ∈ R, y ∈ R as the principal argument Arg(z) of
the complex number z = x+iy, a notation used in many programming languages. The value of
α = 0 corresponds to pure thermal convection and α = π/2 to pure compositional convection.
The typical co-density approach corresponds to α = π/4 with Pr = Sc. We also remark that
this parametrisation has several advantages over previous solutions such as the once proposed
by Breuer et al. (2010) and Trümper et al. (2012) These authors considered a total Rayleigh

1The NAG Library, The Numerical Algorithms Group (NAG), Oxford, United Kingdom www.nag.com.

www.nag.com
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Figure 1. (left) The null curves for m = 4 and m = 7 at τ = 1.2 × 103, Pr = 1 and Sc = 10 in the Rt − Rc plane.
Null growth rate points in Figure 2 correspond to the null points on a cut at Rc = 4× 104 marked as a thin dot-dashed
vertical line. (middle) The null curve and oscillation frequency for m = 4. (right) The null curve and oscillation frequency
for m = 7. Thin dot-dashed curves represent curves of Rc = 4× 104. In all panels thin dashed lines are the frequency of
oscillation ω. Shaded areas are regions where convection can exist.

number constructed as the simple sum of the thermal and compositional Rayleigh numbers.
That is a very good approximation for the cases when the Prandtl and the Schmidt numbers
are equal Pr = Sc but fails when they are even only marginally different. In more practical
terms, this new generalised Rayleigh number is strictly positive, which allows for plots in
logarithmic scale. Adding to that, analysis of the critical curve at very high driving regimes
can now be transferred to the analysis of the asymptotes in α. Finally, the interpretation of
systems with negative Compositional Rayleigh numbers e.g., (Squyres et al. 1983, Röttger
et al. 1994) can also now be shifted to the analysis of the regions in Ra−α space where strong
driving is required.

We now define a new set of dynamical variables Ψ and Ψ′ and static reference profiles Ξ
and Ξ′ using the transformations

Ψ = Θ cosα+ χ sinα, Ψ′ = Θ cosα− χ sinα, (9a)

Ξ = T cosα+ C sinα, Ξ′ = T cosα− C sinα, (9b)

with the inverses being

Θ cosα =
Ψ + Ψ′

2
, χ sinα =

Ψ−Ψ′

2
. (10)

By substituting these expressions into Equations (1a)-(1c) and adding and subtracting Equa-
tions (1b) and (1c), we arrive at the transformed problem

∂tu = −τk× u−∇π + RaΨrr +∇2u, (11a)

∂tΨ = P+
−1∇2Ψ + P−

−1∇2Ψ′ − u · ∇Ξ, (11b)

∂tΨ
′ = P+

−1∇2Ψ′ + P−
−1∇2Ψ− u · ∇Ξ′, (11c)

with effective Prandtl numbers defined as

P+
−1 =

Pr−1 + Sc−1

2
, P−

−1 =
Pr−1 − Sc−1

2
. (12)

Note that, whereas the number P+
−1 is strictly positive, the number P−

−1 can now be neg-
ative thus providing a means of concentrating rather than diffusing the fields Ψ or Ψ′. This
mechanism, as we shall see, can drive convection at lower than expected Rayleigh numbers
and at very large scales.

Formulation (11) allows us to consider two important limiting cases. First, we note that the
transformed momentum Equation (11a) only depends on the field Ψ. A consequence of this
decoupling is that, in the case of P−

−1 approaching 0, the system will behave as if driven only
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by one buoyancy generating field. This situation arises when Pr is close or equal to Sc and
thus, we obtain the traditional co-density approximation. We will analyse this case in more
depth in sections 5.1 and 5.2.

A second limiting case studied further in the paper is found found when the Prandtl numbers
are significantly different in magnitude. In this case

P+
−1 ≈ 1

2
max(Pr−1,Sc−1) ≈ Pr−1/2, (13a)

P−
−1 ≈ ±1

2
max(Pr−1,Sc−1) ≈ ±Pr−1/2, (13b)

with Pr−1 = max(Pr−1,Sc−1) and P−
−1 being negative when Pr−1 < Sc−1. Then Equa-

tions (11).b,c can be rewritten approximately as

∂tΨ ≈
Pr−1

2
∇2(Ψ±Ψ′)− u · ∇Ξ, (14a)

∂tΨ
′ ≈ Pr−1

2
∇2(Ψ′ ±Ψ)− u · ∇Ξ′. (14b)

With all other parameters fixed, the changes to the critical value of Ra can only be due to
different behaviours of the system with respect to α. This case will be analysed more in depth
in section 5.3 where we will also explore the effects of Pr on the curves Rac(α).

4. Construction of global critical curves

The introduction of the equation of concentration in system (1) leads to an increased num-
ber of eigenmodes in comparison to the pure thermal case as noted by Simitev (2011) and
as most directly apparent by the increased dimension of the of the eigenvalue problem (4).
The new eigenmodes correspond to modes of convection not present in the case of pure ther-
mal convection. Figure 2 shows a comparison between the eigenmodes of the double-buoyant,
double-diffusive case and the eigenmodes of the purely thermal case for two particular az-
imuthal wave numbers m = 4 and m = 7 with Rc = 4 × 105, τ = 1.2 × 103 and Sc = 10.
Two types of eigenmodes are observed in the former case – (a) ones that are present in the
purely thermal case but are now modified, and (b) additional ones that have no counterpart
in the purely thermal case. Next, for each azimuthal wave number m, convection will arise
when the upper envelope of the curves of the growth rates is above zero for any eigenmode,
illustrated by shaded regions in Figure 2. The addition of compositional effects clearly mod-
ifies the eigenmodes, notably in the way of promoting convection at lower thermal Rayleigh
numbers. Moreover, as in the case of the cylindrical annulus studied by Simitev (2011), the
additional compositional eigenmodes will, in certain circumstances, form new regions of con-
vective instability that may be disconnected from the main convective region as shown in the
left panel of Figure 2. In this case, the semblance of an disconnected island of instability forms
for the particular azimuthal mode. Whether the region will remain disconnected depends on
the overlap with the instability regions of the eigenmodes of the rest wave numbers. This leads
us to a discussion of the construction of global critical curves below.

A composite critical curve is thus obtained for each azimuthal wave-number as shown in
Figure 3. There, we can also see that the critical curves for different values of m intersect and
overlap allowing convection for only certain m-values and not for others. Convective instability
occurs at the lowest value of Ra for among the critical curves for the separate values of m.

The physical system corresponding to Equations (1) will start convecting with a most un-
stable azimuthal wave-number that depends on the angle α, conveniently measured clockwise
from the Rt-axis. Some azimuthal wave-numbers will contribute to large portions of the global
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Figure 2. Eigenmodes with a positive growth rate in some part of the parameter space for the azimuthal wave numbers
m = 4 (left panel) and m = 7 (right panel) at Rc = 4 × 103, τ = 1.2 × 103 and Sc = 10. Dots represent the pure
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critical curve (m = 9 in Figure 3); others will contribute only point-wisely (e.g. m = 15) and
others not at all (e.g. m = 1).

To aid the discussion on the dependence of parameters in the following sections we recall
known asymptotic expressions for the critical Rayleigh and azimuthal wave numbers and
drift-rate for a rapidly rotating spherical shell with τ1/2 � 1. In terms of our dimensionless
parameters these relations are

Rcrit = 7.252

(
2Pτ

1 + P

)4/3

(1− η)10/3, mcrit = 0.328

(
2Pτ

(1 + P )

)1/3

(1− η)−2/3,

ωcrit = −0.762

(
4τ2

P (1 + P )2

)1/3

(1− η)2/3.

(15)

Here, P can just refer to either the thermal Prandtl number Pr or the Schmidt number Sc.
For the cases of P →∞ (i.e. either Pr→∞ or Sc→∞) we obtain

lim
P→∞

Rcrit = 7.252(2τ)4/3(1− η)10/3, lim
P→∞

mcrit = 0.328(2τ)1/3(1− η)−2/3

lim
P→∞

ωcrit → 0.
(16)
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The derivatives with respect to P of Equation (15) are all positive

dRcrit

dP
> 0,

dmcrit

dP
> 0,

dωcrit

dP
> 0, (17)

with all derivatives tending to zero as P → ∞. We therefore expect that in the region 0 ≤
α ≤ π/2 where Rt and Rc are positive and specifically at α = 0 (purely thermal case)
and α = π/2 (purely compositional case) that as we increase Pr from 10−1 that we should
see an increase in Ra and m towards limiting values and a decrease in the magnitude of
ω towards zero. Equation (15) also shows that Rcrit ∝ τ4/3, mcrit ∝ τ1/3 and ωcrit ∝ τ2/3.
therefore it is expected that as τ is increased, the critical Rayleigh and wave numbers and
drift-rate should also increase. Finally, it is evident from Equation (15) that Rcrit ∝ (1−η)10/3,
mcrit ∝ (1− η)−2/3 and ωcrit ∝ (1− η)2/3. Therefore, by increasing η, it is expected that the
critical Rayleigh number and drift-rate should decrease but that the critical azimuthal wave
number should increase. Equations (15) are only valid for Pτ � 1 and have limited accuracy
for low Prandtl numbers.

5. Dependence on the Prandtl number

5.1. The case of equal Prandtl numbers

The simplest case to analyse is the case of equal Prandtl and Schmidt number as it reverts
to the results of the onset of pure thermal convection. When temperature and composition
have the same diffusivities, the thermal and compositional Prandtl numbers will be the same.
Then, despite convection being affected differently by the different quantities, composition
and temperature will evolve in a similar manner. Recalling Equations (11), the number of
adimensional parameters can be reduced by assuming equal Prandtl and Schmidt numbers
i.e. Pr = Sc. Equation (11a) depends only on Ψ and Equation (11b) is now decoupled from
Equation (11c) with Ψ′ being then little more than a passive tracer for the flow. The system
reduces to the well known co-density approach. The critical Rayleigh curve then reduces to a
straight line of the form Rt = −Rc + Ra0 in the Rt − Rc plane, as proposed by Breuer et al.
(2010), and to

Rac =
Ra0

cosα+ sinα
(18)

in the Ra − α plane. All curves are symmetric with respect to α = π/4 (equal Rayleigh
numbers) and grow to infinity with asymptotes at α = −π/4 and α = 3π/4 as illustrated in
Figure 4.

The factor Ra0 depends, in general, on the values of τ , Pr and η; in this section we are only
concerned with the effects of varying Pr. Equations (11a) and (11b) show that the larger Pr
becomes, the smaller its influence is. The coefficient Ra0 should then become independent of
Pr at large values of this parameter. We will call this regime the advective regime. At Prandtl
numbers much smaller than one the process of diffusion takes over and prevents small scale
convection from growing. Then, much larger scales dominate and then the onset of convection
occurs at lower values of the Rayleigh numbers. This is the diffusive regime. The transition
between these two regimes occurs at Pr = 0.1 as (Zhang and Busse 1987, Zhang 1994, Plaut
and Busse 2005). Figure 4a illustrates this situation by showing the null curves of Ra as a
function of α for Pr varying between Pr = 10−5 (lower curves) to Pr = 104 (higher curves). As
the most unstable azimuthal wave-number m and drift-rate ω are constant along the curves
we show the variation of these with respect to varying Prandtl number Pr as well as the
critical Rayleigh number for the co-density case Ra0. Computations were carried at τ = 104.
The curves in Figure 4b cluster in the limits Pr → 0 and Pr → ∞, with small m’s (m = 2)
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Figure 4. (a) Critical curves of Ra as a function of α for Pr varying from Pr = 10−5 (lowest curve) to Pr = 104 (highest
curve) in increasing multiples of ten. The circle markers indicate the curve plotted for Pr = 0.1 where the transition from
inertial to viscous convection occurs (b) Variation of the critical Rayleigh number, Ra0, (bottom panel), most unstable
wave-number, m, and magnitude of the drift-rate, |ω|, with respect to Pr. Computations were carried out for τ = 104.

for Pr → 0 and large wavenumbers m’s (m ≥ 14) for Pr → ∞. The behaviour in the limit
of Pr → ∞ agrees well with the asymptotic estimate of Equation (15) which shows that the
asymptotic limiting values are approached for the critical Rayleigh and wave numbers and
drift rates in that limit and as seen in Figure 4b (circle markers). Asymptotic relations exist
for low Prandtl numbers are given in (Busse and Simitev 2004) it will be of interest to verify
whether the critical values of the Rayleigh and wave numbers as well as drift-rate plotted in
Figure 4b approach these limit values also.

For low values of the Pr, convection takes the form of equatorially-attached cells centred in
the shell and exhibits a strong clockwise drift, with the strongest radial flow at the equator
mid-shell and undeformed large scale convection cells attached to the outer boundary. A very
abrupt transition to rotating convection happens at Pr = 0.1. Above this value, convection
columns appear with much smaller azimuthal scale. They have a structure like the double-
humped mode described by Ardes et al. (1997). The changes in behaviour continue until the
traditional curved convection cells are recovered from a Prandtl number just above 0.2 and
upwards. At this stage, the onset of convection happens throughout the whole exterior of the
tangent cylinder except for a very thin layer near the outer boundary. For values of Pr larger
than unity the onset of convection takes place in the middle of the shell.
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5.2. Small departures from the Pr = Sc regime.

We now depart from the co-density case of a “single-diffusive” fluid that is characterised by
equal Prandtl numbers. In this section we start by developing a first order approximation
to Equations (11) that will allow for the analysis of small departures from the regime of
Pr = Sc. Figures 5a and b show the effects of setting the values of Sc just below and just
above Pr = 1.0, respectively. Again, calculations were performed at τ = 104. Firstly, however,
consider a small number, δ, such that |δ| � 1 and the assumption that the thermal and
compositional Prandtl numbers are close in value such that, Sc = Pr(1 + δ). We can then
approximate the transformed Prandtl numbers of Equations (12) to first order by

P+
−1 ≈ Pr−1

2
(2− δ) , P−

−1 ≈ Pr−1

2
δ. (19)

As expected, P+
−1 is always much larger than P−

−1 but the latter is still finite. If this approx-
imation is substituted into Equations (11b) we find that to terms of O(δ) the approximate
equations are

∂tΨ = Pr−1∇2Ψ− u · ∇Ξ +
δ

2
Pr−1∇2(Ψ′ −Ψ), (20a)

∂tΨ
′ = Pr−1∇2Ψ′ − u · ∇Ξ′ +

δ

2
Pr−1∇2(Ψ−Ψ′). (20b)

We can then use definitions (10)b and (9)c and d and the reference temperature and compo-
sition profiles to rewrite Equation (20a) in the form

∂tΨ = Pr−1∇2Ψ + βur(cosα+ sinα)− δ sinα∇2χ, (21a)

∂tχ = Pr−1∇2χ+ βur − δPr−1∇2χ. (21b)

Here, Equation (21b) has been obtained by subtracting Equation (20a) from Equation (20b).
Equations (21a) and (21b) are only coupled together by the last term in (21a) which is
multiplied by the small quantity δ and so the diffusion of χ has only a small contribution to
the evolution of the buoyancy profile Ψ.

It is now reasonably easy to see the physical effects of deviating from the case of equal
Prandtl numbers. For example, when Sc < Pr, so that δ < 0, and with 0 < α < π/2 (positive
compositional and thermal Rayleigh numbers) Equation (21a) shows that the growth in time
of the compositional component χ has a small but destabilising effect on the buoyancy profile
Ψ such that convection can now occur for lower values of Ra as |δ| becomes larger. This
behaviour is well evident on the left side of Figure 5a where, upon decreasing delta from 0
to −0.5, a reduction in Ra is indeed observed. The magnitude of this reduction increases as
α increases from 0 through to π/2. This is easily explained by viewing the middle panel of
Figure 5b. More negative values of δ correspond to smaller values of Sc so that less energy
is required for the onset of convection and both the critical Rayleigh numbers will of course
decrease more. This verifies previous work (see e.g. Simitev 2011) that, for positive Rayleigh
numbers, an increase in Rc leads to a reduction in the critical value of Rt required for the
onset of convection.

Considering the case Pr < Sc, so that δ > 0, and with 0 < α < π/2 (Rt,Rc > 0), we see a
similar effect occurring. Now, the diffusion of χ has a stabilising effect on the buoyancy profile,
Ψ, with convection occurring at higher critical values of Ra as δ increases. This effect is in
evidence on the bottom panel of Figure 6a, where an increase in Ra is seen as δ is increased.
This is clearly explained by the fact that, when Sc is increased (δ increases), greater values
of Rc are now required for the onset of convection. Again, this effect becomes larger as α
increases from 0 through to π/2 as (see the middle panel of Figure 6b), after this point,
it is again the composition that is controlling the onset of convection, so increasing Sc will
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consequently mean even greater values of Rcare needed for the onset of convection to occur
to overcome the viscous forces.

However, when α < 0 and |α| � 1, with Sc < Pr, so that δ < 0, the diffusion of χ acts
in an opposite way as the sign of sinα changes from positive to negative. The diffusion of χ
now has a stabilising effect as δ sinα is negative. This phenomenon can be seen in top panel
of Figure 5b; as α changes from positive to negative we see that decreasing δ increases the
thermal Rayleigh number, Rt, whereas when α > 0 decreasing δ decreases the critical value
of Rt. Similarly, when α > 0 and |α| � 1, with Sc > Pr, so that δ > 0, the diffusion of χ leads
to a reduction of the buoyancy profile. This is seen, more clearly than the previous case in the
upper panel of Figure 6b. Increasing δ leads to a reduction of the critical value of Rt. This
phenomenon can be explained by the fact that, when α < 0, the compositional buoyancy is
now acting against the thermal component of buoyancy. Therefore an increase in Sc inhibits
the effect of the compositional component and thus lowers the critical value of Rt.

We have demonstrated that the departure from equal Prandtl numbers has a small but
noticeable affect on the onset of convection, manifested by a deviation from the “co-density”
values of Ra obtained in the case Pr = Sc. However, the regions where Rt and Rc have opposite
signs, namely −π/2 < α < 0 and π/2 < α < π, will be most strongly affected as a delicate
balance exists there between stabilising and destabilising forces.

An observation can be made immediately from Figures 5a and 6a, namely that the asymp-
totic behaviour of the null curves at Pr = Sc when α→ −π/4 and α→ 3π/4 is now obeyed on
only one of the sides, depending on whether Sc is larger (α→ −π/4 asymptote is approached)
or smaller (α→ 3π/4 asymptote is approached) than Pr. In order to investigate the changes
to the asymptotes, we consider next small departures from the angles α = −π/4 and 3π/4 by
setting α = −π/4 + ε and 3π/4 + ε, where |ε| � 1, in Equation (21a) and Taylor expanding
cosα and sinα around these values

∂tΨ = P−1
t ∇2Ψ± ε

√
2βur ± δ

Pr−1

√
2
∇2χ. (22)

Here, the upper and lower signs of the ± term refers to α = −π/4 and 3π/4, respectively. The
shift of the asymptote is a direct consequence of the coupling between Equations (21a) and
(21b). We now consider the two cases Pr > Sc (δ < 0) and Pr < Sc (δ > 0) separately.

Firstly, when Pr > Sc, one can see from Equation (22) that, when α = 3π/4 + ε with
ε > 0 i.e. the negative sign is taken, the diffusion of χ is destabilising and the advective term
ε
√

2βur is stabilising. Clearly when δ = ε = 0 the buoyancy profile just diffuses away. As δ is
decreased, the growth of the buoyancy profile is increased and thus ε can take greater values
until the advective term becomes greater than the diffusion of χ. This is supported by the
bottom panel of Figure 5a, as the asymptote of Ra is shifted further to the right when |δ| is
increased. This behaviour is also observed by viewing the bottom panel of Figure 5b. One can
see the shift away from the line α = 3π/4 towards α = π as δ decreases from 0 to −0.5 and,
as such, now lower critical values of Rc are required.

Secondly, when Pr < Sc (δ > 0) the asymptote shift is somewhat mirrored around α = π/4
and occurs near α = −π/4. When δ > 0 and α = −π/4 + ε, the positive sign of Equation (22)
shows again that the diffusion of χ and the advective term are destabilising and stabilising,
respectively. Clearly, when the diffusive term can overcome the advective term, convection
can occur. Therefore, as δ is increased the asymptote will shift, with negative values of ε of
higher magnitude able to still support convection. This continues with increasing ε until the
magnitude of the advective term becomes too large and convection is unable to occur. The
bottom panel on the top of Figure 6a supports this and one may also observe the bottom
panel of Figure 6b, where this time the asymptote shifts from the line α = −π/4 towards
α = −π/2 and as such far lower critical values of Rt are required.

An interesting feature that occurs is the jump from small scale to large scale convection
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Figure 5. Linear onset of convection when the Schmidt number is taken to be just below the Prandtl number Pr = 1
with τ = 104 for four values of δ: −0.5 (open circles), −0.3 (crosses), −0.1 (plus sign) and 0 (open circles) (a) The top
panel shows the absolute values of the oscillation frequency, ω. Negative values are indicated by dashed lines whereas
positive values are indicated by solid lines. The middle panel show the most unstable azimuthal wave number. The
bottom panel shows the critical value of Ra. All variables shown as a function of the Rayleigh angle, α (b) The panels
show three representative regions in the Rc-Rtplane. The dashed ( ), dotted ( ), dash-dotted ( ),
loosely dash dot dotted ( ), densely dash dot dotted ( ) and loosely dashed ( ) correspond to the
Rayleigh angles α = −π/2, −π/4, 0, π/4, π/2, 3π/4, respectively.

immediately beyond the normal asymptotes (α = −π/4, 3π/4) which occur when δ = 0. The
azimuthal wave-number dramatically decreases beyond the normal asymptote (δ = 0) for
non-zero δ (see the middle panels of Figures 5b and 6b) and a large drop in magnitude of
the drift-rate ω is associated with this (see the top panels of Figures 5a and 6a). However the
wave-number and drift-rate quickly rise towards the new asymptotes.

Another interesting effect occurs on the opposite side to the asymptote shifts. Here the
previous asymptotes are still in effect (δ = 0) but as |δ| is increased there is a reduction in
the critical Rayleigh number. Again we the switch from small scale to large scale convection
around these asymptotes.

Finally we mention that, the calculations shown in Figures 5 and 6 are for the specific value
Pr = 1.0 but our simulations show that similar results are obtained for other values of Pr.
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Figure 6. Same as Figure 5 but for four positive values of δ: 0 (open circles), 0.1 (crosses), 0.3 (plus sign) and 0.5 (open
diamonds).

5.3. Large differences between Prandtl numbers

In Section 5.2 we described the asymmetries that arise in the structure of the critical Ra curves
when Le differ from unity only slightly. In this section we explore what happens to these curves
when Pr and Sc are significantly different so that the deviations from the Pr = Sc case become
more apparent. First, recall that when Pr and Sc are significantly different Equations (13)
and (14) describe the evolution of the buoyancy field Ψ well. For brevity, we will only analyse
the case of Sc � Pr as the case of Sc � Sc is symmetric with respect to α = π/4. Here
Equation (14a) becomes

∂tΨ ≈
Pr−1

2
∇2(Ψ + Ψ′)− u · ∇Ξ. (23)

The evolution of Ψ is now, essentially, only affected by the diffusion of the physical field which
is characterised with the minimum value between Pr and Sc. Due to convection being radically
different for values of the Prandtl numbers above and below 0.1, respectively, we present our
analysis in these two cases. In the small Prandtl number limit convection is generally large
scale but three distinct regions of Rac(α) can be identified. In the large Prandtl number limit,
four different regions, instead of three, can be identified, all which are functions of α. Figure 7
shows the results of our calculations.
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Figure 7. Linear onset of convection for value of the Schmidt number Sc = 25Pr. The rotation parameter is τ = 104.
Top, middle and bottom panels represent the drift frequency ω, the most unstable azimuthal wave number, m, and
the critical effective Rayleigh number, Ra, respectively. Drift frequencies are plotted as absolute values and dashed lines
correspond to the negative values (a) Low values of Pr: 10−5 (open circles), 10−4 (crosses), 10−3 (plus signs), 10−2 (open
diamonds), 10−1 (stars) (b) High values of Pr: 10−1 (open circles), 1 (crosses), 10 (plus signs), 102 (open diamonds),
103 (stars).

5.3.1. Small Prandtl number case

For the lowest value of Pr (Figure 7a, Pr = 10−5, light blue curves with open circles), the
critical curve Ra is approximately symmetric with respect to α = π/4 for values of the mixing
angle between α = −π/4 and α = 3π/4. There, the shape of the null curves is consistent
with a straight line of negative gradient in the Rc − Rt plane. With Pr = 10−5 we have
Sc = 2.5 × 10−4. We see that in this regime there is very little difference between how the
thermal and compositional components affect convection which is large scale (m = 2) with
a retrograde drift (ω < 0) and is of equatorially attached type. Figure 8 shows the stream
function (1/r∂S/∂θ) in the equatorial plane for the case of Pr = 0.0001 (top left). This
situation is easy to explain in terms of Equation (11b) as any small scale buoyancy anomalies
are rapidly diffused away due to a small Prandtl number; the advection of the background
profiles cannot overcome such strong diffusion.

The behaviour in the region between mixing angles −π/2 > α and α < −π/4 is also easy to
interpret – here the buoyancy profile Ξ has a negative sign (cosα + sinα < 0) and thus acts
to stabilise the system. In fact, convection is only possible because the advection profile Ξ′ is
now approaching a maximum and therefore generates enough Ψ′ to fuel the production of Ψ
in Equation (11b) and consequently the velocity u in Equation (11a). This, however, comes
at the cost of requiring a higher value of Ra for the onset of convection to take place.
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Figure 8. Stream function of the flow on the equatorial plane for four representative cases of Pr and four representative
cases of α. Top left: Pr = 0.00001; top right: Pr = 0.001; bottom left: Pr = 0.1; bottom right: Pr = 10. In each panel a)
corresponds to α = −3π/8; b) to α = 0; c) to to α = π/2; and d) to α = 5π/8.

5.3.2. Intermediate Prandtl number case

Increasing Pr in Figure 7a, results in a shift of the critical curve upwards and to the left.
The shift in the Rc−Rt plane is seen to the right in the direction of greater Rc. We see a large
shift to the right when Pr = 10−2, which can be explained by the fact that Sc = 2.5× 10−1 is
greater than 10−1, the value for which a change from inertial convection to viscous convection
occurs. Indeed, there is a rise in wave-number from m = 3 to m = 7 so that convection is
now on a smaller scale. On the top right-hand side in Figure 8c, this switch to a smaller
scale convection pattern is clearly visible but it is, however, attached to both the inside and
outside of the spherical shell. Increasing Pr further to a value of 10−1 there is a shift to
the right but also a large shift in the positive Rt direction as again we are changing from
inertially controlled convection to viscous convection. We now see an interesting effect that,
as we switch from thermally controlled to compositionally controlled convection, there is a
switch from large scale (m = 6) to a very small scale mixed convection (m = 15), which
has already been observed by Trümper et al. (2012) but with Le = 30. As α increases from
here towards π/2 (pure compositional convection), the value of m decreases again to m = 10,
which is equivalent to pure thermal convection with internally distributed heat sources with
a Prandtl number of 2.5. Now viewing the bottom left-hand side in quadrant c of Figure 8,
the convection is indeed smaller scale, with convection cells that are attached to neither in
the interior nor outside of the spherical shell.

5.3.3. Large Prandtl number case

As mentioned before, for the case of a large thermal Prandtl number, Pr, four different
regions can be identified as a function of α. Figure 7b shows the drift rate, most unstable
wave number and critical effective Rayleigh number for Pr > 0.1. In this Figure the case of
Pr = 0.1, 1, 10, 100 and 1000 is studied and at a Lewis number of Le = 25 this corresponds
to Sc = 2.5, 25, 250, 2500 and 25000. Referring back to Equation (15) we expect that, as Pr
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is increased Ra and m should reach a limiting value and ω should tend to zero. This is clearly
the case, as can be viewed in Figure 7b, in which all the assumptions stated above are correct
as Pr increases. In Figure 8, the bottom row shows the stream function (1/r∂S/∂θ) on the
equatorial plane for the case of Pr = 0.1 (left) and Pr = 10 (right). Each panel contains four
representative cases of α.

For α < −π/4, the gradient of the buoyancy profile Ξ changes sign with respect to T (r) and
C(r) and is shallower. This is the same situation analysed in the previous section, where the
asymptote at α = −π/4 is now shifted to α = −π/2 and the explanation of this phenomenon
is the same. The diffusion contribution to the buoyancy field Ψ is still dominated by the tem-
perature but it is dramatically reduced as cosα < 1/2. The buoyancy force, on the other hand
is dominated by the composition but has changed sign, pushing regions of positive Ψ down
and regions of negative Ψ up. This gives rise to large scale (m = 3), slow convection drifting
counter-clockwise, with the value of m staying constant for 1 ≤ Pr ≤ 103 (see Figure 7b). The
onset of convection occurs at lower effective Rayleigh numbers than the purely thermal case
would suggest.

When α stands at around zero, cosα ≈ 1 − α2/2 which is larger than the absolute value
of sinα, with sinα ≈ α. Then, the temperature, which is the only quantity being diffused in
Equation (14a) is also the main source of buoyancy. The system behaves like a pure thermally
driven system with only one diffusivity playing a role and, as such, has the same physical
structure. The onset system will present the same azimuthal wave number as the pure thermal
system and drifts at the same rate with the effective Rayleigh number varying as 1/ cosα.
This region is constrained between α ≈ −π/4 and some α larger than zero, where the diffusion
of the temperature field can no longer balance the small scales generated by the advection of
the full buoyancy field.

The interesting effect of mixed small-scale convection from the intermediate Prandtl num-
ber case of Pr = 10−1 can again be seen occurring in Figure 7b (open circles) in the interval
0 < α < π/2. However, this effect persists for higher values of Pr, with increasingly larger
values of m observed. It is also noticeable that, as Pr in increased, the mixed small scales begin
increasingly closer to the positive side of α = 0, so that even a small introduction of compo-
sitional buoyancy can lead to much smaller scale convection. The effective Rayleigh number
increases as Pr increases, towards a limiting value as would be expected by Equation (15)
(Busse 1970).

Once we are past the pure compositional regime (α = π/2), cosα becomes negative; diffusion
then acts to concentrate anomalies of Ψ around the anomalies of Θ instead of dispersing them.
However, because Ξ is now smaller than either of T or C, there will be less buoyancy produced
by advection. This leads to a situation where large scales are preferred with a sharp drop in
m occurring in Figure 7b towards a constant value of m = 3. The critical effective Rayleigh
number is also reduced and translates to a reduction Rc in the Rc-Rt plane.

The right asymptote for α is still at 3π/4 as was the case in Figure 6 with Sc > Pr,
although the small reduction in Ra that exists there, near the asymptote, is now much larger
and extends close to α = π/2, depending on the value of Pr.

6. Dependence on the Coriolis number

So far we have analysed cases at fixed Coriolis number, τ . It is well known, however, that
the critical Rayleigh number will depend on this adimensional parameter. In the case of
purely thermal convection, the thermal Rayleigh number Rt is proportional to τ4/3 (see Equa-
tion (15)). Here, we will show that the effective Rayleigh number for double buoyant, double
diffusive convection obeys the same scaling law in regions where the lowest diffusion quantity
dominates in generating buoyancy or when both Rayleigh numbers are positive.
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Figure 9. (a) Linear onset of convection with Coriolis number, τ , taking the values 103 (open circles), 104 (crosses),
105 (plus sign) and 106 (open diamonds). The top panel contains the drift frequency of the system in absolute value.
Solid lines represent positive values and dashed lines, negative values. The middle panel contains the most unstable
azimuthal wave number. Note that the vertical scale is logarithmic. The bottom panel shows the effective Rayleigh
number at onset. Note that α = −π/2 and α = 3π/4 are asymptotes for Ra and all curves should extend to infinity
as α tends to those points. (b) Linear onset of convection as a function of the Coriolis number τ for different values of
αi = −3π/8 (open squares), −π/4 (plus sign), −π/8 (crosses), 0 (filled triangle), π/8 (open triangle), π/4 (stars), 3π/8
(filled square), π/2 (filled circle), 5π/8 (open circle) (i = 1− 9). In particular, open squares have negative compositional
Rayleigh number and open circles have negative thermal Rayleigh number. Filled squares correspond to the mixed small
scale, compositionally dominated convective regime and stars to the medium scale, thermally dominated regime. The top
panel shows the scaled drift-rate, ω̂ = ωτ−2/3, the middle panel the most unstable azimuthal wave number; the bottom

panel shows the critical values of the scaled effective Rayleigh number R̂a = Raτ−4/3.

In Figure 9a we present results where both Prandtl numbers are above unity (Pr = 1,
Sc = 100). In this case, both pure one-buoyant onset patterns of flow are consistent with
rotating convection featuring z-aligned columns centred at mid shell in the equatorial plane.
This is consistent with the results in Section 5.3. The ”boat-shaped” plots are similar to those
in Figure 9a as we are in the Sc� Pr regime i.e large Lewis number regime.

We observe a region symmetric around α = 0 where buoyancy is generated by the thermal
component of buoyancy as it has the lowest Prandtl number. The most unstable azimuthal
wave number is constant across this region. The region where buoyancy is dominantly gener-
ated by the compositional component occurs approximately between α = π/4 and α = π/2.
This region is characterised by a sudden jump to very small scale convection near α = π/4 and
a gradual shift to larger scales that are associated with one-buoyancy compostional convection
at α = π/2.

Two regions of very large scale convection appear in the octants [−π/2,−π/4] and
[π/2, 3π/4]. These regions are characterised by opposite signed Rayleigh numbers. This shape
and convective structure were already explained in Section 5.3.
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Figure 9b shows the evolution and possible scaling of R̂a = Raτ−4/3, m and ω̂ = ωτ−2/3

as a function of τ for these regions. It was constructed from Figure 9a by extracting points
at αi = −3π/8, −π/4, −π/8, 0, π/8, π/4, 3π/8, π/2, 5π/8, with i varying between 1 and 9.
Intermediate points in τ to those in Figure 9b were directly computed for the given values of
α.

Most of the domain obeys a thermal type scaling Ra ∝ τ4/3 and number m also follows a
thermal type scaling m ∝ τ1/3 that we expect in the small Ekman number limit i.e. Equa-
tion (15) (Busse 1970). The purely thermal case occurs when α = 0 (filled triangles) so that
Ra = Rt. Then for this particular value, Figure 9b corresponds to the curve for P = 1.0 in
Figure 3 in the investigation by Ardes et al. (1997), although there will be a slight discrepancy
as η = 0.4 in that case. As α diverges from zero in both the positive and negative directions,
it is clear from Figure 9b that Ra increases which is just due to the fact that convection
is thermally dominated due to the large Lewis number and in reality the thermal Rayleigh
number stays reasonably constant. However, when α = π/2 (filled circles) the convection is
purely compositional so that Ra = Rc which is essentially the same as thermal convection
but with Prandtl number 100. Again, we note the jump to small-scale mixed convection when
α = 3π/8.

A different scaling occurs on the two large scale regions sampled by points i = 1 and
i = 9. These are the regions previously described as arising from large discrepancies in Prandtl
numbers. The most unstable azimuthal wave number in these regions seems to be independent
of the Coriolis number, τ , and the critical effective Rayleigh number is now Ra ∝ τ .

Note that, because these new regions obey a shallower scaling of Ra with τ , as this parameter
grows, those large scale regions will have a lower critical value of Ra when compared to pure
thermal or compositional convection.

Significant deviations from the proposed scaling seem only to occur for small values of the
Coriolis number. This is to be expected as then, inertial rather than rotating convection is
preferred.

7. Dependence on the shell thickness

Finally, we explore what happens when we change the radius ratio. This type of analysis is
important because of its applicability to planetary contexts, but also because, on the course
of their lifetimes, planetary cores undergo a reduction of the convective shell; systems that
were convecting at a certain shell thickness may stop convecting and vice versa. Figure 10a
shows how both the Rayleigh number, the most unstable wave number and the drift-rate vary
with η.

As in the previous section, we used Pr = 1.0, Sc = 100.0 but now fixed τ = 104. As
expected if the structure of convection changes only due to the changes in geometry, the
effective Rayleigh number decreases as η tends to 1. The most unstable wave number, however,
increases with η as would be expected when the equatorial perimeter tends to infinity. However,
the exact dependences observed are not strictly as could be expected from a pure geometrical
reasoning.

Figure 10b shows, for selected values of α, the values and scaling, based off Equation (15), of
ω̄ = ω(1−η)−2/3, m and R̄a = Ra(1−η)−10/3 as a function of η. There, it is easier to see that
the functional dependency of Ra(η) also depends on the type of buoyancy that dominates.
Filled triangles correspond to pure thermal convection and filled circles to pure compositional
convection. Open squares have negative compositional Rayleigh number and open circles have
negative thermal Rayleigh number. Filled squares correspond to the mixed small scale, com-
positional dominated convective regime and stars to the medium scale, thermally dominated
regime.
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Figure 10. (a) Linear onset of convection for shell thickness, η, varying from 0.1 (unfilled circles), 0.3 (crosses), 0.5
(plus sign) and 0.7 (unfilled diamond). As in previous “boat plots”, the top panel, shows the drift rate, the middle plot
shows the most unstable azimuthal wave numbers and the bottom panel shows the critical effective Rayleigh number
(b) Linear onset of convection as a function of the radius ratio for selected values of α = −3π/8 (open squares), 0 (filled
triangles), π/4 (crosses), 3π/8 (filled squares), π/2 (filled squares), 3π/4 (open circles). Filled triangles correspond to
pure thermal convection and filled circles to pure compositional convection. Open squares have negative compositional
Rayleigh number and open circles have negative thermal Rayleigh number. Filled squares correspond to the mixed small
scale, compositional dominated convective regime and stars to the medium scale, thermally dominated regime. The top
panel shows the scaled drift-rate, ω̄ = ω(1 − η)−2/3, the middle panel the most unstable azimuthal wave number and

the bottom panel the scaled effective Rayleigh number, R̄a = Ra(1− η)−10/310−6.

The scaling used is fairly reasonable for low to intermediate values of η ∈ [0.1, 0.5] when α =
0, π/4, 3π/8 and π/2. However, after this value, there is a change from constant dependence
and the solutions begin to diverge, as the approximation given by Equation (15) (Busse 1970)
begins to break down.

When the system is stabilised by one quantity but destabilised by the other (points i = 1
and i = 9) then the most unstable wave number is proportional to the mean radius and the
effective Rayleigh number, to the square of the radius at 44% of the shell.

8. Discussion and conclusions

In this paper we identified the possible deviations of the onset of doubly buoyant, doubly
diffusive rotating convection from a pure thermal regime. We constructed a new representation
for the thermal and compositional Rayleigh numbers that makes it possible to define a strictly
positive pre-factor for the buoyancy. This pre-factor is the effective Rayleigh number, Ra
which, in this new representation, has a unique critical value for all other parameters fixed.
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This is in contrast to what happens when Rt and Rc are used with one of them fixed. The
trade-off between thermal and compositional buoyancy is now determined by a mixing angle
α which takes positive values in the right half of the Rt − Rc plane.

In the case of equal values of the Prandtl number and the Schmidt number, the system
behaves as a single-diffusive, one-buoyancy system. The critical curve is a straight line with
slope -1 in the Rt −Rc plane and behaves like 1/(cosα+ sinα) in Ra− α space. In this case
asymptotes for the critical curve stand at −π/4 and 3π/4.

Still in Ra − α space, as the Prandtl numbers deviate from each other, small deviations
appear that shift the asymptotes on one of the sides and reduce Ra on both sides. The largest
changes appear on the octants adjacent to the asymptotes of the equal diffusility case. The
structure of the Rac(α) curve is qualitatively preserved with variations of τ or η.

When the values of the Prandtl and the Schmidt numbers are significantly differ from each
other three possible cases can take place. In all cases, asymptotes stand at α = −π/2 and
α = 3π/4 when Sc � Pr and at α = −π/4 and α = π when Pr � Sc. When both Prandtl
numbers are below 0.1 very large scale inertial convection dominates independently of α. When
both Prandtl numbers are above 0.1, rotating convection takes place with a variety of wave
numbers depending on α. Mixed, very small-scale, convection can occur when Pr > 0.1, where
we have seen in Figure 7 that as Pr increases the mixed small scales become increasingly
smaller whereas for low Prandtl number, inertial convection, there is no mixed small scale
convection at positive values of Rc and Rt. This is a result already found in (Trümper et al.
2012) but there only a single case Pr = 0.1 was studied as opposed to our a full Prandtl
number investigation.

Most of this study was carried out for large values of τ and relatively large values of Prandtl
and Schmidt numbers. We therefore were, to a certain extent, reasonably well able to compare
our work to the asymptotic study Busse (1970), Zhang (1994), Busse (2002). In the limit
Pr→∞ it was found from Figure 7b that Ra and m increased towards a limiting values and
the drift-rate decreased in magnitude towards zero, mirroring the pure thermal case. In our
study of the critical values dependence on τ , it was found that, for Pr = 1.0 and Le = 100,
the dependence followed a thermal type rotating convection scaling as in Busse (1970), given
by Equation (15), as long as the regime of large scale convection with either Rt < 0, Rc > 0
or Rt < 0, Rc > 0 was not considered. In those regions, Ra ∝ τ , while the preferred azimuthal
wave number m showed no variation with respect to τ and the drift rates |ω| ∝ τ2/3. A thermal
type scaling was also seen when varying η but only for relatively thick shells η ∈ (0.1, 0.5)
beyond which the approximation given by Equation (15) starts to break down. Again this
thermal scaling is only correct as long as the regime of large scale convection with either
Rt < 0, Rc > 0 or Rt < 0, Rc > 0 was not considered.

In regions of parameter space where Rt or Rc are negative, only very large scale convection
seems to be possible. This happens when α < 0 or α > π/2. Convection is not possible when
the quantity with the lowest Prandtl number and a negative Rayleigh number dominates
buoyancy. When the quantity with the lowest Prandtl number and a negative Rayleigh number
does not dominate the buoyancy budget, convection is very large scale and has a negative drift
rate.
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