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Abstract

Convection in the fluid regions of planetary interiors plays ianportant role in

determining the dynamics of many physical phenomena ptréisere. The fluid motions
driven by thermal and compositional convection in the Eadbre transport heat out from
the planet’s iron rich core and are thought to maintain trengggnetic field via dynamo
action. Convection is also believed to produce the zonal flawesmultiple jets observed

in the atmospheres of the gas giants, most famously in thadaimosphere.

A particular interest in the interaction between convettmd zonal flows, in the non-
magnetic case, is maintained in this work. Equations raleveplane layer geometry and
the annulus geometry are derived. Linear and non-lineaateans are solved numerically
using a collocation and a semi-implicit method respecfivEhe onset of convection with
a basic state zonal flow is studied in the linear cases. Inldreegayer model the basic
state zonal flow is maintained by a thermal wind. Converské/zonal flow is produced
by the Reynolds stresses in the annulus model. Therefore uit® djfferent models are

considered in this work.

Thermal instabilities are studied with baroclinic and liapic instabilities also arising
in the plane layer and annular geometries respectivelyalAtows are found to be both
stabilising and destabilising depending on whether th&abikties associated with the
shear can manifest themselves. The non-linear simulapomdde strong zonal flows
and multiple jets reminiscent of Jupiter’'s banded striestass well as periodic bursts of
convection. This bursting phenomenon is shown to be neglyssaintained by a zonal

flow and a mean temperature gradient.
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Chapter 1

Introduction

1.1 Motivation and background

Convection is a natural phenomenon affecting the dynamiosaoiy fluids in geophysical
and astrophysical systems. Numerous bodies have the ndeghgport heat out from
their hot cores to the surface. When part of a system’s streiciontains a fluid, the heat
can be transported by convection, via fluid motions, as wetianduction and radiation.
Examples of bodies in our Solar system that are known to hameecting fluid regions

include the Sun, the Earth and the gas giant planets (for gbeardupiter). Motion of

an electrically conducting fluid was proposed by Larmor @)9ds a possible origin of
the Sun and the Earth’s magnetic fields, via dynamo actiomcelan understanding of
convection is fundamental for developing theories to erplae existence of dynamos in

geophysical and astrophysical bodies.

The laws governing dynamo theory arise from the equationsfllofl dynamics

and electromagnetism; namely the Navier-Stokes equatodsMaxwell's equations
respectively. Analytical solutions of these equationsauva@lable in only rather special
circumstances, due to their complex nature. However, iemegears, numerical solutions
have been possible with the aid of improved computer regsutadeed, we shall look for
numerical solutions as part of the work in this thesis. Havewe shall not be including
the effects of magnetic fields in order to first gain an undéeing of the underlying

convection. Further work could certainly be undertakermiite addition of magnetic

fields to the models that we shall discuss. Due to the exalusielectromagnetic effects
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we discuss the equations governing fluid motion, but not Maksvequations, in section
1.2.

Thermal convection originates from the tendency of warndftoi expand, become less
dense and rise above cooler, denser fluid. This processsalitovthe successful transport
of heat from the centre of an astrophysical body assumingdhe is warmer than the
surface. However, there is also the possibility of compasétl convection if the fluid
is not compositionally homogeneous. This can occur eveaathermal conditions and
is driven by light material released into the fluid where iisreundings are made up of
more dense material. In this thesis we focus on thermal abiorethough much of the
dynamics is similar for compositional convection. An imsting addition to the work in
this thesis could be to include the effects of compositiaaaivection to the models we

discuss, which would create a ‘double-diffusive’ system.

We intend for the work in this thesis to be most relevant toadgital processes in the
Earth’s interior and the Jovian atmosphere. However, tmergbe broader applications of
the work in other areas of astrophysical fluid dynamics, gary science and atmospheric
science. In the following two subsections we discuss thectire of, as well as a
background of convection in, the Earth and Jupiter. We aé$me and discusthermal
windsandzonal flowssince they are of primary interest to the work undertakeris t
thesis. Indeed, our study is largely concerned with howntlaémwinds and zonal flows
interact with convection in various models. Although welkhat include the effects of
magnetic fields in our models, we discuss some of their atetin this section in order
to gain an insight into why the study of convection is cru¢eabnderstanding dynamo

action.

1.1.1 Convection in the Earth’s core

We first discuss the structure of the Earth, which has beentifabgl from seismic
observations. Beneath the Earth’s crust there is a hightyesmie surrounded by a lower
density mantle, with the core-mantle boundary (CMB) locatedreximately 3480km
from the planet’s centre. The core itself is subdivided mtolid inner part and a liquid
outer part with the inner-core boundary (ICB) found approxehal220km from the

centre of the Earth. Hence the inner core radius is apprdrign@.35 times smaller than
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the total core radius. Transverse seismic waves are urapl®pagate in the outer core
indicating that it must be a fluid. A diagram of the structufeéh® Earth is displayed in
figure 1.1. Although convection in the mantle takes place,(f& example, Bercovici,
2007), the material is not sufficiently electrically conting and the motion is too far
slow to drive a dynamo. Consequently, the iron rich core isigfnd to be the source of
the geodynamo. When modeling the fluid dynamics inside théhBatore, spherical
shells are the most relevant geometry although researdteis performed in the simpler
full sphere geometry. However, this neglects the inner edreh may have significant

influence on the magnetic field (Hollerbach & Jones, 1993).

Continental

Mantle
cantinues down
to outer core

Figure 1.1:A diagram showing the structure of the Earth.

The iron in the outer core gives rise to the desired eledlyicanducting fluid for
dynamo action described by Larmor (1919). This action nadmstthe geomagnetic
field. When considered over a sufficiently long period of tirttee Earth’s magnetic
field averages to a dipole aligned with the rotation axis. Elav, the field significantly
changes on timescales varying from seconds to millenngigheferred to as the secular
variation. Examples include the reversal of the magnetid,figccurring over millennia
(Jacobs, 1984) and the westward drift of magnetic featud@shwis observable over
much shorter timescales (Bullaed al, 1950). Many of the geodynamo’s characteristics
are reproduced in numerical simulations (see, for exan@iktzmaier & Roberts, 1995;

Sakuraba & Kono, 1998; Christensenal,, 2001). The progress made on understanding
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the geodynamo has been reviewed by, for example, Hollerd®96); Fearn (2007).

The Earth is known to have possessed its magnetic field fozeat 13.5 billion years
(see, for example, Merriket al., 1996). However, the material in the core has electrical
resistance, which leads to Ohmic dissipation. It has beewish(see, for example,
Moffatt, 1978) that this dissipation would lead to the deoéthe Earth’s magnetic field
on a 20,000 year timescale unless the fluid in the core is mityesome other source.
The most likely driving force of fluid motion is thermal andmapositional convection
arising from the heat and light material leaving the inneeecdHowever, other possible
energy sources, such as precession and tidal forcing, fewv®&een considered (Malkus,
1994). Compositional convection is certainly thought togement thermal convection
in the Earth’s core (Fearn, 1998), however we shall conaentin the latter in this work.
Geodynamo models driven by convection are discussed by J8080). The outer core
is thought to be in a turbulent state of motion since the gggahere is very small.
This causes significant numerical challenges when perf@gmomputer simulations and
in fact the larger turbulent value of the viscosity has to bedusince current computers
cannot resolve the smallest length scales (see Braginsky &®Rnld 995, for a discussion

of core turbulence).

Heat is known to escape from the Earth at a rate of approxiyndt&r'W. In order for
the outer core to be convecting, the adverse temperatudiegtanust be steeper than
the adiabatic temperature gradient. In other words, thearstine enough heat flux to
be transported so that convection as a transfer procesabfdavourable. We discuss
a simple problem of the onset of thermal convection in sacligt. Convection takes
place when there is more heat flux to transport than is p@sfibin conduction down
the adiabat alone. The current thought is that, even witls@mative estimates of the
total heat flux, there must be convection occurring near @& However, nearer to the
CMB there may be regions stable to convection if the CMB heat iubow enough
for conduction alone to transport the necessary heat odsva¥ones (2007) discusses
these ideas in more detail and Olson (2003) considers howaditeeand mantle interact.
The additional possibility of compositional convectiomgaicates matters further (Jones,
2007).

The fact that the Earth is rotating also has a role to play. Ne#dl see in section 1.3 that
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strong rotation causes the fluid velocity to prefer to be pahelent of the axis parallel to
rotation, z, say (Proudman, 1916; Taylor, 1922). This will cause theseotion patterns
to order themselves into columns in thalirection (Roberts, 1968; Busse, 1970). For
discussion of fluid motion in spherical shells such as théhEacore it proves useful to
define a hypothetical cylinder, which runs from pole to paegtiel to thez-axis and just
touches the extrema of the inner core; the tangent cylind@jy.(We do this in order to
divide the system into two distinct regions: inside the wmtgylinder (ITC) and outside
the tangent cylinder (OTC). Columns of fluid will clearly be afrsficantly different
lengths in the two regions. If a column of fluid moves from OBCTHC then it necessarily
must be split in two, which clearly requires stroaglependent motion. This suggests
that there is unlikely to be much transfer of fluid across ti@& Furthermore, due to
the spherical geometry, the columns of fluid ITC will incredleir length as they move
out radially whereas OTC the opposite is true. The lack-dependent motion also has
further consequences for convection. Heat can be moreydemilsported OTC since the
predominant outward direction is perpendiculat tdHowever, ITC it is mostly motion in
the z-direction that is required to transport heat out radidigvitably, this motion must
vary more strongly withe and thus a stronger driving force is required for convectmn

onset ITC. This leads to differing efficiencies of heat tramsmside and outside the TC.

The temperature profile of the Earth’s core may vary in dioest other than the radial.
When this is the casetaermal windis created, which is an azimuthal flow which varies
with z. The jet stream in the Earth’s atmosphere is a famous exaofgiech a thermal
wind, driven by the pole-equator temperature differenderinal winds are also believed
to occur in the Earth’s core (Olson & Aurnou, 1999; Sreerava& Jones, 2005, 2006)
where warmer regions near the poles lead to anticyclonittces which can be detected
in the secular variation as the geomagnetic field is advdntete flow. This process has
been modeled in the laboratory by Aurnetal. (2003). The warmer regions are believed
to arise due to the differing efficiency of convection insiohel outside the tangent cylinder
(Tilgner & Busse, 1997).

Thermal winds inside the Earth’s core could also arise bexaf a heterogeneous
heat flux across the CMB. Seismic tomography uses seismic wavel-time data to
estimate flow velocities and can be used near the CMB. The seismbgraphy suggests

that heterogeneities in the CMB velocities exist, and a @hiaterpretation is that the
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variations in seismic velocity are due to thermal variadicaused by a core-mantle heat
flux that varies with latitude and longitude (Gubbitsal, 2007). When this is the case
and the system is stably stratified, and thus convectivelplst there must still be a
non-zero flow since a thermal wind occurs (Zhang & Gubbin§6)9 This could lead
to a baroclinic instability. Braginsky (1993) originallygposed the possibility that the
inner core could be stably stratified just below the CMB. Whtlg not currently known
whether the core heat flux is low enough for such a subad@bagjion to exist, the
estimates suggest that it is a possibility (Anufreal., 2005). More recently Sreenivasan
(2009); Sakuraba & Roberts (2009) have also suggested thahdh conditions at the
boundaries of the core-mantle boundary may play an actleam@enerating large-scale

convective flows and magnetic fields.

1.1.2 Convection in the Jovian atmosphere

We now discuss the structure of Jupiter since a significampaur work will be relevant
to convection in the Jovian atmosphere. Jupiter is beli@ggecbnsist of a dense core
made up of a mixture of elements including metallic hydrqgehich is approximately
55,000km in radius. Metallic hydrogen is a form of hydrogaonduced when it is
sufficiently compressed to allow a phase transition to tdaegp(Wigner & Huntington,
1935). The electrons become unbound and thus can act likeotiguction electrons of
a metal. The core is surrounded by an outer layer atmosphenelecular hydrogen and
helium approximately 15,000km deep. Jupiter possessegaatiafield, which again is
expected to be driven by dynamo action, and it is thought tgdreerated in the metallic
hydrogen core. However, the atmosphere of Jupiter is themrdbat we are concerned
with since this is where large-scale zonal flows are obse&enal flow is an azimuthal
flow often much larger in magnitude than the small-scale eotive motions that are also

occurring.

Zonal flows are known to occur frequently in nature with welbkvn examples including
the wind systems on the giant planets, including JupitethénJovian atmosphere there is
a clear banded structure that is split into regions knowroagg and belts. This structure
is displayed in figure 1.2. The banded structure is accoregany a complex array of

prograde and retrograde zonal flows, which are referred jetagPorcoet al., 2003).
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These jets are found at the boundaries between the zonegksidte prevailing flows at
the surface are shown in figure 1.3. The two sets of data indifjL8, obtained 20 years
apart by the Voyager and Cassini spacecraft, show that tegyeture has barely changed
in that time. Belts and zones alternate in colour and tempex atith belts being dark and
warm and zones light and cool. In figure 1.2 we also notice ppearance of large-scale
vortices at the surface of the atmosphere such as the Greaited Most vortices are

anticyclonic and are not thought to extend far into the iotasf the atmosphere.

North Polar Region

N. N. Temperate
Belt
North Temperate
Belt

North Equatorial
Belt

Equatorial Zone

South Equatorial
Belt

South Temperate
Belt

S.8. Temperate
Belt

South Polar Region

Figure 1.2:A diagram showing the various zones and belts visible atuthfase of the Jovian atmosphere

taken by the Cassini spacecraft in 2000 (credit to ESA andAfs® the original picture).

The origin of the jets, and in fact the banded structurefitsglan open question. The
deep model, introduced by Busse (1976), proposes that tred ##ows are driven deep
in the interior. Although this model is able to produce sg@yuatorial flows, it is often
unable to reproduce the multiple jet structure seen in figuBe However, this may be
due to the inability to perform simulations at the realigiarameter regimes; that is, at
sufficiently small Ekman number. Conversely, the shallow ed@dsumes that the zonal
flows are confined to a thin layer at the surface and driven lallssnale turbulence. This
model also has problems. Whilst it can reproduce the mulggbistructure, the equatorial

jet structure observed in figure 1.3 is absent in shallow nsod&hus, it appears that
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Figure 1.3:A diagram showing the direction and magnitude of the pravgilvinds, known as jets, at the

surface of the Jovian atmosphere. Adapted from origindlfpland in Vasavada & Showman (2005).

both deep and shallow processes are required in order tessfaly model the Jovian
atmosphere (Vasavada & Showman, 2005). A model that canaitin shallow and deep
processes and produces a much more realistic jet strustpresented by Heimpet al.

(2005).

1.2 The equations governing rotating fluids

The basic equations governing fluid dynamics are the N&tekes equation, also
referred to as the momentum equation or the equation of mo#aad the continuity
equation. The Navier-Stokes equation is a statement ofdhservation of momentum
for fluids and in its most general form, in an inertial frangewritten

oU; oU; OP;;
) U_z _ Fz ij
p 8t +p ]afl'j + aﬂfj ’

whereU; is the fluid velocity field,p is the density,P;; is the stress, and the external

(1.1)

forces, often due to gravity, are represented-byThe continuity equation is a statement

of the conservation of mass and is

dp 0
E + a—x](pU]) =0. (12)
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These equations can be found in numerous textbooks, forgraBatchelor (1967). The
stress tensor is a measure of the internal forces actingrvitie fluid. Hence it consists

of terms due to the pressure and viscosity. For our work itfficéent to write

B]:_P51]+M<aul 8%) 2 auk

Dz, + oz, )~ gua—xkéij, (1.3)
whered;; is the Kronecker delta andis the viscosity. The viscous terms, proportional to
1, in this equation arise from the assumption of the stresgjdaiearly proportional to the
strain rate so that the fluid is Newtonian. The derivatiorhad form for the stress tensor
can be found in, for example, Chandrasekhar (1961). The iy&ntis the isotropic
pressure in the absence of strain. Upon substituting tira for F;; given by equation
(1.3) into equation (1.1) the Navier-Stokes equation bexom

oU; oU; oP 0 ou;  Ouy; 2 Ouy
i 9% _p 92 9 A A 1.4
P ot Ui Oz, Y Oy i Oz, (M ((9xj - 3@) 3“axk 5”) (14)

In addition to these equations for the fluid velocity, oneuisgs further equations to
govern other physical quantities should any be presentlaimepary bodies such as those
which we shall be interested, the effects of temperaturenaagnetic fields are usually
important. In this thesis we shall be working in the non-netgncase. However, we shall
be considering temperature fluctuations and thus we re@unirequation governing this
guantity. Also, in the non-magnetic, non-isothermal cagednly external body force we

shall be interested in is that of the buoyancy so that we write

whereyg; is the gravity vector. The relevant equation, the heat cotolu equation, is

derived (Chandrasekhar, 1961) from a consideration of theawation of energy, which

leads to
0 0 0 oT oU;
Pa(CVT) + PUja—xj(CvT) = o, (ka—x]) T + &, (1.6)
where
12 8U1 8UJ 2 2 8UJ 2
b == ——=u =1 . 1.7

Here we have introduced the parametersandk, which are the specific heat at constant
volume and the thermal conductivity, respectively. Equai(1.2), (1.4) and (1.6) are our

basic hydrodynamic equations and in addition to these weinre@n equation of state,
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which relates the temperature to the density. We use thesjppation
p=po(l —a(T - T)), (1.8)

as the form for the density throughout our work, wherés the coefficient of thermal

expansion andy is the temperature at whigh= p,.

1.2.1 The Boussinesq approximation and the addition of rotation

We now discuss an approximation that we use throughout otk imcorder to simplify

the hydrodynamic equations we have discussed above. ThesiBesq approximation,
named for Boussinesq (1903), arises due to the coefficiertenimal expansion being
relatively small for a great deal of fluids, including tho$eatt we are interested in.
For o ~ 10~* the density varies by only small amounts provided the fluana in

the temperature are not too large. Hence the variations msityeare ignored in the
Boussinesq approximation so thats treated as a constant in our equations. However,
there is one important exception: we do not treat the deasityonstant when it appears
in the external forces term; that i5. This is because accelerations arising from the
derivative of the density in this term can be comparable witter terms in the equation
of motion. By assuming that the density is constant we are altde to assume that
the coefficients:, ¢y, « andk are also constant since they will be of the same order as
the density. The scalings of the various terms and othentealities in the Boussinesq
approximation are discussed by, for example, Chandras€kBéf) and Drazin & Reid

(1981).

We are able to make significant modifications to equatior®),(11.4) and (1.6) when
applying the Boussinesq approximation. We make the appamy ~ p, in all terms
other than the external force term where we retain the diefimdf the density given by
equation (1.8). Firstly we note that the continuity equatid..2), reduces to
U, =0, or V-U=0. (2.9)
8xj
Therefore the velocity field is solenoidal so that the fluidinsompressible in the

Boussinesq approximation. Secondly, the Navier-Stokesateqy (1.4), with F;
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substituted from equation (1.5), becomes

oU; oU; 1 9P 0*U;
7 iR — (T = T)a, - 1.1
ot + J ij £o 8@ CY( O)Qz v 8%2 ’ ( O)

since the terms involving the divergence of the velocity mvawish due to equation (1.9).
We have introduced the kinematic viscosity, also referoemstthe momentum diffusivity,
which is defined asv = pu/po. Thirdly, we consider the heat equation, (1.6), in the

Boussinesq limit, which becomes

oT oT o*T
where the thermal diffusivity is defined as:= k/pycy. The® term from equation (1.6)

vanishes due to it being smaller than the convective termazibB & Reid, 1981).

Since the physical systems that we shall be interested irotagng bodies we also must
include the effects of rotation in our equations. The rotadl terms arise due to the fact
that a rotating frame is accelerating and thus is not aniaiérame. Rotation only affects

the Navier-Stokes equation, which becomes

oU; oU;
E + U]% + 2€iijjUkz =
J
0*U;
(leuQual?) = (T = T)gs + v 5, (112)

J

1P 10

where2pQx U is the Coriolis force and pV (|2 x x|?) is the centrifugal force. We
assume that the Boussinesq approximation applies for bothese newly introduced
terms so that the only term where the density is not cons&anains the gravity term.
Hence we have taken~ p, in the Coriolis and centrifugal force terms. In the case of the
centrifugal force this amounts to assuming that < g whered is a typical length scale
of the system under consideration. The terms that are grisdid a scalar quantity can
be gathered together to form a modified pressure and we camatsrporate the constant

7y into T'. Equation (1.8) then becomes
p = po(l—aT), (1.13)

and writing equation (1.12) in vector form we have

ouU 1
E+(U-V)U+QQ x U= —p—VP—aTg+1/V2U, (1.14)
0
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whereP = P — po|Q x x|?/2 is the modified pressure. The heat equation is unchanged

by rotation and remains as

%—f +(U- V)T = xV*T. (1.15)

Throughout our work we will often use the vorticity equatiagather than the Navier-
Stokes equation, since taking the curl of equation (1.li#4)ieates the gradient term on

the right-hand-side. This then results in the vorticity &pn given by

(U V)2 (2242)- V)U = —ag x VI +0V°Z, (116)

whereZ = V x U is the vorticity. We have used equations (A.4) and (A.1) ideorto

take the curl of the advection terJ - V)U, noting that bothU andZ are solenoidal.
We have also used equation (A.1) and the solenoidal conddiain to find the curl of
the Coriolis term. Equations (1.9) and (1.14 - 1.16) are theegong equations that we

shall call upon throughout our work.

1.2.2 Boundary conditions

In order to solve equations (1.9) and (1.14 - 1.16) we mustiatpose conditions on the
fluid velocity and the heat at the fluid-solid boundaries. @eao fluid can pass through

the solid boundary, which leads to the no penetration candit
U.n=0 on all boundaries, (1.17)

wheren is a normal vector at the boundary. One of two further typesaoidition are
commonly imposed on the fluid velocity. Firstly, the strég® condition demands that
no stresses act tangential to the boundary. From the defirofithe stress tensor given in

equation (1.3), this results in
n-ViaxU)=0 on a free boundary. (1.18)

Secondly, the no-slip condition for a rigid surface demahdsthe horizontal components

of the velocity vanish at the boundary so that

nxU=0 on a rigid boundary. (12.19)
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In the Earth’s core, rigid boundaries are appropriate sthed CB and CMB are solid.
However, as we shall discuss in section 1.3, the use of th&ipaondition introduces
a thin boundary layer where the fluid velocity quickly chasi@g@m its interior value to
zero on the boundaries. Due to the difficulty of numericadlyalving such thin boundary
layers, the more artificial stress-free boundaries ar@aited. In fact, we use both stress-
free and no-slip boundary conditions in our work. There e several possible thermal
conditions that can be imposed on the boundaries. We choassetboundaries that are
held at a constant temperature throughout our work so thaparturbation tol” must
vanish on the boundaries. However, other conditions suehcasstant heat flux passing

through the boundary could also be used.

1.3 Properties of rotating fluids

Rotation has a profound affect on the dynamics of fluids duked@ppearance of two new
terms in the Navier-Stokes equation arising due to the nertial frame of reference.
The introduction of the Coriolis term in particular has sfgrant consequences. The
importance of rotation in a given system is often measurétgufie Rossby number,

which is the ratio of inertial forces to the Coriolis force.elRossby number is defined as
U
Ro = oL’ (1.20)

where U* and L are typical velocity and length scales respectively. Tho-n
dimensional number is small when rotational effects areoirtigmt and is frequently
used in atmospheric science and oceanography where leaggessructures such as ocean
currents are significantly affected by rotation. Converdelymany small-scale systems
such as certain laboratory experiments the Rossby numbangis &nd the Coriolis force
can be ignored. However, some laboratory experiments de kage Rossby numbers

due the rapid rotation of the system.

1.3.1 The Taylor-Proudman theorem

A significant consequence in rapidly rotating systems, wiiee Rossby number is small,

can be identified when considering an inviscid, homogendioig with slow, steady
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motions. In this case the equation of motion (1.14) reduges t

1
20 x U =—-—VP, (1.21)
Po

where products of the fluid velocity have been neglected dtleetslow motion condition.
The homogeneous condition also demands that the buoyamey#mishes. The balance
of the Coriolis force and the pressure gradient as in equdfid?il) is referred to as
geostrophic balanceAlthough this balance does not hold identically in natsiace we

have assumed that there is no viscosity, it is the predorhlveance in certain systems.

In the Earth’s core, for example, the Rossby number is sialk 3 x 1075, The Ekman
number,E = v /2Qd?, determines the relative strength of the viscous term coeapaith
the Coriolis term and for the Earth’s coré&: ~ 10~'°. Therefore viscosity is negligible
except on small length scales. Hence the Earth’s core isamghe of a rapidly rotating
system where the effects of inertial forces and viscosigy amall compared with the

Coriolis force.

When geostrophic balance holds, an important results arise=t observed from the

vorticity equation (1.16), which reduces to
(-V)U=0. (1.22)

Again products ofU and Z are neglected due to the slow motion condition and the
buoyancy term vanishes due to the homogeneous conditioruatieq (1.22) is the
mathematical statement of the Taylor-Proudman theoremgeddor Taylor (1922) and
Proudman (1916). Physically it states that the fluid vejoaitust be uniform in the
direction of the axis of rotation of the body. This result ilep thatU is constant on
columns and hence whole columns of fluid move as rigid boddssa consequence the

fluid motion is also two-dimensional.

In convection problems where gravity and the rotation axes @arallel, a violation
of the Taylor-Proudman theorem will take place in order engport heat vertically.
However, if the system is rotating sufficiently rapidly teewill be a preference to
limit the departure from geostrophy (Busse, 1970). This lea@d with large velocity
components perpendicular to the rotation axis, comparéutive component parallel to

it, which creates a spiraling convection pattern (Chandhtzese 1961).
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For systems wherg and 2 are perpendicular, the condition for geostrophy can hold
exactly if the boundaries are flat. However, in systems wiaped or curved boundaries,
such as a sphere, som&ependent motion is inevitable. This is because altholgietis
the possibility of purely geostrophic motion in the form of azimuthal flow, this cannot
transfer heat radially. Therefore some ageostrophic magioequired in order to do this.
In a sphere, if a column of fluid moves out radially it must apaits length via some sort
of z-dependent motion. Therefore the columns preferred drartdlthin since they can
transport the heat radially whilst minimising the depagtinom geostrophy. In the case of
a spherical shell, which is relevant to the Earth’s coresdlage additional complications
resulting from the existence of the tangent cylinder. As vgeuksed in section 1.1, there
is unlikely to be significant motion across the TC since calaraof fluid will have to be

split in two, requiring strongly ageostrophic motion.

1.3.2 Ekman layers

As with many problems in fluid dynamics there is a boundargtagsociated with no-slip
boundaries in rotating systems. As we saw in section 1.2yelaity field vanishes on
rigid boundaries. Hence there must be a layer close to thedasies where the velocity
quickly changes from its interior value to zero. In rotatfhgds the thickness of this layer
is O(E'/?) (Greenspan, 1968). In the boundary layer the primary bal@between the

Coriolis, pressure and viscous forces so that

20 x U = —pivp + vV2U. (1.23)
0

The unusual property of Ekman layers compared with othenbary layers is their
ability to attract or repel fluid from the boundary. This peoty, known as Ekman suction
(or equivalently Ekman pumping), arises due to the velquégpendicular to the boundary
being non-zero just above the layer. This can significarftlgcathe spin up/down time

of a rotating fluid.

For convenience let the rotation axis of a system be align#ddthe z-coordinate. For a
system where the boundary is perpendicular to the rotatienaand is located at = 0,
taking the curl of equation (1.23) and making use of equat{@nl) and (1.9) gives

0%V _ vz (1.24)
0z
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Then taking the curl of this again gives

—2Qa—z = ViU, (1.25)
0z

where we have made use of equations (A.2) and (1.9). The @ssums now made
that the z-derivatives are much larger than the horizontal derieatigince the flow
must change from its interior value to zero at the boundarg thin region. With this
assumption the-components of equations (1.24 - 1.25) are

0Z 0*U, ouU, Nz
—295 =V 822 s and 2Q az = VW7

(1.26)

whereU, andZ are the vertical components of the velocity and vorticigpectively. We
combine these two coupled equations to give

oU, o°U,
5y = —E2%d! 55 (1.27)

whered is a typical length scale of the system. The solution of dquafl.27) yields

expressions for the vertical velocity and vertical votgicivhich take the form

; _z A+B o8 z B—-A sin z
7= +6Xp< d\/E/2> (d\/E/Q (dJE/Q) N (d\/E/2)> |

(1.29)

where A and B are constants. The interior values taken by the verticadoigl and
vertical vorticity are represented by and Z* respectively. The boundary conditions at
z =0, which areU, = 0U,/dz = Z = 0, then giveA = B = —U! and
. ENY?
U,=d (§> AR (1.30)
This form for U shows that the Ekman suction is proportional to the verticaticity
outside the boundary layer. Hence anticyclonic vorticgs gise to a suction of fluid into

the boundary layer, whereas cyclonic vortices take fluidyain@m the boundary.

More generally, Greenspan (1968) shows that the Ekmarosuiztkes the form

E\"? 1
wheren is a vector normal to the boundary. Note thafiit= Z we recover the result of

equation (1.30) as expected. The suction is proportional'td and is therefore small in
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rapidly rotating systems. Despite this, Ekman layers ca lyite a significant effect
on the dynamics of a system. Zhang & Jones (1993) investdghteeffect of the Ekman
suction on the onset of convection finding that it can be egkebilising or destabilising
depending on the value of the Prandtl number,= v /x. The introduction of an Ekman

layer has a profound effect on zonal flows and multiple jetsya shall see in chapter 5.

1.4 Rayleigh-Benard convection

In this section we discuss the most fundamental of problenw®lving thermal
convection. This helps to introduce convection and itsdasoperties as well as the
concepts of linear stability. The simplest model one cansage is that of a horizontal
plane layer of fluid that is heated from below. With the top madary maintained at a
lower temperature to the underside, an adverse tempegtagént is apparent. Hence,
due to thermal expansion, the fluid near the bottom of therlayiébe less dense than
that above and the system is susceptible to thermal ingta®ilHowever, viscous effects
will inhibit the onset of convection and heat can also bedpanted vertically due to
conduction. Therefore the temperature gradient must exseme value for convection,

which transports heat through fluid motion, to be efficient.

Thermal convection was recognised as a physical phenombpoRumford (1870)
and Thomson (1882), though instabilities in the system riest above were first
demonstrated experimentally byeBard (1900). Theoretical studies were also performed
by Rayleigh (1916) who demonstrated that the non-dimenkiRagleigh number (we
will introduce this later) must exceed a certain value fon@rtion to onset. For these
reasons the onset of thermal instabilities in a plane laygrcammonly referred to as

Rayleigh-Benard convection.

The system described above is non-rotating and as such dddasatude all effects
present in geophysical and astrophysical bodies. Howdlverproblem does serve as
a useful introduction to convection and linear stabilitgdhy. We derive Rayleigh’s
famous result for the critical Rayleigh number briefly heree @b not go into great
depth in the derivation since we shall be considering monepticated stability problems

in later chapters. When formulating the problem mathemiitieee are able to neglect
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the effects of rotation which occur only in the Coriolis foteem of equation (1.14). We

use Cartesian coordinates with theoordinate acting vertically and the boundaries of the
layer are located in they-plane at: = +d/2. Gravity then acts in the negativedirection

so thatg = —¢z and a temperature gradiemt, is maintained across the layer. In linear
stability we consider a state, known as the ‘basic stateichvis asteadysolution to the
governing equations and then perturb this state in ordesdertain whether perturbations
are inclined to grow or not. When the onset of convection imt#rest, the basic state
will be at rest and the temperature will only depend on thdicedrcoordinate so that

U = up = 0 andT = Ty(z). Hydrostatic balance then takes place between the pressure

and the buoyancy in equation (1.14) to give
Vpo = —gapoTy, (1.32)

wherep, is the basic state pressure. The basic state temperaturedmgd by equation
(1.15), which gives
V2T, = 0. (1.33)

The solution to equation (1.33) that maintains the coreuiperature gradient & (z) =
B(d/2 = z).

If small perturbations are now added to basic state solfhatu and7 = T;, + 6 we can
consider the governing equations again. In fact, in ordsirtglify the mathematics the
vorticity equation, (1.16), (again without the Coriolisiterand the curl of the vorticity
equation are preferred in order to eliminate the pressuwadignt term. The curl of the
vorticity can be written using equation (A.2) so tidtx Z = —V?U where the fact
that the velocity is solenoidal has been used from equatfi®).( Products of the small
perturbations are neglected so that we linearise the egaith the perturbations. Then
the z-components of equation (1.16) and its curl are

—
5 =V (1.34)

2
OV "u. = gaV?0 + vViu,, (1.35)

ot

respectively. Her€ andu, are thez-components of the vorticity perturbatiaf V x u,

and velocity perturbationg, respectively. We also have the heat equation, which, with
the perturbations inserted gives

0
% = Bu, + KV, (1.36)



Chapter 1. Introduction 19

from equation (1.15). Equations (1.34 - 1.36) are the phedtion equations. We now
non-dimensionalise the system using length sc@ldimescaled?/v, and temperature
scale,fvd/k. Hence we le{x,y, 2z} — {zd,yd, zd}, t — td*/v andf — 0Bvd/k. The
remaining quantities in the perturbation equations caropedimensionalised using these
scales. Non-dimensionalisation is undertaken in orderritevthe physical parameters
of the system more conveniently as several commonly redogunon-dimensional
numbers. As their name suggests these numbers do not depeth@ anits used to

measure the properties of the system.

The perturbations may grow or may simply decay away so tleasyistem reverts to the
basic state. This usually depends on whether some paraofi¢hersystem is greater than
a certain value or not. In order to ascertain whether growisturbances are possible the
perturbations are decomposed so that a general disturzweciten in terms of normal
modes with the following:, y andt dependencesxp(st + i(k,z + kyy)). The complex
growth rate,s = ¢ + iw for o,w € R determines whether a disturbance is subject to
growth witho > 0 ando < 0 indicating growth and decay respectively. The frequency
of the disturbance is then given by, We have also introducek, and k,, which are
the wavenumbers in the andy-directions respectively. When checking for instability
we must check foall wavenumbers since if just one disturbance is found to beiggpw
then the system is unstable. These topics are covered in demth in, for example,
Chandrasekhar (1961).

If we substitute the normal mode form for each perturbatioto ithe perturbation

equations and non-dimensionalise as discussed aboveiatpud.34 - 1.36) become

<s+k2—d—2)(—0 (1.37)
dz2)> 7 '
d? d?
2 o 2 - _ 2
(s +k sz) (k dZQ) u, = Rak*0, (1.38)
, @
z

wherek? = k2 + k7 and we have introduced the Rayleigh numbiér, and the Prandtl

number,Pr, defined as

d4
Ra= 9T and pr V. (1.40)

VK K

respectively. The Prandtl number measures the relatiemgtin of the two diffusivity

ratesv and x, and is approximately 0.1 in the Earth’s core. The Rayleighmimer
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is a fundamental dimensionless number in convection pneblevhich shall be used

throughout our work. Introduced by Rayleigh (1916) it indesawhether a system will

be subject to convection. For a given system there existgieal value of the Rayleigh

number, Ra., where convective instabilities grow/decay/ih: is greater/less than this
value. Therefore wheRa = Ra. the growth rateg, will vanish and we have marginal
stability. Often the primary interest of linear stabilityoblems considering convection is
in determining the critical Rayleigh number, whemnce- 0 in the perturbation equations.
This is the case here and throughout much of the work in tleisish In fact, in the case of
Rayleigh-Benard convection we can also set= 0 so thats = 0 since the problem does
not admit oscillating solutions at onset (Chandrasekh&l19However, as we shall see

later, this is not the case in general.

For the problem currently in question, in order to deterntireecritical Rayleigh number
we must first decide on which boundary conditions we wish fayapf we recall section
1.2 we note that we must always apply = 0 as the no penetration condition and also
¢ = 0 as the constant temperature condition on the boundaries-at1/2. Additionally,

if stress-free boundaries are chosen then the problem caalzed analytically. Whilst
making use of equation (1.9) we find from equation (1.18) shatss-free boundaries give
the conditions:d?u,/dz?> = 0 = d{/dz onz = +1/2. The perturbations in equations
(2.37 - 1.39) (withs = 0) have the simple solution

u, = Acos(nrz), (1.41)
¢ = Asin(nrz), (1.42)
1
0 = mA COS(TL’YTZ), (143)

wheren € N and A is a constant measuring the amplitude, provided
(n27r2 + ]{?2)3

k? '
This quantity must be minimised overandk since the critical Rayleigh number is the

Ra = (1.44)

smallest value that allows marginal stability for any dibance; that is for any. Clearly

n = 1 minimisesRa overn and the minimising value of is then

ke = —— a2 2,991, (1.45)

Sl

whence
B 27t

Ra. = Ra(k.) A 657.511. (1.46)
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This is the famous result for the critical Rayleigh number dbger of fluid heated
from below found by Rayleigh (1916). However, stress-freerfaaries have been
implemented, which as discussed in section 1.2 are lesdgalilysrealistic than no-
slip boundaries. The case of no-slip boundaries, where ¢thdi@en must be found
numerically is discussed by Chandrasekhar (1961) wheréitisd thatRa,. ~ 1707.762

with k. ~ 3.117. Experimental work is also reviewed by Chandrasekhar (196Bre

the critical Rayleigh number is found to be approximatelyo, in agreement with the

theoretical value for no-slip boundaries as expected.

One final point of interest in this section is the physicahiaf the convection patterns. At
onset, whereRa = Ra,, the disturbances are characterised by a particular waviean
which is of the order of the layer depth. However, since theewactork = (k,, k,) can
be resolved in infinitely many directions the theory canmotuely predict the pattern of
the convection. However, it is clear that the convectiontrtale the form of periodically
repeating cells where the normal component of the veloatyishes on the cell walls.
The magnitude of the vertical velocity is greatest at thetreeaf the cells and on the
cell walls so that fluid rises and descends in these regidmsel of the wavenumbers is
zero then the convection cells take the form of rolls, inéilyitelongated in one horizontal
direction. Several other possibilities based on symmetgyraents are also likely to
arise naturally where the layer is composed of periodicadpeating cells in the shape
of regular polygons. We shall not discuss the form of the ectien patterns here; see
Chandrasekhar (1961) for a discussion. However, we notg#raidic cell patterns of
convection close to onset are also reproduced in experaheotk; for example Bnard
(1900) and Schmidt & Milverton (1935) among others.

Rayleigh-Benard convection presents thermal instabilities in thetinasic of cases. This
system can be complicated further by including rotationgnegic fields as well as other
effects to the problem. This thesis will be concerned witlating systems since they are
relevant to geophysical and astrophysical bodies of istera particular, we introduce
zonal flows, which are shear flows parallel to the axis of rotat The study of the
influence of magnetic fields, albeit of significant interastneglected in this thesis in
order to gain an insight into the effects of zonal flows on tintaconvection, without
additional complication. However, further work could bedertaken where the effects of

zonal flowsand magnetic fields in a convectively unstable rotating systesrtaken into
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consideration.

1.5 Baroclinic instability

Baroclinic instabilities appear as an important feature timaspheric science since
they cause the large-scale westerly winds and the cyclondsaaticyclones of the
midlatitudes, which drive much of the Earth’s weather. Muwebrk on the modern
understanding of baroclinic instabilities was instigatgdCharney (1947) and many other
papers dating from this time. In particular, the work by E&#1949) is often cited as a

fundamental example of the baroclinic instability.

We now briefly discuss the origin of baroclinic instabilgisince they occur, along with
thermal instabilities, later in our work. For a more in degitcussion of these instabilities
see, for example, Drazin & Reid (1981). The baroclinic insitglprimarily occurs in
rapidly rotating, stably stratified fluids; that is, where ttemperature gradient is not
adverse. The instability arises due to surfaces of conptassure and constant density
not coinciding. In a motionless state, surfaces of congisegsure will be perpendicular
to the direction of gravity since hydrostatic balance dedsahat the derivatives ¢f, in
the remaining directions vanish. In the setup describethéenprevious section, gravity
acts in thez-direction and thus surfaces of constant pressure are imjtfpgane. When
the density is of the form:

p = pola —0z), (1.47)

for some constanta and §, the surfaces of constant density will also be in the
plane. Wheny > 0 this corresponds to a stably stratified fluid where neitherrttal nor
baroclinic instabilities are possible. In the case af 0 the system is unstably stratified,
due to the adverse temperature gradient and thermal, bubarotlinic, instabilities
are possible. The lighter fluid will tend to rise above thevnafluid resulting in an

instability.

If we now suppose that the density has form

p=pola—0d(z—Ay)), (1.48)

where )\ is a constant, then surfaces of constant density are imclatean angle of
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arctan(\) to the horizontal. As beforé > 0 represents a stably stratified system where
thermal instabilities are not possible. However, the idiiction of the lateral variation in
temperature creates the possibility of a baroclinic instgbA schematic of the origin of
the baroclinic instability is shown in figure 1.4. Surfacésanstant pressure are parallel
to the y-axis whereas surfaces of constant density are inclined ahgle ofarctan(\)

to the horizontal. Two parcels of fluid from different heighithich are interchanged will
have different densities to their new surroundings. Theeetlzen are two possibilities.
Firstly, if the two fluid parcels interchanged are at the tmoes (), and - in figure
1.4 then@), is from a higher level thai);. ; and (@, are also more and less dense
than their new surroundings respectively since the veatorting from (), makes an
angle greater thamrctan(\) with the horizontal. Therefore the parcels of fluid will tend
to revert to their original positions so that the system &bl&. Secondly, consider the
situation when parcels of fluid from locatiods and(@); are interchanged. Once again
the parcel originally af), is from a lower level than the other parcel. However, due ¢o th
slanted nature of the lines of constant density, the ve@{@y; makes an angle with the
horizontal which is less thamrctan(\). Therefore); is actually less dense than its new
surroundings and the opposite is trueef The fluid parcel now af); rises whereas the
parcel at), will fall. Thus, rather than moving back to their originaligkts the parcels of
fluid will actually separate further resulting in instabyili The above discussion gives an
insight of how the baroclinic instability arises from thesalignment of constant density

and constant pressure surfaces.

L —
/@3

Heavy fluid

arctan(\)

Y

Figure 1.4:A diagram showing the origin of the baroclinic instability.
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Chapter 2

Numerics for a linear plane layer model

Thermal convection in rotating systems is of great interestgeophysical and
astrophysical fluid dynamics as we discussed in chapter I.p@uary interest in this
work is the effect zonal flows have on convection in variousrgetries. The onset of
convection in rapidly rotating spheres and spherical shelhow well understood (Jones
et al, 2000; Dormyet al., 2004). However, when introducing a new model it is oftenewis
to begin by discussing the simplest relevant geometry. Thplest geometry which can
be considered is that of a plane layer. Plane layer mode® &ir many of the aspects
of convection in rotating systems to be observed and thengénsive literature available
where plane layers have been used. For these reasons isiblednr us also to begin

with a study of how zonal flows interact with thermal conventin layers of fluid.

The classic problem of thermal instabilities in a rotatingne layer heated from below
is reviewed in depth by Chandrasekhar (1961), along withrgbiheblems in stability
theory. We have discussed, in chapter 1, several aspeath ate relevant to plane layer
convection. In section 1.4 we discussed the RayleighdéBd problem, where thermal
instabilities are considered in a layer that is not rotathvMg have also seen, in section 1.3
how the Taylor-Proudman theorem places a restriction offultemotion of slow, steady,
inviscid, rotating fluids. This restriction, which forbiasotion parallel to the rotation
axis, requires the fluid motion to be two-dimensional. Hogregonvection is necessarily
a three-dimensional phenomenon since heat cannot be aré@drom the bottom to the
top of the layer without vertical motions. Thus, inviscidating fluids must be thermally

stablefor all temperature gradients, which is in contrast to the nontirgjaase seen in
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section 1.4. Hence for thermal instabilities to arise, @ssty must be included in order to

violate the Taylor-Proudman theorem.

The inclusion of rotation to the RayleigheBard problem also hinders the onset of
convection by raising the critical Rayleigh number (Chanekhar, 1961). When we
derive our perturbation equations later we will do so withoaa flow occurring in the
basic state. However, we will see that in the limit of no zdi@ak the problem reverts to
rotating plane layer convection and hence we shall see mattheally how the rotation
increases the critical Rayleigh number from that of Rayldsgmard convection. Another
significant difference between the rotating and non-rotpttases is that for rotating
convection oscillatory solutions are possible at onseiclis not true in the absence
of rotation. This again is reviewed by Chandrasekhar (19619ur model we shall only
discuss situations where the rotation axis is aligned withdirection of gravity. The
convective instability in the case where the rotation vemblique to gravity has also
been discussed (Hathawayal,, 1979, 1980).

As mentioned above, we wish to study the onset of convectica fiotating system in
the presence of an imposed zonal flow; that is an axisymmetginuthal flow. In
our work in plane layer geometry we study the case where thal#tow is a thermal
wind, driven by latitudinal temperature gradients. ZonaWB and thermal winds were
introduced in section 1.1. We only study the linear problenthis chapter, saving
non-linear calculations for a second geometry in chaptembsection 2.1 we discuss
the physical setup of the plane layer and describe how it eambdeled in Cartesian
coordinates mathematically. We also discuss the basie #gtat is required to produce
the zonal flow via a thermal wind and we reduce the governingagons by assuming
the x and y dependence of the scalar fields in equations (1.9), (1.1d4)(a15). In
section 2.2 we consider the boundary conditions imposeti®functions at the top and
bottom of the layer. The numerical method used to solve theltiag 1D problem is
discussed in section 2.4. Sections 2.5, 2.6 and 2.7 com@imumeric results of the linear
theory for the plane layer. We split the results across theeions since various regimes
appear. Finally, in section 2.8, we derive and discuss tipdigations of a thermodynamic
equation, which helps to explain the interactions of theefeentioned regimes. Much of
the work presented in this chapter also appears in sectiansl 3 of Teedet al. (2010).

As well as solving the problem numerically in this chaptee, also solve it analytically
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for certain asymptotic limits in chapter 3.

2.1 Mathematical setup

We begin by setting up the geometry of the problem mathedtidNVe consider a plane
layer of depthd rotating about the vertical axis with angular velocity We choose a
Cartesian coordinate system with the origin situated at é&mére of the layer so that the
boundaries are located at= +d/2. The layer is unbounded in theandy directions.
In this geometry: andy are playing the role of the azimuthal and latitudinal cooades
respectively. The static temperature gradient in the alesehthe zonal flow is such that
T = fdatz = —d/2 andT = 0 atz = d/2. Thus, the sign off controls the direction
of the temperature gradient. Gravity, acts downwards in the negativedirection and
thus is parallel to the temperature gradient. In classmaVection problemg > 0 so that
cold fluid sits above hot fluid and hence the conditions foreation are favourable since
hot fluid is less dense than cold fluid. This type of setup ig@mpate for polar regions
of the Earth’s core where gravity is near parallel to thetrotaaxis, the boundaries are

approximately flat and the zonal flows are expected to depend o

We must first solve the governing equations for the steadic lstate. From this basic
state, perturbations can be added to analyse the staHilihesystem. In many models
analysing convective instabilities the basic state has wetocity field since there is
interest in whether a small perturbation to a motionleste stan grow. In this case all
terms in the momentum equation involving the velocity varasd we have hydrostatic
balance; that is, balance between the pressure gradietii@bdoyancy. When this is the
case taking the curl of (1.14) results irfahat can only vary in the direction parallel to
gravity, so that x VT = 0 since all other terms vanish. The only source of energy then
originates from the buoyancy. However if the basic statepenature varies in the or y
direction we must have a balance between the pressure gradimyancy and Coriolis
force in the momentum equation. By taking the curl of (1.14this case we obtain the

thermal wind equation

QQa—U = gaz x VT. (2.1)
0z
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Here we have used the identity of equation (A.1) to give

Vx(@xU)=2(V-U)+(U-V)2-UV-2) - @ VU=-7-. (22

and noted that all but the final term vanish sirices constant andJ is solenoidal as
seen by equation (1.9). Equation (2.1) generates an azanpdimal flow, the thermal
wind, whenT" hasy-dependence. Hent®rizontaltemperature gradients provide another
possible energy source in addition to that arising from lamgy. For this reason we
consider both stably and unstably stratified cases sincaytlm possible for instability
to arise in the stably stratified case (via a baroclinic inisitg) by exploiting the additional

source of energy.

We desire a thermally induceddependent azimuthal zonal flow in our basic state so we
setU to up = up(z)%. We denote the basic state temperature and pressufg dayd p,
respectively. We first consider thecomponent of the thermal wind equation, (2.1), with

these definitions to give

20— = —ga—— 2.3
which results in
20y d
TOZ__yﬂ_FHl(xvz)a (24)
ga dz

for some function//;. Now we consider the three components of equation (1.14xhwh

give
(9p0 o d2U0
or Vpoga (2.5)
90 _ 90 pu. (2.6)
dy
0
% = gapoTo. (2.7)
z
Equation (2.5) can be integrated to give,
d?u
Po = Vpox dz20 + Hs(y, 2), (2.8)

for some functionH,. We insert this into equation (2.6) to determine thdependence

of H, and hence also gfy:

Hy(y, z) = —2Qpouoy + Hj(2) (2.9)
2

(v
5 — 2oy + Hy(2), (2.10)

= po=VpoT
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for some function{;. Now we can insert this form gf, into equation (2.7) to find

d3U0 dUO dH3 2Qy dU,()
L QQPO?JE +t- —9am (—g—aa + Hi(z, 2) (2.11)
v &g 1 dH;

ga dz3 ' gapy dz

= Hi(v,2) = (2.12)
This form of H; can be inserted into the expression Tgrgiven by equation (2.4) where
we see that we have determined all but théependence df}:

C20yduy | va d3uy 1 dH,

Ty = — .
0 ga dz  ga dz3  gapy dz

(2.13)

We choose the-dependence df, such that the static temperature gradient in the absence
of zonal flow (that isuy = 0) is equivalent to Chandrasekhar (1961) for Rayleighn&rd
convection; see section 1.4. Thus we &8 /dz = gapo(d/2 — 2)3. We also have to
choose a form for,(z), which must satisfy the temperature equation. By insertirgg t
form of T}, into equation (1.15) we clearly see that we require the tiénivative ofug(z)

to vanish. We choose, = U)z whereU| is a parameter that measures the magnitude
of the zonal flow. We choose this form fag, rather than the more general quadratic
form, since it is the simplest case that can be consideredenthe zonal flow has-
dependence. Moreover by choosing a linear formufpthe pressure, given by equation
(2.10), only depends on one horizontal coordinate. Howetvehould be noted that this
form for the zonal flow does not satisfy stress-free nor mpisdundary conditions though
more crucially the no penetration condition does hold. Byitisg these chosen forms
for H3 andu, into equations (2.10) and (2.13) we can determine the bteie gelocity,

temperature and pressure:

uy = Uj2%, (2.14)
d 2QU,
T, = Bl5-2)-—", (2.15)
2 go
« z
Po = g 52/00 (d—z)— QQPOU(I)ZJZ =+ Pconstant (2.16)

which is a solution to the system of equations (1.9), (1.1 é.15) and (2.1). Here
PeonstantlS @ constant of integration and represents the backgrorgssyre. Of particular
note here is the fact that the temperature distribution wépen a coordinate other than
the coordinate parallel to direction of gravity. Thereftire basic state is baroclinic since

surfaces of constant pressure and constant density arearatgh that isVp, is not
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parallel toVp = —ap V1, where we have used equation (1.13). We can see this by

evaluating these two expressions to give

Vm—~%%MJ%wy+(mf“%d—za—awmww>z (2.17)
2Qp0Uj

—wwnz( ) + (aBpo) 2. (2.18)

whereby it is clear that, in generd¥p, }t Vp. We also note that if the zonal flow is
removed by setting/) = 0, the temperature only depends on the coordinate parallel to
gravity and the gradients of the pressure and density avébal$ in that direction. Hence
the surfaces of constant pressure and constant densitynaecagain parallel and the

system is not baroclinic in the absence of the thermal wind.

In order to analyse linear stability we now add small pertidns to the basic state so
thatU = ug + u, P = pg + p andT = Ty + 6. We insert the new forms dff, P andT
into equations (1.14) and (1.15) and since the perturbsaom small we ignore terms that
consist of a product of these perturbations (that is we fisea So using the definition of

the basic state from equations (2.14 - 2.16) we find that enpsaf1.14) and (1.15) give

1
du | nga—“ b UMLK+ 202 x u = ——Vp+ gabz + vV,  (2.19)
ot Ox £o
90 20U
% U’z— Bu, — —aouy = kV?0, (2.20)

where terms involving only basic state fields cancel dueéatinstruction ofig, py and

Th.

We proceed by eliminating the pressure to leave four equafior four unknowns. We
denote the vorticity, the curl of the velocity, lgyand consider the curl of equation (2.19).

We make use of equation (A.5) so that the pressure term \@ststgive

o¢ , OC . Ou , . ou . 9
ot + UOZ@:U + Uyz x I + UV X ux — 2982 =gaV x 0z +vV<(, (2.21)

where we have also used the result of equation (2.2). We atpare the double-curl of

equation (2.19), or equivalently the curl of equation (2.24e note from equation (A.2)

thatV x ¢ = V x (V x u) = —V?u sinceu is solenoidal and then the curl of equation
(2.21)is

oViu , 0V?u s OC , 0%u , [ OVu, 5 . o¢

o Vg b g g 5, UO( or VU ) PR

= —ga (aai — V%02 ) +vViu. (2.22)
z
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We consider the-components of equations (2.21 - 2.22) as this will help thuce the
system to three equations for three unknowns, narfiednd thez-components of the
velocity and vorticity:«, and( respectively. The remaining components of the velocity
field (u, andu,) can then be found from the definition of the vorticity and &fipn (1.9)
onceu, and are known, as shown by equations (B.5 - B.6). Theomponents of

equations (2.21 - 2.22) are

0 , 0 ,0u, Ju,

a_i + Uoza—i - Vg = 20757 = UV, (2.23)
OV, . OV, _ O
a—t“ LU ax“ n 2Qa—g = gaV340 + vV, (2.24)

respectively. Her&’?, = 92 /0x? + 0*/0y? is the horizontal Laplacian. We can take the
horizontal Laplacian of equation (2.20), which by utiligithe identity given by equation
(B.6) can be written

00 00 20U (0¢  d%u
V3| = LU= — —kV ) = 2220 (25 z
H( t+ 0% - Pu, — K 6) ( - " Z). (2.25)

We now have three equations (2.23 - 2.25) for three unknowasyely: u., ¢ and¥.
Next we non-dimensionalise these equations using the déptie layer,d, as the length
scale, the viscous diffusion timé&? /v, as the time scale and temperature scalé/x.
Hence we substitute the formulagr, y, 2z} — {id,4d, Z2d}, t — td*/v, u. — w.v/d,
¢ — Cv/d? 0 — 0Bvd/k, V? — V2 /d? into equations (2.23 - 2.25), which become

vo(  wUp 00 wUjou. 20wdu. V.

—— — = V¥ 2.26
N T R R R TR (2.26)
V2 V2, vU} oV, 2009, gafv- o 5 Vo,
V- ovV™ . 9% _ Yoot 2.27
5 or B or T B o md VT EYE 22D

va 0 Rkey\ e, s Bre,. 20U [0 0%,
——= — - V) =V = = . 22
<d2 o U ey ) v V0= Vit = 5 T agez | 228

These equations can be considerably tidied up by introdudiimensionless parameters,

whence they become

a ~ 6 "'2 it 8,&12 _18123 o
9 s 9 w2 ) v2 7185 _ =2 )
<ai +Rezge —V > Vi + B7' 5> = RV, (2.30)

) _0 tes) es s wo .  PrRe (00 .
Pr(a£+Rez — — Pr V>VH0_VHUZ+ERCL 9 9507 ) (2.31)
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where the Ekman numbek;, Prandtl numberPr, Rayleigh numberRa, and Reynolds

number,Re, are defined as

4
v Pr = z, Ra = gapd , Re

U! d?
E = — — 0 .
20d?’ K VK

(2.32)

Equations (2.29 - 2.31) are the finite Ekman number equat@mmspidly rotating plane
layer convection with zonal flow. Our system is defined sowtans > 0 we have cold
fluid sitting on top of hot fluid and thus the layer is buoyanilystable. Therefore, as
is usually the case when considering thermal convectiomegqaire a positive Rayleigh
number above some critical valuRq.., for convective motions to begin (Chandrasekhar,
1961). In the case where < 0 the system is buoyantly stable, since hot fluid sits on
top of cold fluid, and with a basic state temperature distitiouonly dependent on, no
instabilities are possible. However, whén< 0, and thusRa < 0, the fluid is stably
stratified in which case baroclinic instabilities may be gibke since the basic state is
baroclinic as mentioned earlier. Therefore it is not immaggly clear if instabilities, and

hence motions, are forbidden wh&a < 0 in our setup.

Next we explicitly choose thg » andy-dependence of the solutions to be Fourier modes
in order to reduce the system to a 1D problenrinHence we consider the following

forms for our functions:

U, (t,x,y,2) =R az(z) exp(st + i(k,z + k:yy))] ) (2.33)
((t 2, 2) = R|C(=) explst + il + yy)) |, (2.34)
é(t, r,y,z) =R é(z) exp(st +i(k,x + kyy))} , (2.35)

where we have also dropped the remaining tildes. EquivMglem may write the

expressions as

U, (t, x,y, z) = exp(st) <ﬁr(z) cos(kyx + kyy) — Gi(2) sin(kyx + kyy)), (2.36)
C(t,x,y, 2) = exp(st) <ér(z) cos(kpx + kyy) — G(2) sin(kz + kyy)), (2.37)

O(t,z,y,z) = exp(st) (ér(z) cos(kpx 4 kyy) — 6i(2) sin(kz + kyy)>, (2.38)
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by evaluating the real part or as

u,(t,x,y,2) = %(ﬁz(z) exp(st + i(kyx + kyy)) + 05 (2) exp(st — i(k,x + k:yy))>,
(2.39)

C(t,5,2) = 5 (G explst + ik + b))+ (2) explst — ik + kyo) ).
(2.40)

é(t, Ty, 2) = %(éz(z) exp(st +i(kyz + kyy)) + éz(z) exp(st — i(k,x + kyy))>.
(2.41)

Here the subscripts indicate the real and imaginary parteefunctions (so that, for
example, i, = 4, + iu;) and *" denotes the complex conjugate. The sets of equation
(2.33 - 2.35), (2.36 - 2.38) and (2.39 - 2.41) are all equiviatiefinitions for the scalar
fields. We primarily use equations (2.33 - 2.35) in our deiores where it is implicitly
assumed that we are taking the real part. However, the athesiwill also be useful later.
In equations (2.33 - 2.35) we have also introdugedihich is the complex growth rate,
andk, andk,, which are the wavenumbers of the disturbances incthady-directions
respectively. We also assume thatandu, take similar forms since they are related;to
andu, via equations (B.5 - B.6). The complex growth rate takes thmfer= o +iw. The
sign of o determines whether a disturbance grows or decays anékif) the disturbance
onsets as a traveling wave. If we substitute the form of tinetfans given by equations
(2.33 - 2.35) into equations (2.29 - 2.31) the resulting &#qua are

s+ikRez+k2—d—2 ¢ — ik, Ret _pdte (2.42)
* dz? Y N dz '
d? d? d¢ A
. 2 2\ ~ —1 _ 2
<5 + ik, Rez + k* — @> <@ —k > u, + F Fi —k*Rab, (2.43)
d2\ » iPrRe . da
. 2 ~ z
(SPT + ik, PrRez + k* — @) 0=u, — TRak? (ksz — k‘ya) , (2.44)

wherek? = k7 + k.

2.2 Boundary conditions

In order to solve the eighth-order system of equations,2(2.2.44), we require a total

of eight boundary conditions at the two boundaries +1/2. We discussed the various
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boundary conditions that we shall impose in section 1.212.addition to demanding
that there be no penetration and a constant surface terapeiat the boundaries, we
consider two cases separately, namely stress-free angrimmsndary conditions on both

the upper and lower boundaries. The first four boundary ¢immdi onz = +1/2 are

u, =0 (no penetration) (2.45)

6 =0 (constant surface temperature) (2.46)

From the continuity equation, (1.9), we have

v-Uzv-u:%ﬁCM%@;M%f:o (2.47)
a;; = (%;‘” + %) (2.48)
Cgf; = —i(kytl, + kyily), (2.49)
and from the definition of:
= % - a;yf (2.50)
= (= i(kyly — kyy). (2.51)

The stress-free case, by definition from equation (1.18haels that on the boundaries

8um+8uz_o_%+0uz
oz  Ox 0z Oy’

(2.52)

However, the no penetration condition given by equatiod5Rinforms us that:, is

constant on the boundary so that the stress-free condéuurces to

ou o ow, o die o di

0z 0 0z = dz 0 dz (2.53)
If we take thez-derivative of equations (2.49) and (2.51) we find that
d?a, _ d, da,
2z ! (kr dz + iy dz ) =0 (2:54)
¢ . (, da, d,
9 ) = 2.
and p 1(1% P k, dz) 0, (2.55)

using equation (2.53). Also for the no-slip case we have, éfndion from equation

(1.19), that on the boundaries

Up=0=1u, = 1,=0=1, (2.56)
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whereby equations (2.49) and (2.51) indicate that

da
=0 2.57
o =0 (2.57)
and ¢ =0. (2.58)

Thus, from equations (2.45), (2.46), (2.54), (2.55), (2&Td (2.58) our eight boundary

conditions onz = £1/2 are

G, =0=6, (2.59)
along witheither
d2a, d¢
12 = 0= T (2.60)
for the stress-free caser,
da, A
Y2 _0=¢ (2.61)
dz

for the no-slip case.

2.3 The solution in the absence of zonal flow

We are now in a position where we can solve the perturbatioatemns (2.42 - 2.44)
numerically for various parameter regimes. We do this inribet section. However,
we first consider the limit ofRe = 0, where the problem reverts to rotating plane
layer convection; essentially the rotating equivalent ofIBigh-Benard convection from
section 1.4. This problem is studied thoroughly by Chandkfzese(1961) and we only

present the results here in order to observe the effect afiooton convection.

Unlike in the non-rotating case, oscillatory solutionstisatw # 0, are now possible for
certain wavenumbers. However, in order to compare with@edt4 we first continue to
consider the marginateadysolutions wherev = 0 so thats = 0. We also sefze = 0 so

that the zonal flow vanishes. Equations (2.42 - 2.44) thenaetb

2 A
G@—EQ)C—E*%fzo, (2.62)
a2 \? a¢
(H—aﬁ>a,4;h—_ﬁRa (2.63)
z z

2d2AA
- — 0=, (2.64)
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and an analytic solution is possible when using stresshioeedaries as was the case for
Rayleigh-Benard convection. We consider the stress-free case heeisilemonstrates

the effects of rotation most clearly. The solution is

u, = Acos(nrz), (2.65)
. nm _
(= “EE Tt W2>Asm(n7rz), (2.66)
A 1
0= mA COS(TZTI'Z), (267)

wheren € N and the constant{, is the amplitude. This solution satisfies the boundary

conditions given by equations (2.59 - 2.60) and also eqnaid.62 - 2.64) provided

(n27r2 + k2)3 n2ﬂ.2

Ra = 2 + T

(2.68)

This expression for the Rayleigh number reduces to that cdterju(1.44) for Rayleigh-
Bénard convection in the limit of no rotation; thatis— oo. Since the additional term
appearing in the expression félu in equation (2.68) is always greater than zero, it is
clear that rotation raises the Rayleigh number that must beesled for disturbances
with wavenumbef: to occur. If expression (2.68) is minimised over/alflandn) to find
the critical Rayleigh number we find thatmust satisfy
71'2

(2k* + ) (K* + 72)? = = (2.69)
For a given Ekman number, the critical wavenumbgrcan be found from this equation
and then the critical Rayleigh number can be found by sulbisiif,. into equation (2.68).

In the limit of rapid rotation wheré’ — 0, scalings fork. and Ra. can be found:

2/3 /3
= %E”/g and  Ra, — = _

k. E~43, (2.70)
The case where the convection onsets as oscillations, krsaverstability is also
discussed by Chandrasekhar (1961). This is done by inserting, rather thars = 0,
into equations (2.42 - 2.44) and considering the real andgjiimaay parts of the equation
containing the Rayleigh number. An expressiondois found and in order for it to be
real two conditions must be satisfied. The conditions arefthra< 1 and

(1+ Pr)(m? + k?)

E7? >
(1 —Pr)

(2.71)
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in order for a disturbance with wavenumbkyto occur as an overstable solution. There
is an expression for the Rayleigh number associated withwbiestable solutions, which
as before can be minimised over alfor which overstability is possible. We then acquire
the critical Rayleigh number for the onsetmferstablesolutions,Ra?, for given values
of the Prandtl and Ekman numbers. The valug?af may or may not be less than that
of the critical Rayleigh numbeRa,., for the steady solutions with the equivaléht and

E. If Ra® > Ra,. then steady solutions appear at onset. Howevéiaff < Ra. then the
instability will manifest itself as oscillatory modes atsat. Chandrasekhar (1961) shows

that a necessary condition for the latter to be the case is 0.67659.

The above discussion has indicated that overstable sofutibthe perturbation equations
are possible and that, depending on the values of the PrandtEkman numbers, the
solution at onset can either be steady or oscillatory. Heweke critical Rayleigh number
in the rotating case is always greater than that of the ntating case, regardless of the
nature of the onset solutions. We should also note that ifothestable form for the
complex growth rates(= iw) is used in the equations for Rayleigteard convection in
section 1.4, no real solutions farare possible. This indicates that oscillating solutions

at onset are not permissible in the non-rotating case as wéaned earlier.

2.4 Numerical method

In this section we wish to solve the differential eigenvatweblem given by equations
(2.42 - 2.44) subject to the boundary conditions (2.59) &@Q) or (2.61). To make it

clear that this is an eigenvalue problem we rewrite equat{@m?2 - 2.44) as

A 2 A

5= (% ik Res k:) it (ikyRe " Edi> i, 2.72)

d? 2\ - d? . 2 d? 2\ ~ —1 dé 2 )

3(@—]{ uz:(@—lkaez—k><@—k>uz—E &—kRGQ
(2.73)

- d? - iPrRek, d iPrRek, .

Prd = | — — ik, P —k*) 40 14+ ——2— )i, — ———C. (274
o (dz2 the Pr ez ) * ( i ERak? dz> B ERak? ¢ (274)

In this system of equations the eigenvalue is the complewthroate of the modes, and

the corresponding set of eigenfunctions is thelset {u., ¢, é}.
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We use the method of collocation to solve the eigenvaluelpnobCollocation involves
choosing a finite-dimensional space of candidate solutmialsa number of ‘collocation’
points. The solution is then chosen to be the one that satigfee equations at these
points. For a thorough discussion of collocation, see Boy@D12 or Canutoet al.
(2006). Specifically, we use Chebyshev collocation and haredegin by expanding

the elements ol in terms of Chebyshev polynomials:

N+4
i2(2) = Y uToa(X), (2.75)

N+2

((2) = GTuaa(X), (2.76)

N+2

0(z) = 0,1 (X), (2.77)

wherez and X are related byX = 2z. That is, the intervat € [—1/2,1/2] is mapped to
X € [—1, 1], whichis the usual interval used for Chebyshev polynomikie coefficients
u,, ¢, and@, are constants which are, in general, complex. HE€res the truncation
parameter. The resolution of the numerical solution impso&s/N increases, that is as
more polynomials are used. For afiyc ¥, the sum over the Chebyshev polynomials

runs from 1 toN + N’ whereN' is the number of boundary conditions &n

We now substitute the Chebyshev expansions into equation2 {2.74) and evaluate at
a set of pointsz,, wherep = 1, ..., N. By doing this we have converted the differential
eigenvalue problem into a matrix eigenvalue problem of tenfsA,,w, = Bjywy,
wherew = [uy, ..., un44,C1s -5 (o, 1, -, O i2]T. We note that the matrice& andB
contain the terms from the left-hand-side and right-haidd-sf equations (2.72 - 2.74)
respectively. The rows and columns Afand B correspond to the collocation points,
X,, and Chebyshev polynomial,,_, respectively. Hence, far < j < N, thejth row
contains the coefficients of the,s of the first equation evaluated at tjté collocation
point, X;. For N +1 < j < N + 4 the rows contain the information of the boundary
conditions onu,. The remaining rows follow a similar pattern involving theetficients
for the second and third equations and the boundary condita¢ andd. Similarly, for
each row the firstv +4 columns contain the coefficients of thgs, the nextV-+2 columns
contain the coefficients of thg s and the finalV + 2 columns contain the coefficients of

thed,s. The collocation pointsy,, rather than being equally spaced, are chosen to be the
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N zeroes of the Chebyshev polynomia} (.X).

With this method in place the code is written in Fortran andwse a NAG routine,
namely FO2GBF, to calculate the eigenvalues and eigengectdhis matrix eigenvalue
problem given values for our input parameters. The systesrthafollowing six input
parametersk,, k,, Pr, E, Re and Ra, which can be varied to obtain the outputsand
w, the eigenvector. We can reconstruct the elemenis fodbm w using equations (2.75 -
2.77) to obtain the eigenfunctions, which are complex. Wenadise the eigenfunctions
using the value of the real part of the vertical vorticity engunction atz = 0 so that
C(2) — ((2)/G(0), i.(2) — a.(2)/¢(0) andd(z) — 6(z)/(0). If the real part of
the vertical velocity eigenfunction at = 0 happens to be zero we interchange the real
and imaginary parts of all the eigenfunctions by multiptyithrough by—i and then
normalise. The three-dimensional scalar figlds. and6d are then constructed from the

normalised eigenfunctions using equations (2.36 - 2.38).

If we letT" = {k,, k,, Pr, E, Re} we can test the stability of a given detby gradually
increasingRa and solving the matrix eigenvalue problem until a marginatiey where
R[s] = ¢ = 0, appears. We then record this value of the Rayleigh numbédchwi
the value at the onset of convectidig*, say. We mostly run the code at a resolution of
N = 100, although we use some larger resolutior) < N < 150, to fully resolve the

solutions for small values of the Ekman number and largeegati the other parameters.

Figure 2.1 shows how the onset of convection changes as ithethal wavenumber and
the zonal wind are varied for a particular choice of the Ekmamber, Prandtl number
and the latitudinal wavenumber, for both choices of boupdanditions. It should be
noted that the data in figure 2.1 is represented on a log-log dale to the varying
magnitudes involved, and a log scale is necessary for theesaf Ra* also. Since we
have positive and negative Rayleigh numbers, we plot onlyotes with| Ra*| > 1, but
this excludes only a tiny region in figures 2.1(a) and 2.1&d%0 of note is the fact that
the quantity which has been plotte@,*, is not the same as the critical Rayleigh number,
Ra,, since the latter is minimised over the wavenumbggsandk,. We plot Ra* here
rather than the critical Rayleigh number due to reasons slégzlin section 2.6. Plots for
Ra, are displayed later. The solid green line, on both plotsgdivregions of steady and

oscillating modes. The oscillating modes are found to thktrof this line in both cases.
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The initial striking feature of both sets of results is theearance of marginal modes with
negative Rayleigh number. We see that these modes only appeear certain parameter
regimes, namely for sufficiently largee and sufficiently smalk,. Hence we are able
to divide the parameter space into two regimes driven byewdfit types of instability:
the convective regime and the baroclinic regime, which &eussed individually in the
next two sections. In the convective/baroclinic regimes ithe buoyancy/shear, which is
driving the instability. The form of the fields inz-space for various parameter sets are
shown in figures 2.2 and 2.3. The parameter values for ak gl displayed in table 2.1.
Where possible, that is for the plots of figure 2.2 whére- 104, the plots are marked
in parameter space in figure 2.1. Further plots itk 10~ are displayed in figure 2.3.

Point FE Re Ra k.,
X, 107* 5 Ra, = 1.8889 x 10  k, = 27.9610
Xy 107 Re* =10.9599 —108 0.1
x3 1074 4000 Ra* = —1.357111 x 10" 0.1
x4 107* 5 Ra, = 15193 x 10 &, = 24.5630
x5  107* Re, = 43.4458 —106 3.8551
xg 107* 4000 Ra* = 3.1259 x 107 30
x7 1073 5 Ra, = 9.0528 x 10* &, =12.7334
xg 107 Re* =10.9720 —106 0.1
xg 1073 4000 Ra* = —1.3445 x 10° 0.1
X10 107 5 Ra. = 4.0432 x 107 k., = 60.4938
x11  107°  Re* = 10.95955831 —10¢ 0.1
X1 1070 4000 Ra, = —1.3573 x 10'3 0.1

Table 2.1:Parameter values used for the plots of figures 2.2 and 2.3.

2.5 Convective regime

For low values of the zonal wind we expect to find the usual eotive columnar roll
solutions that we mentioned in section 2.3 and as descripedhlandrasekhar (1961).

These modes are steady, so that 0, and we refer to them as the ‘convective modes'.
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(a) Stress-free boundaries.
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(b) No-slip boundaries.

Figure 2.1:Contour plots of the numerical results for the Rayleigh namét onset forRe againstk,,

with E = 1074, Pr = 1, k, = k,, = 0. The colour scales denote the value of the Rayleigh number
at onset,Ra*. The green curves divide the regions of steady modes antlab@gi modes; onset being
oscillatory to the right of these curves.; to x4 represent points in parameter space for which the fields

have been plotted.
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Figure 2.2:Plots of the fields corresponding to points marked on figutewthereE = 10~4, Pr = 1

andk, = k,, = 0. See table 2.1 for the parameter values of each plot.
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Figure 2.3:Plots of the fields for cases whefe # 10~* with stress-free boundaries. See table 2.1 for

the parameter values of each plgt,.
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Convective modes with the-vorticity antisymmetric about the equator are expected as
the most unstable modes in plane layer convection; the ceavetrue in the case of the
full sphere as originally noted by Busse (1970). Indeed ferghint markedx; we find
the mode to be of this form, as shown by figure 2.2(a). The stradas tall thin cells
with hot fluid rising and cold fluid sinking as expected. Traghe case for both types
of boundary conditions as is evident from the similarity gfufie 2.2(d), pointx,, for
the no-slip case. The form of the solution does not alter ditterent Ekman numbers
as evidenced by figures 2.3(a) and 2.3(d), which areHor= 102 and £ = 1077,
respectively. We also note that f& = 0 if we minimise the Rayleigh number at onset
overk, to find the critical Rayleigh number, the preferred valuesrar, ~ 1.8970 x 10°
with k. ~ 28.0243 for the stress-free case afth,. ~ 1.5251 x 10% with k. ~ 24.6366
for the no-slip case, for the values Bfand Pr used in figure 2.1. This is in agreement

with the previous literature; compare with table VII and Mif Chandrasekhar (1961).

The critical values of the wavenumbers do however depenicoiin the case ofte = 0

the system has complete symmetry in thendy directions, so all wavenumbeks and

k, satisfyingk? + k:j = k? onset atRa.. However, as the zonal wind strength is increased
from zero we find that there is immediately a preference fa-timensional modes with
k,. = 0. This is the case for all modes withe # 0. Hence the convection cells are,
in fact, rolls elongated in thg-direction. Unfortunately, equations (2.42 - 2.44) are too
complex to be able to perform Squire’s transformation (8qi933), though this can be
done for non-rotating shear flows (Drazin & Reid, 1981). We diisd that the value of
the critical Rayleigh number decreases, for both types ohtaty conditions, as shown
by figure 2.4. Hence the zonal wind has a destabilising effecthe system and aids
the onset of convection as well as setting a preference fovemtive rolls aligned with
the y-axis. This is in contrast with the non-rotating case whéerghe presence of the
same shear, the preference is for rolls with= 0, k£, # 0 (Deardorff, 1965). Thus, the
addition of rotation alters the convection pattern, frortsraligned with the flow to rolls
perpendicular to the flow. The critical azimuthal wavenumbg , also decreases @&

is increased for both types of boundary conditions as showfighre 2.4. The two plots

of the fields in the convective regimeg,; and x4, whose positions in parameter space are

also indicated in figure 2.4, are for critical valuesigfand Ra* with Re = 5.

As Re is increased we move into the baroclinic regime and henceslues ofRe chosen
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for the plot in figure 2.4 are relatively low in order to remamthe convective regime.
For modes in the convective regime the main energy balanbetigeen the buoyancy
and the viscous stresses. Howeverrasis increased, the baroclinic basic state means
that buoyancy can do work at lower critical Rayleigh numbed mdeed even at negative

Rayleigh number. This is discussed in section 2.8.

2.6 Baroclinic regime

As the zonal wind strength is increased further we find a sgd¢gpe of mode, which
allows for instability regardless of how negative the Ragfenumber is. In other words
this mode can be unstable no matter how stably stratifiedysters is. For this reason we
refer to them as ‘baroclinic modes’, which are distinct frtbra convective modes that are
usually found as the most unstable modes. They are relatbe tenstable modes of the
Eady problem (Pedlosky, 1987), which we later discuss iti@@8.4. This suggests that
we should consider a critical Reynolds number, rather thaitieat Rayleigh number, for
the baroclinic modes since itis the shear that is drivingitistability. Hence we introduce
a critical Reynolds numbeRe,., and corresponding critical wavenumbeékts, andk,, for
the baroclinic regime. For a given Ekman number, Prandtivemand Rayleigh number
Re. is the value of the Reynolds number for which a marginal barmoinode can appear
(analogous to the critical Rayleigh number in the conveatggme). As with all modes
with a non-zero Reynolds number we find that = 0. The modes remain steady in the
baroclinic regime for low values ake. However, oscillating modes appear at onset for
larger values ofe, which are found in the regimes of parameter space to théosighe

green line in figure 2.1.

From figure 2.5 we see hoWre* varies withk, for several negative values of the Rayleigh
number for both types of boundary conditions. For stress-froundaries we see from
figure 2.5(a) that in all casds, = 0 and Re. ~ 10.95. Therefore reducing, allows for
instability with an ever more negative Rayleigh number aswhoy table 2.2. Itis for this
reason thaRa* rather thanRa, is plotted in figure 2.1. An asymptotic theory highlighting
these results and which obtains a valueief. for any givenRa and Pr in the smallF

limit, is discussed in chapter 3. The form of a typical baraclmode at onset is shown in
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Figure 2.4:Plots of the numerical results for the onset parameterserctmvective regime againkt
with £ = 107%, Pr = 1, k, = k,, = 0. The onset parameter is the Rayleigh number in the coneectiv

regime.
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figure 2.2(b), pointx,. We see that the vorticity is independentand tha® has flipped
signs for this type of mode so that the hot fluid is sinking amel ¢old fluid is rising.
This is directly related to the change in sign of the Rayleigimber and is due to the fact
that the baroclinic basic state allows buoyancy to fullyabak the viscous stresses even
at negative Rayleigh number (see section 2.8). However, dgmitude of the vertical
velocity is small, indicating that the shear is dominatihg flow in these modes. Again,
the form of the eigenfunctions does not vary with the Ekmamiper as we can see from
figures 2.3(b) and 2.3(e). However, the magnitudes of theésfigéb seem to scale with the
Ekman number. This suggests that an asymptotic analysisoeapssible for smalk’,
which is developed in chapter 3. The general form of the digestions remains similar
to that shown in figure 2.2(b) as, is reduced towards the true critical value; namely

kp, = 0.

Ra*
ks E =107 E=10"* E=10"°

0.01 —9.6562 x 10 —9.6578 x 10'2 —9.6577 x 10™
0.05 —3.8618 x 10 —3.5057 x 10"  —3.8624 x 10"
0.1 —9.6496 x 10® —9.6511 x 10 —9.6511 x 10*2
0.5 —3.7972 x 107 —3.7980 x 10° —3.7980 x 10"

1 —9.0591 x 105 —9.0636 x 108 —9.0637 x 10

Table 2.2:Numerically computed values @ta* for variousE andk, in the caseRe = 100, Pr = 1 and

ky = k,, = 0 for stress-free boundaries.

For no-slip boundaries we see from figure 2.5(b) that themenien-zero critical azimuthal
wavenumber, which varies witkRa. As the Rayleigh number is made more negative
the critical azimuthal wavelength lengthens and the @iitReynolds number increases.
Figure 2.2(e), poinis, shows the form of the eigenfunctions at critical foa = —10°.

As with the stress-free case, the signddfias changed from the convective regime and
the magnitude ofu. is small. However the vorticity now takes a more complicated
slanted structure, which is asymmetric4nin contrast to the stress-free case where

was independent of.

The baroclinic modes are only found for certain parametgmres as highlighted by
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Figure 2.5:Plots of the numerical results for the onset parametersdrbtiroclinic regime againgt,
with E = 1074, Pr = 1, k, = k,, = 0. The onset parameter is the Reynolds number in the baroclini

regime.
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figure 2.1. For stress-free boundaries we must haveS 30 and Re 2 10 for these

modes to appear and as such this is a constraint on theieegestFor no-slip boundaries
the parameter regime for the existence of the baroclinicenasl altered slightly but we
still require a sufficiently largdie and sufficiently smalk,. Outside of these regimes
we recover the convective modes at onset, which have pes&tiayleigh number. This is
demonstrated by considering tihi& = 1 line in figure 2.1(a), which has solely positive
Ra*. In the stress-free case, for a sufficiently laige the Rayleigh number is negative
and depends ok, andE such that reducing either of these parameters towards zatesn
the Rayleigh number more negative. In fact from table 2.2 desr that the magnitude
of Ra* is inversely proportional to both? and E2. This remains true for different values
of Re. In this way we see that it is possible to have instabilityaredess of how negative

the Rayleigh number is by choosing a small enokghnd sufficiently largee.

Baroclinic instabilities driven by a zonal flow of the samenfioas that considered here
were investigated by Rasheat al. (2008). However, their model assumed that the fluid
was always stably stratified so that convective instabgditvere not permitted. This was
because their interest lay in the strongly stably stratifieldr tachocline. Our work has
investigated the transition between convective and bisnioghstabilities by allowing for
both stable and unstable stratification. Ras#tichal. (2008) found two types of mode
appearing and they concentrated on how the strength of thesmthanges under various
parameter regimes. This resulted in a focus on the low Eknoamber and low Prandtl
number limits. By considering finit&r we have found baroclinic instabilities witl) =

0 = k, in contrast to Rashidt al. (2008) who found that, = 0, k, # 0.

2.7 Further observations from the numerics

Between the regions of positive and negative Rayleigh nunttegetis a shargransition
regionwhere the Rayleigh number passes through zero in a relasvedyl region ofRe-
space. The Rayleigh number varies smoothly from positiveetrative values across the
transition region. The values of the Reynolds number at dnsite case of stress-free
boundaries, for a givek,, Re*, for the transition region at whiclka* = 0 are given

in table 2.3. AsFE is reducedRe* at transition converges to a value independent of the
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E =101 E=10"

k, Pr=01 Pr=1 Pr=10 Pr=20 Pr=01 Pr=1 Pr=10 Pr=20

0.1 34.8718 10.9610 3.4646 1.5386 34.6946 10.9550 3.46445388.
0.5 35.0289 11.0731 3.4705 1.5055 34.9326 11.0255 3.46815101.
1.0 36.3620 11.6266 3.5264  1.4283 36.3097 11.6129 3.5200427Q.
5.0 64.7904 19.8318 5.0890 15917 64.7775 19.8296 5.08815914.
10.0 115.4635 35.1904 10.5572 4.8452 114.6989 35.1208 128.5 4.8066

Table 2.3:Numeric results showing the position of the transition oegithe point whereRa* = 0, in

Re-space for various values &f,, £ andPr in the case;,, = k,, = 0 with stress-free boundaries.

Ekman number. From table 2.3 we also notice that redugingpwers the Reynolds
number at onset suggesting once again that the minimisimgzero (that is:,, = 0) and

Re. is converging to a value dependent on the Prandtl number.

The modes described so far have all been steady. Steady rapglesually preferred
for the onset of convection in a rotating plane layePat = 1, unsteady modes being
possible at lowelPr, as we discussed in section 2.3. However, by increaBnfurther
we also found unsteady modes appearing at onset evém at 1. These modes are
found in the region of parameter space shown in figures 2ak{@)2.1(b) to the right of
the dividing curve, the solid line in both figures. We see thase unsteady modes can
onset with either positive or negative Rayleigh number. f@g2i2(c), pointxs, shows
the eigenfunctions for such an oscillatory mode in the cdsstress-free boundaries.
These modes onset as pairs of traveling wall modes with &ecjes which are equal
but opposite in sign. Oscillatory modes are found at laigeand Re for the no-slip
case, an example being shown in figure 2.2(f), peigt The fields of these oscillatory
modes maintain the same form for different Ekman numbersasrs by figures 2.3(c)
and 2.3(f). If the domain is infinite in the andy directions, all wavenumbers, andk,
are allowed, and the critical mode is always steady, eithBxed Ra as Re is gradually
increased or at fixe®ke as Ra is gradually increased. However, if the domain is finite,
and for example periodic boundary conditionssiandy are imposed, thus restricting the
possible choice of wavenumbers to a discrete set, then itlddmipossible for oscillatory

modes to be preferred.
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In the work displayed so far we have varied the parametersost mterestk,, Re and
Ra whilst looking at specific values faPr and E. We have also found thai, = 0 for
the modes of interest (that is modes with +# 0). Although instability is possible with
k, # 0 in both the convective and baroclinic regimes, we find thatéasingk, from
zero only serves to stabilise the system by increasing théegaynumber or Reynolds
number for which onset occurs. Here we consider the effdotarging the Ekman and

Prandtl numbers.

We first look at two further values for the Ekman numbgi and10~°. We find that
changingF alters the magnitude of the Rayleigh number at onset but doeaffect
the position of the baroclinic parameter regimetin — Re space. The results in table
2.2 highlight the fact that for the baroclinic mod&:* is inversely proportional td-?.
Therefore if we increase the Rayleigh number fremo changing the Ekman number
controls how soon the instability occurs. However we sétjuire the same sufficiently

large Re and small values of,.

We consider further values of the Prandtl number:= 0.1, Pr = 10 and Pr = 20. In

a way the effect of changing the Prandtl number is oppositkabof altering the Ekman
number. This is because although the Rayleigh number rensipsly unaffected for
various Pr, the position of the baroclinic regime k). — Re space changes. This can
be seen in table 2.3 where the transition region occurs agleehiower value ofRe*

for a lower/higher value of’r. We see that fo’r = 10 the baroclinic modes are able
to appear at a lower value of the zonal winlle( ~ 3.5), compared to the’r = 1
case. The converse is true whem = 0.1 where the baroclinic modes cannot appear
until Re ~ 35. The behaviour of the critical parameters at moderate sadfithe Prandtl
number(Pr = 0.1—10) remains largely the same with, = 0 continuing to be preferred
in the stress-free baroclinic regime. However we note tiextet is a non-zero minimising
k, for larger values of’r so long as the magnitude &l is not too large. An example of
this can be seen in table 2.3 whé&n = 20, for both values of the Ekman number. Two
further cases, witliRa non-zero, are displayed in figure 2.6 where we fipd~ 1.5 and

k., ~ 2.7 for Pr = 20 and Pr = 50, respectively. Note, in contrast, that the line for the
case ofPr = 10 takes its minimum value when the azimuthal wavenumber i3 gethat
k.. = 0. The critical values of the Reynolds number for these twosase also smaller

than for the other Prandtl numbers considered, as expedted.asymptotic theory in



Chapter 2. Numerics for a linear plane layer model 52

Pr=10

""""""""""""" Pr=20

qJ e Pr=50
3.0 ]
' 25F ]
20F ]
15F "~ ~-__ -7
100
0 1 2 3 4 5

Figure 2.6:Plot showing how the Reynolds number at onset varies ijtfor several values oPr and

E =10"% Ra = —1 andk, = k,_ = 0 with stress-free boundaries.

chapter 3 is able to explain this dependencg,ofon Pr.

2.8 Thermodynamic equation

In this section we derive a thermodynamic equation from tipgagons in section 2.1
in order to analyse how terms representing different playstfects interact for various
values of the input parameters. In particular we see howivgithe parameter controlling
the size of the basic state zonal fldi;, affects the balance between terms. In the absence

of the zonal flow we should recover the condition tiRat > 0 for motions to occur.

We continue to enforcé, = 0, which is the case most favourable wh&a # 0, and
alsos = 0 for marginal, non-oscillating modes. It should also be ddtet we are able
to use the results of appendix C here since the fields takethe(see equations (2.39 -
2.41)) given at the start of appendix C. We begin by considehe dot product ofi with
equation (2.19). We then form the energy equation by integyaver a periodic box on
the intervalsy € [—n/k,,7/k,), y € [—n/ky, 7/k,| andz € [—d/2,d/2], which since
k, = 0 amounts to integrating overandz only. This gives,

/u-g—?dV—F/Uézu-g—udv+/U6uzdeV+/u'2QXUdV
s

(2.78)
=— [(u-V)pdV +ga [ 0u,dV +v [ u-V?udV,
( )p g
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where

d/2 7/ka
/dV / / dxdz. (2.79)
d/2 J—m/ke

The first term vanishes for marginal, non-oscillating moaed the fourth term vanishes
due tou being perpendicular t& x u. Now we consider the remaining terms separately

and first note that the second term, using equation (A.3)beanritten

Ju Olul?
/ - — !/
/Uozu pe dVv / (U e ) dv (2.80)
I 2 2 2
= 3 /an (u +u? —|—u>) dv (2.81)
1 8 ~ % N Ak Nk
- 3 / o (2 (0 + iy + i) ) AV (282)
= 0, (2.83)
where we have also used (C.10). The term involving the predsecomes
/(u -V)pdV = /V - (pu)dV — /pV -udV (2.84)
= 2.
[ 5t (2.85)
~ [ pusdsi. (2.86)

sinceV - u = 0 and wherelS,, is the surface element of our periodic box. Here we have

also used the Divergence theorem to convert the volumeraitego a surface integral.

/2
/pudek = / pudz
—d/2

The first of these terms vanishes sincandu, are both periodic in; that isu,(z =

Hence

7/ka
+ / pu.dx (2.87)

—7 kg

r==47n/ks z=+d/2

—7/2,2) = u,(x = 7/2,z) and similarly forp. Therefore the:-integral will take the
same value on the two surfaces= +7/k, and hence cancel. In other words, the flux
is the same through bothsurfaces. The second term also vanishes because(0 on

z = +d/2. Hence this surface integral term is identically zero awdnfrequation (2.86)

we have

/(u -V)pdV = 0. (2.88)
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We now consider the final term of equation (2.78), which casibplified as

0 0
V/LI'VQUdV = UV uja_xkﬁ_,]}kujdv (289)
3 8 all,j 8uj
- ey Py oy [ ST 2,
V/ o (uj 8xku]) dV —v . axde (2.90)
0 Qu; Ju,
= 2.91
/uja u;dSy — . axde (2.91)

where, againdsS; is the surface element of our periodic box and we have used the

Divergence theorem. Now we can expand the surface integraldo that
d W u du

dSy = Y d

V/uJa Hon = /d/2( 8$+ 0x) :
m/ks ou ou
Yy z

. d

+y/_7r/k$< 8z+ 82) .

Both of these terms vanish via a similar argument to the seriiaiegral involving the

=t /ka (2.92)

z==+d/2

pressure vanishing where we note that eithage= 0 (if we have no-slip boundariesy
Ju,/0z = 0 (if we have stress-free boundaries)oe= £d/2. Hence the surface integral

term is identically zero and from equation (2.91) we have

y/u Vrudv = —p [ 20U gy, (2.93)
8$k 85Ek

and we are then left with only three terms of equation (2.78):

a / oudv = [ 299 gy 4 / w,updV (2.94)
8£Ck 8xk

Now we also multiply equation (2.20) fyand integrate over the periodic box to acquire
/H%dV—i—/Uézﬁ%dV—ﬁ/Gude— 20205 /Huydv = m/@VQHdV. (2.95)
ot Ox g

As with the energy equation the first term vanishes since wecansidering marginal,

non-oscillating modes and the second term also vanishesdayitar argument to the
second term in the energy equation above. Again by a simtpmaent to the final term

of the energy equation above, the final term of equation 8% can be written

R/QVQQdV = —m/ (;fk gfk) dv = —m/(V@)2dV. (2.96)

Then equation (2.95) reduces to

20U
—f / Qu.dV — % / Ou,dV = —k / (VO)*aV, (2.97)
qo
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and we now eliminate the rate of working of the buoyancy fdthe 6« -integral) using
equation (2.94) to give
2 / du; O, ,
gar [ (VO)*dV —2QU; | Ou,dV = pv | ———dV + U, [ u,u,dV. (2.98)
8xk a’L‘k

We non-dimensionalise as before using the same scales estiors2.1, which gives
2

22 ) ,/ﬁyz /1/2 duj du ,/V
— 920 [ = - — 2.
gcm/ e (VO)>dV U, - Ou,dV = fv T axde—l—ﬁUO B uu,dV, (2.99)

and using the dimensionless numbers from equation (2.82¢#m be written

Ra/(V9)2dV — PrElRe/Qude — / %g—zzd‘/ — Re/uzude =0,
or L1 +I,+1Is+1,=0.
(2.100)
We refer to this integral equation as the thermodynamic #guand the solutions to
the earlier numerics must satisfy it. The thermodynamicaéiqn is comprised of four
integrals representing a different physical process. Tiseterm,/;, is effectively the
work done by the buoyancy. The second integfaljs related to the heat flux carried in
they direction, and is only non-zero when the zonal flow is norezire to the presence
of Re in the term. The third term/s, is the rate of viscous dissipation. Finalli, is
a component of the Reynolds stresses. We note here tliat # 0 then the Rayleigh
number is the ratio of two positive definite integrals:
I (gL)Q v
RO
and hence we recover the condition that > 0 as expected and as derived by

Chandrasekhar (1961).

(2.101)

We can write equation (2.100) in terms of the real and imagiparts ofii., ¢ andé and
their derivatives, all of which have been calculated in thenarics earlier. We do this
term by term making use of appendix C and onceatfiependence of the integrand of

each term has been accounted for.thategral can be evaluated, noting that

7/ ks

/ de = 2—7T. (2.102)

—7/kz kI

We also use equations (B.5) and (B.6) to note that
1 0%u
pum— —_— z 2.1
e k2 0x0z’ (2.103)
1

u, = % (2.104)

_l{;_fca_x’
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sincek, = 0, which will be useful shortly. We begin with the first term ofuation

(2.100), which is

I :Ra/(ve)%lv = Ra/ ((%) + (gz) )dV (2.105)
_ B;a (k@ (62 +02) + (ii) +(ii) )dV (2.106)

where we have used equations (C.11) and (C.9). Next we replaicethe second term

of equation (2.100) witlg using equation (2.104) to give
1
—PrElRe/Hude = M/Q—dv (2.108)

Hence

PrE-! U
I, = —PrE 'Re / u,dV = TTRQ / (eig} — erci) dv (2.109)

rPrE-‘Re (Y2 /.. N
_ k—g/m <9g ergi) dz, (2.110)

using equation (C.14). Thirdly we consider the third termaua&tion (2.100), where we

note that

Ou; du o ) , ,
gV = / <(Vux) + (Vuy)? + (Vaus) )dv. (2.111)

We consider the three terms of this equation in turn begmmiith the first term where

we substitute for,, using equation (2.103), to give
/ 8uz 8uz
ax
1 33uz Y Pu
K 0220z axazQ
1 kzauz Pu,
k3 T 0z 0x0z?
1 di, ) * a P 2 d%}i 2
B §/<(dz> i dz k_< d22> v
12 P (dw A
L) () ()« (52))) o

/(Vux)2dV

N 2 N 2
7Ra [Y? O dé d6;
= k(6% + 62 d — d 2.107
i /1/2<$(T+Z>+<dz>+<dz>>z’ ( )

(2.112)

(2.113)

(2.114)

(2.115)

(2.116)
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where we have used equations (C.6), (C.9) and (C.11). For tloadeerm of equation

(2.111) we can substitute fag, in terms of(, from equation (2.104), and we acquire
ay — [ ((2m) 4 (%)
/(vuy) v = /((ax) 2 ) |V (2.117)
- % 2+ ocy’ v (2.118)
k2 Ox 0z -
1 1 dé’ 2 dé’ 2

_ 29 A'Q L r _1
— 2/(Cr+€l+kg<<dz) +(dz> ))d\/ (2.119)
Con e (Y (Y
= k‘_w s (Cr + ¢+ k‘_% ((dz + T dz, (2.120)

where we have again used equations (C.11) and (C.9). By a simditirod to equations
(2.105 - 2.107) we also have that

/(Vu 24V = & v k?(a2+a2)+ dty 2+ LA dz.  (2.121)
: ke VT dz dz ' '

1 (/ad%a,\> (%)’
+k—g _d22 + @ dZ.

Finally we consider thé, term of equation (2.100), again substituting fQr

Iy = —Re/uzumdv = —};—5 uz% (2.123)
_ _ii/(ai%—ar%) v (2.124)
_ _”ge <[aiar]1/f/2 —2 / 11//22 ar(:ii) dz (2.125)
_ 27;?6 / i, Sz, (2.126)

where we have made use of equation (C.14).

Equations (2.107), (2.110), (2.122) and (2.126) give theseof equation (2.100) in terms

of the eigenfunctions (and their derivatives) calculatedhie numerics. Thus we can



Chapter 2. Numerics for a linear plane layer model 58

calculate the four integrals using the trapezium rule, gyivaues for the parameterRu,

Re, E, Pr, k., which appear in the expressions fgrto /,. For ease of comparison with
figure 2.1 we consideE = 10~* and Pr = 1, and we have implicitly takefkka = Ra*

by settings = 0 earlier. Figure 2.7 shows how the four terms in equation0@) Yary

as a function ofRe for two choices of,. In this scenario each plot represents the values
taken by/; to I, on a line of constant, in figure 2.1, namely the linek, = 0.1 and

k., = 5. Plots for otherk, where baroclinic modes exist are similar with the positibn o

the transition region changing accordingly.

We first note that, in both plots of figure 2.7, theintegral is very small indeed. This was
also the case for all othét, values tested. This term is small because we are considering
a rapidly rotating system where the motions prefer to bedwoensional as we discussed

in section 1.3. In fact, in the rapidly rotating limit the welty field can be written as

a streamfunction with a small ageostrophic component inztd@ection so than =

—V x ¢z + u,z. If this is the case then, = —0v¢ /0y = —ik,» = 0 sincek, = 0.
Thus, in the limit of rapid rotatiod, vanishes. For systems with finite Ekman number,
such as ours, the, term appears but does not significantly contribute to tharzahg of

the thermodynamic equation.

As mentioned earlier we must havéx > 0 in the caseRe = 0. This is the well
understood case where the Rayleigh number must be positvéhéosystem to be
convectively unstable. At lowke this remains the predominant balance and the Rayleigh
number remains positive. However wiite # 0 the baroclinic term can partially balance
the viscous stresses and thusiasis increased the Rayleigh number is reduced to allow
equation (2.100) to balance. This can be seen in both plofigafe 2.7 where the,

contribution slowly increases in magnitudeasincreases.

As Re is increased further and we enter the transition regioratext atiRe ~ 10.95 for

k., = 0.1 and Re ~ 19.86 for k, = 5) we see that botl; and the baroclinic flux/,,
change sign. In the transition region the main balance iwdxt these two terms as the
magnitude of the rate of working of the viscous stresses alIsriowever the sum of

I; and I, must still balance the solely negatiygterm. The transition region represents
the point in Re-space wherd, becomes large enough in magnitude to solely overcome

I3 without the need for a contribution froth. Hencel; can change sign (that iBa
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Figure 2.7:Plots showing how the integrals in the thermodynamic equa®.100) vary as a function of
Re with E = 10~* and Pr = 1. We use stress-free boundaries with= k,_ = 0. The eigenvalues that
appear in the expressions for integrals (equations (2,121)10), (2.122) and (2.126)) are found from the
numerics and the integrals are evaluated using the trapazile.
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change sign). This explains why a sufficiently large valuthefzonal wind is required to
allow for modes with negative Rayleigh number to appear.sib aidicates that the term,
1, or I, in equation (2.100) which is positive, and thus is able tlahee /5, contains

the parameter that is driving the instability. In other werdis the Rayleigh/Reynolds
number and thus the work done by buoyancy/baroclinic hegthich is balancing the

viscous dissipation in the convective/baroclinic regime.

Equation (2.100) can also explain the results of changimgRhandtl number given
by table 2.3. The second integrdl, is proportional toPr. Therefore increasing or
decreasing the Prandtl number means that a lower or highee @ Re respectively is
required beford, is able to balancds;. Hence the transition region appears at smaller
values of Re as Pr is increased, as we saw in table 2.3. This argument is slightide
since it assumes that the values of the integrals in equéi@00) do not change witRr.
This is not the case, which is why increasing the Prandtl rerrbip an order of magnitude
does not result in the zonal wind decreasing by the same amiéoainexample the position
of the transition region for’r = 10 in table 2.3 has only moved frome ~ 10 (in
the Pr = 1 case) toRe ~ 3.5 rather thanRe ~ 1. Despite this, the form of, in the
thermodynamic equation serves to explain the general diepey of the transition region

on the Prandtl number.
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Chapter 3

Asymptotics for a linear plane layer

model

Here we develop asymptotic theories, which approximatekiee layer numeric results
with stress-free boundaries very well. By developing thaseties we are able to reduce
the order of the equations, which then either results in l&NODE to solve numerically
or a system that can be partially solved analytically. Thusare able to cover a larger
parameter space than was possible in the numerics of chaptduch of the work

presented in this chapter has been published in section deaafet al. (2010).

In the numerical work previously discussed in chapter 2 wesitered small, but finite,
values of the Ekman number since these correspond to ramtiting systems, which
are of particular physical interest. Hence we take as ourliimgt the quasi-geostrophic
limit, which is that of asymptotically small. In this limit the velocity will be almost
independent of due to the Taylor-Proudman theorem. We use the numericsapteh?2
to ascertain the required asymptotic scalings. From tal@2d the field plots of figures
2.2 and 2.3 we see that the vertical vorticity appears to degandent of the Ekman
number. Conversely, the vertical velocity scales like thenBR number whereaBaf
scales like the inverse of the Ekman number. This last sgaan be seen from the
plots of figures 2.2(b), 2.3(b) and 2.3(e) where the Rayleighlver is held constant $b
scales like the inverse of the Ekman number. However, taBlstiows that the Rayleigh
number scales like the inverse of the Ekman number squared thie Reynolds number

is held constant. Therefore, this requires thatales like the Ekman number, which is the
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scaling we make here. Hence, guided by the numerics, weledbeadependent variables
as¢ = (, @, = Fi., § = Ef, andRa = Ra/E? and we substitute these scalings into

equations (2.42 - 2.44), whence

St ik Res 4 2 — L f—ikReEa—da’z—O (3.1)
¢ dz? Y cody '
d? d? d¢ —
i 2 SV (& ) Ea + E'SS — Ck2RaE! 2
(s +ik,Rez + k dz2> (d22 k ) U, + T k*RaFE™"0, (3.2)
d? ~ iPrReE ~ du
: 2 o ~ z
(SPr —+ lkxPTRGZ + k* — @) EO = Euz — Z%\ZL]CQ (ka — kyEE) . (33)

We then take the leading order terms of these equations imtiie — 0, which gives

2\ - da
. 2 4 _ z
<s +ik,Rez + k sz) ¢ P (3.4)
d¢ .
d—c — —k*Ra, (3.5)
z
a2\ « ik, PrRe ~
(sPr Vik,PrRez + k% — —2> §—q,_ hlries (3.6)
dz k?Ra

Due to the much simplified form of the curl of the vorticity edwn, namely equation
(3.5), where a fourth order derivative has been lost in thallsf limit we have reduced
the system from an eighth order to a fourth order system. Wehle to eliminatd by

taking the double-derivative of equation (3.5) and substig for d29~/dz2 in equation
(3.6) to give

d3¢
dz3

dc -
= (sPr + ik, PrRez + k2> d—C — ik, PrRe( + Rak*u.. (3.7)
z
In fact, we could also easily write this system of equatiosia @ingle fourth order ODE
in ¢ by eliminatinga,. However we retain the use of equations (3.4 - 3.7) only ia thi

chapter, as well as the integral form of equation (3.4), Wisaderived later.

We must also consider the boundary conditions on the vasabM/e use stress-free
boundary conditions in this chapter and since the higheerodgrivatives ofu. have

vanished we only retain the following boundary conditiohs a +1/2 from equations

(2.59 - 2.60):
i, =0, (3.8)
¢
L =0 (3.9)

= 0. (3.10)
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Since this is now a fourth order system of equations we ontyadly require four
boundary conditions and in fact (3.9) and (3.10) are egeiMatiue to equation (3.5).
In sections 3.1 and 3.2 we shall elimin@tdérom the system of equations we solve and
thus we require the use of the boundary conditions on @nnd(. However, in section
3.3 we solve the equations that retdjmamely equations (3.4 - 3.6), rather than making
use of equation (3.7). Hence we shall require the boundarsiiion oné from equation
(3.10).

We are able to solve the equations derived here as a boundlasy problem, which we
consider in section 3.1. In sections 3.2 and 3.3 we take bdugsymptotic limit, namely
that of smallk, since the baroclinic modes onset with zero azimuthal wavdrau. By
doing this we are able to find an expression forin terms of Pr and Ra (section 3.2)
and we are also able to predict the valueiaf and the form of the fields, giveRr and
Re (section 3.3). Since we use equations (3.4 - 3.7) in eaclosect this chapter, the
asymptotic theories will only be accurate for small Ekmambers. Equations (3.4 - 3.7)
are related to the quasi-geostrophic equations used bysatredc scientists (though in
this work diffusion is still included), which we discuss iection 3.4. Also of note is that
Rashidet al. (2008) performed an asymptotic analysis under a small Ekmarber limit
for a similar set of equations to (2.42 - 2.44). However, thksp took the small Prandtl

number limit whereas we retain finifer here.

3.1 Asymptotics for small Ekman number

In this section we solve the coupled system of ODEs given matons (3.4) and (3.7)
without further asymptotic assumptions. We do this to shieat the solutions in this
small Ekman number limit match our numeric solutions froraptier 2. In particular we
compare the position of the transition region. We expecstiiations to share the same
properties since throughout the numerics we used smalfjrbtg, Ekman numbers. We
sets = 0 because we are approximating the numerics where we seafchsteady,
marginal modes. Since the critical latitudinal wavenumbemishes for all modes of

interest, we also séi, = k,, = 0 so thatk = k,. We rewrite equations (3.4) and (3.7) as
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four equations by taking the real and imaginary parts sépigrto give

- - d%,  da
_ g2 S G
kyRez( + k=(; 1.2 T (3.11)
s oer G di
ko ResC. + k2 — 29 _ 4 (3.12)
dz dz
37 ; ; o
s, = —k:xPrRez% + k2 der + k. PrRe(; + Rak*i,, (3.13)
dz3 dz dz
d3 ~i d Nr d ~i ~ —
G _ k:gCPrRez—C + I<:2—C — k,PrReC, + Rak*;. (3.14)
dz3 dz dz

We must also consider the boundary conditions on the fourtioms: fr, g:i, u, and;.

From the no penetration condition and the stress-free ayrmbnditions we obtain
a(1/2) = a(1/2) =0 and ¢(1/2) = {(1/2) = @(1/2) = @(1/2) =0, (3.15)

respectively. Here the primes indicate thalerivatives of the eigenfunctions. We
introduce a normalisation condition such thab) = 1. Also, due to the known symmetry
of the numeric solutions from chapter 2, we are able to impysemetry conditions on
the functions at = 0. We know that for the baroclinic modes the vertical voryi@nd
the vertical velocity are symmetric and antisymmetricrimboutz = 0, respectively.
The vertical vorticity and vertical velocity can be writtenterms of sines and cosines as

follows

¢ = G cos(kyz) — G sin(kyz), (3.16)

u, = Uy cos(k,x) — u; sin(k,x), (3.17)

from the definitions of equations (2.36 - 2.37) with= 0 = £,. Hence for the vertical
vorticity to be symmetric in: aboutz = 0 we must have thaf;(0) = 0. Likewise we
must haver, (0) = 0 sinceu, is antisymmetric about = 0 . Also, the derivatives of
must obey alternating symmetry conditions since they vislbalternate between being

symmetric and antisymmetric in Hence we also must have tht0) = 0 = ¢/(0).

Thus we now have the following nine real boundary conditiamduding a normalisation

condition,
¢:(0) =1, (3.18)
Gi(0) = ¢J(0) = ¢'(0) = @ (0) =0, (3.19)
CU(1/2) = {(1/2) = @:(1/2) = w(1/2) = 0. (3.20)
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The system defined by (3.11 - 3.14) is an eighth order homagengystem in the real
variables, with eight homogeneous boundary conditionsaandrmalisation condition,
so it has an eigenvalu&e. Hence given specific values 6f Pr and Ra we can find a
value for Re. We solve this system using a simple boundary value probBiP] solver

in Maple and results for the transition region case (thaﬁs; 0) are displayed in table
3.1. Recall that the transition region is found at the boupdetween the orange and
blue sections of figure 2.1(a). Hence we can compare the valuRe in table 3.1 with
the location of the transition region from figure 2.1(a) afsbdable 2.3. We see that the
small Ekman number asymptotic theory predicts the locaifdhe transition region very
well. In particular, we see that the position of the trawsitregion is converging, as we
reduceF, to a value similar to that predicted by the asymptoticslicades. Also of note
is that for Pr = 20 and Pr = 50 there are non-zero minimising values of the azimuthal

wavenumber, which we also saw for larffe in the numerics (figure 2.6).

Re
k., Pr=01 Pr=1 Pr=10 Pr=20 Pr=50

0.01 34.64108 10.95447 3.46410 2.44948 1.54917
0.10 34.65831 10.95961 3.46475  2.44918 1.54754
0.50 35.07369 11.08347 3.48056  2.44245 1.51100
1.00 36.34019 11.46042 3.52963 2.42794  1.42646
1.50 38.35637 12.05843 3.61070 2.42013 1.34371
2.00 41.00963 12.84220 3.72316 2.43154 1.28719
2.50 44.18317 13.77610 3.86686  2.46939  1.26193
3.00 47.77158 14.82920 4.04217  2.53699 1.26634
5.00 64.77836 19.83002 5.08823  3.14797 1.59143
10.0 114.69132 35.11997 10.51240 7.57080 4.80621

Table 3.1:Values for the Reynolds number for variokis and Pr in the caseRa = 0 found by solving
the BVP described by equations (3.11 - 3.20)
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3.2 Small wavenumber asymptotics 1. Fixed Rayleigh

number

In this section we develop a theory relevant in the snmallimit since the numerics
indicate from section 2.6 that the preference for barcclinstabilities isk, = 0. Hence

we are able to obtain an expression for the critical Reynalasber in terms of the Prandtl
and Rayleigh numbers. In other words, give®aand aRa we are approximating the
value of Re needed for growing baroclinic modes to appear. In this the@ expand the
Reynolds number in terms of a small parameter and assuméthRiatyleigh number is

an input parameter. We set= 0 andk, = 0 for the same reasons discussed at the start of
section 3.1 and theh = k., which we use as an expansion parameter. It will be useful to
obtain the integral form of equation (3.4) and thus we take:tintegral across the layer

and apply the boundary conditions given by equations ($8)(&.9) to give

~q1/2
1/2 B d
/ (ikRez - k2> (dz — d—< = [a]"}, (3.21)
—1/2 - -1/2
1/2 ~
N (ik:Rez v k:2> Cdz =0, (3.22)
—1/2

since the final two terms vanish at the boundaries. The nemstiggest that the critical
azimuthal wavenumber is zero for baroclinic modes (see digub(a)) and thus we

consider the expansion 6f @, and Re in powers of the small parameters follows:

¢ = D K6 = GQ+kG+EG+ (3.23)
n=0

i o= > Kt = k(u0+ku1+k2u2+---), (3.24)
n=0

Re = Y k'Re, = Reg+kRei+k Rey+---. (3.25)
n=0

We must substitute these expansions into the relevantieqaand consider the resulting
equations at increasing order; that is increasing poweks By applying the boundary
conditions and a normalisation condition we are able to inbéxpressions for the

expansion variableg(, u,, and Re,,). Each expansion variable must satisfy the boundary
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conditions of equations (3.8 - 3.9) individually so that

U, =0, (3.26)
do (3.27)
dz

atz = +1/2 Vn. We must also choose a normalisation condition, which idwevhat one
of the functions takes at a specific valuezofThe remaining functions are then measured

in relation to this value. For simplicity we choose
¢(0) =1, (3.28)
since( is non-zero at = 0.

We now proceed by substituting the expansions (3.23 - 3r#6)aquations (3.4), (3.7)
and (3.22), which give

(ikZ(Reo +kRey + k*Rea) + K — dd—;> (Go+ kG +KG) = kd% (o + ko + K22 ),
(3.29)
dd—; (Co + k(i + k%) = (ikPrz (Reo + kRey + /{32R62> + k‘2> % (Co kG + /<:2§2>
—ikPr (Reo + kRey + k2R62> (go 4 kG + k;2g2> Bk (UO 4 k2u2>7
(3.30)
12
/ y (ik=(Reo + bRey + K2Res) + 12) (Go+ kG + G )dz =0, (3.31)

We have included only terms up to= 2 here, although in reality each sum is infinite.
We can now consider these equations at increasing ordetlat isO (k") for increasing
n € Ny. First we conside©(k?) = O(1) and note that equation (3.29) demands that
d*Go
— = 3.32
-z =0 (3.32)
and hence in generg) = c;z + ¢o. The normalisation condition, equation (3.28), then

requires that, = 1 andc; = 0 and hence
Go = 1. (3.33)

As a consequence of this choice@f all other expansion variables in the expansion for

¢ must vanish at = 0; that is

((0)=0 Vn>0. (3.34)
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We also note that this choice Qf satisfies equation (3.27) as required. Equation (3.30)
taken atO(1) demands that the third derivative @f vanishes, which is satisfied as a
consequence of equation (3.32). We now consider equat®88)(and (3.29) at order
O(k), which give

d*¢

@ = —iPTRe(), (335)
d2C1 dug
lRe()Z - @ = E, (336)

respectively, using equation (3.33). We integrate the fifshese equations and apply

equations (3.27) and (3.34) to give an expressior for

3
(1 = —iPrReg <% - g) , (3.37)
which can be used in equation (3.36) to fund
. 221
Uy = IRB()(]. + PT) 3 - g s (338)

where equation (3.26) has been used.

Next we consider equations (3.31) and (3.30pé&t?), where, recalling thag, = 1, we
find

1/2
/ (iRepz( +1Re1z + 1)dz = 0, (3.39)
~1/2
e d
Y prRee 3 iPrReyt, — iPrRe,. (3.40)
dz3 dz

We can use the definition @f from equation (3.37) to evaluate the integral in equation

(3.39) to acquire

1/2 2,4 2,2
/ (PrReg (— — —) +iReiz + 1) dz =0 (3.41)
12 6 8
) 55 3 1/2
= PrRe; [% — ﬂ} s +1=0 (3.42)
12
= Rey = —0, (343)
Pr

where we have used the fact that the integral of odd functiamish over symmetric
limits. Equation (3.43) gives the leading order approxiorato the critical Reynolds
number. We can also fin¢, from equation (3.40) by inserting the definition @f and
using the boundary and normalisation conditions to get

z z

6 = PR (= ) Ciprke (-2 (3.44)
27 ST 360 T 1020) VT 6 T8 ) '
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Once again considering equations (3.31) and (3.30), naw/at), we obtain

1/2
/ (iRegz(s + 1Re12(1 +1Resz + (1)dz = 0, (3.45)
~1/2
d? dé, d ~
C3 1P7”Reoz—< + 1P7”R612£ + i —iPrReg(y — iPrRe (1 — iPrRes + Rauy,
dz3 dz dz dz
(3.46)

respectively. We insert the definitions ¢f and (, into equation (3.45), evaluate the

integral and find

1/2 7 3
/ (iPrQReg (z_ I >
—1/2 360 1920

24 22 23

+2PrRegRe; | — — — | +1Reyz —iPrReq ( — — =) |dz =0 (3.47)

6 8 6 8

P 3 1/2
= 2PrRegRe; [% — ﬂ} o =0 (3.48)
PrRegRe,y

o oor 3.49
= 130 0, (3.49)

where again the integrals of the odd functions vanish. Thes= 0 since Pr and Re
are both non-zero. By inserting the definitions(pf (, andu, into equation (3.46) and
applying the boundary and normalisation conditions, we find

G = PR (S =
36288 115200 573440

— 20 23 5z 2z
o Pr— 14 P S 22 ip = _2) (3
iReg < r — Ra(l+ 7")) (120 18 + 384) iPrRes ( c 8> (3.50)

We are now able to find an expression for, using equation (3.31) &(k*), which is
1/2
/ (iRepz(3 + 1Resz(y +iRes3z + (o) dz = 0. (3.51)
—1/2
We insert the expressions for, (; and(; into equation (3.51) and evaluate the integral
to find

1/2 a4 »10 56 22
/_1 P ( il <36288 115200 © 573400>
28 23 522

— 4 2
+ Reg(Pr — Ra(1 + Pr)) <— - —+ —) + 2PrRegRes (% - %)

120 48 384

9 28 22
FPrERE 55— Tagg ) ) 42 =0 (352)
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A1Pr3Rel  17Re2(Pr — Ra(1+ Pr)) PrReyRes  PrRe? -

310334400 20160 B 60 26810
(3.53)
30 | 17 Ra(1+Pr)\ 5Pr
— = = 1= _ 54
= Re=\/p 168( Pr ) 792 (354)

where we have substituted fdte, from equation (3.43). We have now acquired the

leading order termpRe,, and the first non-zero correction terie, in the expansion for
Re. Hence from equation (3.25) we find

120 a(l+ Pr 5Pr
Re ~ Reo + k*Rez = ' Pr \/Pr 168( (Pr )> 792

which yields an approximation to the Reynolds number given Ra and a smallk.

. (3.55)

The form of this expression foRe is able to explain the dependence of the critical
wavenumber oPr as seen in section 2.7. For a given Prandtl numbeRtheerm in the
expression foRke given by (3.55) gives an approximation to the critical Regsalumber.
For example, withPr = 1 we haveRe, = 10.9545, which is in excellent agreement with
the numerics discussed in section 2.6. The second term atiegy3.55) then gives an
adjustment to the leading order value f@¢. The sign of this term determines whether
k. = 0 or not. If, for a givenPr and Ra, the value ofRe, is positive then the adjustment
to Rey can only serve to increase the Reynolds number and hencedtieerpd value ok

to minimiseRe is k = 0 as expected given the numeric results from section 2.6. Menve

if the value ofRe, is negative (again for giveRr andf%?z) a non-zerd: must be preferred

as the inclusion of this term now lowers the Reynolds numlmenithe Re, value.

Table 3.2 displays quantities féle, and Re,, given by equation (3.55), for various values
of Pr and Ra. SinceRey is independent ofa, this only varies withPr and the values
predicted for the Reynolds number match the numerics of @Bleery well. We notice
that for most combinations aPr and Ra the value ofRe, is positive, confirming that
k. = 0 and Re. = Rey. Hence whenke, > 0 this asymptotic theory is able to predict
accurate values for the critical wavenumber and criticalrf®é&s number. However for
certain choices of the parameters we obtain negative v&bud2e, indicating that there

IS a non-zero minimising value &f This was seen in the numerics where we recall from
figure 2.6 that there was a non-zerpofor Pr = 50 and Ra = —1. The equivalent

values of the Prandtl and Rayleigh numbers in the asymptbé&ory (Pr = 50 and
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Ra = —1) give a negative value aRe, agreeing with the numerics that there is a non-
zero minimisingk. From the results of table 3.2 it is also evident that for éaingly
negative values of the Rayleigh number, the Prandtl numbyeqisired to be increasingly
large for a non-zero minimising wavenumber. Thus for a giféﬁvanhere is a critical value

of the Prandtl numbe’r., for which k. # 0 if Pr > Pr..

R€2
Pr Reg Ri=0 Ra=-1 Ra=—-10 Ra= —1000

0.1 34.64102 1.74174 21.02111  194.53549 19281.11679
1 10.95445 0.51966 1.62815 11.60453  1109.00579
10  3.46410 0.065920 0.25871 1.99386 192.85967
50 1.54919 —0.16612 —0.086175  0.63337 79.78332
100 1.09545 —0.29036 —0.23438 0.26943 95.68819

Table 3.2:Values forRe, and Re; for various Prandtl and Rayleigh numbers as given by theession
in equation (3.55).

This asymptotic theory is unable to predict the critical e@ymber and critical Reynolds
number whenRe, < 0 (for given Ra and Pr) without including higher order terms,
which would give arO(k*) term in equation (3.55). However, it does indicate the \&lue
of the Prandtl and Rayleigh numbers for which we would expefihtd a non-zero critical

wavenumber.

3.3 Small wavenumber asymptotics 2: Fixed Reynolds

number

In this section we develop a second asymptotic theory withllsk). and stress-free
boundaries. This theory enables us to predict the Rayleigibets and eigenfunctions
found in the numerics of section 2 very well, givér and Re. This section differs from
section 3.2, which, although also considered srhgllpredicted the critical Reynolds
number for the onset of baroclinic instability, givétr and Ra. Here, given aPr and
a Re, the theory approximates the value®d required for growing baroclinic modes to

appear. In this theory we expand the Rayleigh number in tefrasmall parameter and
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assume that the Reynolds number is an input parameter, atenirast to section 3.2.

We introduce a small parameter;, measuring the magnitude of the horizontal
wavenumbers since the numerics suggest that botand k, are zero for baroclinic
instabilities at onset (see figure 2.5(a)). As discussee@atian 2.6 and indicated by the
results of table 2.2, the numerics inform us that the Raylrighber is proportional tb?.
Hence we sefa = f%?z//ci and we also use the same expansions for the eigenfunctions
as those in section 3.2, albeit now in terms: odince we are considering the same small

k. limit. Hence we consider the following expansions:

~

ky = €kn k= ek, (3.56)
{ = iﬁnfn = (+eG+eEG+ (3.57)
n=0
u, = i ly, = e(uo + euy + ug + - - -), (3.58)
n=0
i - ie”“@n - e(@o + el + €20, + - ) (3.59)
n=0
k2Ra = Ra = ie”Ran =  Rag+eRai + €Ras+ -+,  (3.60)
n=0

where we assume thalz, < 0 since we are considering marginal baroclinic instabaitie

in this asymptotic expansion, which have a negative Rayleigmmber. Note that the
expansion variableg, andu,, in the above expansions are not the same as those of section
3.2. However, we have the same boundary and normalisatiwgitamns as in section 3.2,
which are given by equations (3.26 - 3.28). Wesset 0 for the same reason discussed at
the start of section 3.1 and we insert the expansions giveaghbsgtions (3.56 - 3.60) into

equations (3.4 - 3.6) to give

. . d d
(iekaez + 2k — d—) <C0 +e(1+e Cg) = d_ <u0 + €uy + € u2> (3.61)

d
— ((0 +e(h + 62C2> —(—:k (Rag + €Ray + €Ras) (90 + €6, + 6292), (3.62)

d2
<1ek PrRez + %k, — e > (90 + €6; + € 92> = e(uo + eup + 62u2>
z

i PrRR (3.63)
ik, PrRe
—= (Co +eC + €2C2>-
k?(Rag + €Ra; + €2 Ras)

Now we consider the resulting equations at increasing ondetthat isO(e™) for n € Ny.
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If we first take equation (3.61) &(1) we have

d*Go
=z =0 (3.64)
which yields

for the same reasons discussed in section 3.2. Once aggiohthice of(, satisfies the
stress-free boundary conditions and normalisation cimmditn ¢ given by (3.27) and
(3.28), and so no thin boundary layer to match these comdii®required. Also, as seen

in section 3.2, a consequence of this choic€,aé

(2(0) =0 VYn>0. (3.66)

Next we consider equations (3.61 - 3.63)Ht) and we find that

.7 d*G; dug
lkaGZ — @ == E, (367)
9 Ragh, (3.68)
dz
%6, ik, RePr
—— =uy— ———— 3.69
d22 Uo RCLU ) ( )
where we have used equation (3.65). We integrate (3.67y#& gi
ik, Rez> d
! «~ - ﬁ = Ug + Ca, (370)
2 dz
and if we evaluate this equation at either boundary we find tha
ik, R
cg = - s ‘ (3.71)

using equations (3.26) and (3.27). We can substitute.fcand ¢; in equation (3.69),
using equations (3.70) and (3.68) respectively, to find

d26, _i/’%;,;Rez2 d¢, il%mRe il;‘xRePr

% e Y _ 3.72
dz2 2 dz 8 Rag ( )

d26, ik,Rez? ik,Re ik,RePr

—— + Ragby = — ) 3.73

dz2 + fitiobo 2 + 8 + Rayg ( )

This is a second order inhomogeneous ordinary differeatjation (ODE) ir#), of which

the solution to the homogeneous part is

05 = Asinh (\/Taoz> + B cosh (\/ —Raoz) (3.74)
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since we are assuming thRt, < 0. We then assume that the particular solution takes
the form: 0F = c32® + ¢4, substitute into equation (3.73) to fing andc, and then the

general solution fof, is

COHL P A — — _ilAfgCRez2 ik,Re (1+ Pr 1
0y = 0y +0; = Asinh (\/ Ragz> + B cosh (\/ Raoz) >R + Ran oo + <)
(3.75)

Due to the symmetry of the boundary conditions we must haaeAh- 0 so that in fact

ik,Rez? ik Re (1+Pr 1
— Beosh (/= . - 7
0o cos ( Raoz> > Rag + Rag ( Rag + 8)’ (3.76)
ik
wo = BRagcosh <\/—Raoz)+1}§fe(l+Pr), (3.77)
0
ik,Rez® . 1+Pr 1
(1 = By —Ragsinh (\/—Ra0z>+1 ficz — ik, Rez + T—i—— , (3.78)
6 RCLO 8

where the expressions faf, and (; have been found via equations (3.69) and (3.68)
respectively. We have integrated to obtdinbut any constant of integration in (3.78)
must vanish due to the normalisation condition given by¥B.6Ve can also determine
B by considering the no penetration condition on this expoas®r «,. Hence, at either

boundary, we have

0 = BRag cosh (\/ —Ra0/2> + 1/}:;506(1 + Pr) (3.79)

B —ik,Re(1 + Pr)
 Ra}cosh (vV—=Rag/2)

With this expression foB we have acquired the complete expressions fot,, andé,,

= B

(3.80)

given by equations (3.76 - 3.78).
Thus we now look at the next order inFrom equation (3.61) &®(¢*) we find

A A2 d
ik, Re2Cy + k2 — gcj - % (3.81)

P . k2Re24
= ik,ReB+\/—Rayzsinh (\/ —Raoz> — 5 +

A 1+ P 1 A 2
kiR&%( A ) joo 4G du g0

Cod22 T dz

RG/O + 8

where we have substituted the form @ffrom equation (3.78). We now integrate this
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equation to give

A ik, ReBsinh (v—R k2 Re2 25
ik, Re Bz cosh (\/ —Raoz> _ Meltem 5 ( aoz) — ke
V —RCLO 30
k2Re*2® (1+Pr 1 - d¢s
- ~ )+ k- == 3.83
+ 3 ( Ra + 8) +k7z EpRilt ( )

where again there is no constant of integration due to therstny of the boundary
conditions. If we now evaluate this equation at either b@aupdhe final two terms vanish

and we obtain

l%zReQ(l + Pr) B iﬁﬁReQ(l + Pr) tanh (‘/_R@0/2) - ]%326}%2

2Raj v—RayRa] 960 (3.84)
N k2Re? <1+P7“+1) +ﬁ:0
24 \ Ray ' 8) 2
1+ Pr 2(1+ Pr)tanh(v/=Rae/2) 14+ Pr 1 L(Hk_g) 0
Ra? vV —RagRa 12Ray 120  Re? k2 ’
(3.85)

where we have substituted f@ from equation (3.80). Since the wavenumbers only
appear as the ratio df, and fcy we have been able to drop the circumflexes on them
using their definitions from equation (3.56). With this riésve have derived a condition,
which Ra, must satisfy, given values fdPr, Re andk,/k,. Equation (3.85) is solved

numerically forRay with results displayed in table 3.3.

If we first consider the caser = 1, k, /k, = 0 andRe = 100 we can directly compare the
numeric results given by table 2.2 with the equivalent agptnpresults of table 3.3. We
find that the asymptotics predict the numerics very well. &ample, at asymptotically
small azimuthal wavenumber table 2.2 shows that the Rayteigtber at onset will tend
towards the value-9.6577E 2k, 2. We see from table 3.3 that the valuefd, predicted
for the (Re, k,/k,) = (100,0) case is—9.6578. When recalling thaka has been scaled
as Ra = E*k;?Ray in the asymptotics we see that this gives excellent agreemen
In fact, for modes withk, /k, = 0 the asymptotics predict thata, is converging to
approximately—9.9 with increasing zonal flow, which is also in excellent agreabhwith
the numerics. Also of note is that equation (3.85) has no theg#&a, solutions for
Re < 10.9496. As a result of this the asymptotic results, in table 3.3dmteonly modes
with Rag > 0 for Re = 10. This again agrees with the numerics as baroclinic instegsil

were found to decay, in th€r = 1 case, for values of the Reynolds number less than
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approximately10.95. Hence the asymptotics are predicting a very similar @iti@lue

of the Reynolds number that was found in the numerics.

More generally, table 3.3 shows that &s is increased the value dta, required for
instability becomes smaller and then more negative oncleaihges sign. Additionally,
larger Pr allows onset with smaller values &k. The asymptotics of table 3.3 also predict
that increasing:, only serves to stabilise the system by increasing the Raylaignber
at onset in all cases. This matches the numerics as desanilsedtion 2.7 where for a

non-zero Reynolds number the preference for instability kyas 0.

Rao
Re  ky/k, Pr=01 Pr=1 Pr=10

0 4.9382 0.8983  —39.6579
10 0.1 4.9649 0.9470  —39.3883
1 6.6795 4.0672  —22.1361
0 0.2906  —7.5633 —86.4877
30 0.1 0.3019  —7.5633 —86.4877
1 1.3001  —5.7250 —76.3117

0 —0.8594 —9.6578 —98.0825
100 0.1 —0.8581 —9.6555 —98.0696
1 —0.7335 —9.4285 —96.8131
0 —0.9870 —9.8903 —99.3692
1000 0.1 —0.9870  —9.8903 —99.3691
1 —0.9857 —9.8879 —99.3561

Table 3.3:values forRa, found by solving equation (3.85) for various valuesdf, k, /k, and Pr.

In figure 3.1 we have plotted the fields predicted by the loveeder asymptotics as
given by equations (3.65), (3.76) and (3.77) scaled using- Eug, 0 = Ef, in order
to compare with the equivalent parameter values at peinfrom figure 2.1(a). By
comparing this plot with that of 2.2(b) we can clearly see tha small wavenumber
asymptotic theory is also predicting the correct form andynitade of the fields. The
asymptotics continue to predict the correct form{ofu, and # for both larger and
smaller values of the Reynolds number. In the latter casenbketgparameter becomes

the Rayleigh numbeiRa*.
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Figure 3.1: Eigenfunction plots as predicted by the small wavenumbgmasotic theory of section
3.3. This is the equivalent of point, from figure 2.1(a) wheréZ? = 10~%, Pr = 1, Ra = —105,
Re = Re* =10.9599, k, = 0.1 andk, = k,, =

3.4 Relation to the Eady problem

We have seen how baroclinic instabilities have arisen immagel throughout this chapter
and the last. In this section we consider how the equationsave derived in the small
Ekman number limit relate to the governing equations of thdygproblem (Eady, 1949),
which is a classic problem involving the baroclinic instai We discussed the origin of
the baroclinic instability in section 1.5 where we recaditttt can occur when surfaces of
constant pressure and constant density do not coincids. g kiquivalent to the density
taking the form given in equation (1.48). In our current petsee equations (1.13) and

(2.15)) we have that density is related to the temperatwike that

p=po(l —aTy) (3.86)
S— (1—a<5—d—ﬁ —29U0y>), (3.87)
qo
which is of the form of equation (1.48) with
o120 s s a2 (3.88)
2 gop

We see from this form op that whens > 0 the fluid is not stably stratified since
density increases withand we would expect thermal instabilities to dominate. Have

wheng < 0 the fluid is stably stratified and although thermal inst#b#i will not occur,

baroclinic instabilities will be possible.

The small Ekman number equations (3.4 - 3.6) are related @ogtrasi-geostrophic
(QG) equations used in atmospheric science (see, for erarRpdlosky, 1987). The
geostrophic component of the velocity is given My(ug, ug) = (—dp/dy,dp/dx), a
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seen by equation (45.25) of Drazin & Reid (1981). Hence, froueg¢ion (2.51),

ous  us
_ Yy Oy
=G (3.89)
1 (0% 0%
=50 (@ + 8_342) (3.90)
Ep
- (3.91)

and the pressure perturbation is simply proportional to wbeical vorticity. Thus
equation (3.5) is simply the hydrostatic equation used @& approximation, where
vertical accelerations are neglected. In section 1.3 wetioread that the parameter often
used to determine whether a system is rapidly rotating iRibgsby number, defined by
equation (1.20). The terms containikg in equations (3.1) and (3.3) are also dropped
in the Eady problem when the small Rossby number limit is takee section 45 of
Drazin & Reid (1981). The equivalent limit here, whichig ' << 1, has been taken
by considering finitekRe and £ — 0 resulting in equations (3.4 - 3.6). If we take the

=-derivative of (3.6) and eliminate. andd using (3.4) and (3.5), we obtain

df di, ik, PrRed{

d? ~
. 2 4 ) dv . _
(SPT + ik, PrRez + k sz) s + ik, PrRef e 2h, d (3.92)
d2 —1 d2¢\ ik, PrRed(
Pr+ik,PrR e ——— ] - === 3.93
= (3 r+1 riez + sz) (kZRa sz) 12, dz ( )
A2\ - ik,PrRedC
(s + ik, Rez + dz2) ¢ 2h, d

- Pr +ik,PrR +k;2—d2 d25+ ik, R +/<:2—d2 Ral =0
sPr 4+ 1k, PrRez 12 ) &2 s+ 1k, Rez 12 aC = 0.

(3.94)

In the QG approximation, diffusion is usually ignored, whis the case in the Eady
problem. Hence thg? — d?/dz? terms, which arise from the dissipative terms (originally
involving v andk) are dropped in (3.94). This then leads to the classical Egdwation
. 2¢  Ra-
(s + ik, Rez) (@ + ﬁ(> =0, (3.95)
which is equivalent to equation (45.28) of Drazin & Reid (128The only boundary

condition to survive the neglect of diffusionis = 0, which, from equation (3.6), leads
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to
~ ik, P ~
(sPr +ik,PrRez)0 = —ﬂ (3.96)
) k?Ra
: d¢ . x 1
= (s +ik,Rez) L= ik,Re(, on z= iﬁ’ (3.97)

where we have, again, dropped the diffusion terms and sutestiford from equation
(3.5). Equation (3.97) is equivalent to the boundary coodigiven by equation (45.30)
of Drazin & Reid (1981). Instability in the Eady problem ocs@s an oscillatory mode,
Js] = w # 0. The relevant part of our parameter space to the Eady proBlermereRe
is large, since then the viscosity is small. There we do iddael oscillatory baroclinic
modes to the right of the green lines in figure 2.1. One suchendisplayed in figure
2.2(c), pointx . Therefore our theory agrees with the results of the Eadglpno when

the relevant rapidly rotating, inviscid limit is taken.
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Chapter 4

A linear theory for the annulus model

In chapters 2 and 3 we have investigated convection in thpleshof models, that of
the plane layer. Plane layer models are relevant to certgjioms of astrophysical and
geophysical bodies, namely polar regions. However theyooangive an insight into the
nature of convection and, in particular, do not take intamaaot the fact that the boundaries
in the spherical geometry of planetary bodies are not flagallg, investigations would
always be performed in spherical geometry. The linear thebconvection in spheres
and spherical shells has now been comprehensively ine¢stlg Roberts (1968) and
Busse (1970) derived some of the basic principles and thd Ek@alan number limit was
discussed by Jonext al. (2000) and Dormyet al. (2004). However, performing three-
dimensional simulations in spherical geometry can be cdatimally expensive. It is
for this reason that quasi-geostrophic models have beexlapmd to reduce the number
of dimensions in the problem. The quasi-geostrophic appraton takes advantage of
the strong Coriolis force in rapidly rotating systems in artte ignore thez-structure
of the vertical vorticity of the system (Gillet & Jones, 200&ne such model that has
been widely used, due to its ability to replicate resultsnseefully three-dimensional
simulations, is the Busse annulus (Busse, 1970). This modeth®arotation axis and
the direction of gravity orthogonal to one another. Thus itelevant to the region of the
Earth’s core outside the tangent cylinder and also to thespimeres of the gas giants.
Much pioneering work in developing the annulus model as aehfmt geophysical and
astrophysical bodies was completed by Busse and collabsratca series of papers

(Busse, 1970; Busse & Or, 1986; Busse, 1986; Or & Busse, 1987 a8bktt & Busse,
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1992). Magnetic instabilities within an annulus model hals& been investigated by

Hutcheson & Fearn (1995) though we continue to consider dinemagnetic case here.

Our work on the Busse annulus, throughout the next two chgpteaiintains an interest
in the interaction between convection and zonal flows. Wepooe a more in depth
discussion of previous work on this subject, especially-lo@ar results, to chapter 5,
although we shall briefly discuss the linear theory in secfi@. For this chapter it suffices
to know that the Busse annulus replicates several of the Kegces of convection in
spherical geometry. For example, convection in the anmdaars in the form of tall thin
columns which onset as thermal Rossby waves (Busse & Or, 1988)is in agreement
with the linear theory of convection at onset in sphericalrgetry (Jone®t al,, 2000;
Dormy et al, 2004). Additionally, of particular relevance to the subjef this thesis is
the non-linear model’s ability to develop large zonal flowsath may have a multiple jet

structure (see, for example, Joregsl., 2003).

In this chapter we discuss the effects of adding an azimuathral flow to the basic state
of the Busse annulus by considering the linear theory. Litle@ories cannot produce
zonal flows since they are generated by the non-linear ictieraof the small-scale

perturbations as evidenced by their lack of appearanceness al. (2000) and Dormy

et al. (2004). However, by adding the zonal flow to the basic statecareinvestigate

whether such flows of various magnitude and form aid or hitickelonset of convection.
In addition to this motivation, we are also aware from oucdssion in section 1.1 that
zonal flows occur in astrophysical bodies such as the Eadtitengas giants. It is also
worth noting that in this chapter we will essentially be ddesing the analogous study
to chapters 2 and 3 but for the annulus model rather than @ jdgrer model. Thus, it is
also sensible to consider this linear theory in order to canavith that of the plane layer

geometry.

We begin in section 4.1 with a mathematical description efgioblem, which includes a
general derivation of our equations. Therefore we retamlimear terms in the derivation
for later use in chapter 5. We then describe how we solve tiatistability problem in

section 4.2 and discuss the limits that have been consideprdvious work. In sections
4.3 and 4.4 we discuss novel results for the linear theorhefannulus model with an

imposed azimuthal zonal flow for two different flow patterns.
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4.1 Mathematical setup

We begin with a description of the mathematical setup of tlablem. We consider a
fluid filled cylindrical annulus with inclined bounding sades for the top and bottom
lids. These top and bottom end surfaces are sloped in opgbegctions so that the outer
cylinder is shorter than the inner cylinder. The mean radiube annulus is,, the gap
between the two cylinders, referred to as the widtiiand the height of the annulus at
the outer cylindrical wall id.. The annulus rotates about the axial direction with angular
velocity 2 and a temperature difference Afl" is maintained between the two walls such
that the outer and inner walls are at temperatdres 0 and7 = AT respectively. We
also take the gravity force to be acting radially inward dmglannular end walls make an

angley to the horizontal.

The setup described here is, as desired, representativplahetary atmosphere or the
region of the Earth’s outer core outside the tangent cylind@leis is because the annulus
model exhibits key properties of these spherical physegibins including gravity acting
perpendicular to the rotation axis (true near equatorigiores) and sloped ‘horizontal’
boundaries representing the curvature of the outer boiesdaf the spherical bodies.
This is contrast to the plane layer model discussed in cha@tand 3 which is relevant

to the polar regions of geophysical and astrophysical Isodie

In fact, the annulus model acts as the simplest model of @iovein spherical geometry
that includes the effects of rotation. This is because thdahallows near geostrophic
flow, which is the case in a sphere. We saw in chapter 1 how tgFRroudman

theorem is effectively a consequence of the condition fasgephic motion where the
Coriolis force is balanced exactly by the pressure gradiensection 1.3 we discussed
how, as a result of the Taylor-Proudman theorem, tall thinroos are the preference in
spherical geometry. These tall thin columns are also fodrtdeaonset of convection in
the annulus model. The annulus model does however have sisadvantages due to
its simplistic nature. For example, although the end wallriztaries are sloped in order
to mimic spherical geometry, in reality they would, of cayrbe curved. By omitting

the curvature of these boundaries we neglect any prefetbatéhere may be for waves
to propagate in one azimuthal direction over the other. Thuath sloped boundaries

we cannot distinguish between eastward and westward patipggvaves (Busse & Or,
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1986).

Another difference between the model discussed here angléme layer model of
chapters 2 and 3 is the origin of the zonal flow itself. In thangl layer model the
basic state zonal flow was driven as a thermal wind by a rgdilpendent temperature
gradient. However, in the annulus model the zonal flow can &@atained by geostrophic
balance since azimuthal flows can be geostrophic. Hence vigagie a zonal flow driven
by non-linear interactions (specifically the Reynolds stes$, which is then maintained

by the geostrophic basic state.

The natural choice of coordinate system for the annulus hwaoleld be cylindrical polar
coordinates:(r, ¢, z). However, by making the small-gap approximation/ofr, < 1
the curvature terms of cylindrical polars can be neglected \ae are able instead to
choose a Cartesian coordinate system. Therefore we choosdira@tes such thatis the
azimuthal coordinate and increases eastwardly (actiegliland0 < y < D is the radial
coordinate (acting like-r). The axial coordinate;, remains unchanged from cylindrical
polars and ranges fromL /2 to L /2. Hence, gravity acts in the positiyedirection and
the direction of rotation is in the-direction so thag = gy andQ = Qz. The setup
described above is shown in figure 4.1. The fluid is boundedinvithe annulus and
hence we must demand a no penetration condition on all bowsdd he no penetration

condition at the sloped end walls of the annulus is deperatetite inclinationyy, so that
cos(x)u, Fsin(x)u, =0 on z=+L/2, (4.1)

from equation (1.17). Boundary conditions on the inner anerocylindrical walls will

be discussed in the next section.

The linear theory of the annulus model was originally diseasand solved by Busse
(1970). In this work we go further by imposing an azimuthahaloflow in the basic
state. The zonal flow takes the form of a radial shear and sgblely dependent on the

y-coordinate so that

uo = Up(y)%x. (4.2)

This form of the zonal flow is, of course, similar to that of fflane layer model since it

acts azimuthally and the shearing is again radial, thougibw requires g rather than
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Figure 4.1:Diagram depicting the physical setup of the Busse annuiikent from Abdulrahmast al.
(2000).

z-dependence. The basic state vorticity in théirection is then
Go=2%2-Vxu=——. (4.3)

The basic state temperature is given by

ATy

TO D7

(4.4)

so thatTy = 0 andTy = AT at the outer and inner cylindrical walls respectively, as

discussed above.

We now derive a set of equations from equations (1.9), (1atf)) (1.16) following a
similar procedure to that of the aforementioned early amplpers (see, for example,
Busse & Or, 1986). We use the vorticity equation (1.16) rathan the momentum
equation (1.14) since the former does not contain the presda particular, we shall

use thez-component of equation (1.16), which is

07 ouU oT
— +U-VZ-20% - — = —ga— 27 4.5
o "YUV 2 gy T T9ag, TVZ (4-5)

where Z is the z-component of the vorticity. Here we have substituted thindiens
of Q andg discussed above and ignored tf¥- V)U term in equation (1.16). This
is justified since we are interested in the small Rossby nuriér of rapid rotation
where the planetary vorticity€2 dominates over the fluid vorticit%. Additionally, the
vorticity acts only in the:-direction (as we shall see later) so tlAt V)U produces only

a z-derivative acting olJ. The quantityoU/Jz will be small because the length scale
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in the horizontal direction is much shorter than that of tleetizal direction due to the
rapid rotation. Conversely, the ter(@ - V)Z is retained since it consists of horizontal

derivatives of the vorticity which are not small in general.

We perturb around the basic state to acquire a set of eqsaimlar to those of Busse but
now with several terms involving,. Although this chapter deals with the linear theory
of the model, in this derivation we retain the non-lineanteffor later use in chapter 5.
However, we note that when considering the non-linear theothe following chapter
we must sel/y = 0 in these equations. Similarly, the non-linear terms appgan the

derived equations will be dropped in this chapter from seci.2 onwards.

We begin the derivation by perturbing so that= ug+u, 7' = Ty+60 andZ = (,+¢. We
assume that < 1 and hence the boundaries are nearly flat, the flow is nearlstiggahic
andz-component of the velocity is small compared with the hartabcomponents. This

allows us to make the ansatz

u=—-V x¢(x,y)z+u,z (4.6)
o, o,
= ayx+ a%y—i—uzz, 4.7)

where the vertical velocityy., is a small ageostrophic part of the flow of orderAlso,

in the limit of smally, the end wall boundary conditions, given by equation (dhé&gome
u, ==£xu, on z==+L/2. (4.8)

We substitute the perturbed formsGf 7" and Z into equation (4.5) to give

oC L OC 06 . OC ¢ o du. 00,
8t+anx+uyay+ux8x—l—uyay 2982_ gaax—i—yvc 4.9
o OC DG | DHIC OvaC | du. 90,

= atUa T e, Taray ayar Vo, T gy TYV e (410
o o QU dW.C) w00,

= o Uoﬁx dy? Oz N A(z,y) 20 P vV (4.11)

where we have substituted fof andu, in terms ofy> using equation (4.7) and substituted
for (y using equation (4.3). Here we have also introduced the Iatolefined as

O(h1,hy)  Ohy Ohy  Ohy Ohy

— - 412
d(x,y) oxr Oy  Ox Oy’ ( )

for some functiong; andh,.
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In order to eliminate:, we note that the only-dependence of equation (4.11) appears in

thew, term and thus we integrate ovefbetween: = —L/2 andz = L/2) to give

a¢ ¢ d*Up 94 (¥, ¢) L2 or 5
1Sy, L% RS Hg — gl 41
ot " UO@:U dy? Ox * d(x,y) =22 9%z T VT
(4.13)
a¢ o¢ Uy  0(,¢)  4xQoy or 2
- — — - — — = —go— 4.14
ot +Uo or  dy? 0z O(x,vy) L Ox 9% oz TV (4.14)

where we have used the fact that= +xu, = £x0¢/0x onz = £L /2 from equation
(4.8). By using this form for:., we have implicitly assumed that the boundaries are also
stress-free. In order to use rigid boundaries we must irwwatp the effects of an Ekman

layer, which we shall consider in chapter 5.

We must also consider the heat equation and so we substieifgetturbed forms ot

and7 into equation (1.15) to give

%+U@+u %—i—u %_’_U %

ot Pox Yoy | Cor ' Yoy

00 00 AT oy  9(,0) 9

- =27 = _ 4.1
~ ot +anl’ i D 0z  O(z,y) RV (4.16)

If we take the curl of equation (4.7) we also find that the \aattican be written in terms

= kV?0 (4.15)

of ¢ since
(=Vxu=-VxVxz (4.17)
= —V(V - ¢2) + V2 (4.18)
= V33, (4.19)

where we have used equation (A.2) and neglectgedwhich is small compared tg.
Hence the vertical vorticity is
¢ = V2. (4.20)

We non-dimensionalise using length scdle the viscous timescalé?/v and the
temperature scaleAT/x. We also suppose that our zonal flow has a typical velocity
of U*. Hence we substitute the formulaér,y} — D{i,j}, t — iD*/v, ¢ — v,

¢ — Cv/D% 0 — QvAT/k andU, — U,U* into equations (4.14) and (4.16) to give

V2 9C I/U*Uoﬁ_f B VU*Ué’@_@E V2 01, ¢) B 4x§2u8_@/~) _ gavAT 00 12

— — — — — 2~
D* ot D3 9% D3 9z  D*O(z,y) DL 0% Dr 07 | D4v ¢
(4.21)
VAT 00 vATU*Uy 30  vAT 3  1PAT (i, 0)  vAT _, -
v rall Yoot v A . 4.22
sD29i T wD oi DT ai | wDr oGy DY (422
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We can tidy up these equations by introducing dimensiorpasameters and dropping
the tildes to give

o o .0 o0 o8

) o " — _ 2
T + Rer—ax + e (B+ ReUO)_@x Ra—a$ + V¢, (4.23)
Bl 00 0,0\ o _,
Pr (675 + RelUp— + a(a:,y)) = =5 TV, (4.24)

where the beta parametet, Prandtl numberPr, Rayleigh numberRa, and Reynolds
number,Re, are defined as

4vQD? ATD?
- , PT:Z, Ra:—ga , Re
vL K VK

_ DU"

3 (4.25)

In the annulus model the beta parameter effectively actsnasverse Ekman number
(compare with equation (2.32)) and therefore in the limitagdid rotation we expegt to

be large. The other three parameters are equivalent to thdke plane layer model of
chapters 2 and 3 with slight changes to account for the asrgdametry (again compare

with equation (2.32)).

From equation (4.20) we can also elimingten equation (4.23) to leave a just two

equations for two unknowns; and®g:

(9V21/1 aV% 3(¢7V2¢) " a¢ _ o0 4
5 + RelU, e + E (B + ReUO)% = —Ra% + V%, (4.26)
06 a0 0(¢,0) oY 9
pr (0 % S . 4.27
T(at—i_ReUO@a:—i_a(m,y)) 8x+ve (4.27)

Equations (4.26 - 4.27) are a coupled set of partial difféaéaquations that describe the
time evolution of the fluid flow and temperature perturbationthe annulus model where
the basic state has an azimuthal zonal flow giveri/pyy). We note that iU, = 0 the
equations are equivalent to those derived in previousalikee. In particular, compare
with equations (2.8a) and (2.8b) from Busse & Or (1986). If widiaonally demand
that3 = 0 we note that equations (4.26 - 4.27) reduce down to the basiat®ns for

Rayleigh-Benard convection. This is because the rotation enters balygh thes term.

4.2 Numerical method and the solution in two limits

We wish to perform a linear stability analysis of the mathBoah setup we have derived

in section 4.1. To do this we drop the non-linear terms in &qoa (4.26 - 4.27) and we
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choose the andz-dependence of the solutions to be traveling waves reguitira 1D

problem iny. Hence we choose the following form for our functions:

= (y) exp(st + ikx), (4.28)
0 = 0(y) exp(st + ikzx), (4.29)

wheres is the complex growth rate. If we substitute these forms lier functions into
equations (4.26 - 4.27) and drop the non-linear Jacobiamstere acquire

d? A d? A A
S (d_y2 - k2> 1/} + 1/{:R6U0 (d_y2 - k'2) Q/} - lk(ﬁ + RGU(/)/)Q/} =
. 42 2
—ikRal + | — — k*) 1+, (4.30)
dy?

R R . 42 .
sPrO + ik PrReUyf = —iky + (d_y2 — kQ) 0. (4.31)

We now consider the boundary conditions. Since we have imeddundary conditions
on the sloped end walls in order to integrateut of the problem, the only boundaries left
to consider at those at the inner and outer walls of the cglidEquations (4.30 - 4.31)
form a sixth order system of equations and thus we requirdaindary conditions at
y = 0 andy = 1. As well as there being no penetration we also require thesadaries
to be stress-free and have constant surface temperatuneeHgy a similar argument to

that of section 2.2, af = 0 andy = 1 we demand that

u, =0 (no penetration), (4.32)
Otz _ 0 (stress-free), (4.33)
dy
0 =0 (constant surface temperature), (4.34)

which using equation (4.7) and the form of the functions frequations (4.28 - 4.29)

gives
W_y 5 g (4.35)
ox
0 d*p
@?_O = &F‘O’ (4.36)
6=0. (4.37)

Therefore the six boundary conditions we imposeyea 0 andy = 1 are

)
w:%:e:o. (4.38)
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We now wish to solve the differential eigenvalue problenmegiby equations (4.30 - 4.31)
subject to the boundary conditions given by equation (4.8Bwever, we first note the
solutions to these equations in two important limits. Thauhes discussed here are well

known and thus are not derived in detail.

The first limit is that of inviscid flow with no driving from by@ancy where the only
driving force then arises from the horizontal shear in thsidatate. The viscosity is
small in the giant planets, as well as the Earth’s core, sasdla sensible limit to consider.
In this case the problem reduces to an example of a barotnmogti@bility discussed by,
for example, Vallis (2006). For an inviscid, homogeneouslifive drop the heat equation

(4.31) and equation (4.30) becomes

2

(s + ikRely) (dd—y2 - /52) U — ik(8+ ReU )t = 0. (4.39)

This is Rayleigh's equation (Rayleigh, 1880) in the preseniceotation; equivalent
to equation (6.20) of Vallis (2006). The regular basic stateticity, (, = —ReU|,

of Rayleigh’s equation has been replaced by the (basic gtatential vorticity (PV):
q0 = —(By + ReU)). In fact, if we define the P\4, as

q = (¢ — ReUj — By, (4.40)

then equation (4.23), in the absence of viscosity and buzyy@an be written as

Dq
— =0 4.41
5 =0 (4.41)
whereD /Dt is the material derivative. Thus, PV is conserved movindnwie fluid when
friction and buoyancy are ignored. Some models attemptptagxthe existence of zonal
flows and multiple jets in terms of PV when the flow is weaklyctd (Marcus & Lee,
1998). In our full model the viscosity is small; the buoyarasce however is not and so

we shall be considering a different regime.

Despite the relatively simple form of equation (4.39) itiidult to solve analytically for
an arbitrarylUy(y). However, by multiplying Rayleigh’s equation through by ttmmplex
conjugate ofj and integrating over the domain we obtain:

L 72 R Vik(B+ ReUY) | -
— — k2 ) dy = 0 2dy. 4.42
/Ow (dy2 )d’ Y /0 T ALY (4.42)
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The left-hand-side can be integrated by parts and appliimgoundary conditions results
in an expression that is real. Hence the imaginary part ofigf-hand-side must vanish

so that

' ko (B + ReU! A
/ (8 0) S[¢*dy = 0. (4.43)
0

02 + (w+ kRel,)
In order for instability to occur the growth rate, cannot vanish and therefore the quantity
B + ReU} must change sign somewhere in the domain so that the integmatancel.
Equivalently, the PV must have a stationary value. This ¢@rd known as Rayleigh’s

inflection-point criterion, in our notation can be writtes a
B+ ReUY =0 somewhere in the domain. (4.44)

Fjartoft (1950) added to this criterion by proving that theti®nary value of the PV must
be a maximum. In our work we considér> 0 and Re > 0. Thus in order for equation
(4.44) to be satisfied we must have thgt < 0 somewhere in the domain. The Reynolds
number must also be large enough to overcome the rotatiermal tWe therefore expect
the possibility of instabilities arising at large enouffla, even with negative Rayleigh

number.

Another limit to discuss is the problem with no zonal flow irethasic state, which is
equivalent to the original annulus problem developed by 8{$870). In the case with
Uy = 0, as already noted, equations (4.30 - 4.31) reduce to thogedusse annulus
and the simple solution:

ik .
4.45
w2+ k2 4 inrw’ ( )

~

Y = sin(my), 0=

arises provided
_ 2 213 Pr232
W= Bk and Ra=<7r + K r°p

(L5 P 1) EERARTED SRR

Here we have takem = iw so that we are looking at marginal stability ands the
frequency of the disturbances at onset. These resultsgaaignificant information.
The form ofy and# shows that the preference is for convection cells that@dtratross
the full radial extent of the annular layer. The expressionRa here is the value of
the Rayleigh number for which modes with wavenumbewill onset. As usual, the
expression can be minimised ovem order to find a necessary condition (that/g, >

Ra,) for instability to occur. We notice that the expression for in equation (4.46)
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resembles that of equation (2.68) for rotating plane laygvection. As in that case,
we can immediately note that the expression for the Rayleighber is smallest when
rotation is removed; that is wheh= 0. Thus rotation postpones the onset of convection
for all modes and therefore has a stabilising effect. In tit@ting plane layer case we saw
that both steady and oscillating modes were possible at depending on the parameter
regimes. However, the convectialwaysonsets as oscillatory modes in the annulus and
hence solutions witk = 0 are not possible, provided # 0. The expression fap is a
dispersion relation and wheth = 0, we find that the convection which onsets is steady
sincew = 0. However, withg = 0 the problem has reverted to that of Rayleigarard
convection since the expression for the Rayleigh number uaton (4.46) reduces to
that found by Rayleigh (1916) (see equation (1.44)). Whe#A 0 the convection onsets
in the form of unsteady thermal Rossby waves (Busse & Or, 1986)td columns of

fluid being different lengths at different radii.

The expression foRa can also be minimised ovérin the case withs # 0 though Ra..
can no longer be found analytically. However, in the limitrapid rotation 0 — o),

which is of interest in many astrophysical bodies, we are #&bfind that

P?”l/sﬁl/g _21/652/3 3P7’4/3ﬁ4/3
TUS(L+ Pry/a YT PRB(L 1 PR3 T 923(1 4 pr)2ls

ke (4.47)

As 3 o« E-' we effectively have that, < E~'/3, w, x E~?/3 andRa, x E~*3. These
scalings agree with those found in section 2.3 as well aetfmsd in numerical results
found in spherical models (Jonesal., 2000). Also of note are the forms of the phase

and group velocities, which are found from the dispersidati@n. They take the form

w —f w Bk — 72)
kT 0+ Pra 1 k) and - = T P T R (4.48)

and we see that the phase speed depends on the sigTbfs is of specific significance
when considering the tangent cylinder: OTC> 0, as the angle of the slope of the
boundaries have the same magnitude. However, A KCO0 since the angle of the slope at
the inner boundary is greater than that of the outer bounddrgrefore the waves travel
eastward OTC and westward ITC, which as mentioned earligrathar reason why flow

across the TC is likely to be minimal.

So far we have discussed two limits of the full equations thathave derived: the

inviscid, homogeneous case and the case without zonal flemveé\have seen for both
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of these situations there is a criterion for the onset osipiity. In order to solve the full
viscous, rotating problem with buoyancy and zonal flow we ihsadve the differential
eigenvalue problem numerically. This will enable us to stigate the interaction between

the convective and barotropic instabilities. We rearraemgéations (4.30 - 4.31) as

S . &2 o o
s (d_y2 - k%ﬂ) = —(ikReU, + k?) <d_y2 — k2> Y +1k(8 + ReUY )y — ik Rab,
(4.49)
) : NA 1] d2é
sPro = —(ikPrReUy + k)0 — iky + R (4.50)

which shows that this is indeed a differential eigenvalwsbfgm with eigenvalue. We
solve this eigenvalue problem using the same numericaladethChebyshev collocation
discussed in chapter 2 with a truncation vaNie100. For that reason we do not discuss
the method again here and the reader is directed to the disous the method in section
2.4. The set of eigenfunctions in this cas&is- {1&, é} and the eigenvector is now =

(1, .., Unga, 01, ..., On 2] T. The system we have setup in this chapter has the following
input parametersk, Pr, 3, Re and Ra as well as the functiofVy(y), which can be varied

to obtain the outputss andw. The elements of the sdt can be then reconstructed
from w and these eigenfunctions are normalised using the methsodstied in section
2.4. However, in this linear theory we use the value of thépe# of ¢, rather thar(, to
normalise. The 2D fields; andd, are then constructed using equations (4.28 - 4.29) and

we use equation (4.20) to calculate the vertical vortigity,

We letI" be the sef” = {k, Pr, 3, Re} and assume we have chosen the form of the
zonal flow, that is we have explicitly chosen the functigsiy). Then when performing a
linear stability analysis considering the onset of coneecive wish to slowly increase the
Rayleigh number for a giveh until a marginal mode (with[s] = o = 0) appears. This
value of the Rayleigh number is then the value for the onsebo¥vection for the given
setl” and hence it is for apecificvalue ofk. In other words, it is the value of the Rayleigh
number needed for the disturbance with wavelergthk to onset. Since the onset value
of Ra is a function ofk, in order to find thecritical Rayleigh number we must minimise
the Rayleigh number over all possible disturbances; thatas all k. The value oft that
yields the critical value of the Rayleigh number for onsehis ¢ritical wavenumber,.,

and we denote the frequency of this modedy
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ﬁ k’c RCLC We

103 6.216051 8107.860409 —64.071201
10" 14.851700 1.639668 x 10° —322.242706
10° 32.645162 3.491914 x 10 —1517.564194

Table 4.1:Critical results for the Rayleigh number, wavenumber aeddency for varioug in the case
Up=0andPr = 1.

The method described in the previous paragraph will be usttifollowing two sections
and also in parts of chapter 5 where we consider various féom&,(y) acquired from
non-linear simulations of the problem. In order to check@ebyshev collocation code
described above reproduces familiar results we first brglysider the case @f, = 0
here, which is equivalent to thRe = 0 case. We refer to this as thmse casesince
it has been comprehensively investigated in previous workhe annulus model. We
perform the linear stability analysis for this case and #wults for a few values of
with Pr = 1 are shown in table 4.1. The results in this table agree wibisehfrom
previous work; for example, Busse & Or (1986). Since the@ltRayleigh number is
a function of the Prandtl number, the beta parameter and thiedRks number we can
write Ra. = Ra.(Pr, 3, Re). We then defind?a’ to be the critical Rayleigh number in
the absence of any zonal flow, thatlis} = Ra.(Pr, 3, 0) for given values of the Prandtl
number and the beta parameter. In figure 4.3(a) we have a#egthe form of, > and

g for the case wher&, = 0, 5 = 10®> and Pr = 1. These plots also match the results

from previous work; for example, Busse & Or (1986).

4.3 Results for a linear flow pattern

In this section we choose a form for the zonal flow, which is @m@ular analogy of
the zonal flow chosen in the plane layer model discussed iptetea2 and 3. We then
solve the linear equations (4.49 - 4.50) with this zonal flowWind marginal modes. In
section 2.1 we chose a radially dependent linear flow thapneegtest in magnitude at the
boundaries of the layer and vanished at the centre of the. lay¢he plane layer model
the radial direction refers to the vertical coordinatnce the layer is thought to be in the

polar regions of a planetary interior. The equivalent redii@ction in the annulus model
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is they-coordinate. Thus we choose

1
U=y -3 (4.51)

as the form of the zonal flow. We now insert this into equati@49 - 4.50) and solve the
eigenvalue problem for various parameter regimes usingitbod described in section
4.2. We work with typical values of the beta parametér < 3 < 10°, which are
equivalent to the values of the Ekman number consideredapteins 2 and 3. We vary
the Reynolds number so that< Re < 10000 and we work withPr = 1.

In figure 4.2 we plot how the critical values of the Rayleigh m@m wavenumber and
frequency respectively, vary with the Reynolds number fer ¢tase ofPr = 1. The
Reynolds number is represented on a logarithmic axis onraétplots as is the critical
Rayleigh number in figure 4.2(a). This is done due to the madag of the parameters
involved. We immediately see from figure 4.2(a) that theicaltRayleigh number is
larger thanRa; for all non-zero values ok, for all values ofg considered. In fact,
the critical Rayleigh number increases monotonically fr&aj as the strength of the
zonal flow increases. Therefore the form of the zonal flowwdised in this section,
given by equation (4.51), has a stabilising effect on thentlaé instability and hence
is not favourable for the onset of convection. Figures 4.2fd 4.2(c) inform us that
increasing the strength of the zonal flow lengthens the ahiatwavelength and increases

the magnitude of the frequency of the modes.

In figure 4.3 we plot the form of the fields for a base case, namiel 10° where the
parameter values can be found in table 4.1. We also plot thus fier the points marked
on the plots of figure 4.2. Table 4.2 contains the parameteesaised for the plots, as
well as those for the next section. Figure 4.3(a) shows tha fuf the fields in the case
of no zonal flow for3 = 10® and Pr = 1. In this case the mode is symmetricijrand
aligned such that heat is transported outward by the roitsespositivel) corresponds to
a roll rotating clockwise. As we increase the zonal flow wetbegthe rolls are forced to
adopt a slanted structure, in line with the zonal flow and keare no longer symmetric in
y. This can be seen in figure 4.3(b). When we increase the zomasttength further, in
figure 4.3(c), we see increased alignment of the rolls wigtzitnal flow and the modes no
longer fill the entire annular channel. There is a preferdacthe rolls to localise in the

region of the channel where the zonal flow acts in the positamnuthal direction. Hence
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Figure 4.2:Plot of how the critical values of the variables vary with abfiow strength for the linear

flow pattern for several values gfand with Pr = 1.
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the preference is for the disturbances to appear where tiad filow is prograde. Figures
4.3(d), 4.3(e) and 4.3(f) show field plots fér~ 10%. We see that the same general pattern
emerges though for larget a smaller value ofre is required before the rolls become
localised. This can be seen by comparing figures 4.3(b) &{d)4vith 4.3(d) and 4.3(e),
which are for the same two values Bt but for 3 = 10° and3 = 10* respectively. In
the case ofs = 10°, the roll has already become fully localisedat = 10 as shown by
figure 4.3(f).

In shear flow instabilities the modes often peak where tha@hkalocity is equal to the
flow velocity; that is at a specific value gfcalled the ‘critical level’. The localisation of
the convective instability in this flow pattern occurs foe ttame reason. We can see this

be considering the left-hand-side of equation (4.31) whiezee is a factor of
iwPr + ik PrReU,, (4.52)

multiplying 6. For large values ofRe this will caused to be small unless the expression

in equation (4.52) vanishes resulting in

— = —Reli(y.), (4.53)

wherey. is the value ofy at the critical level. From table 4.2 we can take the values of
the Reynolds number, wavenumber and frequency for poinfor example, and insert
them into equation (4.53). The phase speed from the leftHsade of the equation is
then approximately-844. From the definition of the flow profile in equation (4.51) we
then find thaty. ~ 0.92 for this value of the phase speed. The instability, as seen in
figure 4.3(e), is certainly located close go= v., near to the inner annular boundary,
as expected. This argument does not hold for all modes buteis derve as a possible
explanation of how a localisation of the instability canwcdt could also be the case that
the modes are simply localising near to the boundaries iardadminimise the effect of

the shear.

We conclude that although a similar form of the zonal flow de#ised the system in the
plane layer case (see chapters 2 and 3), we find that in théusnpnoblem a linear form

for the zonal flow is stabilising. In the plane layer case tbeat flow was generated by
lateral variations in the temperature profile, which gage itio the possibility an extra

energy source via a baroclinic instability. In the annulusdel a barotropic instability
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Point| ( Re | M k. Ra, We
x; [ 10* | 10 | — | 6.017626 8398.757029 —67.549019
Xy | 10312000 | — | 0.049002 | 1.579294 x 105 —3.175682
xz | 10" | 10 | — | 14.509451 | 1.665828 x 10° —342.314153
x4 | 10% 12000 | — | 2.560117 | 8.110634 x 10° | —2160.567526
X5 | 10° | 10 | — | 32.247225 | 3.515021 x 10° | —1585.925208
xXg | 10°| 1 3 | 32.565198 | 3.494965 x 10° | —1527.246378
x7 | 10° | 1 4 | 32.604833 | 3.493438 x 10° | —1522.031853
xg | 105 1 5 | 32.622686 | 3.492734 x 10° | —1520.071030
Xg | 10° | 10 | 3 |31.947182 | 3.510795 x 105 | —1739.925827
X9 [ 10° | 10 | 4 | 31.761350 | 3.512503 x 10° | —1703.003862
X1 [10° | 10 | 5 | 31.727903 | 3.511715 x 10° | —1667.319081
X12 | 10° | 500 | 3 | 21.434026 | 2.217932 x 105 | —11273.527962
X3 [ 10° | 500 | 4 | 14.709166 | 9.924381 x 10° | —7623.141583
X4 | 10° | 500 | 5 | 8127157 | —4.027874 x 10° | —2686.160279
x5 [ 10| 10 | 3 | 6.008849 7321.798057 —T71.541211
X1 | 103 | 10 | 4 | 6.201079 8040.135239 —69.093637
X7 [10% | 10 | 5 | 6.209197 8277.020421 —67.707283
x5 [ 104 90 | 3 | 9.437706 | 6.242689 x 10* —890.211187
X19 [ 104 90 | 4 | 9.997292 | 2.095357 x 10* —789.561651
Xo0 | 10| 90 | 5 | 11.070873 | —1.620262 x 10* | —713.785013
Xo1 | 101 800 | 3 | 8.074829 | —6.982823 x 10° | —926.266122
Xop | 101 | 800 | 4 | 10.708329 | —1.704844 x 107 | —698.393958
Xo3 | 104 | 800 | 5 | 13.314943 | —2.962544 x 107 | —561.411438

Table 4.2:Parameter values for the plots of figures 4.3, 4.5, 4.6 and 4.7

98
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Figure 4.3:Contour plots, withPr = 1, of the fields for a base case and for the fields corresponding t

the points in parameter space marked on the plots of figure 4.2
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is possible due to the horizontal shear in the basic stateeagisgussed in section 4.2.
However, for the linear flow pattern discussed in this sed®ayleigh’s criterion given by
equation (4.44) is not satisfied sinc§ = 0 andg is a (non-zero) constant. Therefore the
system is not susceptible to barotropic instabilities amalyBncy with a positive Rayleigh
number is necessary for instability. This serves to explelty essentially analogous

forms of the zonal flow affect the two models’ stability in sutifferent ways.

4.4 Results for a sinusoidal flow pattern

In this section we choose a sinusoidal form for the zonal flow aolve the linear
equations (4.49 - 4.50) looking for marginal modes. A simdaloflow is studied in the
hope that it can act as a simple model for the form of the jet¢s $rost famously on

Jupiter, but also other gas giant planets.

In order to crudely model this pattern of jets we envisagerakfiow which periodically
alternates between positive and negative maxima and miafregual magnitude. This
produces a pattern of periodically repeating regions oftpesand negative zonal flow,
which we refer to as prograde and retrograde jets respéctivehe only boundary
condition concerned with the azimuthal flow is the stresg-tondition, which demands

thatU) = 0 ony = 0 andy = 1. Hence we choose
Uy = cos(Mmy), (4.54)

as the form of the zonal flow. By choosing this form 1é we have introduced a new
parameterM € N, to the problem, which controls the number of jets. Therefine
critical Rayleigh number in this section will depend dhas well as the aforementioned
parameters so thata. = Ra.(Pr, 3, Re, M) where we continue to usRa; to denote

the case in the absence of the zonal flow so thégt = Ra.(Pr, 3,0, M). We insert the
form of the zonal flow, given by equation (4.54), into equiasi¢4.49 - 4.50) and solve the
eigenvalue problem for various parameter regimes usingitb@od described in section
4.2. We work with moderate values for the beta param#&igr< 3 < 10°, Reynolds
numberd) < Re < 10000 and Pr = 1. We also vary the number of jet8: < M < 5.

We choose this range fdv/ since we wish to look at parameter space that is of interest

to the jets of Jupiter, which is known to possess multipls.j@the critical values of the
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Rayleigh number, wavenumber and the frequency are plottiglires 4.4(a), 4.4(b) and
4.4(c) respectively, for various values @fand M in the case of’r = 1. The Reynolds
number is represented on a logarithmic axis on all threes@setis the critical Rayleigh

number in figure 4.4(a). This is done due the magnitudes gbdnemeters involved.

From figure 4.4(a) there are several observations to notstlyFive see that, for a given
{8, M}, asRe is increased from zero the value 8f. decreases from the value of the
critical Rayleigh number in the absence of the zonal flow. heotords,Ra. < Ra for
non-zero values of the Reynolds number. Therefore the suaiSorm of the zonal flow
has a destabilising effect on the system and hence it aidset of convection. Itis also
apparent that this destabilisation persists for all vabigsand M tested. This resultis in
contrast with that for a linear flow pattern, discussed irtieact.3, where increasing the

strength of the zonal flow always had a stabilising effect.

Secondly, we note that as the Reynolds number is increasdtefuhere is a sharp
transition region where we pass smoothly through a bifionan all cases of 3, M }
whereRa. becomes negative. Thus, unlike the form of the zonal flonwdised in section
4.3, the sinusoidal zonal flow admits instability with negatRayleigh numbers. We
see that for all combinations ¢f and M plotted the critical Rayleigh number becomes
negative for a large enough value of the Reynolds number. @gienes with negative
critical Rayleigh numbers are stably stratified and hencarsibility is driven by the

shearing of the zonal flow.

Thirdly, we note that, in general, in order to aid convectivere is a preference for smaller
and larger values of and M, respectively. This preference is also true of the trartsfer
the shear-dominated modes. This can be seen in figure 4.4&xpwhe coloured lines
(larger3) and solid lines (smallet/) appear, almost exclusively, at larger values of the
critical Rayleigh numbers compared with their black, dottednterparts. The preference
for smaller( is expected since we know from the base case that rotatiaysitie onset
of convection so thafa(Pr, 51,0, M) < Ra’(Pr, 35,0, M) for 5, < (5. The more
interesting point is that there is a preference for largéwesof M. This tells us that a
greater number of jets actually aids the onset of convecksmpite the fact that one might

expect the shearing of the jets to hinder the appearancengéction rolls.

Infigures 4.5, 4.6 and 4.7 we plot the forms of the fields forgbimts marked on the plots
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Figure 4.4:Plot of how the critical values of the variables vary with abfiow strength for the sinusoidal

flow pattern for several values gfand with Pr = 1.
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of figure 4.4. In each of the subfigures we pfot) andd. Each row of three subfigures
correspond to a particular value of the Reynolds number acldl @@umn corresponds to

a particular number of jets. The first three rows of plots aresf = 10° followed by a
row with 3 = 10% and two with3 = 10*. Table 4.2 contains the parameter values used

for the plots.

We see that for small values of the Reynolds number (figurgg}.8.5(b) and 4.5(c))
the addition of the zonal flow has little effect on the formluoé fields so that these figures
are comparable with the base case of no zonal flow shown ia)4.Blowever, we note
that the form of the fields is no longer symmetric and thereecappto be the start of
a localisation of the convection. As the Reynolds number d¢seiased we are able to
see clearly from the next row of figures (4.5(d), 4.5(e) ar&(f). that the fields have
indeed become localised. The convection now onsets inmeguith prograde jets, which
are found wherd/, takes its maximum value. Therefore we see from the form of the
zonal flow given by equation (4.54) that the location of thegoade jets is given by
cos(Mmy) = 1. Hence forM = 3 andM = 4 a prograde jet is located at= 2/3 and

y = 1/2, respectively. ForM/ = 5 there are two prograde jets locatedyat 2/5 and

y = 4/5. We see from figures 4.5(d), 4.5(e) and 4.5(f) that the inltabas localised
to onset at these locations. As the Reynolds number is ireddasther we see the same

localisation of the modes at these positions in figures %.8(6(b) and 4.6(c).

We now consider figures 4.6(d), 4.6(e) and 4.6(f) where tha parameter has been
decreased t¢ = 103. We see that the same localisation of the modes at the locatio
prograde jets occurs, although less strongly enforced hatitte rotation is weaker. This
can been seen by comparing figures 4.6(d), 4.6(e) and 4.8kfvb(d), 4.5(e) and 4.5(f),
which are for the same value of the Reynolds number but hav#eaetice in the beta
parameter of two orders of magnitude. The localisationesty stronger in the larget
case. Figures 4.7(a), 4.7(b) and 4.7(c), where pow 10*, are similar to thes = 103
case. However, once the Reynolds number becomes large efmugégative critical
Rayleigh numbers to be permitted the modes become domingtiée Ishear as show in
figures 4.7(d), 4.7(e) and 4.7(f). The instability is nowgkely correlated with the form of

the zonal flow and thus the modes appear as sinusoidal disiceb themselves.

In order to understand why the instabilities localise ongragrade jets in the convective
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Figure 4.5: Contour plots, withPr = 1, of the fields corresponding to the points in parameter space

marked on the plots of figure 4.4.
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Figure 4.6: Contour plots, withPr = 1, of the fields corresponding to the points in parameter space

marked on the plots of figure 4.4.
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regime it is useful to return to the potential vorticity defthin equation (4.40). Potential
vorticity gradients are thought to play an important rolelgtermining the jet structure
seen in many astrophysical bodies. The asymmetry of thevaeband westward jets seen
in figure 1.3 may be controlled by the tendency of the fluid gaoise itself so that the
PV takes the form of a step function, known as the ‘PV stagtc@darcus & Lee, 1998).
The staircase forms since the mixing of PV is blocked at th@case steps and then
bands with homogenised PV are separated by regions withteRV gradient. Eastward
and westward jets form where the gradient of the PV attamsniéixima and minima
respectively. Reaet al. (2006, 2009) presented evidence that the PV gradient mangeha
sign in the atmospheres of Jupiter and Saturn suggestihgahatropic instabilities could

affect the zonal flows there.

The basic state potential vorticity given by the basic statens in equation (4.40) is
g0 = —(ReU]| + By). This shows that we can attribute the origin of the basiedeat to

the rotation and the zonal flow. Hence the PV is a combinatidhe@planetary (due to
the solid body rotation of the system) and fluid (due to theat@low of the basic state)

vorticity. There are then three cases we can consider:

e ¢o = 0Vy = [ = 0 = Re so that there is no rotation and no zonal flow and hence
no planetary nor fluid vorticity in the basic state. This fiesis the classic problem

of Rayleigh-Benard convection (see section 1.4).

e ¢o = —fy = Re = 0 so that there is no zonal flow and hence there is planetary
but no fluid vorticity in the basic state. This correspondth®problem originally
studied by Busse (1970).

e ¢y = —(ReU/} + By) so that there is both rotation and zonal flow and hence there is
both planetary and fluid vorticity in the basic state. Thislgs the problem we are

considering in this chapter.

In general, the gradient of the basic state potential vibrtis then

dgo

dy = —(ReU{ + 3), (4.55)

which appears in equation (4.26) as the ‘effective rotatdthe system. We know from

the original analysis performed by Busse that the additiomtaition delays the onset of
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convection so that a larger rotation rate results in a highigcal Rayleigh number; recall
equation (4.46). Also in the case studied by Busse (1970 Vhgradient is constant (and
equal in magnitude t@) and hence there is no position in the annulus that is pederr
for instability. With the addition of a basic state zonal flawd thus a basic stafkiid
vorticity it is possible to counteract the stabilising eff®f rotation depending on the

form of U, chosen. By using the definition 6f, from equation (4.54) we find that

d
% = ReM?n? cos(My) — G. (4.56)
Y

Due to the form ofl/; the PV gradient is no longer a constant and is now a function of
y unlike in the case studied by Busse (1970). Hence the magndbtithe PV gradient
may vary considerably at different radii of the annular af&lnThe convective instability
attempts to localise at the radii where the magnitude of WgRdient is smallest since
regions with a lower ‘effective rotation’ are preferableiiwstability. This naturally results

in a lowering of the critical Rayleigh number of the whole gyst We see from equation
(4.56) that the basic state PV gradient has its minima whef/7y) = 1, which implies
thaty = 2m/M for m € Ny in general. However, in reality the fact that the fluid is
bounded between = 0 andy = 1 means that only a finite number of these solutions are
permissible. The condition that the PV gradient has its m&ivhencos(M7y) has its
maxima ensures that the instability onsets at the locatidineoprograde jets foRe > 0.
This explains how the addition of a sinusoidal zonal flow\a#idfor the reduction of
the critical Rayleigh number and the localisation of theabsity as seen in the numeric
results. We have been considering only cases wRere 0. However, the above analysis
is also true forRe < 0 albeit with adjustments in the location of the instabiliiy.Re <

0 then the magnitude of the basic state PV of equation (4.3&)natits minima when
cos(Mmy) = —1 so that the instability instead onsets at the location ofréteograde

jets.

The above discussion is relevant to the convective modestiah the Rayleigh number
Is positive. In this case the shear is able to reduce the matif the PV gradient
at certain locations of the annular layer. However, oReebecomes large enough we
have seen how the instability becomes dominated by the.shba occurs because the
sinusoidal form of the zonal flow satisfies Rayleigh’s critarifrom section 4.2) and

hence barotropic instabilities are possible. In fact, fmgé enoughs, the transition
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between convective and shear-dominated modes occurs ashear is large enough to
allow the PV gradient to vanish somewhere in the domain. iEleguivalent to Rayleigh’s
criterion being satisfied. From equation (4.56) we see foatHe > 0) dg/dy vanishes
for the smallest value ake whencos(Mny) = 1 and3 = ReM?r2. Therefore we can
predict that

Re, ~ 3/M?*7?, (4.57)

where Re, is the value that the Reynolds number must exceed for sheaindted
modes to be most unstable. Equation (4.57) gives an exprefsiRe, that is inversely
proportional tal/? and thus explains why systems with a greater number of psfer to
shear-dominated instabilities at lower values of the Reysmiaumber. This was observed
in the results of figure 4.4(a). The expression given by equaf4.57) is only an
approximation since we are implicitly assuming that theation and shear are strong
enough to dominant over other terms in the governing equsition the homogeneous,
inviscid case the condition holds exactly and reduces todRglyk criterion for barotropic
instability. In our work viscous effects are small but theyancy is large meaning that
equation (4.57) is only an approximation for the onset obslestabilities. For? = 103
equation (4.57) predicts tha&le, ~ (11.258,6.333,4.053) for M = (3,4,5). From figure
4.4(a) we see that the transition to instabilities domidatethe shear do not arise unfik

is approximately an order of magnitude larger tlian. However, for cases with stronger
rotation, for example? = 10°, equation (4.57) give®e, ~ (1125.8,633.3,405.3) for
M = (3,4,5). When these values are compared with the relevant plots irefigyd(a) it

is clear that the predicted values agree very well.

We also note that the linear form of the zonal flow discussesgation 4.3 does not alter
the gradient of the basic state PV from Busse (1970). Thisdalme/' = 0 for a linear
zonal flow. Hence the effective rotation remains constamiiphout the annular layer in
that case. Therefore, as expected and as observed in theicsiofesection 4.3, we do
not see any reduction of the critical Rayleigh number in theeaat a linear zonal flow.
Finally we also note that there are, of course, infinitely ynaeimoices for the form of the
zonal flow,Uy(y). The results presented in this chapter only discuss twalgbss for
Uy and it is possible to envisage a more complicated zonal fldwgchvbetter matches
the pattern of the jets seen in astrophysical bodies suchmterd In fact, in chapter 5

we acquire zonal flows from the integration of the non-lineguations; these zonal flows
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therefore take more realistic forms than the flows consatlar¢his chapter. Hence in the
next chapter we are able to consider the linear problem \wetfdrm ofUy(y) given by

the zonal flows generated in the non-linear theory.
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Chapter 5

A non-linear theory for the annulus

model

We have investigated the linear theory of convection in theutus with an imposed
zonal flow in chapter 4. With the insight given by the lineagdhy where we found that
azimuthal zonal flows with certaigstructures could aid the onset of convection, in this
chapter we solve the full non-linear equations without apased zonal flow. A drawback
of the linear model of chapter 4 was that there were infiniteny forms that the zonal
flow, Uy(y), could take. In this chapter we expect to find strong zonaldlappearing as
we integrate forward in time, which arise due to the nondmReynolds stresses. Hence
we are able to use the zonal flows arising in the non-linearthas an informed choice
for the form of the basic state zonal flows of the linear theayich we also consider in
this chapter. However, we first discuss previous work udert on zonal flows in the

field of planetary science.

Recall that our interest in zonal flows originates from a detirbetter explain various
phenomena observed in geophysical and astrophysical odibe large zonal flows
found in the atmospheres of the gas giants as well as plgnetaes are thought to be
driven by the interaction of convection and rotation. Jempifior example, as we discussed
in chapter 1 has a banded structure of jets, made up of diiegrErograde and retrograde
zonal flows (Limaye, 1986; Porcet al, 2003). This pattern extends over the whole
planet and the zonal flows are considerably stronger tharathial convection. Although

the convection in both the Jovian atmosphere and the Eantités core will be affected
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by their respective magnetic fields, an understanding ohtiremagnetic problem can
provide insight to the physical structures observed. Thehd® which the zonal flows
extend in Jupiter’s atmosphere is not known, though theevidence to suggest that
flows are considerably weaker in the core compared with ttffasei(Starchenko & Jones,
2002). Busse (1976) suggested a model for convection in Wiardatmosphere where
zonal flows are not confined to the surface. The difficultiemodeling the interiors of

the major planets has been discussed by Yano (1998).

As we mentioned at the start of chapter 4, the annulus modwsliges a simplified
model for convection in a spherical shell, which is relevianplanetary science. Non-
linear simulations in the more physically realistic spbakishell geometry have been
performed in previous work (Gilman, 1977, 1978a,b; Zhar@Q2t Tilgner & Busse,
1997; Grote & Busse, 2001; Christensen, 2001, 2002; Busse; B@dxapelet al,, 2005).
Non-linear simulations specifically using the Busse annhlage also been presented
(Brummell & Hart, 1993; Jonest al,, 2003; Rotvig & Jones, 2006). Recall from chapter
4 that the quasi-geostrophic approximation (QGA) can bel userder to reduce three
dimensional systems to two dimensional systems. The ess#rthe QGA is to assume
that the vertical vorticity is constant in the coordinategblel to the rotation axis;. This
assumption can be justified by the rapid rotation of the sygt@illet & Jones, 2006) and

it consequently leads to the horizontal velocity compos@tgo being independent of
Hence there is a suppressedtructure throughout the system despite the fact that the
original assumption cannot be derived in any asymptotid.lifthe annulus model is one
such quasi-geostrophic model taking advantage of a stromglSdorce to reduce the
dimension of the system. Other quasi-geostrophic modeis been investigated (Gillet

& Jones, 2006; Rotvig, 2007) but we continue to focus on thelisrmodel here.

Laboratory experiments such as those undertaken by Busse &g&ar(1976);
Manneville & Olson (1996); Aubert al. (2001) have also been performed. A difficulty
when performing experiments can be replicating the effégrravity, which should, of
course, act radially inwards. This issue is resolved byge centrifugal acceleration to
mimic gravity. Since the centrifugal acceleration actsatiyloutwards the inner spherical
(or cylindrical) surface must be cooled rather than heat&zhal flows are found, thus

showing that they can occur naturally in such experiments.
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Zonal flows are a common feature of the aforementioned puswimrk when performing

simulations. The nature and dynamics of the zonal flows fooaede varied in the

previous work due to different geometries, conditions aadameter regimes being
used. Early pioneering simulations of rotating convectionspherical shells were
undertaken by Gilman (1977, 1978a,b). These non-lineaetdimensional simulations
were performed for slowly rotating systems, relevant toSha, where the Coriolis force
IS not as significant as in rapidly rotating systems such e€trth’s core and planetary
atmospheres. However, Gilman (1977) did find influence ofGbgolis force when the

driving was weak enough. Rapidly rotating three-dimendisiraulations in spherical

shells were performed by Zhang (1992), who considered therg&on of zonal flows by

the Reynolds stresses. With the vast improvement in compnotabwer over the last two

decades further simulations were undertaken (Tilgner & 8u$897; Aurnou & Olson,

2001; Christensen, 2001, 2002; Busse, 2002; Heirapal.,, 2005). These simulations
produced strong zonal flows with Rossby numbers of the cooetdr of magnitude,

which are driven by the Reynolds stresses. Interestingly steiady and oscillatory zonal
flows were found resulting in the discovery of a ‘bursting povmenon’ (Grote & Busse,

2001).

The bursting phenomenon, investigated within the annulodahby Rotvig & Jones
(2006), refers to the observation that convection can oasushort-lived bursts rather
than the system evolving into a quasi-steady equilibriutmese bursts of convection are
currently thought to be a result of a competition betweenztheal flow, which disrupts
convection, and the fact that in the absence of zonal flowytsies favours convection as
a method of heat transport. When the zonal flow is small in ntadej the convection is
able to build up and efficiently transport heat radially oarttls. However, the velocity
fluctuations associated with the convection drive largdeszonal flows, which then
hinder convection and can in fact cause it to cease. Withdheaction depleted the zonal
flow has lost its source of energy and therefore it too reducesagnitude, whereby the

process can repeat.

A failure of some of the three-dimensional simulations dssed above is their inability
to produce a multiple jet structure of the zonal flow. The oga®r this, as discussed by
Joneset al. (2003), is that in order to produce multiple jets very lowued of the Ekman

number, or equivalently, very large values®fare required. Due to numerical difficulties
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the fully three-dimensional models have often been unablechieve the rotation rate
required, though this is not always the case (Heingpel., 2005). The asymptotic model
discussed by Abdulrahmaat al. (2000), performed in the limit of rapid rotatiow (—
00), is able to produce multiple jets though it is only valid ssoto critical. Multiple
jet solutions are relevant to the strongly banded structeen on the gas giant planets
and hence to the linear model with a sinusoidal zonal flow Weatiscussed in section
4.4. The jet width is believed to be controlled by the Rhinealisg theory (Rhines,
1975) where the ‘Rhines length’ is proportional®o'/2. Heimpelet al. (2005) discuss a
model in a thin spherical shell, which is capable of repragyiboth multiple jets at high-
latitudes and strong equatorial flows. The idea is that tieeeeseparation of the types
of structure possible caused by the bounding bottom surfestge the tangent cylinder.
Outside the TC, equatorial structures can be driven by deapehumnvection due to
the domain extending across the whole of the sphere theraevéw, inside the TC the
thinness of the spherical shell creates a shallow layer meide bottom-bounded flow

structures such as multiple jets arising.

One of the attractions of the annulus model, as a simplifiedeh@r convection in

the Jovian atmosphere, lies in its ability to produce bothtipia jets and the bursts
of convection. For stress-free top and bottom boundariekas been shown in the
three-dimensional simulations, that stronger zonal floves @oduced compared with
when no-slip conditions are imposed (Gilman, 1978b; Chnsta, 2001). This is also
observed in the annulus model (Brummell & Hart, 1993). Howeagevidenced by Jones
et al. (2003), with stress-free boundaries imposed the searcmidtiple jet solutions

IS not promising, with only very small windows of parametegimes producing them.
Therefore it seems that stronger zonal flows are associatedstress-free boundaries
where multiple jets are less likely to be found. The lack oftiple jet solutions can be

overcome by the addition of no-slip boundaries in the fornaomfEkman layer bottom

friction term in the equations. We discussed the origin ahk layers in section 1.3 and
we shall derive the relevant term in the next section. Whentthim is introduced, even
with a small magnitude, multiple jets become a feature ofynmarameter regimes. This
was later investigated thoroughly by Rotvig & Jones (2006}tie case where the Prandtl

number is unity.

The work of Rotvig & Jones (2006) also showed that it was necgs® omit the
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aforementioned Ekman layer in order for bursts of convectmbe observed. Hence
bursting solutions and multiple jet solutions seem to beoalhmutually exclusive,
occurring simultaneously in only very small windows of paster space. As we shall
see in this work, the existence of the bursting phenomersmagpears to be dependent
on the evolution of a mean temperature gradient, which,thleezonal flows, arises due
to the non-linear interaction of the small-scale pertudret This novel result appears to
have been overlooked in previous work and adds an extrareamtstor the observation

of bursting.

This chapter is structured as follows. In section 5.1 weuwdisthe mathematical setup
of the non-linear problem and, in particular, the introdwctof the bottom friction
term. Then in section 5.2 we explain the numerical method tsesolve the non-linear
equations and how we define the zonal flow at a given time. Wgeptehe results of
the simulations in section 5.3 where we expect to find agreemvéh previous work
undertaken by Jone= al. (2003); Rotvig & Jones (2006). Finally in section 5.4 we feed
the zonal flows and mean temperature gradients obtaineceindh-linear simulations
back into the linear theory discussed in chapter 4. By doimgule are able to obtain
growth rates of disturbances for more realistic zonal fldvesitthose used in the previous
chapter. This final section then leads us on to chapter 6 véh&ireple model is developed

showing that a mean temperature gradient is indeed a regemntfor bursting convection.

5.1 Mathematical setup

We use the same basic annulus model setup discussed imsdtiso that the physical
geometry of the model remains unchanged from that in figute Blowever we make
certain changes in order for this work to be comparable teipus work on the subject
of multiple jets. We wish for the simulations we will run torggate zonal flows via
the Reynolds stresses and hence without the need for a zomahftbe basic state of the
system. Therefore we set all basic state velocities to zettoei perturbed equations, (4.26
- 4.27), for the non-linear simulations in this chapter. tdey for multiple jet zonal flows
to evolve we require the effects of an Ekman layer, also knasvthe bottom friction, to

be included in the theory (Jonesal, 2003; Rotvig & Jones, 2006). As we discussed in
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chapter 1, Ekman layers are thin boundary layers that arisetating fluids when rigid
boundaries are implemented. The Ekman layer effects camldbedato the equation of
motion using the definition of the Ekman suction given by d¢iqua(1.31). This idea
has often been employed in previous work on rotating fluidktae practice is to follow
the theory as discussed by Greenspan (1968). In our case plenranted the boundary
conditions on the sloped end surfaces by integrating e\{see equations (4.13 - 4.14)).

Therefore rather than writing, = +xu,, as we did in chapter 4, we now set

u, = txu, + Ug (5.1)
0 1/2
a3 (3) ¢ 52)

atz = +£L/2 where we have substituted fol; from equation (1.31) and us€d as our
typical length scale. We have ignored terms proportiongl tothe Ekman suction since
they are small due to the small sloping boundaries conditipr« 1. By noting that
E = 2Dy~ /L we can now write the Coriolis term of equation (4.13) as

1/2
—20fu:] ), = —20 ( xg—w —2D (DLX) ﬁ‘”%) . (5.3)

Under the same non-dimensionalisation as performed intehdghe expression on the

right-hand-side becomes

CAxSwoy S, (D 12
D e D" Ix G (5.4)

and multiplying through byD* /2L to tidy up as we did in chapter 4 we find that

8%y ol (5.5)

replaces the-/30v /0 term in equation (4.23). Here we have used the definitiof of

from equation (4.25) and we have introduced the parani¢tdefined as:

1/2
_ (L%) . (5.6)

Equation (5.5) shows that in our model the requirement ofji@ thoundary gives rise to
an extra term, due to Ekman suction, via the integrationefariolis term of the original
equations from chapter 4. We shall typically work with< 0.5 when we consider rigid
boundaries. However, for stress-free boundaries we attplset C' = 0 throughout since

the Ekman suction only arises when the boundaries are po-sli
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We bear in mind what we have discussed above and henég set) and introduce the

bottom friction term in equations (4.26 - 4.27) to give

8V2w ('3(w, VQw) oY = 90 1/2v72 4
ot iy oy = Ry, ~ OBV Ve ()
00 w0\ 0w
o <5 i 8<x,y>> =5, TV (5.8)

We notice that the bottom friction manifests itself as a dexggerm proportional to
|3|'/2. Also, the damping due to Ekman friction originates from mrtgroportional to
a velocity (see equation (5.1)). Therefore it is often neférto as ascale-independent
damping since it affects all length scales in the same mar@enversely, the damping
due to viscous diffusion arises from a term proportionaVtdJ and thus dampens small-
scale structures more greatly than large-scale structliress the addition of the effects of
rigid boundaries, in the form of the bottom friction, incsea the likelihood of the smaller-
scale multiple jet solutions arising rather than the lasgale equatorial jets. In equations
(5.7 - 5.8), we have also retained the non-linear terms dgbyetine Jacobian terms from
equations (4.26 - 4.27), which are the interactions of thallsstale perturbations that
generate mean quantities such as the zonal flow and meanrsopegradient. By mean
quantities we are referring to quantities that are averayed the azimuthal, that is the
x, coordinate. In fact, for convenience, we shall hencefoethr to the zonal flows and
mean temperature gradients together as the ‘mean quanti@ar boundary conditions
remain unchanged from chapter 4 so that we retain

w:%:e:o, (5.9)
ony = 0 andy = 1. We wish to solve equations (5.7 - 5.8) by numerically in&igig

forward in time from an initial state.

5.2 Numerical implementation

In this section we discuss the numerical method used toratie¢he non-linear equations

(5.7 - 5.8) forward in time. The methods that we describe la@eediscussed in more
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detall in, for example, Boyd (2001). We first rewrite the equad as

8V2w 6¢ 1/2 4 a(¢7v2d)) —
5% 5’:1;+R a +C‘ﬁ| V3 — Vi = W:F’ (5.10)
00 _18¢ —172py __ _8<wa‘9) —
o TP - PV = .y =H, (5.11)

where we have introduced andH as the right-hand-sides of these equations. We wish to
use a pseudo-spectral collocation method by expandingetus fas Fourier components

in x and a sine expansion in Hence we first write

N;—1

Yoy t)= > iy e e/, (5.12)
I=—(Nz—1)
Nz—1 .

O,y t) = > Oy t)e e/, (5.13)
I=—(N,—1)

wherelL, is the length of our domain in the-direction so that < = < L,. In fact, we
choosel, = 27 throughout for simplicity. Also/V, is thez-resolution. We substitute

these expansions into equations (5.10 - 5.11) to give
(8yy — )00ty + (iw + CIBIM2(8,, — 1) — (Byy — z?)?)qzl —ilRaf, = F,  (5.14)
A0, — ilPr—Y, — Pr=4(9,, — (%6, = H,, (5.15)
where we have dropped the summation signs for conveniener e have introduced

F, and H,, which are the Fourier coefficients of the functiafisind H respectively. The

boundary conditions of equation (5.9) now become

b = Oyythy = 0, =0, (5.16)

ony = 0 andy = 1. We use a semi-implicit scheme by applying a Crank-Nicolson
method to the left-hand-side of equations (5.14 - 5.15) &edsecond order Adams-
Bashforth method to the right-hand-side to give

n+1
— 4y n
(@ — ) P 2 (84 CIBI By — ) — (0 — ) (B +47)
ilRa 1. . L
— 5 (9n+1+0l) 2(3Fvln_ﬁvln 1)7 (517)
éanrl — 0y upr! jnt prt 2\ (An+1 | An Lo et
At Ty ( wz) 9 (ayy—l )(9z +0;') = 5(3H1 —H, )a (5.18)

where we have used the notatigh = f(y, nAt) for some functionf. The timestep is

given by At. We must now choose thedependence of our functions where we wish to
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implement a collocation method. By choosing a sine, rathem tBhebyshev, expansion

there is the advantage of implicit boundary conditions.réfae we write

Ny—1
t) = Z U () sin(mary), (5.19)
Ny
Oi(y.t) = > Ou(t) sin(mmy), (5.20)

where we see that the boundary conditions of equation (&aEsautomatically satisfied
sincesin(mny) = 0 fory = 0 andy = 1 ¥Ym € N. We have introduced,, which is
they-resolution. As the collocation pointg;, we use equally spaced pointsjfspace so

that
J .

Y

We now substitute the expansions of equations (5.19 - 5r20)aquations (5.17 - 5.18)

and evaluate at the collocation points to give

[ (1 m?r?) + % (iw —CIBIMR2 + m2a?) — (12 + m2772)2>] ) sin(miry;)

lm

il RaAt -
-~ R; 0 sin(mry;) =
A .
[ — (I + m*n?) — el (ilﬁ — C|B|"2(1* + m?n®) — (I + m*r?)? )]wﬁn sin(mmy;)
ZR At At
+ 2 0, sin(mmy;) + 5> <3Flm - 1) sin(mmy;), (5.22)

1l At

At 5
(1 + ﬁ(l2 + m27r2)) 07t sin(mmy;) — l/)nﬂ sin(mmy;) =

At s ilAt -
(1 — ﬁ(l2 +m?r )) Oy, sin(mmy;) + 5Pr —y,, sin(mmy;)
At n rn—1 .
+ 5 (387, + Hiy ) sin(mry,), (5.29)

where we have again dropped the summation signs. This systequations must now
be solved for each = — (N, — 1),..., N, — 1. To do this we rewrite the above system
of equations in matrix form witlj andm as the row and column indices respectively.
Equations (5.22 - 5.23) in matrix form are
At
AX) T = BX] + 7(3F? —Fh, (5.24)

where

X? = [1;?1’ : >¢l Ny—1)» Hllv ) élrENy—l)]T? (525)

F} = [F, . Fy, 0y Hiy o Hiy, o] (5.26)
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For a given {,m) the matricesA andB contain the coefficients o,f;l el 0;;51, @b{;n and

e;;n from equations (5.22 - 5.23). The rows and columng\aind B correspond to the
collocation points and the sine expansion respectivelke Taatrix A as an example;
the setup of matriB is similar. For thelM/th column, the firstV, — 1 rows contain the
coefficients of)/% andd!-*! from equation (5.22) evaluated at tfih collocation point.
Similarly, rowsN, to 2(N,, — 1) contain the coefficients aff;/* andé!:+! from equation
(5.23) evaluated at thgth collocation point. Specifically, for each row, the firgy — 1

columns contain the coefficients ¢f-* whereas columna/, to 2(N, — 1) contain the

coefficients o'+,

The form of equation (5.24) is similar to the matrix form oktlequations solved by
Chebyshev collocation in chapters 2 and 4. However, there@reextra terms on the
right-hand-side which must be calculated at each timestepder to calculate the fields
at the next timestep. The vectBf can be found, at each timestep, from the definitions of
F andH in equations (5.10 - 5.11). Linear terms and their deriestigan be calculated

directly in spectral space since

9 7.7 —ilz _;
% = —ilyme " sin(mmy), (5.27)
g—;f = maye cos(mmy). (5.28)

Combinations of these terms arising in the non-linear Jacsbof equation (5.10 - 5.11)
must be evaluated in real space. Thus, the required fieldfoang in spectral space,

transformed to real space using

o Ny—1 .
i Z Z ilhme " sin (mmy), (5.29)
—(Nz—1) m=1
o No—1 Ny .
o = Z meplme 1 cos(mry), (5.30)
I=—(Ng—1) m=1

and then multiplication for all non-linear terms is done éalrspace. Note that a Fourier
transform inx as well as a Fourier sine and cosine transform must be usetthdar
andy-derivatives respectively. Once the non-linear terms Hmeen calculated they are
inverse-Fourier transformed back to spectral space foiruse vectoF7. Finally X}'*!
can be found by multiplying equation (5.24) through on ttieldg A—L. The vectoiX]

then contains@lm andd,,, for1 <m < N, — 1 at the new timestep for any value lof
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At any given timestep the real space fielgsand®d, can be calculated from,,, andé,,,,
using a Fourier transform and a Fourier sine transform frioendefinitions of equations
(5.12 - 5.13) via equations (5.19 - 5.20). These are the gieathat we shall plot in our
results in the next section. We are also able to define the opgamtities as follows. The
zonal flow is ther-average of the azimuthal component of the velocity. In theudus
model the azimuthal direction is thedirection and hence the zonal flow, is defined
as

W),
oy X, (5.31)

where we have used equation (4.7) to substitute:fofThez-average is defined as

U=UR= (U)X = —

Ly
(A), — Li Adz, (5.32)
x JO

for a scalar quantityd. Hence, assuming (for the moment) that 0

_ L ooy
U= _Z : aydx (5.33)

Ny—1 Ny—1

Ly
= —_/ Z Z mayme @/ L) cos(mmy)dx (5.34)

N,—1 Ny—1

= Z Z 5 Z@Dlm cos(mmy) [ —2mil 1} (5.35)

I=—(Ny—1)

— 0, (5.36)

sinceexp(27il) = 1 VI € Z and we have substituted for using equations (5.12) and
(5.19). Therefore there is no contribution to the zonal floenf modes with # 0. We
now specifically consider the caselof 0 and find that

L. Ny 1 Ny—1

—— / mmpOm cos(mmy)dx Z Mo cos(mmy), (5.37)
and hence
Ny—1
U=— Z maom cos(mmy). (5.38)
m=1

We can follow a similar procedure to gain an expression femtiean temperature:

Dy
Il
—

0)s (5.39)

-1

Z

A~

Oom sin(mmy). (5.40)

\
le |

m=1
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Also of interest are the total kinetic energy and the zonglgfahe kinetic energy, defined

by
Ep = Li / (Vy)?dS, and (5.41)
Bz =1 [(Vo).ras (5.42)

respectively. These quantities can be evaluated via aasimibcedure to the derivation

of U above where we find that

N,—1 Ny—1

1 )
Er=g ) D (P+m’m)f,, and (5.43)
I=—(Ng—1) m=1
1 Ny—1
Ez =3 ; m2r? . (5.44)

The numerical method described above is implemented inrdfonvith the Fourier
transforms performed by various NAG library routines. Sfpeally, the xz-Fourier

transform is performed using routine CO6FQF and the sine ansihe transforms using
routines CO6HAF and CO6HBF respectively. In order to perforenrttethod an initial
state from which to begin the timestepping must be chosendlsas values for the

parametersiN, andN,,.

5.3 Results of the non-linear theory

Here we present the results from simulations of the timeugioi of equations (5.7 - 5.8)
using the method discussed in section 5.2. We expect thégésiclosely match those
of Joneset al. (2003); Rotvig & Jones (2006) where under certain paramegmes
multiple jets and the bursting phenomenon are observed. aifermm numerous runs of
the code for various parameter sets. In table 5.1 we havemexta notation for the runs
that are performed and we shall use this notation to reférgouns in this section and the
next. We see from table 5.1 that the runs performed are fatasiparameter ranges of
the Prandtl number and beta parameter as were used in cdaptmnely0.5 < Pr <5
and10® < 3 < 10°. In the previous work by Jones al. (2003); Rotvig & Jones (2006)
only Prandtl number unity was considered and hence we gbduwith our parameter

range here. We consider Rayleigh numbers above criticaletdtth initial state does not
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simply decay away. Specifically, we perform runs with the Reght number 2.5, 2.75
and 5 times that of the critical Rayleigh number for a givénand as indicated in table
5.1. We use the rapid rotation approximation to the critRayleigh number as defined
in chapter 4 for the classic Busse annulus case without ang $iase zonal flow so that

354/3PT4/3
©22/3(1 4 Pr)d/3’

Ra, (5.45)

recalling equation (4.47). The first six runs, | to VI, are fanthe same parameter values
as some of the runs performed by Joe¢sl. (2003); Rotvig & Jones (2006) in order
to compare with previous work. However, we perform addaéiomns where we focus
primarily on 3 = 5 x 10> andC = 0 for various Prandtl and Rayleigh numbers. The
mean quantities that arise out of these later runs are usthe inext section to consider

how they affect the growth rates of the linear theory.

In order to aid discussion in this section we take the aveodg®e vorticity equation over
the azimuthal coordinate since this helps to explain zonal §eneration. The-average

of equation (5.7) is

5 O, V24 op\
&<V2w>”< 3z.y) >[6 <a_> (5.49)
—Ra<%> 1B, + (V). (5.4T)

900 [o(w,V*)\ 0 iy | O
~gya o), = (TP ), (5:48)

where we have used the definition Bffrom equation (5.31). The non-linear Jacobian

term can be written

<—a(g<§y;”>> — (5 % ((u- V)u), = —a%@”o (0-V)u), (549
oW V*)\ _ o /0o N\ _ &
= (Tt )=~ oy ) = gt =50

where we have used the fact that the velocity field is soledlothroughout the derivation
of equations (5.46 - 5.50) we have used the fact thderivatives average to zero when
taking thez-average due to the periodicity of the fieldsidrover the domain. If we take
the y-integral of equation (5.48) with the non-linear term froguation (5.50) inserted
we obtain

—(uyuy), — C|6|"PU + —— (5.51)
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which is the equation that governs zonal flow generation. Wie that zonal flow can
be created by the Reynolds force, confirming thais a non-linear phenomenon as
expected, and destroyed by the friction terms. The adddfdhe bottom friction term is
expected therefore to dampen the zonal flow; however, asslsd earlier, it increases

the likelihood of multiple jet solutions arising.

Run Pr 6] C Ra/Ra. T M
| 1 7.07x10* 0.316 2.5 13.1202 2

Il 1 7.07x10° 0 2.5 1.6540 2
1l 1 7.07 x 104 0 2.5 3.6307 1
v 1 7.07x10* 0.00316 2.5 1.2348 1
\% 1 7.07x10* 0.316 2.5 8.0784 3
VI 1 7.07x10° 0.316 2.5 2.6814 5
VI 1 5 x 10° 0 2.75 3.2907 2
VI 1 5 x 10° 0 ) 0.9302 2
IX 1 5 x 10° 0.05 2.75 1.4378 3
X 1 5 x 10° 0.5 2.75 3.3784 5
Xl 0.5 5x10° 0 2.75 2.6873 2
Xl 0.5 5x10° 0 ) 0.2528 1
Xl 0.5 5 x 10° 0.5 2.75 2.6440 4
XV 2 5 x 10° 0 2.75 21137 2
XV 2 5 x 10° 0 ) 1.0321 2
XVI 2 5 x 10° 0.05 2.75 2.4241 3
XVII 2 5 x 10° 0.5 2.75 24677 7
XVIII ) 5 x 10° 0 2.75 4.6855 2
XIX ) 5 x 10° 0 ) 0.5579 2

Table 5.1:Table displaying the parameter sets used for the varioudinear runs.

Each of the runs displayed in table 5.1 are run until a quasiely or quasi-periodic state
has evolved from the initial condition. As with previous \kpthe initial condition is

not found to influence the final state so the solutions areusidrherefore a random
initial state is used for each run. In figures 5.1 to 5.19 we pl@apshots of the state

of the simulation for each run in table 5.1 once a final statebd®®en achieved for each
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run. The condition that we wait for a final state to be achiavedns that the snapshots
in these figures are taken after a different number of tinpsséad a different amount
of diffusion time for each run. Recall that we are using theeis timescale in these
simulations and thus the timescale is inversely propoalitm» and hence also inversely
proportional toPr = v/k. Therefore runs with larger values of the Prandtl number
are more readily integrated over multiple turnover timesntiuns with small Prandtl
numbers. The quantity, appearing in table 5.1, represents the amount of time ethps
prior to the snapshots, of figures 5.1 to 5.19, being takemceleach snapshot is taken
at timet = 7 with the values of- presented in table 5.1. Also in table 5.1 we display
which denotes the dominant radial wavenumber at tim&he value ofm, determines
whether multiple jets are present; a solution has+ 1 jets and we definen, > 3 to
denote a multiple jet solution. The reason for this choicdeffnition for multiple jets
is two-fold. Firstly, the definition matches that of the poes literature (Jonest al.,
2003; Rotvig & Jones, 2006). Secondly, we recall from our us@n at the start of
this chapter that solutions with strong prograde equdt@ia flanked by two retrograde
jets are commonly produced in simulations but solutionf wibre jets are more difficult
to obtain (Heimpelet al, 2005). Here it will be of particular interest if the solutio
displays more than just the three commonly found jets. Thezet makes sense to define
a multiple jet as a solution which contains more than thrée jd/e have predominantly
used the resolutiofV,, N,) = (256, 128) although runs VIII, XIV, XVI and XVII have
(Nz, N,) = (384, 128) and runs XV, XVIIl and XIX have(V,, N,) = (512, 128).

The three plots displayed in each figure 5.1 to 5.19 from topdttom represent the
following. The top two plots display theé-contours and thé&-contours at timer,
respectively. In the case of the-contours, positive and negative values represent
clockwise and anti-clockwise motion respectively. In thied plot of each figure we plot
four quantities: the zonal flow;/, the mean temperature profil, thetotal temperature
profile, T = T, + 6, and the mean temperature gradiéht, The values of/ have been
normalised using eithenax(U) or — min(U), whichever is larger. Likewisé! has been
normalised using eitherax(#') or — min(#'). Also, the exact value Gf has been plotted,
wheread has been amplified by a factor of five in order to be more cledigglayed. The

range over which the quantities vary are presented beneathitd plot.

The first six runs are for parameter regimes used by Jenhak (2003); Rotvig & Jones
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(2006) so tha’r = 1 andRa/ Ra. = 2.5 throughout. We begin by making some general
observations about the dynamics seen in many of the figumesn fgures 5.1 to 5.6 it

is clear that the non-linear effects have significantlyraltethe simple structure of the
fields predicted by the linear theory of section 4.2. The fofrm andé given by equation
(4.45) indicated thin disturbances that stretched actossvhole annular layer (that is,
fromy = 0 toy = 1). However, although this structure can be seen in certgioms
for some runs (for example figure 5.1), the overall flow patisrrather different to that

predicted in the linear theory.

In figure 5.1, for run | with3 = 7.07 x 10 andC = 0.316, a net eastward zonal flow is
produced ay = 1/2. This is caused by the interaction of the predominantly lohdse
motions fory < 1/2 with the predominantly anti-clockwise motions fpr> 1/2. The
resultant negativg-gradient inyy produces an eastward zonal flol - 0) as expected
from equation (5.31). Further examples of the productiothefzonal flow in a similar
way can be seen in the other plots. However, the annulus mattesloped boundaries,
neglects any preference that there may be for waves to pat@agonez-direction over
the other. Therefore, for each solution we produce with aak@iow in the positive
x-direction, there is an equivalent solution with the zonaWflacting in the opposite
direction. In order to overcome this degeneracy, curvatdrdhe end wall boundaries
must be included in the model. Busse & Or (1986) consider tleetedf such curvature
of the end walls. In some plots, for example thglots of figures 5.2 and 5.3, the zonal
flow is strong enough to dominate the dynamics so much thatotine cell patterns are
no longer visible. In such cases, the correlation betwegiome of strong zonal flow and

regions of stron@/0Jy is very clear.

There are also general observations that can be made frofiiglots of figures 5.1 to
5.6. Thesin(7wy) dependence of the linear theory, where one would expechatiag
yellow and blue vertical stripes, has again been supprdssadn-linear effects. In fact,
the preference is almost exclusively for yellov £ 0) and blue ¢ < 0) in the regions
y < 1/2 andy > 1/2 respectively. This is a result of the mean temperatirattempting
to balance, or ‘flatten out’ the static temperature profilee &50 notice that often the
regions of most active heat transport occur when the gradfdri is approximately zero.
This is because convection can be carried along with thel Ztlmwain areas where the

flow strength is near-constant. However, the shearing effea gradient in the zonal
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Figure 5.1:Contour plot for run I:Pr = 1, 8 = 7.07 x 103, C = 0.316, Ra/Ra. = 2.5.
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flow significantly disrupts convection cells by tearing thepart. Many of the runs also
display a striking correlation of th&-contours with the slope df. Thed-contours show

the local slope of the flow because temperature is advectibdhé flow. This slope then
gives the sign of the Reynolds stress, which via equatiorijsiBtermines the form of
the zonal flow. Therefore this explains why the slope ofttfe®ntours is correlated with

the slope of the zonal flow.

We now discuss how the general features of the dynamicsidedabove alter in various
parameter regimes. For the first six runs, which are for patarmegimes used by Jones
etal.(2003); Rotvig & Jones (2006), we see excellent agreemehttié previous results.
For each parameter set the state has evolved into a finalvgtatehe same properties as
those found in the previous literature. In particular, thienber of jets produced for the
parameter sets of these first six runs matches exactly witketf table 1 from Rotvig
& Jones (2006). Ag’ is increased the disturbances become smaller incteection.
Thus there are fewer convection cells in figure 5.1 whigre 7.07 x 10° compared with
later runs (see, for example, figure 5.2, run Il whére= 7.07 x 10°). This is due to
the dependence @f on 3 given in equation (4.47). In fact, in figure 5.2 we see that the
convection is localised rather than occurring throughbatdomain, unlike most of the
other figures. Run Il has settled into a quasi-periodic stdterebursts of convection
occur. During a burst, the convection takes place everysvimethe domain and drives up
the zonal flow. The snapshot in figure 5.2 displays the sdunahortly after a burst has
taken place and the convection is localised. We will disflaher evidence for bursting

solutions in the next set of runs.

There is also an increase in the strength of the zonal flowiasncreased; compare the
magnitude ofU/ in figures 5.3 and 5.2, for runs Ill and 1, whefé = 0 or alternatively

in figures, 5.5 and 5.6, for runs V and VI, whate+# 0. Since the forcing is the same
for all of these runsRa = 2.5Ra.), there must be another explanation for the differing
magnitudes of the zonal flow. Recall from equation (5.51) that magnitude of the
zonal flow is determined by the balance of the Reynolds foreigginst the frictional
terms. Therefore in order to maintain a larger zonal flow atdased values of, the
Reynolds stresses must be larger. There are two ways in winicReéynolds stresses
could be larger: either the convection is stronger or theastlines slope more. The

former explains why a larger value éfa results in a larger zonal flow; the Reynolds
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stresses scale lik¢?. However, in runs | and Il the forcing is the same and the coinve
velocities are comparable. Therefore we expect that attarthe streamlines slope more

in order to give rise to the increased Reynolds forcing angelazonal flow. This also
explains why no zonal flow is produced in the absence of miatince the)-contours

do not slope whemw = 0. The general increase in the magnitude of the zonal flow must
saturate at some large value @fsince the sloping of the streamlines cannot continue

indefinitely.

For runs where” = 0 we also do not find any evidence of multiple jets since runs Il
and Il are dominated by wavenumbers= 2 andm = 1 respectively. For runs where
the zonal flow is strong (for example runs Il and Ill) the camtplots display large-scale
structures in the:-direction so that the flow pattern is banded. In figure 5.2 fears as
though there is very little change of the flow pattern inthadirection, which may result in
negligible radial flow sincer, = 0v/0x. However, the radial (convective) flow here may
actually be comparable with previous cases (for examplé)rwince they)-contours are
larger in the former case. The zonal flow is very dominant mliso that any structure
in the z-direction is swamped by thgstructure. However, it is certainly true that and

u,, are far more similar in size in run | compared with run Il. Iretrdirection there is
more structure with strong-dependence near the boundaries ang-atl /2 resulting in

the strong zonal flow there sineg = —0v/dy.

The zonal flow is weakened by the introduction of the bottoictibn as expected from
equation (5.51). This is best shown by comparing figures B:=5, for runs IV and V,
which have the same value @gfbut different values of®. The zonal flow has depleted
in strength fromr: +400, in run IV, to~ 470 in run V. Note also that there is far less
order in the contour plots fap andé in figure 5.5 since the zonal flow is weak. This is
also the case in figure 5.1. The introduction of the Ekmanrlajs® drastically improves
the likelihood of multiple jet solutions. The only runs, diese first six, where multiple
jets are presented are runs V and VI. These two runs both@ave).316, which is the
largest value of” tested, for these initial runs. The possibility of multipés arising
also increases asis increased. Thus, relatively large valuesbénd are preferred for
multiple jets, as evidenced by figure 5.6 which has the mast(gx in total) of any of

these first six runs. The number of jets found for each run eacoinpared directly with
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those of table 1 from Jone al. (2003) and table 1 from Rotvig & Jones (2006), where

we see excellent agreement.

The replication of previous results gives us confidence foloeg further parameter
regimes and the bursting phenomenon. This is what we periormans VII to XIX.

The parameter regimes used for these runs can, again, betifotable 5.1, where we see
that all have3 = 5 x 105. We have considered further values of the Prandtl number and

Rayleigh number, whilst continuing to vaéy.

From figures 5.7 to 5.19 we see the same general dependenternarging as was found
for runs | to VI, for different Prandtl numbers. The introdioa of C' reduces the strength
of the zonal flow. We first consider runs VII to X whefe- = 1. Figure 5.7 for run VII
compares very well to that of figure 5.2 where the parameterslanost the same. We
see in figure 5.8 for run VIII that increasing the Rayleigh nemto five times critical
increases the zonal flow strength (compare with run VII)sTsito be expected, and was
also found to be the case in previous work (Rotvig & Jones, RP0Béhigher Rayleigh
number increases the driving thereby also increasing tlgminale of the zonal flow that
can be produced. Figure 5.8 also shows that the increase iRdlgleigh number has
caused a rise in the peak value of the mean temperature gréagain compare with run
VII). If the Rayleigh number is held constant and instéa$ increased progressively we
see the same dependence(das was discussed earlier. When increasginigom figures
5.7 t0 5.9t0 5.10 we observe a weakening of the zonal flow bint@aease in the number
of jets. In run VIl we also notice some thermal boundary festeucture. From figure 5.8
we see that the gradient 6fincreases in magnitude sharplyyat 0 andy = 1 indicating

enhanced heat transport.

We now move on to the case where the Prandtl number has besretetbPr = 0.5,
shown in figures 5.11, 5.12 and 5.13 for runs XI, XIl and Xllle\&re able to compare
these runs directly with the runs VII, VIIl and X where the pphrameter to have changed
in each case is the Prandtl number. By lowering the Prandtleumwe notice that the
field contours and the pattern of the zonal flow remain quitelar between runs VIl and
X1 though the zonal flow strength is slightly less in tRe = 0.5 case. WherRa = 5Ra..
we see much more of a difference between the= 0.5 and Pr = 1 cases in figures

5.12 and 5.8. There are just two jets when = 0.5 though the strength of the zonal
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flow is larger than in the®r = 1 case. Figures 5.13 and 5.10 show that the reduction of
the Prandtl number also has some effect on the case where).5. The zonal flow is
slightly stronger with one fewer jets in ther = 0.5 case but otherwise the form of the
convection is comparable in both figures. Also of note, whemaring runs XI, Xl and

Xl to VII, VIII and X is that the peak mean temperature grewli is larger in all three

cases wher = 1.

We now discuss increasing the Prandtl number fiém= 1 to Pr = 2. We can compare
figures 5.14 to 5.17 for runs XIV to XVII with those of runs Vib X respectively, since
the only parameter change is in the Prandtl number. By comgdhiese two sets of
figures we see that there is, other than in a couple of casesnera depletion of all
guantities as the Prandtl number is increased. The coowvepttterns are similar in the
cases wher&€' = 0 as shown by comparing figures 5.7 and 5.8 with 5.14 and 5.15.
However the zonal flow strength, as well as the contours,egteced in thé”’r = 2 case.
There is remarkable similarity between the plots for the Rvandtl numbers currently

in question wherC' = 0.05, see figures 5.9 and 5.16. The number of jets is the same
in both cases and many of the quantities are of a similar $ipsvever, there is again a
smaller zonal flow strength when the Prandtl number is laffee final run withPr = 2,
namely run XVII, appears to have a large number of jets, widcexpected since the
bottom friction isC' = 0.5. There is, however, only a weak zonal flow resulting in the
1-contours lacking a clear banded structure. This was notdélse whenPr = 1 (see
figure 5.10). Thus it seems that increasing the Prandtl nucdigses the system to lose
its banded structure at a lower value(of We should also note that the reduction in flow
strength with increasing Prandtl number is to be expectad i$ because the momentum
diffusivity rate, v, is larger so it is more difficult for large-scale flows to exslbefore

being diffused away.

The Prandtl number is increased furtherRo = 5, in figures 5.18 and 5.19 for runs
XVIII and XIX respectively. In these plots the zonal flow isaag, as expected, weaker
than in the equivalent cases with smaller Prandtl numbeosvender, there is an increase
in the extrema values of the mean temperature gradientjvduiotinues a general trend
from the aforementioned figures. This can be explained bynitreased Prandtl number
resulting in a smaller thermal diffusivity;. Hence, in contrast to the zonal flow, a

relatively large mean temperature gradient can develogereasily due to the increased
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time it takes to be diffused away. Also of note from figuresB5ahd 5.19 is the fact that
the disturbances are becoming increasingly small-scdaled®randtl number is increased.
This is the cause of the increased resolution used for theskother runs of the code, as
we mentioned earlier. The increasingly small-scale natuitee x-direction of the fields is
to be expected. The critical wavenumber (in the limit of daqoitation) is given in equation
(4.47) and we see that it is proportional(t8r /1 + Pr)'/3. Therefore the wavenumber,
k, at onset becomes greater and the disturbances themseb@sd increasingly small-

scale asPr is increased.

For several of the runs VI to XIX we also plot, in figures 5.205@7, several more
guantities as they evolve, for a period of time prior to eatfypshot culminating at the
timestep of the snapshot itself. The three plots displayedaich figure 5.20 to 5.27
from top to bottom represent the following. The top plot thss the various energies,
at each timestep, which were defined by equations (5.43 ),51d#ely the total kinetic
energy,Er, the zonal kinetic energyy,, and the difference between the twig,. The

remaining two plots contain the extremum values (that stiaxima and minima) of the
mean quantities, at each timestep. Figures 5.20 to 5.2% akoto observe the bursting

phenomenon that has been found in previous work (Rotvig &sJd2@06).

Figure 5.20 shows that the zonal energy is relatively snealfdin XI. There are also no
large fluctuations in the zonal flow though there are fluctuntiin the energies. With
such small fluctuations in the various quantities we canggsitonclude that only very
weak bursting is occurring in this run, if at all. The Rayleigiimber is increased to five
times critical in figure 5.21, for run Xll, and the zonal engmpw forms the majority
of the kinetic energy in the system. There is also evidendbebursting phenomenon
with a gradual decline in of all the quantities in the threetpbefore a sharp increase at
t ~ 2.48. The energy and mean quantity extrema plot for run XIII is tb&ci due to its

similarity to other figures; the run does not show evidendeun$ting.

Figure 5.22, which is for run VII, perhaps best showcaseshilmsts of convection
with several bursts apparent. A clear quasi-periodic phemmn is occurring with all
guantities displaying an oscillatory nature. The zonal fiswscillating over a range of
approximately 500. At times when there is a sharp increatieeienergy and the extrema

of U, the zonal flow is driven up by the convection. However, thiergs shear of the
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zonal flow then inhibits the convection, which depletes therse of energy for the zonal
flow. Note that the maxima of the zonal energy occurs shoftgr he maximum values
of the extrema ot/. The zonal energy then decreases to a level that allows tivection
to build up and a new burst can occur. Also of interest is tlearcperiodic nature of
the mean temperature gradient in the third plot. This gtyamias not studied in the
previous work. However, the clear alignment of peaks of ntemperature gradient with
the increase of the zonal energy suggests that it may toogslaynportant role in the
bursting phenomenon. Taken at the end of the time periodagisg in figure 5.22 is the
snapshot for this run, which was displayed earlier in figui®e Hrom figure 5.22 we see
that the snapshot occurs wheél, is near a peak and figure 5.7 shows that convection is
occurring almost everywhere. This is typical of many runsifmes when the convective
energy is large and therefore the convection occurs thrmuighe domain and is able to
drive up the zonal flow. The figure for run VIII is omitted hereedto its similarity to

figure 5.21, though it too shows bursting.

We now move on to figures 5.23 and 5.24 which are alsd”ior= 1 but bursting is less
evident. In figure 5.23, for run IX witle’ = 0.05, bursting appears to be occurring but
it is sporadic with certain time periods only producing dnieirsts. The range of the
oscillations of the zonal flow is also smaller, nex300. For figure 5.24, wheré' = 0.5,
the zonal flow is weak as shown by the energy plot. Also, lmgsippears to have ceased
with only very small oscillations in the extrema of the zofialv occurring. Therefore,
we can conclude that the bottom friction hinders the bugsgihenomenon, which is in
agreement with the previous work (Joretsal,, 2003; Rotvig & Jones, 2006). For the
runs where bursting occurs fétr = 1 (that is, runs VII, VIII and IX) the period of the
bursting is found to be: 0.02 of a diffusion time. This can be observed from figures 5.22
and 5.23.

We have again omitted a plot for run XIV (whefe- = 2) due to its similarity to figure
5.22. The only significant difference to be found is a redurcin the zonal energy and
zonal flow extremum, which is to be expected for larger Plamaitnbers. However, in
figures 5.25 and 5.26 we plot the energy and mean quantitgraeatplots for runs XV
and XVII where Pr = 2. Figure 5.25 once again shows clear evidence of bursting,
this time at five times critical. The maximum valuesBf and@/ ., continue to occur

shortly before the peaks inmax and —Unmin. The period of time between bursts has also
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remained constant at 0.02 despite the increase in the Prandtl and Rayleigh numbers
compared with the earlier runs. This suggests that the ghefithe bursts is not strongly
dependent on eithePr nor Ra. From figure 5.25 it is clear that the snapshot for this
run (see figure 5.15) is taken during a time of strong zonal;flbxat is post-convective
burst. The convection in figure 5.15 is also localised dué¢ostrong zonal flow. This is
in contrast to figure 5.7 which is taken during a burst. Thiswghthat during a bursting
cycle there are both periods where convection occurs eVesavand where convection
is localised. Also of note is that the range of the fluctuatiothe maximum value of the
mean temperature gradient is larger than in the cases of IBreedtl number (compare
with figure 5.21). We do not give a plot for run XVI; it is simil#éo figure 5.23. Figure
5.26 again shows that increasing the bottom friction catise$ursting to halt, as well
as reducing the magnitude of the zonal flow itself. In paléiguhe energy plot of figure

5.26 shows that the zonal energy is extremely small indeed.

Our final plot of energies and extremum values of mean quesii figure 5.27 is for run
XVIII, where Pr = 5. We see that despite the zonal energy forming the majorithef
kinetic energy the bursting has certainly ceased. The sabfi@ll quantities are nearly
constant over a relatively long period of time. The sameasibm was found for run XIX,
which has a larger Rayleigh number so bursting does not oveurfer values ofRa that

are several times critical.

We conclude this section by summarising the novel work peréal. We have observed
that the bursting phenomenon seems to only occur for a fiaiige of Prandtl numbers.
Figures 5.20 and 5.21 showed that bursting can occurPfor= 0.5 but is weak, at
best, unless the Rayleigh number is large. There is plentywiderce of bursting for
Pr = 1 and Pr = 2 for both values of the Rayleigh number tested. However, as the
Prandtl number is increased further the bursts of convecim longer arise, even for
large Rayleigh numbers suggesting that the phenomenonscieas®mePr > 2. In this
section we also described how there were oscillations ofrtean temperature gradient
occurring along with the bursts of convection. This appdarBave been overlooked
in previous work. As we shall see in the next section the pégioature of the mean
temperature gradient plays a significant role in the pradoaif the bursting phenomenon

itself.



Chapter 5. A non-linear theory for the annulus model

3.0x10*

2.5x10*

2.0x10*

1.5x10*

1.0x10*

5.0x10°

A Paw 7\
M N A R A N NN oo ~ A

A
<)
3}

4.60 4.65
Time

A
~
o

800

600 —

400 —

200~

4.60 4.65 4.70
Time

>
w
o

4.60 4.65
Time

>
~
o

Figure 5.27:Energy and mean quantity extrema plots for run XVIII.

160



Chapter 5. A non-linear theory for the annulus model 161

5.4 Linear results with mean quantities

In section 5.3 we were able to reproduce many of the resulisredd by Jonesgt al.
(2003); Rotvig & Jones (2006) including multiple jets and dpgpearance of the bursting
phenomenon. In particular, we saw how large zonal flows arahrtemperature gradients
readily appeared under many parameter regimes. Theseflmms] which were formed
by the time integration of the non-linear equations, wivéa more realistic form than
the zonal flows we posed in chapter 4. In fact, we mentionedhapter 4 that there are
infinitely many choices for the form of the zonal flow presedhn the linear theory; that
is Uy(y). Hence it is sensible to perform the linear theory, as in tdrad, with Uy(y)

set equal to the zonal flows evolved in the non-linear thedhyis is what we consider
in section 5.4.1. We also sé&e = 1 throughout so that the magnitude of the zonal flow

comes directly from its non-linear form.

In section 5.2 we also defined the mean temperature gracidmaticed that it too took
a quasi-periodic form in time. It is possible to incorportiis mean temperature gradient
into the linear theory in a similar way to the zonal flow. To tdstwe suppose that the

basic state temperature used in the linear theory now take®tm

AT
Ty = =% + Goly), (5.52)

whereATy/D is the static temperature profile used previously (recalbéign 4.4). Here
Go(y) is a mean temperature profile, which gives rise to a mean teye gradient
in the basic state. This mean temperature gradient arises ffion-linear interactions
between the velocity and temperature perturbations aedsahe basic state temperature
gradient from that of the static gradienh7'/D. Hence we can visualise this mean
temperature gradient as the temperature profile analogy,@f) for the basic state
velocity. Rather than having the basic state as being stdtat (s, uyy = 0 and
To = ATy/D) we have now introduced the effects of non-linear terms theobasic

state for both the velocity and temperature profiles.

We must now use the form @t given in equation (5.52) to derive extra terms in our linear
theory equations. This amounts to considering what teriss &énom settingl” = Gy (y)

in equations (4.5) and (1.15). Sin¢k has noz-dependence we see that no extra terms
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appear in equation (4.5) so that we retain

Vel OV

A 0
at + Re Uo ax

. N il 4
(B + ReUy) e Ra@x + V7, (5.53)

as the vorticity equation. Thus, recalling equation (4.2@) note that the vorticity
equation remains unchanged under the addition of the meapetature gradient. We
must also consider new terms arising in the temperaturetiequél.15), withT = G,.
We ignore the zeroth order basic state terms so that onlyebensl term (that is, the
advection term) in equation (1.15) provides a new term, twigc

dGy 99 dGo

(u-V)Gy = uyd—y == a_xdy’

(5.54)

using the definition ofi, from equation (4.7). Hence the heat equation, (4.27), isifieod

with this extra term so that it becomes

(24 mag 20 20 _ o0

= + V20. (5.55)

+ el + o7

ot Oor Ox dy

We use the runs discussed in section 5.3 to provide the meariitjes to be entered into
the linear theory. Of course, as the system is evolved duhage runs the zonal flow
and mean temperature gradient change at each timestepdén tor fully analyse the
effects of the mean quantities on the linear theory we perthie linear stability analysis
at each timestepather than simply picking certain timesteps. This allawgo see how
the growth rates of the linear system evolve as the dynaniesrelinear system evolve.
Therefore we add the code that solves the linear theory fiwapter 4 to the non-linear
code (discussed in section 5.2) as a subroutine, whichledcatfter every timestep. With
the same parameter set as that being used in the non-limeanduwithUy(y) andGy(y)

set equal td/ andd respectively, the subroutine outputs the growth rates.

In the plots that we shall discuss, the growth rate, waversurabd frequency will be
functions of time for the same time periods as those takemhiplots in figures 5.20
to 5.27. Therefore we shall be able to directly compare thpuis from the linear
theory with those of the non-linear theory, over the same imtervals. We are primarily
interested in the growth rate of the fastest growing modelawd it varies as the non-
linear system is evolved. This is because we wish to asoefttie magnitude of any
growth varies with the mean quantities. Consequently, wegmily look at the linear

outputs for runs of section 5.3 where the bursting phenomevas witnessed. We split
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the remainder of this section into three subsections whereamsider the linear theory
with the addition of a) the non-linear zonal flow, b) mean tenapure and c) both mean

quantities.

5.4.1 Linear results with non-linear zonal flow

We first consider the linear stability results in the case netanly the zonal flow/[/,
is included in the linear theory. Hence in this subsectionsetl;(y) = U(y) and
Go(y) = 0in the linear equations, (5.53) and (5.55). The procedure isesimilar to that
of chapter 4 where only a zonal flow was included in the basitestHowever, unlike
chapter 4 where marginal stability was considered sod¢hat 0 and Ra = Ra,, here
we are looking for the fastest growing mode with the Rayleiginber equal to that of
the non-linear runs. Figures 5.28 to 5.31 show how the groattho, frequencyw, and

wavenumberk, vary as the non-linear system is evolved, for several rtora table 5.1.

We first consider figure 5.28, for run XII, which can be complangth the plots of figure
5.21. By doing so we see that there is certainly correlatiawéen the growth rate and
the zonal energy and extrema of the zonal flow. As the zonal $imength gradually
decreases the quantities plotted in figure 5.28 remairyfamhstant. However, there is a
sudden increase imandk att ~ 0.247, which is wherely; attains its minimum. This is
to be expected as the growth of convection should occur wieerdnal flow is weakest.
Although the range of the growth rate is quite large, we moti@ato is never less than
~ 1500. Therefore the zonal flow reduces the growth of the convedhat does not
completely cause it to cease. A% increases after ~ 0.247 the growth rate begins to
decrease again due to the disruption of the convection bpdléional strength of the

zonal flow.

If we now move on to figure 5.29, for run VII, we again see someatation with the
plots of figure 5.22. Unlike in the case for run XlI, the growétte now remains relatively
constant. The correlation with; in figure 5.22 is also far less obvious, so it seems again
that the zonal flow is not sufficiently affecting the growtrcohvection. There is excellent
correlation however between the frequengyand the zonal flow strength. The frequency
is smallest in magnitude when the zonal flow is weakest. Peaksalso coincide with

locations of strong zonal flow although the range of the wawdper is small.



Chapter 5. A non-linear theory for the annulus model

8000

6000 —

© 4000 —

2000 [~

0.230

0.235 0.240 0.245

Time

0.250

1.0x10°

5.0x10*

-5.0x10*

—1.0x10°

—1.5%10°

0.225

0.230

0.235 0.240 0.245

Time

0.250

0.255

40

35

30

20

k

N

(@)}
\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

10

0.225

0.230

0.235 0.240 0.245
Time

0.250

0.255

164

Figure 5.28:Growth rate, frequency and wavenumber plots for run XII witim-linear zonal flow.
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Figure 5.29:Growth rate, frequency and wavenumber plots for run VII witim-linear zonal flow.
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Chapter 5. A non-linear theory for the annulus model 168

Run XV also displays bursting and again there is correlatietwben the quantities of
figures 5.30 and 5.25. Once again the minimum growth rateasatl when the zonal
energy is largest and the zonal flow is unable to reduce thetgreate to marginal or
decaying modes. Peaks jn| and k& are again found wheiv; acquires a maximum,
att ~ 1.013 andt ~ 1.030. Finally for this subsection we consider a run for which
bursting was not observed; namely run XVIl. When comparingrég 5.31 and 5.26 we
immediately notice the lack of correlation between quéatithat was present for the
previous runs discussed. The range pf andk is far smaller due to the weakened zonal

flow in this run and thus the departure from thig= 0 case is minimal.

We can conclude from this subsection that the zonal flows efrtbn-linear theory

certainly have a profound effect on the linear growth rafesoavection. For runs where
bursting is observed, the peaks in the growth rate coincittetunes when the zonal flow
Is weakest. However, the zonal flow is unable to halt the gnaficonvection altogether
as evidenced by the lack of negative growth rates in figu2&t6.5.31. Therefore another
process, at least in part, must be responsible for the sirfficeduction in convective
growth. In the next subsection we consider whether the m@mat mean temperature

gradient can fulfill this role.

5.4.2 Linear results with non-linear mean temperature gradient

We now consider the linear stability results in the abserfi@y zonal flow but with the
mean temperature gradier¥, included. Thus, in this subsection we $&t = 0 and

Gy = f in the linear equations, (5.53) and (5.55). Figures 5.32.85 Sontain plots
displaying howo, w andk vary as the non-linear system is evolved when only the mean
temperature gradient is included in the linear system. Ak thie previous subsection
we can compare these plots with the energy and mean quaxtignmaim plots for the

relevant runs from section 5.3.

We first consider figure 5.32, for run Xll, which can be compangth figure 5.21. All
three of the quantities in figure 5.32 remain near constabeétn with since the extrema
of the mean temperature gradient are also approximatelgtaonfort < 0.247. The
sudden increase #},, att ~ 0.247 is accompanied by an abrupt reduction in the growth

rate. This is to be expected since if the mean temperatugiegrais able to partially
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(or indeed, fully) cancel out the static temperature gnatilithe overall gradient will be
less adverse. Thus the system will be less eager to conescifing in smaller growth
rates. However, even when the mean temperature gradietitbiggshe growth rate is
only reduced by approximately)%. In fact, this is a smaller reduction of the growth rate
than was present in the previous subsection. Associatédtietregion of strong mean

temperature gradient there is also a reductiojvjrand the wavelengths of the modes.

The plots in figure 5.33, for run VII, show clear correlatioitiw5.22. The growth rate

oscillates, though again does not reduce significantly. rt§hafter each peak i/, .,
there is minimum of the growth rate, as expected. The cdivelaf the frequency and
wavenumber is also clear with the same dependence as seee.leffigure 5.34, for run
XV, we again see the same pattern of correlation by compavitigfigure 5.25. Peaks of

0! ..att ~ 1.012 andt ~ 1.029 are associated with weak growth and short wavelengths
whilst the intermediate period has increasing growth. €hea lack of order in the plots
for run XVII, displayed in figure 5.35, where only small fluations ino, w andk are
observed. This is to be expected due to the near constargsvidiat the extrema of the

mean temperature gradient take in figure 5.26.

In this subsection we have discussed the effect that thei@aldif the non-linear mean
temperature gradient has on the linear stability in the adxseof zonal flow. The
observations are similar to the previous subsection. Agtroean temperature gradient
can indeed reduce the growth rate of convection due to a tieduo the overall adverse
temperature gradient present. However, the growth rate doe become marginal or
negative even during times of strong mean temperaturegyradiVe would expect to find

o =~ 0 during the periods just prior to the convective bursts amtbat does not seem that

a mean temperature gradient alone can produce burstingaridiegous result was found
in the previous subsection for systems with zonal flow but mamtemperature gradient
included. Therefore we propose thmith mean quantities are required to produce bursts

and we test this conjecture in the next subsection.

5.4.3 Linear results with both non-linear mean quantities

We have seen in the previous two subsections that includitg one of the mean

quantities in the linear theory does not yield the requieste of the growth rate expected
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Figure 5.33Growth rate, frequency and wavenumber plots for run VII witim-linear mean temperature

gradient.
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for bursts of convection. We therefore expect that the mgss$ controlled by both a zonal
flow and a mean temperature gradient together and that betieaessary to produce the
phenomenon. Hence we now finally consider the linear staléisults with both mean
quantities[/ and#’, included. Therefore in this subsection we 8gt= U andG, = 6 in
the linear equations, (5.53) and (5.55). As with the previsubsections, we compare the
plots of figures 5.36 to 5.39 far, w andk with the energy and mean quantity extremum

plots for the relevant runs from section 5.3.

The comparison of figure 5.36, for run XII, with figure 5.21 alsothat there is again
correlation between the linear quantities and the noralie@ergies. In fact, the plots of
figure 5.36 are extremely similar to those of figure 5.28 wlaerly the zonal flow was

included. Strong growth of the same order of magnitude resnjaossible at times when
the zonal flow and mean temperature gradient are weak. Howtheekey difference

between these sets of plots is that, for the case where bah mentities are included,
the growth rate is approximately zero when the mean questitre large. This was not
the case previously and therefore including both mean giemhas given the desired

result which is the ceasing of the convection.

The correlation ob in figure 5.37, for run VII, with the quantities plotted in figu5.22 is
striking. As with figure 5.33 there is strong growth locatdukne the zonal flow and mean
temperature gradient are weak. However, unlike figures a&r2b5.33, the growth rate
becomes negative when it attains its minimum values. Herwmnvthe mean quantities
are large the convective modes of the linear theory decag.cbmbination of the zonal
flow and the mean temperature gradient in the linear thearyesathe convection to cease.
Also of note is that the wavenumber and the frequency of thdesdoth tend to zero at

times of weak convective growth or, equivalently, timestobisg zonal flow.

Figure 5.38, for run XV, also appears to show that both meamifies are necessary for
bursting. There is an initial period of strong growtht at 1.010 where we see from figure
5.25 that the mean quantities are weak. Followed by the gtgoowth there is a period
whereo =~ 0 coinciding with the time between which, reduces from its maxima to its
minima. After the zonal energy attains its minimum value, zbnal flow is weak enough
to allow a second period of strong growth located at 1.026. Also of interest is that

k andw again tend to zero during periods of weak growth. The malgnaes, found
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when the mean quantities are strong, are therefore stedligicase. The plots displayed
in figure 5.39 are similar to those found for run XVII in the pi@is subsections. Once
again all three quantities take (non-zero) near-constdneg as expected, due to the weak

mean quantities for run XVII.

We can conclude from this subsection that it appears thahdéocessary condition for
bursts of convection is the existence of both a zonal flow anéan temperature gradient.
We have observed marginal growth rates in all three runs ddatit bursting. The
Rayleigh number in all runs is several times critical. Thusewthe mean quantities are
strong and of the correct form, they are able to reduce thesy® near-onset behaviour.
This was not the case in sections 5.4.1 and 5.4.2 where tbale loe a large range in the

growth rate as the non-linear system evolved, but not margalues ofs.

Physically, the zonal flow certainly disrupts the convati&s expected and as observed
in section 5.4.1. Similarly, the introduction of a strongandemperature gradient can
result in the reduction of the overall temperature gradi€ht= AT/D + #'. The adverse
temperature gradient must exceed some value in order farectian to be beneficial.
Also, the steeper the adverse temperature gradient thegsirohe resulting convection
will be. Hence a partial cancellation of the static tempamatgradient, AT/ D, will
also weaken the convection. We believe that the shearingeozonal flow, coupled
with the partial balancing of the adverse temperature gradis the requirement to halt
convection. This is in contrast to previous work on the scibjéhere it was believed that
the zonal flow could sufficiently disrupt the convection tasa bursts. Both the zonal
flow strength and the mean temperature gradient must alsedx@ome critical value in
order for the convection to cease. In the case of the zonaltHevghearing must be great
enough and in the case of the mean temperature gradienttieetetperature gradient
must be sufficiently balanced. When this occurs, the drivorgd of both of the mean
guantities is removed. Consequently, there is a depletiadhanstrength of the zonal
flow and the temperature gradient reverts to approximakely daf the static case so that
convection is once again beneficial and a burst occurs. Tyiseent also explains why
bursting is only observed at Prandtl number of order unityorder for a large enough
zonal flowand mean temperature gradient to coexist the diffusivity ratest be of a

similar order of magnitude resulting ifir = v/x ~ O(1).
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The above reasoning on the origin of the convective burgepthe question of whether
we can model the phenomenon in a simplified way without thel iee2D non-linear
simulations. This will enable us to better understand theadyics of the bursting.
Moreover, we shall also be able to validate our conjecturthemecessary conditions for

bursting to occur. The development of such a model is ourctibgein the next chapter.
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Chapter 6

A simplified model of the bursting

phenomenon

In this chapter we develop a simple model in an attempt to rdesdhe bursting
phenomenon seen in chapter 5. We do this in order to bettegrstachd the role that
the various parameters and variables have in controlliegethstence and evolution of
the bursting. We are therefore interested specifically & dignamics of the bursting
phenomenon in this chapter. Since we are going to considéerwvhat conditions
bursting can exist and not what form it takes we choose toegethe spatial dependence
of our variables. Hence we assume our variables have oniyjpael dependence. This
allows us to model the system by a set of coupled ODEs with tig imdependent
variable being time. We then consider the linear theory litcs problem and also solve
the non-linear equations by integrating forward in time ddferent parameter sets and

different initial conditions.

In section 6.1 we discuss how we mathematically construist barsting model by

discussing the equations we use and justifying their form.sdction 6.2 we find the
equilibrium solutions and then consider the linear stgbdf the steady state. We study
further linear theories in section 6.3, in order to show thatpresence of both a zonal
flow and a mean temperature gradient are required for bgrsfihen in section 6.4 we
integrate the non-linear equations forward in time. Fipalh section 6.5 we discuss

asymptotics that can be performed on the equations at Idusdifty rates.
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6.1 Mathematical setup

In this section we setup our problem mathematically by priasg the equations and
justifying their form. We wish to introduce a set of evolutiequations, each of which
describes the evolution of a physical property of the systelim chapter 5 we saw
that the bursting phenomenon occurs periodically over .tiddesome times during the
cycle, convection and the mean temperature gradient avegsaind at other times the
zonal flow is strong. There are several physical quantitieelvwe believe to play an
important role in the existence of bursting. There must Ineperature fluctuations to
drive convection from which the convective velocities driyp zonal flow. From chapter
5 we are also aware that both zonal flow and a mean temperaadegt are required to

enable bursting.

Therefore we assume that there are four crucially releviaysipal quantities involved in
the production of bursting: the zonal flow, the convective velocityy’, the temperature
fluctuations,’, and a mean temperature gradigrt, We now propose a set of evolution
equations for these quantities and discuss why they takithewe have chosen. Our

fourth order system of coupled ODEs are

N (6.1)
% — RaT — FVZ — PrV, 6.2)
T

— —VGE-T 6.3
- , (6.3)
il

o = VT +e(1-0), (6.4)

wherec; > 0 andce > 0 measure the diffusion rates of the zonal flow and the mean
temperature gradient respectively. These diffusion ratesexpected to be small since
small-scale structures, such as the convective fluctugteme more heavily damped by
dissipative terms than large-scale structures, such asa& flow. We also have the
parametersa > 0 and Pr > 0, which we refer to as the Rayleigh number and Prandtl
number respectively. Finallyi;' > 0 is a coupling parameter. In order to define physical
guantities we demand that V., T, G € R. We note that the set of equations (6.1 - 6.4)
does not explicitly contain a rotation term, nor a parameteasuring the rotation despite

the fact that we have considered rotating systems thus faweker, zonal flows are a
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phenomenon of rotating systems as evidenced by previous(gee, for example, Zhang,
1992). Therefore by including an evolution equation for doaal flow (6.1), we have

implicitly included the rotation in this set of equations.

Recall from equations (5.12 - 5.13) and (5.19 - 5.20) thahdd were expanded in terms
of Fourier modes. Equations (6.1 - 6.4) can be derived byideriag a suitable truncation
of these normal forms in a similar way to that performed bydnar (1963). Our resulting
system of evolution equations have a different symmetri &b of the original equations

involving ¢» andd; that is equations (5.7 - 5.8).

We now discuss the terms in each evolution equation in ocdferrther justify their form.

We begin with the evolution equation for the zonal flow, egua{6.1). In this equation
the zonal flow,Z, is driven up by Reynolds stresses arising from the convee®ocity

and damped by viscosity as well as possibly bottom frictidhe Reynolds stresses in
general take the form (u;uy) so that when neglecting spatial dependence, they will be
proportional tol/2. We include diffusion in the equations so that each evafugiquation
has a damping term, the size of which is controlled by a pat@mkElere the dissipation

of the zonal flow is controlled by the diffusion parametgr

The second equation, (6.2), is the evolution equation ferabnvective velocity. The
convection is driven up by temperature fluctuations whererepresents the Rayleigh
number. This term is equivalent to the buoyancy term seeharfull equations. The
convection will be damped by the zonal flow, representinglteauption of convection by
shear. This effect is represented by the'V 7 term, which is the interaction between the
zonal flow and the convective velocity. When the zonal flowiigéahe convection will be
strongly suppressed by this term as expected. Howeveg iEdhvection at a given time
is small, then this term may be overcome by the buoyancy teaalihg to the convection
being driven up once more. Het€ is a coupling parameter, which represents how
strongly the interaction between the zonal flow and the cowe damps the convective
velocity. As with the zonal flow evolution equation, we alstvé a damping term due to
the viscosity, which is represented ByV. If ¢ is non-dimensionalised on the thermal
timescale, which is what we have considered when writingagqgos (6.1 - 6.4), thei®r

Is essentially the Prandtl number.

Thirdly we consider the evolution equation for the tempamafluctuations, (6.3). The
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temperature fluctuations are created by advection by theectime velocity down the
temperature gradient, which takes the fourw,6 in the full equations. Hence ignoring
spatial variations, withG representing the mean temperature gradient, this termdwoul
take the form\/G. Advection withG = 1 corresponds to the basic state of temperature
gradient ofAT'/D and whenGG = 0, the basic state temperature gradient is completely
canceled out. Therefore when the system is strongly coimgpate would expect- to be

just above zero. There is also a damping term for the temyeritictuations, represented
by —T', which has a diffusion coefficient set to unity since we hakesen to use the

thermal timescale.

Finally we have the evolution equation, (6.4), which is fog thean temperature gradient.
The mean temperature gradient is controlled by the comesdtieat flux, which is
proportional to bothl” and7'. This term is balanced by the thermal diffusion, which
is trying to restore the basic state temperature gradietiizg6: = 1. We should note that
the sign ofGG has been chosen in order for the mean temperature graditms ichapter

to match that of chapter 5.

We note that equations (6.1 - 6.4) admit an equilibrium sotu¢whered/d¢ = 0) with

Z =V =T = 0andG = 1. This steady state represents the basic state considered in
the non-linear work of chapter 5 where the fluid is at rest dsdtémperature gradient
is simply the basic state temperature gradient. We shat tefthis solution as the ‘null
solution’ throughout this chapter. We expect the Rayleiginiber, Ra, to be large in order
to observe bursting. However, by large here we actually noeampared with whatever
value the critical Rayleigh number takes for the onset of eotign in the null solution.
The parameters; andcg should be small, because the diffusion of the zonal flow aed th
large-scale mean temperature gradient are small compatee targer diffusion rate of
the small-scale convection. We shall consider a range afddraumbers as with earlier
work: 0.1 < Pr < 10. The magnitude of the coupling parametéis not obvious, but we
predict that it will not be too large since if it were then thengection would be strongly
suppressed even for very small zonal flows. For ease of referee henceforth let the

parameter sdt be defined a¥ = {cy, cg, Pr, F'}.
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6.2 Steady state and linear theory

In this section we find the steady states and consider tharlitheory of the equations
presented in section 6.1. Hence we obtain an eigenvaluégonadind are interested in the
possible form of the eigenvalues. In order for the equat{6ris- 6.4) to be of interest as
a model for the bursting phenomenon there must exist eigiggwavith an imaginary part
and in particular, complex eigenvalues with a positive peat, indicating an oscillating

instability.

In order to consider the linear stability of the problem mb&y equations (6.1 - 6.4)
we must first find the equilibrium points of the problem. We His ty setting the time

derivatives equal to zero and equations (6.1 - 6.4) thenrbeco

Vi = cz 2, (6.5)
RaTy = FVyZy + PrVj, (6.6)
VoGo = To, (6.7)
VoTy = ca(1 — Gy), (6.8)

where the subscript zeros simply denote that we are solaingdsic state variables here.
We let £, be the set of steady state variables so that {7y, Vi, Ty, Go }-

We are able to write the system of basic state equations aguatratic equation, which
can be solved given values of the input parametersc, F, Pr and Ra; that is,I" and
Ra. We note that all four equations involug and thus we aim to derive an equation

involving only this variable. We first note from equationsieand (6.8) that

2
Zo= V0 (6.9)
Cz
Ca
Gy= —= 6.10
0 CG"‘VE)Q, ( )

where we have substituted féf using equation (6.7), which also gives

caVo
Ty = ) 6.11
0 CG+VE)2 ( )

We eliminateZ, andT; from equation (6.6) using equations (6.9) and (6.11) respeyg
whereby we obtain
ccVo  FV§

Ra =
cg + V02 Cy

+ PrVg, (6.12)
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and rearranging we acquire

F F
C_Vo5 + (PT’ + CS—) Vi + cq(Pr — Ra)V = 0. (6.13)
z z

At no point in the derivation of this equation have we assuthatlany of the steady state

variables are non-zero. Inde&gl = 0 is a solution of equation (6.13), which results in
ZO — ‘/E] — TO — O, GO — 1, (614)

as a possible steady state. This is the null solution for tisedy state, which we briefly
mentioned in the previous section. Recall that it represtetsase where the basic state
is at rest with no temperature fluctuations and a basic statpdrature gradient equal to
that of the static temperature gradient from the full ansauhodel. In other words the
null solution as a steady state in this bursting model reprssthe basic state considered

in the non-linear solution of the annulus equation in chaipte

If we now assume that; is non-zero then we can divide equation (6.13) througijtp

leave a quadratic equation iy, namely

P
v§+(%FT+q0L§+C§GGW—R@:4L (6.15)

which can be solved for, given values for the remaining parameters. Alternativelyi
and the parameter sBtare prescribed then the Rayleigh number can be determinad wit

_

CzCqh

F P
+W<—+J)+m. (6.16)

Cy Caq

Ra

If required the other basic state variables can also be fénama equations (6.9 - 6.11).

Equation (6.15) can be solved using the quadratic formutéchvgives the solution

—(czPr+cgF) £ \/(czPr + cgF)? — AFc,ce(Pr — Ra)
2F
—(czPr +cgF) £ +\/(czPr — ccF)*+ 4Fc,cqRa
2F '

Vg =

(6.17)

= V=

(6.18)

Two complex roots are always possible as solutions to equéi 15) since the coefficient
of the V? term is positive. These roots do not relate to any physiciaftism and thus
we ignore them. The remaining two roots may be real (in whiabecthey are equal
and opposite) ifRa > Pr, which can be seen from equation (6.18). Without loss of
generality we may choose the positive root since the systesygwoations (6.1 - 6.4)

remains unchanged under the transformation/, 7', G) — (Z, -V, T, G).
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We now wish to perform a linear stability analysis on the peabfor the equilibrium
solutions. We add small perturbations to the basic stateblas so that! = 7, + z,
V=W+uv,T =T +0andG = Gy + g. Then we substitute these expressions
into equations (6.1 - 6.4) and linearise (retaining onlyn®ithat are linear in the small
perturbations). We also assume that the variables haveotaigependencexp(st) so

thatd/d¢t = s wheres = o + iw is the complex growth rate. Then equations (6.1 - 6.4)

become
sz =2Vou — ¢z 2, (6.19)
sv = Raf — FVyz — FZyv — Pro, (6.20)
st = Vog + Gov — 0, (6.21)
sg = —Vob — Toyv — cqg. (6.22)

We can write these four equations as a single matrix eigaevejuatioddw = sw where

w = [z,v,0,g]" and

—cy 2V, 0 0
~FVy —-FZy—Pr Ra 0
J= . (6.23)
0 G -1V
0 =T W —cc

This simple eigenvalue problem can now be solved for thensmjae,s, by considering

the characteristic equatiatet(J — sI) = 0 wherel is the identity matrix to find
(5 + cz) ((3 + FZy+ Pr) ((s 1) (s +cg) + 1/02) + Ra(TyVy — Gols + cG)))
2RV ((5 1) (s +cg) + 1/02) —0, (6.24)

which is a quartic in the growth rate, If we first consider the null solution for the basic

state, given by equation (6.14), we find that this reduces to
(5 4+ cz)(s + ca) ((s L Pr)(s+1) - Ra) —0. (6.25)

Since the diffusion coefficients are greater than zero bynidiein we see that two of the
four roots fors are real and negative and therefore always stable. Themergawo roots

arise from the solution of the quadratic equation

s>+ (1+ Pr)s+ Pr— Ra =0, (6.26)
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which has the solutions

5= % (~(+ Pr) £ /(L Pr)? —4(Pr — Ra)) (6.27)
S os= % (~(+ Pr)+ T~ Pr 1 4Fa) (6.28)

The solutions are real since the discrimingéint- Pr)? + 4Ra is always greater than zero
and it is clear that taking the negative square root alwagslt®ins < 0 and therefore
another stable solution. The remaining solution is founddkyng the positive root in

equation (6.28), which results in a positive values aff

—(1+Pr)++/(1—Pr)2+4Ra > 0 (6.29)
= (1—Pr)*>+4Ra > (1+ Pr)? (6.30)
= Ra > Pr. (6.31)

Hence the null solution admits one unstable mode if the Rglyleumber is greater than
the Prandtl number, which as we saw earlier is also a reqeméfor V, to be defined.
Recall that the null solution corresponds to a basic statie met motion so this criteria
is to be expected as the usual form of the thermal instabiliigre the system becomes
unstable if the Rayleigh number exceeds some critical valug, However, the above
analysis also tells us that oscillating modes are not foumdl leence bursting is not
possible for a steady state given by the null solution basites Therefore we do not
discuss the null solution further and instead consider thergossible equilibrium point

where all four basic state variables are non-zero.

We simplify equation (6.24) by collecting coefficients ofwers ofs to give

FV?2
st s? {—°+1+Pr+cz+c6~}
Cz

F
+ s* lv(? <1 - cf— + 3F> + (cz 4+ cq)(1 + Pr) + chG}
A

2F
+ s {‘/04— + VE(2Pr + cz + 3caF + 2F) + czeq(1 + PT)}
Cz
+4FVy 4+ 2V ez Pr + coF) =0, (6.32)
or,
s* + P3s® 4+ Pys® + Pis + Py = 0. (6.33)

Note that we have also substituted fdy, 7, and G, from equations (6.9 - 6.11) here.

We note that this quartic foronly contains/; and does not contain the Rayleigh number
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explicitly. We wish to consider the four possible roots olation (6.32) for various
parameter sets as we slowly increase the Rayleigh numbea digenl” and Ra we can
find solutions of equation (6.15) where we $gtequal to the positive real root without
loss of generality as discussed earlier. We then use Mapgieddhe roots of the quartic
with this value ofl;,. This procedure can be repeated for various Rayleigh nunaiets
I's. In order to be of interest to the bursting phenomenarust have an imaginary part
and in particular we wish to findrowing, oscillatory solutions wher&[s] = ¢ > 0 and

Ss] = w # 0.

In figure 6.1 we plot the roots of equation (6.32) as a funatibRa for various parameter
sets. In these plots the solid and dotted lines representetdleand imaginary (when
existent) parts of the possible roots of the quartic. Fopathmeter sets tested we found
two purely real roots and two complex roots. The two comptmts, of course, appear as
a conjugate pair and therefore we only plot the real and insagiparts for one of these
roots in figure 6.1. We multiply certain growth rates and érexacies by an integer factor

in order to more clearly display the results along side ptbtjuantities with larger values.

The two real roots are found to be negative for all Rayleigh Iners and for all parameter
sets and thus they are always stable. More interesting aredmplex roots, which
for most parameter sets have a positive real part for a langegh Rayleigh number.
Therefore unstable, oscillatory solutions are possiblevata critical value ofRa (see
figures 6.1(a) to 6.1(e)). Figure 6.1(f) does not permit gngwsolutions even aga
becomes very large. In fact, this was a characteristic ofallitions withF > 0.5
suggesting that if the coupling parameter is too large mgsnay not be possible. For
the plots with parameter regimes that permit growing sohgiwe see that the preference
(that is the largest growth rate) is for the parameter segurd 6.1(b). Since the fastest
growing mode is found for a finite value of the coupling pargen&’ = 0.05), it may be

that there is a finite optimum value 6&f.

The fact that growing oscillatory solutions are found meidnas the system of equations
(6.1 - 6.4) may be a useful simple model for investigating nia¢ure of the bursting
phenomenon. In order to ascertain whether we have develapeddel that displays
the dynamics of bursting we must investigate how the clitRayleigh number varies

for different parameter sets and also consider non-linelatiens. We discuss the non-
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linear problem in section 6.4 but first we consider the depand of the critical Rayleigh

number on the remaining parameters.

We have seen that oscillating solutions foare permitted by equation (6.33) for large
enough values ofRa. We can improve our efficiency for searching for the critical
Rayleigh number (wher&[s] = 0) by making an additional requirement. We wish
for the system of equations (6.1 - 6.4) to admit oscillatiotugons since the bursting
phenomenon is a periodic phenomenon. Hence we wisly fior be complex so we
require a conjugate pair of eigenvalues, which lose stgkalbove some critical value
of the Rayleigh number. Therefore a Hopf bifurcation musuoethenRa = Ra. where
the growth rate vanishes (thatas= 0) ands = +iw for some frequency, € R. A limit
cycle will occur, the stability of which depends on whethwe bifurcation is subcritical
or supercritical. This cannot be determined by the lineaoit and will be investigated

in section 6.4.

At the position of the bifurcation, two of the possible fouogth rates must be marginal
with s? = —w? so we assume that the quarticsirgiven by equation (6.32), can be written

as

(s> +w?)(s* +as+b) = 0. (6.34)

This allows for the most general form for the characterisigenvalue equation that also

admits a Hopf bifurcation whesn = +iw and we expand to find
s* +as® + (W? + b)s® + wias + w?b = 0. (6.35)

By comparing the coefficients of the two forms of the quarticsigiven by equations
(6.33) and (6.35) we are able to derive a condition onAJsefor the existence of a Hopf

bifurcation. Clearly we acquire

P; =a, (6.36)
Py =w? +b, (6.37)
P =uw’a = W= % = W= %, (6.38)
B=ub = b=10 p— 1ofs (6.39)




Chapter 6. A simplified model of the bursting phenomenon

'67w e O O R S S S|

0 20 40 60 80
Ra

(@) T ={0.1,0.1,1,0.1}

100

0 20 40 60 80
Ra

(c) I = {0.1,0.01,1,0.1}

100

2F
£ 9
100,
1 100,
= ) —
0 —

0 20 40 60 80
Ra

(e) T = {0.1,0.1,1,0.01}

100

-10L

(H T ={0.1,0.1,1,0.6}

100
Ra
(b) T' = {0.1,0.1,1,0.05}
Y .
—— 10gq,
20 40 60 80 100
Ra
(d) T' ={0.1,0.1,0.1,0.1}
T :
—— 100,
20 40 60 80 100
Ra

191

Figure 6.1:Plots of possible eigenvalues,against the Rayleigh number for various parameter Bets,
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and from equation (6.37) we get

P RPs
Py=— 6.40
2 P, + 2 ( )
= P!+ PP} — P P,P;=0. (6.41)

The P;s are functions of the parameters belonging tandV/;, only. In fact the condition
given by equation (6.41) is a polynomial i3 of degree eight. Hence for a given géet
the condition given by equation (6.41) finds eight possibtes forl;. Only two of these
values are real and without loss of generality welgetqual to the positive real root. The
value ofV;, (along with the parameter sE}) can then be substituted into equation (6.16)
to acquire the critical Rayleigh numbe®a.. We can also use equations (6.9 - 6.11) to

find the values of the remaining basic state variables atitetibn of the bifurcation.

Thus, we now have a procedure that finds the critical Rayleighlder and the (non-zero)
equilibrium solution,Ey, at the Hopf bifurcation. Equivalently our procedure findse t
location of a Hopf bifurcation inRa-FEy-space given a parameter sBt, To summarise

the procedure:

e Choose a parameter sét,
e Solve equation (6.41) using, for example, Maple and/géb the positive real root.

e Substitutd” andV} into equation (6.16) and solve to firitk, which we denotédza,.

The plots of figure 6.2 show how the critical Rayleigh numbeteswith £ for several
values of the Prandtl number. Each plot displays resulta fiifferent choice ofcz, c¢ }
and the Rayleigh number is represented on a logarithmic &kis.plots inform us that
the critical Rayleigh number can significantly depend on tipaif parameters. If we were
to minimise the critical Rayleigh number over any one of theapeeters from the sét,
we notice the preference is, in general, for smaller valdes oc; and F. However the

dependence on the Prandtl number is more complicated.

We see that the form of the plots do not change greatly as thesidin rates are reduced
together (so that; = c¢¢) although the critical Rayleigh number is smaller for snralle
{cz,c¢} for most Prandtl numbers. The cases wh&re = 5 and Pr = 10 seem to

be almost immune to the reduction of the diffusion rates witkir lines almost identical
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in figures 6.2(b), 6.2(c) and 6.2(d). However when the diffngates are not equal the
critical Rayleigh number increases significantly. This carsben by comparing figures
6.2(b) and 6.2(e), which are for cases where the diffusioesraave and do not have
equality respectively, though the magnitude of the ratessamilar. This is seen again in
figure 6.2(f) where there is two orders of magnitude betwhkemliffusion rates. Therefore

the preference for instability is for equality between apyotically small diffusion rates.

We now discuss the dependenceiaf. on F'. We first note that for smaller values of the
Prandtl number, the critical Rayleigh number tends to infiag /' — 0. There is also a
singularity atF' = 1/2 for all Pr whenc; = ¢ (see figures 6.2(a) to 6.2(d)). Discussion
of how this singularity arises mathematically is presentesection 6.5. Figures 6.2(e)
and 6.2(f) show that in the case whege+# ¢ the critical Rayleigh number is minimised
by a Prandtl number of order unity for all values B6f However, this case is inherently
more stable than the case of equal diffusion rates (as disdugbove) and we do not
discuss it further. More interesting is the case with= ¢, where smaller values of
Ra, can always be found. In this case, for the larger values,ad smaller value of the
Prandtl number is preferable for instability to onset. HegreasF is reduced, Prandtl
numbers of order unity become preferred. There is a minngisalue of’, which we
call £, and this value depends on the Prandtl number (and the diffuasies). For larger
Prandtl numbers the preference is flar = 0 with non-zero values of, possible for
smaller Prandtl numbers. For parameter sets With- 1/2 we are unable to find real
roots of equation (6.41) and thus the condition for the exisé of a Hopf bifurcation is
not satisfied. Therefore a critical Rayleigh number does xist #or the onset of growing

oscillatory solutions and bursting is not possible wiién- 1/2.

The above discussion indicates that the linear results pfcorent model agree well
with the non-linear simulations of chapter 5 where burstsarfvection were observed.
The simplified model is able to produce oscillatory solusi@afove a critical value of the
Rayleigh number. Oscillatory solutions in this simple lineaodel may correspond to
the quasi-periodic bursting found in chapter 5. Also in ¢kap we found that Prandtl
numbers of approximately unity were preferred to observsetbuThe dependence of the
onset of bursts on the Prandtl number in the current modelsh®in agreement with
Pr =1andPr = 0.5 the most preferred, so long &5is not too large. This suggests that

in the non-linear simulations of chapter 5 we are in the law,fimite, F' regime. Larger
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values of the Prandtl number are certainly not preferreeh et largelr’, since the critical
Rayleigh number for the onset of bursts is greatly increasehat regime. In chapter 5
we found no evidence of bursting Bt = 5. Hence our current model also replicates this

behaviour.

6.3 Necessary conditions for bursting

We observed in chapter 5 that the bursting phenomenon wasndbly a combination
of zonal flow and a mean temperature gradient. Therefore wddwexpect both of
these physical quantities to necessarily exist in ordeotorsimple model for bursting
discussed in this chapter to allow periodic solutions. Ia ection we discuss the linear
theory for the two cases where the model is lacking one okthesessary attributes. We
refer to the case discussed in section 6.2 where both zomabfldd a mean temperature
gradient are present in the model as the ‘full model’. Thevdéon of the linear theory
for the full model was discussed in detail earlier. For tieiason we do not present such

an in depth derivation here since the two cases here areiBedplersions of section 6.2.

6.3.1 Linear theory in the absence of zonal flow

We first investigate the linear theory of the simple modelldorsting developed in this
chapter in the absence of zonal flow. We expect that burstihghet be observed and
therefore oscillatory solutions for the eigenvakuiill not be found. In the absence of
zonal flow we drop the evolution equation & given by equation (6.1), and s&t= 0

in the remaining bursting model equations, (6.2 - 6.4), Wiiecome

dVv

T RaT — PrV, (6.42)
dT
— = -T 6.4
L=VG-T, (6.4
% =-—VT+ce(1-G). (6.44)

These equations are equivalent to the Lorenz equations emckhare related to them
via a transformation. The Lorenz equations were originayived from a model

of fluid convection and were were first introduced by Loren26@). They are of
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significant mathematical interest due to their extremelynglicated solutions, found
when numerically integrated. A review of the literature ¢w tLorenz equations is
presented by Sparrow (1982), where many of the variousisnkiare discussed. Sparrow

presents the Lorenz equations (see page 1 of Sparrow, 1988 form

dx
by — 4
=6y —a) (6.45)
dy
= — oy — A4
ikt kil (6.46)
dz
=gy 47
ik’ bz, (6.47)

whereg, r andb are parameters. Note that héres nota growth rate; we merely use it as
a symbol in order to ease comparison with Sparrow (1982).rélevant transformation

from Sparrow’s equations (6.45 - 6.47) to our equationsA68.44) is then given by:

L B Ra B caRa
o = Pr, r = Py b= By (6.48)
RaT Ra
= = = —(1—-G). 4

Sparrow (1982) analyses these equations in great depthnéorins us that growing,
oscillating solutions are possible for certain parametgimes (see page 11 of Sparrow,
1982). However, the solutions of the Lorenz equations dohawe the correct form to
replicate bursting, despite their origins in the field ofwection. In particular, the Lorenz
equations give rise to chaotic solutions for the parametgimes of interest to us. Hence
equations (6.42 - 6.44) describe a mathematically simil&miot necessarily physically
similar situation to our full equations. Despite this hoeewe do solve these equations

here to see the relationship to section 6.2.

We solve equations (6.42 - 6.44) for the basic state (deremjadch with subscript zeros)

where the time derivatives are set to zero and obtain

. Ra
Ve + ca (1 - P_r) Vo =0, (6.50)
with
Pr
Pr
=1- 2 6.52
Go=1- V3 (6.52)

Hence the null solution, given By, = 0 = T, andG = 1, remains a solution since itis a

root of the now cubic equation fdf, (6.50). Recall that the equivalent equation ¥@iin
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the full linear theory was a quintic, equation (6.13). The@aéing two roots of equation
(6.50) are given by

Ra

Vo ==+ /ca (ﬁ - 1), (6.53)

and thus in order fof; to be a physical quantity we requiféa > Pr, as found in the
full model. From equation (6.53) we can also find an expresgiothe Rayleigh number,
which is given by

Vi
Ra=Pr{1+4+—]. (6.54)
Ca

We now perturb the basic state so that= V, +v, T' = Ty + 6 andG = G, + g. We also
assume the disturbances for the perturbations are of thedgs(st). This, as discussed
in more depth earlier for the linear theory of the full eqaas, results in an eigenvalue

problem of the formJ; w; = sw; wherew; = (v,0, g)" and

—Pr Ra 0
Ji=1 G, -1 V, |- (6.55)
=Ty Vo —ca

Now by considering the characteristic eigenvalue equatioqJ; — sI) = 0 we obtain
(Pr+8)((1+8)(cq +35) + V¢ ) = Ra(Golcg +5) = VoTy) =0, (6.56)

which for the null solution results in two negative real m@stable solutions) and one
positive real root (unstable solution) féta > Pr. Thus the null solution retains the
same characteristics as in the linear theory of the full Bgna albeit with one fewer

stable roots.

In order to consider the case whérg # 0 we expand equation (6.56) and collect the

terms as powers afto give
§* + 5[l +cg + Pr] +s|VE +cq(1+ Pr)| +2PrV¢ =0, (6.57)

or,

34+ Pys®’ + Pis+ Py =0, (6.58)

where we have substituted f@f, G, and Ra from equations (6.51), (6.52) and (6.54)

respectively. In order for there to be a Hopf bifurcation &tpn (6.58) must have a pair
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of purely imaginary complex conjugate roots with= +iw for w € R. Hence

(s* + w?)(as +b) =0 (6.59)
= as® +bs’ +w?s+bw’ =0 (6.60)
= a=1 b="P, a’P, b’=DPF (6.61)
= PP,—P =0, (6.62)

where we have compared coefficients with equation (6.58% cidmdition (6.62) results

in
(1+ce + Pr) (Vg +eg(l+ Pr)) —2PrV2 =0 (6.63)
s  ca(l+Pr)(1+cq+ Pr)
= .64
= Y Pr—(1+cq) ' (6.64)

where we immediately see thi} is real iff Pr > 1 4 ¢4 since the numerator of equation
(6.64) is always positive. This condition can certainly besied for small diffusion rates
and thus the equations in the absence of zonal flow admit a biiptation. However,
as we mentioned previously, the solutions are not quasogierfor parameter regimes of

interest (Sparrow, 1982).

6.3.2 Linear theory in the absence of a mean temperature gradient

In the absence of a mean temperature gradient we drop thetievobquation for=, given
by equation (6.4), and sét = 1 in the remaining bursting model equations, (6.1 - 6.3),

which become

dz
— =V?+c,Z, (6.65)
dt
d
d—‘t/ = Ral — FVZ — PrV, (6.66)
dT
— =V -T. 6.67
T (6.67)

We now proceed to find the basic state for this situation byngethe time derivatives to
zero and eliminating’, andT; to acquire one equation . Once again subscript zeros
indicate basic state quantities and we find

Cz

v3
0+F

(Pr — Ra)Vy =0, (6.68)
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with
2
Zo= V0 (6.69)
Cz
T, = V. (6.70)

Again the null solution, whereZ, = V, = T, = 0, satisfies these equations and the

remaining two roots of equation (6.68) are given by
Vo =+ %um—Pm, (6.71)

where we demand thaka > Pr in order for1; to be a physical quantity. We can
rearrange equation (6.71) to find an expression for the Rgylaimber given by

R

Cz

Ra

+ Pr. (6.72)

We now perturb the basic state so that= 7, + 2, V = Vy + v andT = T, + 0 and
again assume the disturbances for the perturbations ahe ébtmexp(st). As we have
already seen twice before, this results in an eigenvalugl@moof the formJow, = swo

wherew, = (v,60,¢)" and

—Cz 2% 0
Jo=|-FVy —FZy—Pr Ra|. (6.73)
0 1 -1

The characteristic equatiodet(J2 — sI) = 0 then gives
@Z—@«F%+f%+@a+sy—&g+2Fa+sw§=Q (6.74)

which for the null solution admits two negative real roottalde solutions) and one
positive real root (unstable solution) féta > Pr. Hence the null solution retains the

same characteristics as those of the full model, again vméhfewer stable roots.

We move on to consider the case whepn # 0 by expanding equation (6.74) and

collecting the terms as powers @fBy doing this we acquire

F 2
s34 57 {1 +cz + CVO } —|—s[cZ(1+Pr)+3FVO2} + [CZ(PT—1)+3FVO2 =0, (6.75)
7z

or,

3+ Pys® + Pis+ Py =0, (6.76)
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where we have substituted fafy, 7, and Ra from equations (6.69), (6.70) and (6.72)
respectively. Equation (6.76) is a cubicsywhich admits a Hopf bifurcation if it satisfies
the condition we derived in the previous subsection, naraglyation (6.62). Hence we
now use the definitions of thBs from equations (6.75 - 6.76) in the condition given by
equation (6.62) to get

2

F
[cZ(l PR+ 3Fv;3] {1 teg+ CVO ] - [cZ(Pr 1)+ 3Fvﬂ —0 (6.77)
Z

F2
o e [SFCZ (1t Pr)} + [zcz T+ P'r’)] —0. (6.78)
Cz

This is a quadratic equation Ir?, which we can solve using the quadratic formula to give

V2o —(3Fcz + F(1+ Pr)) £ +/(BFcz + F(1+ Pr))2 —12F2(2 + cz(1 + Pr))
0 6F2/cy ’
(6.79)

where we immediately note that taking the negative squareresults in the right hand

side of this expression having a negative real part. Thistigtowed sincé/;, would then
be complex, which is not permitted. The other possibilitiges by taking the positive

square root in equation (6.79), which may give rise to a pesgfuantity forV? if

— (3Fcz + F(1+ Pr)) +\/(3Fcz + F(1 4 Pr))2 —12F2(2 4 cz(1+ Pr)) > 0

(6.80)
= (3Fcz+ F(1+4 Pr))? —12F*(2 4+ cz(1+ Pr)) > (3Fcz + F(1+ Pr))?

(6.81)
= — 12F2(2+Cz(1+P7’)) > 0. (682)

However, we have reached a contradiction here since th&dtextterm is always greater
than zero. Hence taking the positive square root in equdBorf) also results in a
complex value forly. Therefore, sincé/, must be real, equation (6.78), which is the
condition for a Hopf bifurcation, cannot be satisfied. Hemeehave proved that there is
not a Hopf bifurcation, which means that growing oscillgtsolutions are not permitted
in the absence of a mean temperature gradient. Thereforegnetude that the existence

of a mean temperature is a necessary condition for bursting.

In this section we have shown that the existence of a zonaldlmiva mean temperature
gradient are both necessary conditions for growing osoijasolutions to the linear

theory. Hence, botl¥ and G play vital roles for the system of equations (6.1 - 6.4)
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to permit bursting solutions. This is in agreement with hssitom chapter 5 where we

also found that both attributes were necessary to obsergtgt

6.4 Non-linear results

After gaining insight into the problem by performing thedar stability analysis in the
previous sections we now wish to solve the non-linear eqoati Fortunately the full
non-linear governing equations, (6.1 - 6.4), are simpleughao be integrated using a
standard procedure in, for example, Maple. We enter equa({6.1 - 6.4) into Maple
and use Maple’s built-in ‘dsolve’ procedure in order to grege forward in time. We
do this for various parameter sets and results are presentigglres 6.3 to 6.5. For
each parameter set we plot the evolution for a time rangeenmier solution has become
periodic or quasi-periodic, that is where the solution rgger growing nor decaying from
its initial state. Each figure contains three plots, whigheach for an identical parameter
setI’ and initial condition but for different Rayleigh numbers,ymely Ra = 0.9Ra.,
Ra = Ra, and Ra = 2Ra.. Here Ra, is the critical Rayleigh number (for a given

parameter sdf) found in section 6.2.

In order for the solution to show dynamical behaviour we nmasevolve from a branch of
the bifurcation diagram since this is an equilibrium poind @ahe evolution of the solution
would simply be the steady state. In other words, for eachmater sef’, we must not
use the steady statgj, as the initial condition. Hence we must choose an alteiindtal
state. We found that the solution was only weakly dependerthe initial conditions
and thus we use the same initial state for the plots display&dures 6.3 to 6.5, namely

]5 = {2207 2%, 2T07 2G0}

Many of the parameter sets tested evolve into the same pedoduasi-periodic solution,
which can be seen in the similarity of the plots in figures 6.8.6, particularly for plots
with the same value oRa. We note from the top plots of figures 6.3 to 6.5, which have
subcritical values of the Rayleigh number, thaRis < Ra.., the solution does not evolve
into a steady state. Hence the Hopf bifurcation that we ifiedtin section 6.2 must be
subcritical Since this is the case, we can search along the subcriteatb for the point

in Ra-space where the unstable limit cycle can no longer be foweldenote the value
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Figure 6.3:Plots showing the time evolution of the functions for= {0.1,0.1,1,0.1}. From the top the
plots are forRa = 0.9Ra., Ra = Ra. and Ra = 2Ra, respectively.
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Figure 6.4:Plots showing the time evolution of the functions for= {0.1,0.1,2,0.1}. From the top the
plots are forRa = 0.9Ra., Ra = Ra. and Ra = 2Ra, respectively.
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Figure 6.5:Plots showing the time evolution of the functions for= {0.1,0.1,0.5,0.1}.

the plots are folRa = 0.9Ra., Ra = Ra. and Ra = 2Ra, respectively.

From the top
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of the Rayleigh number for which this occurs As. We can then measure the depth of
subcriticality (denoted byza,. — Ea) for various parameter sets, the results of which are
given in table 6.1. For parameter regimes where the criiRalleigh number becomes
large (for example largé” andc; # c), the value ofRa remains relatively constant.
This results in a large depth of subcriticality for theseimegs due to the increased value
of Ra..

r Ra, Ra  Ra, — Ra

{0.1,0.1,1,0.1}  21.6236 12,5118  9.1118
{0.1,0.01,1,0.1}  30.7341 10.1375  20.5966
{0.01,0.01,1,0.1} 19.9536 8.4316  11.5220
{0.1,0.1,0.5,0.1}  20.4274 12.7743  7.6531
{0.1,0.1,2,0.1}  28.9975 15.9223  13.0752
{0.1,0.1,1,0.2}  30.4251 13.7154  16.7097
{0.1,0.1,1,0.3}  58.3434 18.7833  39.5601

Table 6.1:Numerically calculated values for the critical Rayleighmher and the depth of subcriticality

for various parameter sefs,

The linear theory of section 6.2 informed us that periodiltitsans were possible and
therefore it is not surprising to obtain periodic or quasiipdic solutions in the non-linear
theory. However, the linear theory was unable to predicptieese difference between the
physical quantities?, V', T"andG. We see that in all plots in figures 6.3 to 6.5 that there
Is a common phase difference between the variables we pletsé&' that” andT" are
completely in phase throughout so that the temperatureuitions and the convective
velocities are intrinsically linked, as expected. Morendfigant is the phase relationship
between/ (or T') and the ‘mean quantitie® andG. The convective velocity is greatest
in magnitude when the zonal flow acquires its minimum valuenv@osely, during periods
of strong zonal flow we find that’ and7" are relatively small. These phase relationships
are in excellent agreement with results from chapter 5 ared @gain inform us that

equations (6.1 - 6.4) provide a good model for the burstirgnpimenon.

The similarity of the plots of figures 6.3 to 6.5 is clear, widw obvious differences
despite the changing parameter regimes throughout the. plbiis was also found to be

the case for further parameter regimes tested and perhaps drawback of a simple
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model where the spatial dependence of the quantities hasrbe®ved. However, it is
certainly clear from each of the three sets of plots that #éop of the bursts becomes
shorter for larger Rayleigh numbers. Equivalently, thediestry of the bursts increases as
the Rayleigh number is increased. This is in agreement wiéthinlear theory (see figures

6.1(a) to 6.1(f)) where» increases withRa.

6.5 Asymptotic theory for low diffusivity rates

In this section we consider the asymptotic limit of very lovifudsion. We do this to
simplify the model by effectively removing two parameten@ the problem so that the
parameter space to be covered is smaller. This limit is ef@st since we saw in section
6.2 that reducing the diffusion rates lowered the criticayIBigh number. The small
diffusion limit is also a reasonable limit to take since weeat the physical diffusion

rates to be small and the values that we worked with in sextab and 6.4 were small.

We assume equality between the small diffusion rates shisemas the most preferable

option for instability. Guided by the numerics we set

Cz =€, (6.83)
cq = €, (6.84)
Vo = €'/2Vj, (6.85)

for a small parameterand at this stage we do not assume the order @e also assume
that the parameterg, Pr and Ra areO(1). We are not interested in the null solution
discussed in section 6.2 since it does not allow for burstimlgtions. We substitute the
expressions of equations (6.83 - 6.85) into the quarticsfgiven by equation (6.32) to

get

st s? [(1—|—PT+F%2)+26]
+ s [e (1702(1 +4F) 4 2(1 + Pr)) + 62:|
s e (2FV3 + 203 (Pr+ F)) + € (VE(1+3F) + (1+ Pr))|

+ e (4FV) + 202 (Pr+ F)) = 0. (6.86)
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Sincee is a small parameter, in order for this equation to balaneetider ofs must be
chosen accordingly. There are three different balancesiipgesiepending on the order of

s. In each case the leading order balance is between two terdntha remaining terms
are neglected since they are of a higher order. Firstly, mosimgs = s; ~ O(1) a
leading order balance 6¥(1) is possible between the quartic and cubic terms in equation
(6.86), which yields

sh4 s (1 +Pr+ FVO?) —0 (6.87)
= 5 =— (1 + P Ff/02> . (6.88)

Secondly, by choosing = s, ~ O(¢) a leading order balance @¥(¢?) is possible

between the linear and constant terms, which gives

59 (2F1704 4 oVR(Pr + F)) + (4FVU4 +2VR(Pr + F)) —0 (6.89)

<4FVO4 +2V2(Pr + F))
=

Sg = — " " : (6.90)
<2FV04 +2V2(Pr + F))

We observe from equations (6.88) and (6.90) that, € R so that the frequencies

w1 = 0 = wy and the growth rates;, o, < 0 for these first two possible cases since

the terms within the brackets are all positive. Thereforth lwd these balances result in

stability.

Thirdly, there is a leading order balance®fc>/?) between the cubic and linear terms if

we choose = s3 ~ O(¢'/?) in equation (6.86). If this is the case we acquire

s (1 + Pr+ F\Zf) + 53 (2FV04 +2V2(Pr + F)) ~0 (6.91)
= 53 = *iws, (692)
where
<2FVO4 +2V2(Pr + F))
Wy = (6.93)

(1 + Pr+ Ff/g)
Sincess is imaginary in this third case we have oscillatory modesweleer, at leading
order we have not acquired information as to whether thisemedrowing or decaying.
In order to determine this the next order of equation (6.863the considered with =

ie!/2w; + eos. The sign of the growth rate;; will determine whether the mode is stable
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or unstable. Hence we consider equation (6.88)(@t), which is the next order and we

find that

wh — Bwsog(1 + Pr+ FV2) — wy (1702(1 +4F) 4+ 2(1 + Pr))

+ 03 (2F V! + 203 (Pr + F) ) + 4F VG + 2U2(Pr + F) = 0. (6.94)

Given1/, and the reduced parameter et {Pr, F'} and using the definition af; from
equation (6.93) this equation can be solveddear The value ofo; will be real since all
the terms in equation (6.93) are real and it only appears i®arlterm. For a givei,
the sign ofo; will depend onVp, with o3 < 0 andas > 0 indicating a stable and unstable

solution respectively.

We have found the four possible roots of the characteristjer&alue equation in the
asymptotic diffusionless limit. Each root correspondsrte of the complex growth rates
found numerically and displayed in the plots of figure 6.1nfreection 6.2. The first
two roots are purely real and are given by equations (6.88)(&r90), which are also
always stable. They correspond to the two growth ratemndo, displayed in figure 6.1,
found in the numerics to be exclusively stable also. The ®maining roots are complex
conjugate pairs and are therefore oscillatory in nature growth rate of these two roots
is given byos; and the frequency is given byw;. They correspond to the growth rate,
frequency pail(os, ws) plotted in figure 6.1 and its conjugate. Of particular ingétegere

is the scaling of the oscillatory modes where we have fouad th
S3 — 161/2(4)3 + €03. (695)

This is significant since we have found a possible scalinghferfrequency, and thus also
the duration, of the bursts of convection. By recalling that c; = ¢, we see that the
duration of the bursts scales inversely with the diffusiates of the mean quantities: the
zonal flow and the mean temperature gradient. Therefordesnaigfusion rates give rise

to longer bursts.

In section 6.2 we developed a procedure for finding the alifRayleigh number more
efficiently by assuming there existed a Hopf bifurcationhe system. This gave rise
to the condition given by equation (6.41). We may continuedosider this method for

finding Ra. here in the asymptotic limit. We substitute the expressfoms equations
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(6.83 - 6.84) into equation (6.41) whilst noting that the wigfbns of the P;s are found
from equations (6.32 - 6.33). The leading order in equat®dl) is thenO(e), which

gives

[2Ff/04 +2V2(Pr + F)} g [4Ff/04 +2V2(Pr + F)} [1 + Pr+ FVO2] i
- [2171704 +2V2(Pr + F)} [VO? (1+4F) +2(1 + P’r)] [1 4 Prot Ff/oﬂ —0. (6.96)

All terms in equation (6.16), which relaté§ to Ra are of the same order, that@¥1),

so that we retain all terms at leading order to give
Ra = FV} + VZ(F + Pr) + Pr. (6.97)

GivenI, equation (6.96) can be solved fgy and provided non-zero real roots are found
we choose the positive real root without loss of generalithis value ofVj is then
used to findRa from equation (6.97). However, if there are no non-zero reats of
equation (6.96) this method cannot be used, which indicti@sthere is not a Hopf
bifurcation present. Therefore given values forand F' this procedure gives the critical
Rayleigh number (where the stable branch becomes unstabbe Mopf bifurcation) in

the diffusionless limit, provided equation (6.96) has rzeme real roots.

In figure 6.6 we plot the critical Rayleigh number found by thmsthod against’ for
various values of the Prandtl number. We expect this ploldsety match plots of figure
6.2 in the numerics of section 6.2 where the diffusion is synaptotically small. Indeed,
as the diffusion rates are reduced through figures 6.2(a)2)6there appears to be
significant convergence to the asymptotic plot of figure @Xfferences however, are
present. Although the asymptotics capture the essence afuimerics for large Prandtl
numbers and also in the limits — 0 and F* — 1/2, there is discrepancy for moderate
values of F* at small Prandtl numbers. This discrepancy becomes moraampas the
Prandtl number is reduced and is clearly visible by compgthie P = 0.1 lines of figures
6.2(d) and 6.6.

Figure 6.6 also indicates that the critical Rayleigh numlesds to infinity asF’ —
1/2 VPr and also ag’ — 0 for certain Prandtl numbers. Féf > 1/2 no non-zero
real solutions of equation (6.96) are found so that thisoregif the parameter space does
not admit a Hopf bifurcation. This again agrees with the nueseof section 6.2. In the

asymptotic limit we can more easily investigate the behavad ' = 0 andF' = 1/2. To
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Figure 6.6:Plot showing how the critical Rayleigh number varies witk ttoupling paramete#;, for

various values of the Prandtl number.

do this we expand equation (6.96) and collect the terms dficients of powers o/, to

give

2F(1 — 2F)] S+ [2F<3B(1 —F)— A+ 2F)>} v
+ [23 (23 A1+ 4F))} V2 - 24°B =0, (6.98)

whereA = 1 + Prand B = Pr + F. In forming equation (6.98) we have also
divided through byV&’ and in doing so assumed that we are not interested in the null
roots. Equation (6.98) is a sextic but also a cubidﬁh We are interested in whether
this equation admits real roots. However it is difficult tokadurther analytic progress
without choosing specific values fd@f. This is because although the discriminant of a
cubic equation can determine how many roots are real, itatadetermine the sign of the
real roots. Since we are presented with a cubitjn rather tharlj, real roots of the

sextic will only be found if real roots of the cubic are posti

We must consider equation (6.98) for specific valueg’olmmediately clear is that the
degree of the polynomial reduces whén= 0 or /' = 1/2 since higher order terms
vanish for these values df. This allows us to make further analytical progress. We
first consider the case when = 0 whereby equation (6.98) reduces from a sextic to a

guadratic to give

2Pr <2Pr — 1+ Pr))f/g —2Pr(1+Pr)=0 (6.99)
~ 1+ Pr

= V=tt—. 6.100
V= E o1 (6.100)
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This expression shows that there are only finite real valeg;fwhenPr > 1 in the case
whenF = 0. HenceV, is undefined wher#” = 0 for Prandtl numbers less than unity.
This explains why the nature of the limit — 0 for Pr > 1 is qualitatively different to

that for Pr < 1, which is observed in figure 6.6.

We can also consider the caBe= 1/2 where we see that the polynomial in equation

(6.98) reduces from a sextic to a quartic to give
. 1 1
Vi [3 (5 + Pr) - g (5 + Pr) —2(1+ PT)]

+ V7 {2 (% + Pr) (2 (% + Pr) —3(1+ Pr))}

—2(1 + Pr)? (% + P7~> =0 (6.101)

1 . .
= 3 (g + Pr) Vo + (1 +2Pr)(2+ Pr)Vi + (1 + Pr)(14+2Pr) =0. (6.102)

Since this quartic is a quadraticﬂ;f, the quadratic formula can be used to find the roots

and thus

72 —2(1+2Pr)(2+ Pr)£2/(1 +2Pr)2(2+ Pr)2 — (5+2Pr) (1 + Pr)(1 + 2PT).

5+ 2Pr
(6.103)

By taking the negative square root in this expression we fiaﬂ‘i’(lﬁ < 0, sincePr > 0.
Thus,V, always has an imaginary part in this case and it does notiastesh permissible
solution. However, there is the possibility Bf being purely real by taking the positive
square root. This occurs if the quantity inside the squaog ispositive and the square
root itself is larger thal +2Pr)(2+ Pr). We now consider whether these two conditions

can be satisfied together. Firstly the argument of the squaten equation (6.103) is

(1+2Pr)*(2+ Pr)* —2 (g + Pr) (14 Pr)(1 +2Pr) (6.104)
= (1+2Pr) (Pr — %) (2Pr? — TPr +2) (6.105)

= (14 2Pr) (Pr — %) (Pr - i(? + \/@)) (Pr - %1(7 — @)) ,
(6.106)

where we have used the quadratic formula in order to fagahie quadratic irPr. This

quantity is positive foiPr > (7++/33)/4 and for(7—+/33) /4 < Pr < 1/2 and in figure
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Figure 6.7:Plot depicting the dependence of the functignsnd f, on Pr.

6.7 we plot the two functions

fi(Pr) = (1+42Pr)(2 + Pr), (6.107)
fo(Pr) = \/(1 +2Pr) (Pr - %) <Pr - i(? + @)) (Pr - i(? —~ @)),
(6.108)

against the Prandtl number. Figure 6.7 shows fhat f, for all values ofPr and hence
the expression fof/o2 given by equation (6.103) can never be greater than zeroefdre
for F = 1/2 there can be no real values fgf and, as with the” = 0 case, the critical

Rayleigh number tends to infinity &5 becomes undefined.

We have shown in this section how the limits Bs— 0 and F* — 1/2 arise in the
asymptotic limit of low diffusivity. WhenPr < 1 the lack of a Hopf bifurcation,
necessary for a bursting solution, f6r= 0 and F’ > 1/2 results in the critical Rayleigh
number for the onset of oscillatory modes tending to infiras/F" approaches these
limits. Hence there is a non-zero minimising value of thepdimg parameter, which
gives periodic solutions at the smallest possible Rayleighber. WithPr > 1 the same
limit exists asF" — 1/2, however there is a Hopf bifurcation féf = 0. Therefore, for
larger Prandtl numbers, this results in oscillatory solusi occurring at the lowest value

of Ra whenF' = 0. These results are in agreement with the numerics of se@tibn
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Chapter 7

Conclusions

In this chapter we summarise the research work of this the3ise primary theme
throughout this work has been an investigation of how zowaldlinteract with thermal
convection. In particular, we have looked at how zonal floffecathe onset of convection
in chapters 2, 3 and 4. We have also considered the supegitdiinamics of convection
and the production of zonal flows in chapter 5. Chapters 2 andr@amed work
performed in plane layer geometry with the zonal flow produbg a thermal wind
whereas chapters 4 and 5 used the annulus geometry with theldsgtresses generating

zonal flows.

In chapters 2 and 3 the way in which convective instabilitg dxaroclinic instability

interact in rapidly rotating systems was elucidated. Wenébthat the thermal wind
destabilises convective modes, lowering the critical Rgilleumber at which they onset.
We also find that the critical azimuthal wavelength at onergthens. At a sufficiently
large Reynolds number, which in view of the very small visgosiccurring in many

geophysical systems can correspond to a rather small therima, instability becomes
predominantly baroclinic, and the preferred azimuthal evaxamber tends to zero. In
our ideal plane layer geometry, there is no restriction ossjide wavelengths, but in
more realistic spherical geometries, the boundaries wiVige a limit. We found

that convective modes and baroclinic modes are smoothlpestiad, going through a
transition region which can be studied asymptotically weftee critical Rayleigh number
smoothly goes between positive and negative values. Abtieakimuthal wavenumbers

preferred by baroclinic modes, an asymptotic analysis ssipbe which gives good
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agreement with the numerics in the stress-free case, andiflates which terms are
important for instability. We also found that generally wawvith non-zero latitudinal
wavenumbetk, are not preferred in this problem, onset occurring in alessexamined at
the lowestRa whenk, = 0. At moderate Prandtl numbers, the onset of convection sccur
with steady modes, but we found that at large Reynolds numé@haiory modes are
preferred. This result links our finite diffusion work withe quasi-geostrophic shallow

layer approximation used in atmospheric science, and ircpéar with the Eady problem.

The existence of baroclinic instability in the physical ddions obtaining in planetary
interiors raises an interesting question of whether dynawgimn could be driven by a
heterogeneous core-mantle heat flux even if the core isysstgtified. This has also
been investigated recently by Sreenivasan (2009) whezealatariations were found to
support a dynamo even when convection is weak. It is widelgwed that the heat flux
passing from the Earth’s core to its mantle can vary by order amounts with latitude
and longitude, as a result of cool slabs descending thrdugmiantle and reaching the
CMB from above. It is also generally believed that the keyeciitn for the existence of a
dynamo is that convection should be occurring, and that ¢ine is at least on average
unstably stratified. However, this analysis has raised tesipility that instabilities
leading to fluid motion driven by lateral temperature gratsecan occur even when the
fluid is strongly stably stratified. Of course, it is not yetkm whether the resulting non-
linear motions would be suitable for driving a dynamo. Inplene layer geometry used in
chapters 2 and 3, the preferred motion appears to be tworgioreal and therefore will
not drive a dynamo. However, in spherical geometry, and wdemondary instabilities
may occur, dynamo action may become possible, in which ¢esei¢w that convection
driven by an unstable temperature gradient is essentialyioamo action might have to

be revised.

In chapter 4 we discovered that zonal flows in the annulus moae both stabilise
and destabilise convection depending on the form of the flowguestion. A linear
flow pattern analogous to that used in the plane layer modslfaand to stabilise the
system. However, the introduction of a sinusoidal flow patt®ith multiple jets was
found to destabilise convection. Both flow patterns resutiedengthening of the critical
wavelength as the flow strength was increased in similaritis the plane layer model.

However, for a large enough Reynolds number a transition éarstiominated modes
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was found in the case of a sinusoidal flow pattern resultirgpossible shortening of the
wavelength. Rotation stabilises the system as expected.etowinterestingly a larger
number of jets is destabilising since then the system carsfiea to shear-dominated
modes at a lower value dke. This may be evidence of the desire foultiple jets to
arise in the atmospheres of gas giants; by forming multigte 4 system becomes more

susceptible to convection than would otherwise be possible

We were able to explain several aspects of the results oftehdpby considering the
potential vorticity, cementing its importance in undenstimg the multiple jet structure

of the Jovian atmosphere as discussed in previous literéhliarcus & Lee, 1998). The
potential vorticity gradient takes the role of the basidestatation in our equations. If
there are locations in the domain where the fluid vorticitgdient can partially balance
the planetary vorticity gradient then the overall criti€¥yleigh number of the whole
system can be lowered. Instability then arises at theseitosa for our sinusoidal flow
pattern the location is the prograde jets. The limitatiohthis linear model include the
fact that the basic state zonal flow has to be chosen and therths infinitely many
possible forms fol/y(y). We could envisage a flow pattern that more closely matches

that seen in figure 1.3 for Jupiter such as that suggested byugl& Lee (1998).

The results of the non-linear annulus model in chapter 5 pirstiuced good agreement
with previous simulations (Jonext al., 2003) with zonal flows readily occurring. The
nature of the solutions can be rather different to that jgtedi by the linear theory.
Multiple jets and a periodic nature of convection appearmdursts can be found
separately under certain parameter regimes. Howevetjitogiraultiple jet solutions do
not appear to be possible or occur only for small windows ohpeeter regimes. As
found in previous work by Rotvig & Jones (2006), rigid top anuttbm boundaries
are preferable for multiple jets whereas bursts of conwactertainly prefer stress-free
boundaries. Zonal flows are also found to be weaker with hgidndaries implemented.
We also found fluctuations in the mean temperature gradieatsmilar timescale to the

bursts of convection which have not been addressed in tv@peliterature.

As an extension to the previous work, we performed runs With# 1. In general,
increasing the Prandtl number depletes the strength of dhal Zlow. The bursts of

convection appear to be a phenomenon restricted to a fimgeraf Prandtl numbers.



Chapter 7. Conclusions 216

Atlow Pr we found that bursts were possible but were weak unless tiaglwas large.
For Pr = 5, bursting appears to cease even at large Rayleigh numbeyssting that the
convection is steady at large Prandtl numbers or requiresyalarge driving force to be
oscillatory. For the linear growth rates of convection tas® as required for existence of
bursting, we found that both a strong zonal flamd a strong mean temperature gradient
were required in the basic state of the linear theory. Thiesawe able to conclude that
a necessary condition for periodic bursts of convectiores éxistence of both mean
guantities. This is in contrast to previous work on the scibyehich assumed that the
bursts were controlled by the zonal flow alone. Both mean dfies1tnust drop below

some critical value for a new burst of convection to occur.

In chapter 6 we developed a dynamical model for the burstimnpmenon that lacked
the spatial dependence of the full equations. By allowingzihreal flow and the mean
temperature gradient to evolve along with the small-sca®oity and temperature
fluctuations we were able to reproduce many of the featuresmfective bursts seen in
chapter 5. In particular, the linear theory of the simplifiaddel showed that oscillatory
solutions were only possible if both the zonal flow and meanperature gradient

evolution equations were included in the model.

It is not currently known if the jets of Jupiter (or any othesggiant for that matter)
possess a periodic nature. The parameter regimes we hded gggest it may be
unlikely that the multiple jet structure of the Jovian atiplosre can coexist with bursts
of convection. However, if the high latitude jets are drii®na different process to that
of the strong equatorial jets (Heimpet al, 2005), it may be that some but not all jets
display an oscillation in the zonal flow strength. Furthesetations of the wind speeds
of the jets of the gas giants over time is required. The Jurssiomn is expected to launch
this year and will be placed in a polar orbit of Jupiter in ardeke further observations

of the planet including of the jet speeds (Matousek, 2007).

The work presented in this thesis has addressed varioustag¢he interaction between
convection and zonal flows. However, there are certainlyh&rrquestions that could
be asked. Perhaps the most obvious addition to the problensdered would be the
introduction of a magnetic field since the physical systehterest are known to

possess dynamos. The rotation axis in the plane layer modéd @lso be tilted so as
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to include the effects of the latitudinal dependence of thedlls force, whilst remaining
in a simplified geometry. The introduction of curved, rath@n sloped, end walls in
the annulus model would be beneficial since this would maoosety mimic spherical
geometry and also set a preference for eastward equatetsal Better yet, our models
could be extended to spherical geometry although this worddte a significantly more

complicated problem.
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Appendix

A Differential Identities

For any vector fielda andb:

Vx(axb)=a(V-b)+(b-V)a—b(V-a)—(a-V)b,

V x (Vxb)=V(V-b)— Vb,

0 10

PR . e 2
(a-a) = 5 lal*

For vector fieldss andd wherec = V x d we have

1
(c-V)ec= §V]c|2 —cxd.

For any scalar field:

Y x (V) =0,
5 [V x (V x f2)] = 94— V2] =~/

where the horizontal Laplacian is defined 8&; = 9?/92* + 9%/0y*.
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(A.1)
(A.2)

(A.3)

(A.4)

(A.5)

(A.6)
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B Useful identities

Beginning with the continuity equation, equation (1.9), #meldefinition of the vorticity:

¢ = V x uwe have that

Ou,  Ou, Ou,

ot ot e = (B.1)
Ou,  Ouy
=T oy (8-2)

where( is thez-component of the vorticity. Then if we take thederivative of (B.1) and

they-derivative of (B.2) we have

Pu,  Ou,  O%u,
= B.
Ox? * Oxdy i 0rdz 0 (B-3)
o Puy  Puy

dy  dxdy Oy

(B.4)

and we can eliminate, from these equations to give

oc  0*u
2y =— [ = = ). B.
Vit (8y * 89582) (85)

Similarly taking they-derivative of (B.1) and the-derivative of (B.2) and eliminating,.
gives

a¢ 0%u,
Or  Oydz

(B.6)

2 —
Viyu, =
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C Eigenfunction Identities

Let

v(z,z) = %(@(2) exp(ik,x) + 07(2) exp(—ikw)), (C.1)
w(x,z) = %(ﬁ)(z) exp(ik,x) +w*(2) exp(—ik:xx)>, (C.2)

wherev = v, + 0; andw = w, + w;. Then
vw = i (f)u? exp(2ik,x) + 0W* + 0" + 0" W exp(—Zikzxx)), (C.3)
g_:: = l]; (v exp(ik,x) — 0" exp(— ikﬁ)), (C.4)
(%) g —%3 (@2 exp(2ik, ) — 200% + 0 exp(—Qikxx)), (C.5)
% - —%2(1} exp(iky) + 0" exp(—ikmx)) S (C.6)
vg—i) - % (Uw exp(2ik,z) — D" + 0 — exp(—2ik:xx)>. (C.7)

Now let

1/2 7/ke
/dV / / dxdz. (C.8)
—1/2 —7/kx

Then forn € Z and for any functiory(z

1/2 7/ka
/f(z)exp(nik:xzv)dv = f(z)dz/ exp(nik,z)dx

-1/2 —7 [k
_ 1/2 F(2)d {exp(nikg;m)] ks
—1/2 mk’x —7r/kx

p— O,

where we have usetkp(nin) = exp(—nir). Hence, using equations (C.3 - C.7)

1 1
2 _ 1t NP _
/vdV—Q/vvdV 2/<v —I—v)dV (C.9)

1

/ vwdV = 5 / (6" + 0*)dV, (C.10)

ov k2 . k2 oy
/ (%) V=3 V== (vr + 0 )dV, (C.11)

ik
Ug—wdv - lf <vw - mo*)dv (C.12)
xXr

= 7 <(Ur — i) (W, + iW;) — (O + i03) (Wr — 1wi)>dV (C.13)
— ?/ (viwr—vrwi>dv. (C.14)
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