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ABSTRACT

We study the effect of photospheric footpoint motions on magnetic field structures containing magnetic nulls. The
footpoint motions are prescribed on the photospheric boundary as a velocity field that entangles the magnetic field.
We investigate the propagation of the injected energy, the conversion of energy, emergence of current layers, and
other consequences of the nontrivial magnetic field topology in this situation. These boundary motions lead
initially to an increase in magnetic and kinetic energy. Following this, the energy input from the photosphere is
partially dissipated and partially transported out of the domain through the Poynting flux. The presence of
separatrix layers and magnetic null points fundamentally alters the propagation behavior of disturbances from the
photosphere into the corona. Depending on the field-line topology close to the photosphere, the energy is either
trapped or free to propagate into the corona.
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1. INTRODUCTION

From observations and field extrapolations (e.g., Longcope
et al. 2003; Platten et al. 2014) we know that the solar magnetic
field has a rather complex structure. Apart from its solar-scale
toroidal and poloidal field, which is rather weak compared to
small-scale contributions, there are large-scale magnetic field
lines connecting back to the photosphere (e.g., Filippov 1999)
that are anchored at magnetic footpoints. Such large-scale loops
are found both inside and outside active regions (Larmor 1934;
Gošić et al. 2014).

Magnetic field structures exist also on much smaller scales,
and we now know that the lower corona is characterized by a
so-called magnetic carpet structure of many short, differently
oriented loops due to mixed polarities of opposite signs over a
broad range of scales (e.g., Schrijver et al. 1998). Such fields
contain a large number of magnetic null points with a
decreasing population density with height (Longcope
et al. 2003; Edwards & Parnell 2015). The presence of these
null points and the wide range of field-line topologies in
general—from short low-lying loops to long loops that extend
high into the atmosphere and open field lines—are essential in
understanding the propagation of energy from footpoint
motions (e.g., Filippov 1999; Schrijver et al. 2010; Santamaria
et al. 2015) to the upper layers of the solar atmosphere.

It is now well established that various geometrical or
topological features of the coronal magnetic field are
preferential sites for current accumulation and magnetic
reconnection (Lau & Finn 1990; Bogdanov et al. 1994;
Démoulin et al. 1997; Aulanier et al. 2005; Pontin & Craig
2005; Pontin et al. 2007; Effenberger & Craig 2015). Such
features include magnetic null points and their associated
separatrix surfaces, separator lines (intersections of these
separatrix surfaces), and quasi-separatrix layers (see Pon-
tin 2011, and references therein). Together the magnetic null
points and associated separatrix surfaces and separators are
termed the “magnetic skeleton” of the field. Priest et al. (2002)
have proposed that reconnection at these structures within the

Sun’s so-called magnetic carpet could provide an integral
contribution to the heating of the coronal plasma.
In this paper we study the evolution of a coronal magnetic

field of nontrivial topology under the influence of prescribed
photospheric motions. There exist a number of previous studies
dealing with such a scenario, following two main approaches.
In the first, the full coronal system is simulated, and the overall
behavior of the system is analyzed—such an approach has been
successful in demonstrating heating of the coronal plasma for
numerically accessible parameter regimes (e.g., Gudiksen &
Nordlund 2005; Bingert & Peter 2011). The second approach
involves using a much simpler model for the coronal field and
plasma, but has the advantage that the detailed time evolution
of the coronal field structure and energy distribution may be
followed. Previous studies of this nature have focused on
configurations in which the opposite magnetic polarities on the
photosphere are well separated (e.g., Galsgaard et al. 2000;
Mellor et al. 2005; De Moortel & Galsgaard 2006), and have
demonstrated that reconnection and plasma heating take place.
By contrast to these studies, here we consider the case in which
the photospheric polarities are intermixed—as observed over a
large portion of the photosphere—leading to configurations
with magnetic nulls within the coronal volume.
In this work we investigate the effect of footpoint motions on

the coronal magnetic field, in particular the propagation of
energy and change in topology. Throughout this paper we refer
to magnetic topology with respect to a reference field, as in the
definition of the relative magnetic helicity. This implies that
two fields only have equivalent topology if one can be
transformed into the other by a smooth deformation that leaves
the boundaries undisturbed. Therefore, the topology is
distinguished not only by the distribution of magnetic null
points and separatrix layers but also by magnetic-field-line
braiding. Such braiding represents a nontrivial topology of the
field since the field lines can only be “unbraided” by either
performing motions on the boundary or allowing reconnection
of field lines in the volume. It is expected that the topology
plays a crucial role in the energy transport. We present three
distinct initial fields and discuss their differences and
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similarities. Finally, we conclude with drawing connections to
the solar magnetic field.

2. MODEL AND METHODS

It is expected that the formation of electric current
concentrations and propagation of energy in response to
footpoint motions will vary greatly depending on the magnetic
field topology. Therefore, we examine three magnetic field
configurations as described in Section 2.1, while the fluid is
driven using a prescribed driver at the lower z-boundary (see
Section 2.6).

2.1. Setups

The initial magnetic field for all of the simulations is
potential. Three different initial conditions are considered here.
The first we use as a “control” case and simply consists of a
homogeneous field in the z-direction, while the others contain
magnetic null points and are refered to as magnetic carpet
structures. They are constructed by positioning magnetic
dipoles outside the physical domain. The field configurations
are chosen such that some field lines close back to the lower
boundary, hence creating a magnetic carpet-like structure. The
three different initial conditions considered are described in
turn below.

To simplify the setups, we choose an initially homogeneous
density of value r = 10 for all test cases and set the sound
speed to =c 1s . Since the magnetic field strength varies in
space, the Alfvén speed changes as well with ∣ ∣ m r= BvA 0 ,
with the magnetic field B and the vacuum permeability m0,
which we set to 1.

2.1.1. Homogeneous Field

The homogeneous magnetic field is simply given by

ˆ ( )=B eB , 1z0

where we choose =B 0.250 . Since the magnetohydrodynamics
(MHD) code we apply for our simulations uses the magnetic
vector potential, we need to express B in terms of the magnetic
vector potential A with = ´B A:
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For this configuration the domain is chosen to be  - x4 4,
 - y4 4, and  z0 48 with a spatial resolution of 2563

grid points.

2.1.2. Embedded Parasitic Polarities

In the first mixed polarity case considered the photosphere
consists of magnetic flux concentrations embedded within a
weaker uniform polarity region of the opposite sign, such that
the total flux of the uniform polarity dominates. Therefore, in
this case the field at large distances along the loop has the same
sign as this uniform background field, while the embedded
photospheric magnetic flux concentrations of opposite sign
constitute “parasitic polarity” regions. Above each of these
parasitic polarities is a separatrix dome that encloses all of the
flux that connects from the parasitic polarity back to the
photosphere—distinguishing it from flux that connects from the
photosphere up to the body of the loop (and the top boundary).

Some sample magnetic field lines are plotted in Figure 1,
together with the magnetic skeleton that includes the separatrix
surfaces.
The magnetic field is constructed by placing three magnetic

dipoles at locations outside our domain of interest. Specifically,
we restrict our studies to the half-space >z 0, where z=0
represents the photosphere, and place all dipoles at <z 0. The
vector potential for this magnetic field is given by
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where A0 is the background magnetic field from Equation (2),
xi are the locations, and i are the strengths of the dipoles.
Here we take n=3,  = -21,2,3 , ( )= -x 0, 0, 0.851 , =x2

( )-2, 0, 0.85 , ( )= - -x 2, 0, 0.853 , and =B 0.10 . To make
the field quasi-periodic at the x and y boundaries (and thus
ensure that the field lines within the loop are approximately
tangent to these boundaries), we also add mirror dipoles in the
eight squares surrounding the computational domain in x and y,
also at = -z 0.85. The domain extends for this configuration
to  - x4 4,  - y4 4, and  z0 16 with a spatial
resolution of ´ ´256 256 512 grid points.

2.1.3. Embedded Dominant Polarities

As a contrast to the above parasitic polarity case, we also run
simulations in which the embedded localized polarity regions
form the flux of the loop (requiring that the total flux through
the photosphere in our domain of interest is dominated by these
polarities). We refer to this case as embedded dominant
polarities. As shown in Figure 2, this results in the field lines
taking on the classic “wine glass” shape. As shown in the right
panel of Figure 2, the magnetic field in this case also contains
magnetic null points, but in this case the associated separatrix
surfaces do not close over regions of the photosphere, but
rather extend vertically along the length of the loop, separating
the flux associated with each embedded dominant polarity, in a
manner reminiscent of the coronal tectonics model of Priest
et al. (2002).
The magnetic field setup that we use is again defined by

Equation (3), this time with parameters as follows: n=3,
 = 0.31,2,3 , ( )= -x 0, 0, 0.31 , ( )= -x 2.5, 0, 0.32 , =x3
( )- -2.5, 0, 0.3 , and =B 0.10 . Similarly to the parasitic
polarity setup, we place mirror dipoles below the eight squares
surrounding the computational domain in the xy-plane. We also
choose the same domain size as previously, specifically

 - x4 4,  - y4 4, and  z0 16 with a spatial
resolution of ´ ´240 240 480 grid points.

2.2. Numerical Setup

In order to capture the full effects of magnetic diffusion and
reconnection, we solve for the evolution of our magnetized
fluid under the full MHD equations for a resistive, viscous,
isothermal, and compressible gas:

( )h
¶
¶

= ´ + 
A

u B A
t

, 42

( )r r= - + ´ +
u

J B F
D

Dt
c ln , 5s

2
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2
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· ( )r = - u
D

Dt

ln
, 6

with the magnetic vector potential A, velocity u, magnetic
field = ´B A, magnetic resistivity η, isothermal speed of
sound cs, density ρ, current density = ´J B, viscous forces
Fvisc, and Lagrangian time derivative · = ¶ ¶ + uD Dt t .
Here the viscous forces are given as ·r nr= -F S2visc

1 , with
the kinematic viscosity ν and traceless rate of strain tensor

( ) ·d = + -S uu uij i j j i ij
1

2 , ,
1

3
. This being an isothermal gas,

we have r=p cs
2 for the pressure. For the vector potential A

we apply the Weyl gauge with · =A 0.
Throughout our simulations we use h = ´ -4 10 4 to reduce

magnetic energy dissipation as much as the limited resolution
allows. For the kinematic viscosity we choose n = -10 4 for the
homogeneous initial field and ´ -4 10 3 for the other simula-
tions. This is necessary to dissipate the stresses that build up in
the vicinity of the lower boundary.

Equations (4)–(6) are solved using the PENCIL CODE,
which is an Eulerian finite-difference code using sixth-order-
in-space derivatives and a third-order time-stepping scheme
(Brandenburg & Dobler 2002).

2.3. Boundary Conditions

Any flow through the side boundaries (x and y) and the lower
boundary (z0) is suppressed, as we set the normal component of
the velocity field to zero, while the tangential component is free
(derivative across the boundary is zero). For the upper

boundary the velocity can, in principle, reach any value, as
we set all components antisymmetric with respect to the
boundary value. On the lower boundary a tangential flow is
prescribed, using the method described in Section 2.6.
The boundary conditions for the density are set to symmetric

at all boundaries, which forces its derivative across the
boundaries to zero, but does not directly restrict its value.
With the isothermal equation of state, this implies that the
pressure forces across the boundaries are zero.
For the magnetic field we set the x and y components of the

vector potential to be antisymmetric with respect to the
boundary value at the x and y boundaries, while the z-
component is symmetric. This unusual condition is needed due
to the presence of a mean magnetic field in the z-direction for
which the vector potential increases linearly in magnitude with
distance from the projected center. At the upper boundary we
choose all three components of the magnetic vector potential to
be antisymmetric with respect to the boundary value.
For the lower boundary we choose two different conditions,

depending on the initial field, to ensure that any initially
potential field is also potential, i.e., current-free, at the
boundary. This is achieved by extrapolating the field into the
ghost zones via a potential field extrapolation. For the
homogeneous initial condition we choose the same conditions
at z0 for the magnetic vector potential as for the side
boundaries. While the used extrapolation routine renders the
parasitic polarity field to be potential to a good approximation
at the lower boundary, for the dominant polarity case we
observe a small “residue” nonpotentiality near =z z0. This has

Figure 1. Initial condition for the embedded parasitic polarities. The field lines in the left panel are tracing the magnetic field, where the color denotes the strength of
the magnetic field, the red spheres mark the locations of the magnetic nulls, and the color at the lower boundary denotes the z-component of the magnetic field. The
right panel also shows the magnetic nulls together with the separatrix surfaces as a blue wire frame and the magnetic spines as green tubes. (The time evolution of this
configuration is available as an animation.)

(An animation of this figure is available.)
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consequences for the field’s initial dynamics before the system
damps away those small deviations.

2.4. Wave Damping Region

We wish to simulate an upper boundary that is open for
Alfvénic waves and to analyze the energy propagation into the
corona without the complicating effects of reflection from the
opposite loop footpoints. However, as specified, the upper
boundary condition for the magnetic vector potential is such
that Alfvénic waves reflect, rather than leave, the domain. This
would lead to the interference of the upward- and downward-
traveling waves with possible accumulation of magnetic energy
in the domain. We therefore impose a wave damping region for
the embedded and parasitic polarity configuration that extends
from z=8 to the top of the domain at z=16, in which we
increase the viscosity by a factor of 8 within an interval of
length 1 at z=8 via a step-like function via a hyperbolic
tangent variation. As the reflected damped wave returns from
the damping region, its intensity is only a fraction of what it
was initially, which is typically less than 7.7% of the amplitude
of the wave entering the damping region. Our subsequent
energy dissipation and flux calculations are preformed on the
domain excluding the wave damping region. We omit the wave
damping region for the homogeneous case, since we stop the
simulation as soon as the first disturbance reaches the upper
boundary.

2.5. Energy Dissipation and Fluxes

In our isothermal compressible system, kinetic energy and
magnetic energy can be transformed into one another through
the action of the Lorentz force; in addition, each may be
dissipated by the resistive and viscous terms—this energy
being lost to the system due to the isothermal assumption.
Since the boundary conditions allow for magnetic energy
fluxes out of the domain, we also need to take those into
account when considering the overall energy balance.

2.5.1. Magnetic Energy

Starting from the induction Equation (4), we can derive the
form for the magnetic energy variation as

( ) · )

(( · ) ) · ( )
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where the first integral is over the domain V, which excludes
the wave damping region, and the second is a surface integral
over the boundary ¶V , with normal vector n pointing outside
the domain and dS being the infinitesimal surface element
on ¶V .

Figure 2. Initial condition for the embedded dominant polarities. The field lines in the left panel are tracing the magnetic field, where the color denotes the strength of
the magnetic field, the red spheres mark the locations of the magnetic nulls, and the color at the lower boundary denotes the z-component of the magnetic field. The
right panel also shows the magnetic nulls together with the separatrix surfaces as a blue wire frame and the magnetic spines as green tubes. (The time evolution of this
configuration is available as an animation.)

(An animation of this figure is available.)
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The different terms in Equation (7) are the work done by the
Lorentz force, the ohmic dissipation, and the three flux terms at
the boundaries, respectively. We will consider each of the five
terms separately.

2.5.2. Kinetic Energy

Similar to the calculations for the magnetic energy, we can
use the momentum Equation (5) and the continuity Equation (6)
to compute the different terms for the kinetic energy flux and
dissipation to obtain

· ( ) · ·

( ) ·

( )
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The terms are the gas compression term through which
kinetic energy is dissipated into heat (and lost from the system),
the work done by the Lorentz force, which couples the
magnetic field with the fluid, the viscous dissipation, and the
fluxes through the boundaries, respectively. As with the
magnetic energy, we will consider each of the four terms
separately.

2.6. Boundary Driver

Photospheric footpoint motions are simulated by imposing a
time- and space-varying velocity field at the lower ( =z z0)
boundary. Any existing magnetic field that connects to this
boundary is then subjected to this driving. For the driving
velocities we prescribe a blinking vortex pattern, which, when
applied on the boundary of an initially homogeneous magnetic
field in an ideal fluid, would create the so-called E3 braid of
Wilmot-Smith et al. (2009). The evolution of the homogeneous
field under continued application of such a boundary driving
pattern was recently considered by Ritchie et al. (2016). The
driving flow consists of two (partially overlapping) circular
regions at which opposite twisting motions are applied. The
timescale of the driver is such that within the time of the
simulations a total of six twisting motions are applied at the
photosphere (three of each sign). Specifically, we force the
velocity at =z z0 toward the following profile:

( ) [( ( ) )
( ( )) ( ) ]( ) ( )

= - -
- -
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t t t y
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( ) ( )=u x y z, , 0. 11z
d 0

Here we use =t 32E3 and xc=1. Our choice of tE3 is
motivated by the Alfvén travel time of 192 time units for our
box of 48 in length and Alfvén speed of 0.25, which requires a
cadence of 32 time units in order to fit six twist regions into the
domain before the first hits the upper boundary. The modulo
function mod is used to simulate the z-dependence of the

magnetic field. More precisely, it is given as

( ( ) )
( ( ) )

( ) =
+ =
- ¹

⎧⎨⎩
t t
t t

if mod int , 2 0
if mod int , 2 0

, 12E

E

3

3

with the integer function int. In Figure 3 we plot a
representation of the driver at two different times with twist
injections on the left and right half of the domain.
For our driver we have in mind a setting at the lower part of

the corona with lower densities such that back-reactions from
the magnetic field to the fluid can be significant. Furthermore,
any direct imposition of the velocity at the lower boundary
would create a strong shear between the boundary and the first
inner layer of the simulation box. Therefore, we force the
plasma velocity u toward the velocity ud at =z z0 through an
exponential saturation of the form

( ) ( )l
¶
¶

= -
u

u u
t

, 13ud

with the saturation half time lu. We choose l = 0.3u for the
homogeneous case and l = 0.01u for the other two test cases,
which ensures a reasonably fast saturation for the velocity.
Note that due to its nature, the driver can be also counteracted
by forces from the magnetic field. This back-reaction depends
on the geometry of the field and can lead to a nonsaturating
velocity.

2.7. Magnetic Skeleton

We expect the magnetic topology to undergo drastic changes
due to the boundary driver. The magnetic skeleton, which
comprises the stable and unstable manifolds connected to
magnetic null points, characterizes the magnetic topology and
separates the domain into regions of different magnetic
connectivity. Hence, the emergence or annihilation of magnetic
nulls in the domain indicates major changes in the magnetic

Figure 3. Representation of the footpoint driving velocity at two different times
in red (left) and green (right) arrows. We switch between the two driving
vortices every 32 code units.
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topology. Magnetic null points may merge or be created in
pairs—in each case one null of the pair must have topological
degree +1 and the other topological degree −1 (Fukao
et al. 1975; Greene 1988; Hornig & Schindler 1996; Murphy
et al. 2015). They can also appear through the boundary, which
is essentially open to magnetic flux. As a result, separatrix
surfaces, which separate areas of different magnetic connectiv-
ity, may appear and disappear within the volume during the
evolution. Since the processes of null pair creation/annihilation
require a nonideal evolution, they are of interest in under-
standing reconnection and heating in the volume (Wyper &
Pontin 2014; Murphy et al. 2015; Olshevsky et al. 2015). We
therefore analyze the evolution of the magnetic skeleton during
the simulations.

We find the magnetic nulls in our simulations using the
trilinear extrapolation of the magnetic field, which assumes a
sufficiently linearizable field at subgrid scale (Haynes &
Parnell 2007). To find the separatrix surfaces, we use the
ring method (which can be found in, e.g., Haynes &
Parnell 2010), in which we trace magnetic field lines from
points around the magnetic nulls. Similarly, we find the spines
corresponding to the fan separatrix surfaces by tracing out
magnetic field lines.

3. RESULTS

3.1. Injection of Braiding

As a proof of concept we inject the E3 braid (Wilmot-Smith
et al. 2009) into the initially homogeneous field region using
the prescribed driver (Equations (9)–(13)) and the para-
meter =u 0.50 .

As we expect, the disturbances from the footpoint motion
travel into the domain via (torsional) Alfvén waves. This leads
to a buildup of twisting regions that move into the domain. As
the end result we obtain a magnetic field configuration that
resembles the expected E3 braid (Figure 4). This illustrates the
efficacy of the footpoint motions to change the topology of the
magnetic field in the case where all field lines are “open,” so
that disturbances propagate freely into the domain until they
reach the top boundary.

Through magnetic resistivity the field is subject to dissipation,
which can lead to small changes of the field-line topology even in
the absence of intense current layers. In order to track this, we
compute the field-line mapping given as the mapping of points
( )x y, from the =z z0 plane to the upper boundary ( )F x y, , which

is induced by the magnetic field lines (Yeates et al. 2010). We then
use this mapping to compute the color mapping, where we assign
the colors red, blue, green, and yellow for ( ) ( )>  >F x F yx y ,
( ) ( )>  <F x F yx y , ( ) ( )<  <F x F yx y , and ( )< F xx

( )>F yy , respectively (Figure 5).
After time t=192 the field has undergone sufficient

braiding to correspond in the ideal limit to the E3 braid. We
compare the color mapping of our final magnetic field with the
color mapping of the exact E3

field shown in Figure 2 of Yeates
et al. (2010) and find a striking agreement. The small
differences are due to the small but finite magnetic resistivity,
which leads to magnetic field dissipation. The resulting field is
then topologically somewhat simpler than the exact E3 braid
presented by Yeates et al. (2010).
For the two magnetic carpet structures with magnetic nulls

and separatrix layers, the propagation of the boundary motions
is significantly restricted by the field topology. Many of the
field lines that have footpoints within the twisting regions close
back to the lower boundary rather than extending to the upper

Figure 4. Magnetic field lines for the initially homogeneous case at t=192,
where the colors denote the field strength ∣ ∣B .

Figure 5. Color map for the homogeneous field at t=192 (upper panel) and
for the exact E3

field (lower panel).
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boundary. This leads to Alfvénic waves traveling back to the
photosphere and a buildup of magnetic stresses at low altitudes.
However, as the forcing continues, the magnetic carpet
structure is disrupted, as described in the following section,
reducing the fraction of the driving region covered by closed
magnetic field lines, and thus allowing a propagation of the
Alfvénic waves to higher altitudes (Figure 6). We quantify this
in Section 3.5, where we measure the magnetic energy
propagation in the different cases.

3.2. Magnetic Carpet and Field Topology

As the magnetic carpet gets forced from the photosphere, the
magnetic field topology undergoes various changes. We
observe the creation and annihilation of pairs of nulls, and
sometimes also the surfacing of nulls through the photosphere.
While the former has been observed in the past (e.g., Maclean
et al. 2009; Wyper & Pontin 2014; Murphy et al. 2015;
Olshevsky et al. 2015), the latter is a rather unstudied
phenomenon in MHD simulations (though see Brown & Priest
[2001] for a magnetic charge topology model). It turns out that
through its particular evolution at the surface, the field is being
restructured in such a way that it gives rise to additional
magnetic nulls and a rather complex structure of the separatrix
surfaces (Figure 6).

As new nulls appear in the domain, the configurations of the
separatrix surfaces and the spines change as well. Considering
first the case of embedded parasitic polarities, we observe that
at an early time (ca. t= 40 in video1) in the simulation a null
point appears through the lower boundary, between the central
and right separatrix domes. That gives rise to a separator pair

connecting the new null to both the central and right null
points. The separatrix surface of this new null point is bounded
by the spines of the original right and central nulls. Therefore,
part of it extends down to the photospheric boundary, while
another part extends up to the top of the box. Such a structure is
often called a “separatrix curtain” (Titov et al. 2011), and we
see many of these appear and disappear during the evolution
(see Figure 6 and video1) as the null point bifurcations occur.
Apart from such emerging and submerging of single nulls, we
also observe the annihilation and creation of pairs of nulls with
opposite sign in the weak-field region surrounding the original
nulls (see Figure 6), as predicted by Greene (1988), Albright
(1999), and Wyper & Pontin (2014).
The dynamics of the magnetic null points becomes clearer

by computing the average height of the null points and the
number of null points as a function of time (Figure 7). The first
thing that we observe is that for the parasitic polarity case the
number of null points is much more highly fluctuating, while
for the dominant polarity case the null points are more stable.
For the parasitic polarity case we have bursty production of
nulls until »t 100 (both through topological bifurcations
within the domain and null emergence through the photo-
sphere, as described above). After this time there is a sharp
drop in the average height of the nulls as a result of the
shredding of the polarities, and concurrent with this, the null
point number drops rapidly as many nulls leave through the
lower boundary. The number of null points and their average
height are intimately linked with the fraction of the photo-
spheric flux that is “open” to the upper boundary, thus having
important implications for the propagation of energy and

Figure 6. Magnetic field lines (left) for the parasitic polarities case at t=109, where the colors denote the field strength ∣ ∣B together with the null points (red spheres)
and the z-component of the magnetic field at the lower boundary. The right panel shows the magnetic skeleton with the null points (red spheres), magnetic spines
(green tubes), and separatrix surfaces (blue grid surface), together with the magnitude of the velocity at the lower boundary.

(An animation of this figure is available.)
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disturbances from the lower boundary to higher altitudes. This
will be discussed further below.

The above analysis provides a qualitative picture of the
propagation of disturbances into the corona in response to the
footpoint motions. In the following sections we go on to
discuss quantitative measures such as energy and helicity
fluxes.

3.3. Helicity Injection

From Equation (7) we know that magnetic energy can be
injected from the boundary as long as the velocity is not
perfectly orthogonal to the magnetic field and B is not
perpendicular to the surface normal. For the homogeneous
configuration this is the case initially. However, after the first
movement of the footpoints, this changes: energy injection is

possible, and disturbances of the field propagate through
Alfvénic waves into the domain.
The initially homogeneous field is easily being twisted by

the footpoint motions, which leads to the injection of magnetic
helicity for every odd multiple of tE3. We clearly observe this
behavior in Figure 8. On the other hand, the cases of parasitic
and dominant polarities with their intricate structure and closed
(to the photosphere) field lines inhibit any such propagation
initially. As a consequence, magnetic helicity is not efficiently
injected into the domain. However, after sufficient twisting, the
field realigns itself to a simpler structure, which then allows for
efficient propagation of boundary disturbances to large heights.
For that to happen the field needs to reconnect, which is forced
by the footpoint motions.

3.4. Energy Fluxes, Conversion, and Dissipation

We now calculate the individual contributions to the change
in time of the kinetic and magnetic energy for the embedded
parasitic polarity and the dominant polarity case by applying
Equations (7) and (8). Since the wave damping region at >z 8
lies conceptually outside the physical domain of interest, we
perform the integrals within z 8.
It is clear from Figure 9 for the embedded polarity case that

magnetic energy is injected through the lower boundary. From
there it propagates into the domain, where it is mostly
converted into kinetic energy through the Lorentz force. At
later times magnetic energy injection and conversion reach an
approximate equilibrium.
How is the magnetic energy dissipated? Judging from the

results (Figure 9), the channel through ohmic dissipation hJ2 is
rather limited due to the low value of η compared to the energy
input from the photosphere. Similarly, other forms of magnetic
energy fluxes are negligible compared to the energy injection
rate, like the Poynting flux through the upper domain boundary
and magnetic energy advection. However, after conversion into
kinetic energy, viscous effects are efficient enough to account
for a large part of the energy dissipation.
For the embedded dominant polarity case we first have to

account for effects coming from the small nonpotentiality of
this configuration near the lower boundary. To achieve this, we
perform a simulation without boundary driver and subtract the
values of the driven simulation from the values with =u 0d .

Figure 7. Average height of the null points znulls (red line) with standard
deviation (light-red shading) together with the total number of magnetic null
points nnulls (blue line) as a function of time for the parasitic polarity case
(upper panel) and dominant polarity case (lower panel).

Figure 8. Time evolution of the normalized magnetic helicity for the three
different configurations.

8

The Astrophysical Journal, 832:150 (13pp), 2016 December 1 Candelaresi, Pontin, & Hornig



However, these effects become negligible after »t 15. We
then observe a rather large release of magnetic energy, which is
converted into kinetic energy (Figure 10). This is due to the
strong field close to the photosphere at =z z0. The conversion
and dissipation channels are the same as for the embedded
polarity case, i.e., magnetic energy is converted into kinetic
energy through the Lorentz force and then mostly dissipated
through viscous effects. Over time we also observe a clear
decrease for all terms, which is due to the change of a strong
near-surface field into a more homogeneous and weaker field as
the initial polarity regions are distorted and ultimately spread
out by a combination of the boundary flows and diffusion.

3.5. Propagation of Energy to Higher Altitudes

For the initially homogeneous field any energy or informa-
tion is transported through Alfvénic waves, while acoustic
waves appear to be insignificant. Any magnetic field
disturbance propagates freely into the domain (Figure 11),
with the Poynting flux carrying the energy. Due to the small

value of the magnetic resistivity η and viscosity ν, the Alfvénic
waves are only marginally damped, such that the energy is
efficiently transported to the top of the domain. Since for this
case the upper boundary allows for the reflection of Alfvénic
waves, we stop the simulation as soon as the first wave packet
reaches the boundary.
For the parasitic polarity configuration the energy from the

footpoint motion is initially trapped at low heights (Figure 12),
primarily below the null points and the separatrix domes. This
is due to the trapping of Alfvénic waves through closed (to the
photosphere) magnetic field lines. For  t100 200, we
observe a restructuring of the magnetic skeleton, as described
in Section 3.2, which is characterized by a shrinking of the
domes as the parasitic polarities are “shredded” by the
photospheric flows. This leads to a flux of magnetic null
points through the lower boundary and their subsequent
disappearance (Figure 7). As a result, there is now a larger
fraction of the field lines at the photosphere that are open,
allowing the injected twist to travel into the domain. Note that
the increase in efficiency of energy propagation to large heights
coincides with the disappearance of the magnetic null points at
time »t 210.

Figure 9. Time evolution of the contributions to the magnetic energy change
(upper panel) and kinetic energy change (lower panel) for the embedded
parasitic polarity initial condition. Note that for the first two quantities in the
list for the magnetic energy and the first three quantities for the kinetic energy
what we plot are the volume integrals, where the volume is taken as the
computational domain excluding the wave damping region. Terms involving
the normal vector n are integrated over the surface of this volume.

Figure 10. Time evolution of the contributions to the magnetic energy change
(upper panel) and kinetic energy change (lower panel) for the dominant polarity
initial condition. Volume and surface integrals are taken as appropriate, as in
Figure 9.
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Similarly, for the dominant polarity case we observe a
trapping of magnetic energy below the locations of the
magnetic nulls. Due to the strong field, most of the magnetic
energy is stored close to the photosphere. This holds until the
breakage of the field’s topology into a simpler structure that
allows for fluxes into the domain. Therefore, we observe
energy fluxes after time »t 200 that more easily reach the top
boundary (Figure 13). We quantify the efficiency of the
propagation via the ratio of the Poynting flux at z=2 to the
value at z=0. Since the Alfvén speed varies with height, we
take the values at z=2 with a time delay of 100 code time
units, which gives us a reasonably good estimate. By doing so,
we find a ratio for the Poynting flux of ca. 0.35% for waves
emitted at t=64 and a ratio of 2.8% for t=415. This shows
that the energy flux is enhanced after the breakup of the
magnetic field topology.

4. DISCUSSION AND CONCLUSIONS

We have considered above the application of boundary flows
to three different model coronal fields. In the first, most
simplified model an initially homogeneous field was used. In
this case we showed that it is feasible to induce braiding to the
magnetic field of the solar corona by motions on the

photosphere. Moving to the more realistic models with a
mixed polarity photospheric field, the energy transport to large
altitudes was inhibited by the complex field topology. In this
work we did not include a stratified atmosphere in which the
Alfvén speed can change by several orders of magnitude. It was
shown by van Ballegooijen et al. (2014) that this has a strong
effect on the propagation and dissipation of energy and should
therefore be considered in a future study. While for large
Alfvén speeds, compared to the driving velocities, the DC
heating dominates, for small Alfvén speeds AC dominates.
Furthermore, nonlinear effects lead to the dissipation of
counterpropagating waves.
In order to understand our results in the context of the corona,

we can extract synthetic magnetograms of the line-of-sight
magnetic field from the magnetic field on the lower boundary of
our simulation domain and compare with processes occurring in
observed solar magnetograms. Here we take the line of sight to
be simply the z-direction. In order to compare with actual
observations, we reduce the z-component of the magnetic field to
three values. Specifically, it is set to +1 at points where

( )= >B z B0z cut,−1 if ( )= < -B z B0z cut, and 0 otherwise (to
simulate the noise threshold on magnetogram observations). For
the parasitic polarity case, shown in Figure 14, we choose

∣ ( )∣= ´ =B B x y z t0.15 , , 0,zcut max , and for the dominant

Figure 11. Averages in the xy-plane of B2 and the Poynting flux in the z-
direction ( )´E B z as a function of the vertical coordinate z and time t for the
initially homogeneous case.

Figure 12. Averages in the xy-plane of B2 and the Poynting flux in the z-
direction ( )´E B z as a function of the vertical coordinate z and time t for the
parasitic polarity case.
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polarity case we choose ∣ ( )∣= ´ =B B x y z t0.003 , , 0,zcut max

(Figure 15). Note that we take the maximum over x, y, and t,
which means that the cutoff value is fixed in time.

From the synthetic magnetograms for both simulations we
clearly observe a complex interaction of opposite polarity
regions, which may lead to both the splitting and merging of
polarity regions (sometime called “flux fragments”). At later
times, however, due to the overall mixing and cancellation of
the polarities (a result of both the stretching nature of the
imposed flow and diffusion), we end up with one surviving
polarity region (positive). This behavior is consistent with the
observed behavior of magnetic flux fragments on the Sun,
which are known to undergo a continuous process of merging
and fragmentation (e.g., DeForest et al. 2007, and references
therein). It is important to note that this “shredding” of the
magnetic flux fragments in the synthetic magnetograms is
crucially dependent on the relative length scales of the flows
and the flux fragments; in our case the flows have significant
gradients over the scale of the initial fragments. From this point
of view, our results are probably best compared to local regions
of the photosphere in which the flux fragments are comparable
to the scale of the underlying motions (Gošić et al. 2014).

Figure 13. Averages in the xy-plane of B2 and the Poynting flux in the z-
direction ( )´E B z as a function of the vertical coordinate z and time t for the
dominant polarity case.

Figure 14. Synthetic magnetogram for the parasitic polarity case at times t=0
(upper panel), t=58 (middle panel), and t=109 (lower panel). The shadings
correspond to the reduced z-component of the magnetic field, with black
positive and white negative polarity.

11

The Astrophysical Journal, 832:150 (13pp), 2016 December 1 Candelaresi, Pontin, & Hornig



In the two models with embedded parasitic/dominant
polarities, we investigated the effects of footpoint motions on
fields where a significant fraction of the field lines initially
connect back to the photosphere, while others connect to the
upper boundary. The applied photospheric motions do not
create new magnetic flux, but, as discussed above, induce
shredding of existing flux, leading in the magnetograms to the
eventual “death” of the flux fragments (Lamb et al. 2013). On
the Sun, this process is in a statistically steady state with the
competing process of emergence of new flux—which we
exclude from our simplified model.
We showed that in the initial stages of the simulations with

mixed polarity, the presence of closed field lines restricted the
energy propagation into the domain. However, as we continue
with the driving, the embedded polarities are shredded into weaker
fragments. This reduces the range over which they influence the
coronal field. In particular, we have shown that it results in a
reduction in the number, and perhaps more importantly the height,
of the coronal null points. This is particularly clear in the case of
the embedded parasitic polarities, where the separatrix domes
enclosing the closed flux get progressively smaller (on average,
both in height and in extent over the xy-plane) as the simulation
proceeds. As a result, the propagation of disturbances can access
the open-field regions more readily, and the energy is propagated
much more efficiently to large heights.
In summary, we can confirm the feasibility of energy and

disturbance propagation from the photosphere into the corona
through the motion of footpoints. The magnetic field topology
plays an essential role during this process, with a magnetic
carpet structure containing nulls largely inhibiting the process.
We showed that the shredding of magnetic polarities by
photospheric flows leads to a simplification of the magnetic
topology through the disappearance of null points (either
through the lower boundary or in annihilation processes within
the volume). This in turn allows a more effective propagation
of energy to large heights in the corona.

All the authors acknowledge financial support from the UK’s
STFC (grant no. ST/K000993). We also thank the anonymous
referee for the useful comments that helped improve this paper.
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