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1. Introduction

The magnetic field is a crucial driver of plasma dynamics in 
a wide range of environments. Many phenomena of interest 
involve explosive release of stored magnetic energy, mediated 
for example by ideal or resistive instabilities. Our knowledge 
of such instabilities tends to be based on rather ordered initial 
magnetic field configurations, in which—for example—large-
scale twist or shear is present in the magnetic field. However, 
magnetic fields in laboratory and astrophysical environments 
are often inherently disordered, being characterised by field 
lines that are tangled with one another in non-trivial ways. 
Such tangled magnetic fields are the subject of this article: for 
our purposes we define a braided magnetic field as a magn-
etic flux tube in which the field lines have some non-trivial 
winding or linkage.

Braided magnetic fields have been used for some time to 
model loops in the Sun’s atmosphere, or corona, initially in 
response to Parker’s proposed nanoflare heating mechanism 
(Parker 1972, 1988). Therein, it is proposed that the corona 
is heated to the observed multi-million degree temperatures 
as a result of turbulent convective motions in the outer layers 
of the solar interior that tangle or braid the field lines about 

one another. This leads to an increase in magnetic energy in 
the coronal field that (it is proposed) is converted to kinetic/
thermal energy by magnetic reconnection once the field 
becomes sufficiently complex. The efficiency of this heating 
mechanism remains a topic of heated debate—the various 
modelling efforts were recently summarised by Wilmot-
Smith (2015). While the predicted length scales of the field 
line braiding are below the spatial resolution of most instru-
ments observing the Sun, recent direct observational evidence 
of braided loops in the corona has been claimed by Cirtain 
et  al (2013). Analogous processes will occur in any other 
astrophysical objects that comprise a turbulent, high-plasma-β 
interior surrounded by a tenuous, low-β corona (such as other 
stars and accretion disks).

Field line tangling is important not only in astrophysical 
plasmas, but in laboratory and fusion devices as well. In many 
spheromak or tokamak devices, ground state axisymmetric 
solutions exhibit regular structure with concentric flux sur-
faces. However, when this configuration is perturbed, as for 
example when the plasma is energised, regions of tangled, 
often ergodic field lines are created. Moreover, some tokamak 
configurations introduce stochasticity to the field near the 
plasma edge in an attempt to control the plasma properties 
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there (e.g. Jakubowski et al 2006). The ergodic field topology 
is crucial for transport within the device in question (Rechester 
and Rosenbluth 1978).

In this paper we describe several important properties of 
braided magnetic fields, using some simple models of magn-
etic braids for illustration. In section  2 we introduce useful 
measures that characterise magnetic braids. In sections 3 and 
4 we investigate two aspects of the problem of energy release 
in braided magnetic fields: the existence of braided equilibria 
and turbulent resistive relaxation. We finish in sections 5 and 6 
with implications for coronal heating, and a discussion.

2. Characterisation of braided magnetic fields

Braid theory deals with the tangling of a finite number of dis-
crete strands. In this case, braids can be described using braid 
words that define the relative crossing of these strands (e.g. 
Finn and Thiffeault 2007). Discrete, strand-based models for 
braided coronal loops have also been developed (Berger and 
Asgari-Targhi 2009). However, magnetic fields are by nature 
space-filling, and here we focus on measures that treat the 
field and its linkage as continuous. The first set of tools identi-
fies structures in a magnetic field from the field line mapping. 
In magnetically open domains this constitutes a mapping from 
sections  of the domain boundary on which ⋅ <B n 0 (field 
lines enter the domain) to those on which ⋅ >B n 0 (field 
lines leave the domain). In solar physics, significant theory 
has been developed demonstrating that regions in which this 
mapping has large gradients are preferential locations for the 
formation of intense electric current layers (Démoulin 2006, 
and references therein). Such gradients are typically measured 
by the squashing factor
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where F  =  (X (x, y), Y (x, y)) is the field line mapping from 
the ‘launch’ boundary (coordinates x and y) to the ‘target’ 
boundary (coordinates X and Y), and FD  is its Jacobian. (For 
covariant expressions in general coordinates see Titov 2007.) 
In periodic laboratory devices, on the other hand, the field 
line mapping may be iterated many times to produce Poincaré 
sections that reveal the presence of laminar and ergodic field 
regions (e.g. Morrison 2000). Particular features of interest in 
this mapping for understanding the plasma dynamics include 
stable and unstable manifolds associated with fixed points 
(Borgogno et al 2008, Yeates and Hornig 2011).

To quantify the tangling in a magnetic braid, we transfer a 
result from fluid dynamics. Understanding the topology of the 
field line mapping is analogous to understanding mixing in a 
two-dimensional fluid that undergoes stirring. Here the direc-
tion along the flux tube corresponds to the time in the stirring 
process, magnetic field lines to trajectories of fluid elements, 
and periodic orbits (field lines) can be interpreted as stirring 
rods. It is well established that there exist optimal stirring 
protocols for these stirring rods that yield the most efficient 

mixing of the fluid (Boyland et al 2000). A useful measure of 
the stirring quality is the topological entropy, which gives the 
exponential stretching rate of material lines in the fluid, for 
sufficiently complex mixing (Newhouse and Pignataro 1993). 
The faster such material lines grow in time, the more efficient 
the mixing. In the same way that one can calculate the topo-
logical entropy for a series of fluid particles trajectories in 
time, one can evaluate the entropy for field lines of a magnetic 
braid. Thus the topological entropy characterises how quickly 
initially adjacent field lines separate in an average sense.

A final important measure of magnetic topology is the 
magnetic helicity, which quantifies the average linkage of 
field lines in the domain. In a magnetically closed volume, V, 
magnetic helicity is defined by ∫= ⋅H xA B d

V
3 , A being the 

vector potential for the magnetic field B. When the volume of 
interest is not magnetically closed—as in the case of a solar 
coronal loop where the magnetic field lines penetrate the solar 
surface—the relevant quantity is the relative helicity

( ) ( )∫= + ⋅ −H xA A B B d .r p p
3 (2)

Hr measures the helicity (equivalently the average linkage) 
relative to a reference field (usually the potential field) satis-
fying the same boundary conditions as B, where Ap is a vector 
potential for this reference field Bp (Berger 1984). Further 
information on the field line linkage may be obtained by con-
sidering the quantity

( )
ℓ( )∫= ⋅ × = ×∂ ∂

A x A l n A n Ad , ,V Vx
0 p

0
 (3)

where the integral is performed along a magnetic field line 
( )� x0  passing through x0 (∂V  and n being the boundary of V 

and its outward normal, respectively). This field line helicity 
measures the net poloidal flux encircling the chosen field line 
(Berger 1988). It can also be shown to uniquely describe the 
magnetic topology of the field (Yeates and Hornig 2013) and 
can therefore distinguish between different magnetic fields 
with the same total helicity. The field line helicity, like the 
total and relative helicity measures, is an ideal invariant.

3. Existence of braided equilibria

3.1. General considerations

The main purpose of this paper is to investigate the impor-
tance of magnetic braiding for plasma dynamics, and the first 
issue we address is the existence of smooth stable equilibria 
for braided magnetic topologies. A key ingredient in Parker’s 
magnetic braiding mechanism for coronal heating is the 
hypothesis that for sufficiently complex magnetic braids such 
equilibria do not exist. The coronal field is expected to evolve 
through a sequence of such equilibria, since the Alfvén travel 
time along a coronal magnetic field line is much faster than 
the timescale of the photospheric driving. Plasma heating, 
mediated by reconnection, is then postulated when the field 
complexity reaches a state where no (continuous) equilib-
rium exists. Due to the low coronal plasma-β, such equilibria 
approximate Beltrami or force-free fields (f.f.f.):

Plasma Phys. Control. Fusion 58 (2016) 054008
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α∇× =B B. (4)

Little has so far been unequivocally proven regarding the exis-
tence of such f.f.f.s in non-symmetric configurations. One 
exception is the study of Bineau (1972), in which it was proved 
that in the absence of magnetic null points, f.f.f.s do exist for suf-
ficiently small α (though no bounds are provided on α). There 
exist a number of different approaches to the problem, and—
while there is mounting evidence in favour of thin but finite cur-
rent layers as opposed to the tangential discontinuities proposed 
by Parker—there is presently no clear consensus, see Craig and 
Sneyd (2005), Pontin and Hornig (2015) and references therein. 
We refer the reader here also to the work on equilibria that 
include flow and plasma pressure, and can be modelled by so-
called double-Beltrami fields (e.g. Yoshida et al 2001).

3.2. Model magnetic field

We consider in this paper a model braided magnetic field
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(5)

where ( )= − +x 1i
i 1 and z1..6  =  {−20, −12, −4, 4, 12, 20}. 

When the parameter κ = 1, particular field lines in the domain 
(figure 1(a)) have a ‘pigtail braid’ structure (figure 1(b)). 
Such braiding could be generated in an initially uniform 
magnetic field via a sequence of rotational plasma motions 
on the boundary in a ‘blinking vortex’ pattern (Aref 1984). 
However, the particular pattern of this braid is not crucial to 

the qualitative results presented. Rather, the salient feature is 
the generic property of tangling of magnetic field lines that is 
well established in laboratory plasmas and has recently begun 
to be quantified in solar coronal observations (Yeates et  al 
2012, 2014).

Here, we demonstrate for the first time that the topo-
logical entropy of this field increases as the parameter κ is 
increased, confirming that fields with higher κ are ‘more 
braided’ in a rigorous sense. The calculation of topological 
entropy is performed by directly evaluating the growth of a 
material line under successive iterations of the field line map-
ping (Newhouse and Pignataro 1993), using an adaptive pro-
cedure in which additional points are included along the line 
in regions of high curvature, as required to resolve this length. 
The result is plotted for different values of κ in figure 2. Fitting 
a straight line to the plot, we obtain a scaling

κ∼ ± + ±h 2.76 0.09 0.39 0.11( ) (6)

(the errors being the 95% confidence interval). That is, 
increasing κ corresponds to increasing the overall field com-
plexity as quantified by h. We return to consider this scaling 
later.

3.3. Ideal relaxation simulations

This section  describes the results of a numerical relaxation 
method for investigating the existence of braided equilibria. 
The philosophy is to define a magnetic field with a given 
topology, and then relax towards an equilibrium while exactly 
preserving that topology. In order to guarantee topology 
preservation a Lagrangian numerical mesh is employed, as 
described in Craig and Sneyd (1986) and Candelaresi et  al 
(2014). A magnetofrictional (MF) evolution enforces a mono-
tonic decay of the magnetic energy in the system, as a f.f.f. is 
approached. The critical question is whether this equilibrium 
is smooth or contains tangential discontinuities, i.e. current 
sheets. If it is discontinuous then the finite dissipation in a 
real plasma would lead to reconnection, topology change, and 
energy release. A number of studies using this approach have 

Figure 1. (a) Selected field lines for the magnetic field defined by 
equation (5) with κ = 1; shaded isosurfaces of the magnetic field 
strength indicate the regions of magnetic-twist/current-density, 
which tangle the field lines. (b) Sketch of the ‘pigtail braid’ 
structure formed by particular field lines.

Figure 2. Topological entropy h as a function of the parameter κ 
for the magnetic field (5), together with best linear fit (red).

Plasma Phys. Control. Fusion 58 (2016) 054008
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concluded that there is no evidence of formation of tangential 
discontinuities except in the presence of magnetic null points 
that we do not treat here (Craig and Sneyd 2005, Candelaresi 
et  al 2015). In particular the magnetic field of equation  (5) 
has been used as an initial condition for such ideal MF relax-
ations, first by Wilmot-Smith et al (2009) and subsequently by 
Candelaresi et al (2015) using an improved numerical scheme. 
In neither case was any tendency towards the formation of tan-
gential discontinuities observed. Of course no numerical relax-
ation can reach an exact equilibrium. Thus, here we describe 
an extension of the MF relaxation. Specifically, we take the 
approximate equilibrium obtained after MF relaxation, and 
further relax this field using an MHD code (Galsgaard and 
Nordlund 1996) with a large viscosity applied. In this MHD 
code the resistivity is set explicitly to zero—due to the sixth-
order spatial differencing numerical dissipation (and thus 

topology change) is minimised, so long as length scales of 
variations in B remain well above the grid-scale.

We have performed a systematic study varying the para-
meter κ in equation (5) using this approach, with both line-
tied (perfectly conducting) and periodic boundary conditions 
in z (for spatial domain [ ]∈ −x y, 6, 6  and [ ]∈ −z 24, 24  ). The 
results for the line-tied case were presented by Pontin and 
Hornig (2015), who obtained a sequence of ideal equilibria 
for κ< 0.75. The residual ×J B forces present in the approxi-
mate equilibria could be balanced by plasma pressure for a 
plasma-β of order 10−3—thus the equilibria are as force-free 
as one would expect in the corona or a typical laboratory 
plasma. Figure 3 shows a sequence of the equilibria obtained, 
corresponding to different values of κ. The complexity of 
these magnetic braids increases for increasing κ, as shown 
by the topological entropy calculated above, which does not 

Figure 3. Top row: | |J  isosurface in the final state of the ideal relaxation simulations for the magnetic field defined by equation (5). Middle 
row: | |J  in the midplane of the relaxed state. Bottom row: ( )Qlog10  plotted on z  =  −24. All for (a) κ = 0.5, (b) κ = 0.6, (c) κ = 0.7.

Plasma Phys. Control. Fusion 58 (2016) 054008
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change during the ideal relaxation. These equilibria—that we 
emphasise are for the line-tied case—contain thin but well-
resolved current layers (figure 3, middle panels). The equi-
libria share the same topology as the magnetic field (5) for 
values of the parameter κ up to κ = 0.75.

These results should be contrasted with the newly consid-
ered case where the z-boundaries are periodic. The simula-
tions that we have performed using the same method but with 
periodic boundaries show no ideally accessible equilibrium 
for the range ⩽ ⩽κ0.5 0.75. This non-existence of an equilib-
rium manifests through the generation of current layers that 
continue to thin until they reach the grid scale for all acces-
sible numerical resolutions—this leads naturally to reconnec-
tion via numerical dissipation. The reason for this absence of 
an equilibrium for the periodic magnetic braids is explained in 
the following section.

In summary, for periodic magnetic braids of the form in equa-
tion (5), no equilibrium exists. For line-tied magnetic braids, a 
sequence of braided magnetic fields that are continuous equi-
libria does exist. However, these equilibria contain thin current 
layers, whose thickness is directly related to the field com-
plexity, becoming exponentially thinner as the parameter κ is 
increased. We anticipate that this result for the line-tied case is 
a general one, not limited to the class of braids considered here, 
for the following reasons. First, the results are consistent with 
a number of other studies in which a magnetic field between 
two line-tied plates was subjected to sequences of shears, and 
an exponential thinning of current layers was observed as the 
number of shears (and the resulting field complexity in the 
volume) increased (van Ballegooijen 1988a, 1988b, Mikić et al 
1989, Candelaresi et  al 2015). Second, it can be argued that 
braided equilibria containing thin layers in the field line map-
ping must exhibit thin current layers on the same (or smaller) 
scale. This is explicitly demonstrated in the next section.

3.4. Correlation length for the force-free parameter α

3.4.1. Exact equilibria. To further explore lengthscales in 
f.f.f.s, let us consider the case of an exact f.f.f. α∇× =B B. 
For the periodic case any magnetic field containing ergodic 
field lines is consistent only with a linear f.f.f., or piece-
wise-linear in separate ergodic regions. For our model field 
(5), if we identify the top and bottom z-boundaries with one 
another to make the field periodic, then for κ> 0.5 the region 

+ �x y 22 2  is highly mixing and Poincare maps show a 
volume-filling ergodic region. Thus, in this region α must be 
constant. Now, for a constant-α f.f.f. α=J B and the current 

helicity is ∫ ∫α= ⋅ = | |H x xJ B Bd dJ V V
3 2 3 . In our case by 

symmetry we have HJ  =  0, which implies that α = 0. How-
ever, this is a contradiction, since it is inconsistent with the 
presence of ergodic field lines, and we conclude that an exact 
equilibrium for this field topology for the periodic case does 
not exist.

Consider now the requirements for an exact equilibrium 
in the case where =±z z0 are line-tied, perfectly conducting 
boundaries. Then α is constant along field lines that run 
between these boundaries. To understand the nature of the 

distribution of α perpendicular to B, consider the following. 
Let us suppose that α has some global length scale, ( )�O , 
on some plane, say z  =  −z0. Then, to find the length scales 
associated with the α distribution at, say, z  =  +z0, we simply 
map α along field lines. We can relate the resulting length 
scales in the mapped quantity to the topological entropy, h, 
as follows. Recall that h may be interpreted as the limit of the 
stretching rate of material lines under repeated application of 
the mapping, the lengths of these lines L satisfing ( )∼L hnexp   
(n being the iteration number).

Consider a contour of α as such a material curve that is 
mapped in the ‘flow’ of B. Then by definition the contour is 
stretched by a factor ( )≈ hexp  between z  =  −z0 and z  =  z0. 
Assuming constant area along the length of the braided flux 
tube, there must be a squeezing on average by a factor ( )−hexp  
in the orthogonal direction. Thus, a typical contour of α on 
z  =  +z0 will form an elongated structure with characteristic 
thickness   ( )∼ −α �L hexp . If the flux tube expands/contracts 
along its length then the area changes by a factor /− +B Bn n , the 
ratio of the normal field components at the two boundaries for 
the elemental flux tube under consideration. Unless the braid 
has a high contraction/expansion factor this ratio will be O 1( ). 
Assuming an isotropic expansion, the length scales of α are 
modified to

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∼α −
+

−

−

�L
B

B
e .h n

n

1

 (7)

Now, in a f.f.f., ∥ α∝J , and thus the equilibrium must exhibit 
current layers that are also on the length scale αL  (or smaller). 
Note that Pontin and Hornig (2015) made a similar argument 
based on the squashing factor Q (see equation  (1)), which 
shows that ( / ) /∼α + − −L Q B Bn n

1 2.
Pontin and Hornig (2015) showed that the current layer 

thickness wJ in the equilibria for line-tied boundaries follows 
the scaling

[ ( ) ]κ= − ± + ±w exp 5.59 0.25 2.53 0.18 .J (8)

Comparing this with the empirical scaling of αL  with h that 
would be obtained from equations (6) and (7), we conclude 
that equation (7) gives a rather weak upper bound on the cur-
rent layer thickness—the current layers are in fact significantly 
thinner than the maximum permitted by the entropy argument. 
This difference could be down to several factors. First, h mea-
sures a global or average line stretching rate (and the argu-
ment above treats a global-scale α contour), while the current 
layers form in the vicinity of selected field lines—we assumed 
an equal squeezing of the α contour along its length to arrive 
at the factor ( )−hexp  while in practice this will vary between 
field lines. Second, h is determined by repeated iterations of 
the field line mapping, whereas in these line-tied simulations 
a material line or α contour is subject only to a single map-
ping iteration. The scaling of the current layer thickness in the 
domain can be shown to match very well with the scaling of 
the thinnest layers of Q present in the mapping (Pontin and 
Hornig 2015)—this quantity being derived from a single itera-
tion of the mapping and being minimised over field lines (over 
x and y), thus removing the above two concerns.

Plasma Phys. Control. Fusion 58 (2016) 054008
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3.4.2. Approximate equilibria. We addressed above the 
nature of an exact equilibrium—however, any real (or simu-
lated) magnetic field will only ever approximate such an exact 
f.f.f. Thus the question arises; what is the influence of a small 
departure from equilibrium on these results? To answer this 
we define

∥ ∥
∥ ∥∥ ∥

∥ ∥
∥ ∥

∥α =
⋅
= =

×
=∗ ∗ ⊥ε

B

J

B

J B J B
J B

J
J

: ; : .
2 (9)

The first quantity, α∗, in general varies along field lines, but 
converges to the f.f.f. parameter α as we approach a force-free 
equilibrium. The second quantity is a dimensionless function 
that measures the proximity to a f.f.f. We have ⩽ ⩽∗ε0 1, where 
=∗ε 0 corresponds to an exact f.f.f. and =∗ε 1 to a maximal 

non-force-free state. The above argument for the non-exis-
tence of force-free equilibria in a periodic domain relied on 
the fact that α is constant along field lines. However, a similar 
argument holds for a near-force-free state if α∗ has only small 
variations over the length of the periodic domain, or in other 
words if the correlation length of α∗, lcorr is longer than the 
domain length L. We define the correlation length for a given 
field line by

α
α

=
∂
∂∗
∗

l s

1
:

1
,

corr
 (10)

where s parameterises length along the field line and .  is an 
average over the field line. Following a similar calculation as 
in Pontin et al (2009) we use

( )∥ α= ∇ ⋅ = ∇ ⋅ + ∇ ⋅ = ⋅ ∇ +∇ ⋅⊥
∗

⊥ ⊥JJ e J B J0 ,B (11)

which leads to

/∥ ∥α
α α∂
∂
=

⋅ ∇
=
−∇ ⋅

≈∗

∗ ∗
⊥ ⊥

∗ε
s J B B J d

B J1 1
, (12)

where we used in the last step that for approximately force-
free states ∥ ∥∥| | ≈J J  and introduced a typical length scale d for 
variations perpendicular to the field line: ∥ ∥/ ≈ |−∇ ⋅ |⊥ ⊥ ⊥dJ J . 
The result, /≈ ∗εl dcorr  shows that even for high-quality force-
free approximations with ≈∗ −ε 10 3 (as in our examples) the 
correlation length can be comparable with or smaller than the 
length of the domain (48 units in our case) if the perpend-
icular length scales become small as well ( ≈d 0.05 for k  =  1 
in equation (8)). One can turn this argument around to make 
a statement about the structure of approximate equilibria 
with ergodic field lines. Specifically, an approximate f.f.f. 
with ergodic field lines in a periodic domain of length L must 
have ⩽l Lcorr . This allows us to place an upper bound on 
the smallest perpendicular length scale for field lines in the 
ergodic domain ⩽ / ⩽∗ ∗ ∗ε ε εd d Lmin , hence the field must 
contain current sheets of thickness ∗εL  or smaller. We note 
that this argument makes concrete the assertions of Taylor 
(1993) regarding filamentation of the current in the relaxed 
state of a tokamak plasma. Note further that Candelaresi et al 
(2015) have examined the correlation length in numerical 
relaxation simulations, and found that even when it becomes 
large on average, it may remain relatively small at areas of 
high complexity, hindering the numerical relaxation process.

4. Turbulent relaxation

4.1. Properties of the relaxation process

The results described in the above section  demonstrate that 
any sufficiently complex magnetic braid will be unstable in 
a resistive plasma owing to the development of thin current 
layers in the (approximate) equilibrium. Thus, in this sec-
tion we describe the evolution following the onset of recon-
nection. This evolution was first followed in resistive MHD 
simulations with line-tied boundaries, starting from the magn-
etic field (5) (with κ = 1), by Wilmot-Smith et al (2010) and 
Pontin et  al (2011). It has subsequently been shown that 
repeating these simulations with periodic boundaries in the 
z-direction does not effect the qualitative nature of the relax-
ation although periodic boundaries do allow the field to reach 
a slightly lower energy end state (Yeates et al 2015). In this 
section we make a spectral analysis that demonstrates the tur-
bulent properties of the relaxation for the first time and we 
briefly summarise the main features of the evolution and final 
state. The analysis that we present builds on the simulation of 
Pontin et al (2011), as well as two new simulations with the 
same setup and method, but with κ = 0.7 and κ = 1.5, thereby 
exploring for the first time the impact of the braid complexity. 
For concreteness we describe results of simulations with line-
tied boundaries—however, the general results apply equally 
well to the periodic case.

The resistive relaxation of our magnetic braid involves 
initially the formation of two current layers (those that form 
under the ideal relaxation), that due to the finite resistivity 
undergo reconnection, leading to a cascade of further recon-
nection events. The global evolution of the system is char-
acterised by an array of current layers that form and then 
dissipate, efficiently filling the volume of braided field lines—
see figure 4(b). The dominant field component in the current 
layers is the ‘guide’ field along the tube (in the z-direction). 
Therefore the reconnection in these current layers takes the 
form of a continuous ‘flipping’ or ‘slippage’ of field lines 
(Priest and Démoulin 1995, Hornig and Priest 2003). The net 
result of these many localised reconnection events (around 30 
when κ = 1 and the magnetic Reynolds number = −R 10m

3) is 
that the magnetic field ‘unbraids’, leading to a much simpler 
topological state (figure 4(c)).

The resistive relaxation process described above has many 
of the properties of decaying turbulence. In figure 5 we plot 
the 2D magnetic energy spectrum over the xy-plane (aver-
aged over z) for two of the simulation runs of Pontin et  al 
(2011). We have an estimated spectral index close to  −5/3, 
which is within the range expected for decaying 2D MHD 
turbulence (Biskamp and Schwarz 2001). We also see that as 
Rm is increased we obtain a larger inertial range over which 
this scaling is obeyed, as expected. Together with this magn-
etic energy spectrum, a similar spectrum of kinetic energy is 
observed. The small-scale flows generated during the turbu-
lent phase organise into decaying large scale flows in the final 
quasi-equilibrium (described below). This is consistent with 
the ‘reverse dynamo’ flow generation mechanism of Mahajan 
et al (2005).
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A number of factors control how fully developed the tur-
bulence becomes—one being the value of Rm as shown in 
figure 5. In addition, analysing the simulations with different 
values of κ (the initial field complexity), we find that the tur-
bulence becomes more developed and the overall relaxation 
timescale increases as κ is increased. This is illustrated in 
figure 6 by isosurfaces of the current density for two resistive 
relaxation simulations with different values of κ. The plots 
are made at a time when a maximal number of discrete cur-
rent layers appear in the volume—at t  =  55 for κ = 1.5, and 
t  =  45 for κ = 0.7. Note for reference that the Alfvén travel 
time along the length of the simulation domain in z is approxi-
mately 48 time units. We observe that the number of small 
scale current layers is greater for greater κ. The time taken to 
reach the final relaxed state (the nature of which is discussed 

in the next section) is estimated to be t  =  120 for κ = 0.7, 
t  =  200 for κ = 1, and �t 400 for κ = 1.5 (or approximately 
2.5, 4 and 8 crossing times, respectively).

4.2. Nature of the final state and constraints on relaxation

Taylor’s relaxation hypothesis posits that the only conserved 
topological quantity during any sufficiently turbulent relax-
ation is the total magnetic helicity, and a variational calcul-
ation shows that the final state should be the linear force-free 
field (Woltjer 1958, Taylor 1974). The theory was very suc-
cessful in predicting the relaxed state in a reverse-field pinch 
and to a lesser extent in other devices (Ortolani and Schnack 
1993), although more recently some departures of the final 
equilibrium from the ‘Taylor state’ have been noted exper-
imentally (Cappello et al 2008). It has also been proposed that 
the hypothesis may apply in the Sun’s corona (Heyvaerts and 
Priest 1984).

A major result of the study of Pontin et al (2011) was that 
the Taylor (linear f.f.f.) state is not reached after the turbulent 

Figure 4. Selected field lines (traced from fixed boundary footpoints), current isosurfaces, and contour maps of α∗ on z  =  −24; each for the 
resistive relaxation simulation with κ = 1.

Figure 5. 2D spectra (averaged over z) for two resistive MHD 
relaxations of the field (5) with κ = 1, with resistivity η as indicated. 
Plotted are the shallowest spectra observed over time in each case 
(maximally turbulent state).

Figure 6. | |J  isosurface (at level 50%) in the resistive relaxation at 
a time when the field is maximally turbulent, for κ = 0.7 (left) and 
κ = 1.5 (right), at times t  =  45, t  =  55, respectively.
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relaxation of the magnetic braid (5). Since the net magnetic 
helicity is zero, Taylor’s hypothesis would predict the uni-
form field =B e1 z as the final state. However, what is found 
instead is a non-linear f.f.f. containing a pair of oppositely-
twisted flux tubes, embedded within the uniform background 
field. This is shown by the plots of α∗ (see equation  (9)) in 
figure 4 (recall that for an exact f.f.f., this coincides with the 
force-free parameter α). The fact that the equilibrium is a non-
linear f.f.f. implies the presence of additional constraints on 
the relaxation.

One such constraint, identified by Yeates et  al (2010), 
is the topological degree (Polymilis et al 2003) of the field. 
This quantity is preserved during the relaxation so long as the 
topological degree of the boundary remains unchanged (as 
for example when the turbulent relaxation is confined to the 
inter ior) and it may render the Taylor state inaccessible. For the 
magnetic braid of equation (5) this topological degree—given 
by the sum of the indices of periodic orbits of the field—is 2, 
which is inconsistent with the predicted Taylor state. A fur-
ther promising tool is the field line helicity, defined as in equa-
tion  (3). Unlike H, its distribution uniquely characterises the 
topology of the magnetic field (Yeates and Hornig 2013), so 
understanding its evolution during turbulent relaxation could 
in principle allow prediction of the topology of the final state. 
Recently, Russell et al (2015) derived an evolution equation for 
the field line helicity, and analysed the importance of its dif-
ferent terms for slipping reconnection in a complex magn etic 
field. The reconnection primarily rearranges line helicity while 
having a relatively small impact on the total helicity, providing 
a new justification that relaxation approximately conserves 
total helicity while changing how the helicity density is dis-
tributed. However, the relaxation cannot exchange field line 
helicity arbitrarily, which means the Taylor state may be pro-
hibited in some cases, even when the topological degree would 
permit it. This could potentially explain why the contour map 
of α∗ shown in figure 4(c) is not piecewise-constant, contrary 
to what would be expected if locally Taylor states (linear f.f.f.s) 
were produced in each of the flux tubes.

5. Implications for coronal heating

We return now to the implications of the braiding mechanism 
for heating the solar corona. We argued in section 3 that in 
(either exact or approximate) braided equilibria, thin current 
layers must be present. Moreover, these current layers become 
increasingly thin and intense as the braid complexity—as 
measured for example by the topological entropy—increases. 
In practical terms, the implication is that if one considers a 
line-tied magnetic field that is driven slowly (compared to the 
Alfvén speed) towards a state of high topological entropy, then 
onset of reconnection and energy release is inevitable. This is 
because as the field complexity increases the corresponding 
current sheets in the volume get progressively thinner until a 
threshold for reconnection onset, determined by the plasma 
parameters, is reached.

Thus energy may be stored in the magnetic field by the 
braiding mechanism, and the degree of braiding provides an 

onset threshold for energy release, such a threshold being 
required based on energy balance arguments (Parker 1988). 
The previous best theory to explain this threshold involves a 
monolithic current layer and requires the presence of anoma-
lous resistivity (e.g. Dahlburg et al 2005), while the critical 
degree of field line braiding that we propose here invokes the 
true complexity of the coronal field. The expectation, then, 
is that the coronal field will exist in a marginally-stable state 
in the vicinity of this critical degree of braiding, in which the 
boundary driving (which on average increases complexity) 
is balanced by the reconnection and energy release (which 
decreases complexity). One crucial measurement required 
for determining the heating efficiency of the mechanism is 
the free energy present in the field when the onset threshold 
for energy release is reached. For the magnetic field of equa-
tion  (5), this was estimated (assuming characteristic loop 
length of 50 Mm and field strength of 10–100 G) by Pontin 
and Hornig (2015) to be in the range −10 1025 28 ergs. This is 
more than sufficient for typical nanoflare models. However, 
there remain significant open questions to be addressed in 
assessing the contribution of the braiding mechanism for 
heating the corona. In particular, estimation of the timescale 
on which the braid complexity increases in the corona is non-
trivial; some initial studies have been performed (Yeates et al 
2012, 2014), but further work is required. In addition the time-
scale for energy release and the associated plasma response 
require further study.

6. Discussion

There is significant observational evidence that astrophys-
ical plasmas are generically turbulent (see Brandenburg and 
Subramanian 2005, Lazarian et al 2012, Cranmer et al 2015, 
and references therein). Therefore, the associated magnetic 
fields are characterised by a chaotic field line wandering, in 
contrast to the laminar, ‘combed’ magnetic field lines of typ-
ical models. While laboratory plasmas are in general initiated 
with symmetric, well-controlled initial conditions, the onset 
of instabilities may quickly lead to the generation of ergodic 
field regions.

In recent years there have been significant advances in 
modelling of complex, braided magnetic field structures. 
These advances have led to an understanding that the global 
field complexity plays a critical role in the plasma dynamics. 
To date there have been few attempts in the laboratory to char-
acterise the nature of field line braiding. One relevant set of 
experiments has been run in recent years on the Large Plasma 
Device at UCLA. These experiments involve reconnection 
between flux ropes that are line-tied at one end, the recon-
nection being shown to occur in layers of high Q between the 
ropes (Lawrence and Gekelman 2009, Gekelman et al 2012). 
The magnetic field structure that results from the reconnec-
tion has been studied in detail by Gekelman et al (2014), who 
measured the generation of chaotic field in the presence of 
three interacting, reconnecting magnetic flux ropes. They 
identified the region of highest field complexity as the vicinity 
of the reconnection site—this being consistent with recent 
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results on the topology resulting from current layer insta-
bilities during 3D reconnection (Daughton et al 2011, Wyper 
and Pontin 2014). While measurements in such a plasma 
are extremely challenging, it is a promising future avenue to 
investigate whether braided/chaotic fields can be generated in 
this way, how the degree of braiding can be controlled, and the 
subsequent implications for the plasma dynamics.

The modelling advances described in this paper have gener-
ated a number of testable predictions that are ripe to be studied 
in the next generation of laboratory plasma experiments. The 
main results can be summarised as follows:

 1. In line-tied magnetic geometries, smooth braided equi-
libria do exist. However, these equilibria must contain 
current layers whose thickness becomes increasingly 
small for increasing field complexity. In practical terms, 
the implication is that if one considers a line-tied magn-
etic field that is driven slowly (compared to the Alfvén 
speed) towards a state of high topological entropy, then 
onset of reconnection and energy release is inevitable. 
This is because as the field complexity increases the 
corresponding current sheets in the volume get progres-
sively thinner until a threshold for reconnection onset, 
determined by the plasma parameters, is reached. This 
result has particular importance in the context of the 
solar corona, in understanding the efficiency of Parker’s 
braiding mechanism for coronal heating.

 2. No exact equilibrium can exist in a periodic domain 
for the magnetic braids discussed herein. However, 
approximately force-free states with comparatively small 
plasma-β can exist. These states must contain thin cur-
rent layers, whose thickness must decrease as the exact 
equilibrium is approached (section 3.4.2).

 3. Following the onset of reconnection, a cascade of current 
sheets forms—reconnection at which unbraids the magn-
etic field. We demonstrated for the first time that this 
relaxation is approaching a state of decaying turbulence 
(figure 5). The distribution of current sheets in the domain, 
and eventual overall plasma heating profile, depends on 
the braiding pattern (Wilmot-Smith et al 2011).

 4. The turbulence becomes more developed during the relax-
ation process when either (i) the magnetic braid is more 
complex (as measured by e.g. the topological entropy), or 
(ii) the plasma resistivity is smaller (section 4.1).

 5. The final state of the turbulent relaxation may not be a 
linear f.f.f. depending on the topological degree (t.d.) of 
the magnetic braid and distribution of field line helicity. 
The t.d. is preserved during the relaxation, and may 
be inconsistent with the linear force-free state. For the 
magn etic field of equation (5), the t.d. is 2, and the final 
state consists of a pair of oppositely-twisted flux tubes. 
Even when the t.d. does not preclude the Taylor state the 
field line helicities may.
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