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Kinetic helicity needed to drive large-scale dynamos
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Magnetic field generation on scales that are large compared with the scale of the turbulent eddies is known
to be possible via the so-called α effect when the turbulence is helical and if the domain is large enough for
the α effect to dominate over turbulent diffusion. Using three-dimensional turbulence simulations, we show that
the energy of the resulting mean magnetic field of the saturated state increases linearly with the product of
normalized helicity and the ratio of domain scale to eddy scale, provided this product exceeds a critical value
of around unity. This implies that large-scale dynamo action commences when the normalized helicity is larger
than the inverse scale ratio. Our results show that the emergence of small-scale dynamo action does not have any
noticeable effect on the large-scale dynamo. Recent findings by Pietarila Graham et al. [Phys. Rev. E 85, 066406
(2012)] of a smaller minimal helicity may be an artifact due to the onset of small-scale dynamo action at large
magnetic Reynolds numbers. However, the onset of large-scale dynamo action is difficult to establish when the
kinetic helicity is small. Instead of random forcing, they used an ABC flow with time-dependent phases. We show
that such dynamos saturate prematurely in a way that is reminiscent of inhomogeneous dynamos with internal
magnetic helicity fluxes. Furthermore, even for very low fractional helicities, such dynamos display large-scale
fields that change direction, which is uncharacteristic of turbulent dynamos.
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I. INTRODUCTION

The origin of magnetic fields in astrophysical bodies like
the Earth, the Sun, and the galaxies is studied in the field
of dynamo theory. The temporal variation and strength of
those fields rules out a primordial origin, through which the
magnetic field would have been created in the early Universe.
For magnetic fields with energies of the equipartition value,
i.e., the turbulent kinetic energy of the medium, the primordial
hypothesis explains their strength after creation but falls short
of explaining how the field outlives billions of years of resistive
decay [1].

In dynamo theory, astrophysical plasmas are considered
sufficiently well conducting fluids where the inertia of the
charge-carrying particles can be neglected. In this approxima-
tion, the equations of magnetohydrodynamics (MHD) provide
an adequate model of the medium. In this framework, it
has been studied under which conditions magnetic fields of
equipartition strength and scales larger than the turbulent
motions are created and sustained [2].

A successful theoretical model describing the dynamo’s
behavior is the mean-field theory. It relates the small-scale
turbulent motions to the mean magnetic field via the so-called
α effect, which provides the energy input via helical turbulent
forcing. During the kinematic phase, i.e., negligible back
reaction of the magnetic field on the fluid, the α effect gives
a positive feedback on the large-scale magnetic field, which
results in its exponential growth. Already the consideration of
the kinematic MHD equations with negligible Lorentz force
sheds light on the growth rate of the different modes of the
magnetic field during the kinematic phase. In the kinematic
phase, the growth rate λ at wave number k is given by [2]

λ = αk − ηT k2 = (Cα − 1)ηT k2, (1)

where Cα = α/(ηT k) is the relevant dynamo number for the
α2 dynamo, α is the α coefficient which is proportional to

the small-scale kinetic helicity, and ηT = η + ηt is the sum of
molecular and turbulent magnetic diffusivity. Clearly, dynamo
action occurs when |Cα| > Ccrit

α , where the onset condition
is Ccrit

α = 1. Standard estimates for isotropic turbulence in the
high conductivity limit [2,3] yield α ≈ −(τ/3)〈ω · u〉 and ηt ≈
(τ/3)〈u2〉, where τ is the correlation time of the turbulence,
ω = ∇ × u is the vorticity and u is the velocity in the small-
scale fields. Here, 〈.〉 denotes a volume average. Using ηt � η,
we have

Cα ≈ −〈ω · u〉/(k〈u2〉). (2)

It is convenient to define 〈ω · u〉/(kf 〈u2〉) as the normalized
kinetic helicity, εf , so Cα ≈ −εf kf /k. This scaling implies
that the critical value of the normalized helicity εf scales
inversely proportional to the scale separation ratio, i.e., εcrit

f ∝
(kf /k)−1, where k � kf is the wave number of the resulting
large-scale magnetic field. This wave number can be equal
to k = k1 ≡ 2π/L, which is the smallest wave number in a
periodic domain of size L.

In summary, the critical dynamo number Ccrit
α , which de-

cides between growing or decaying solutions of the large-scale
dynamo (LSD), is proportional to the product of normalized
helicity εf and scale separation ratio kf /k. Therefore, the
amount of helicity needed for the LSD is inversely proportional
to the scale separation ratio and not some higher power of
it. It should be noted that the normalized kinetic helicity
εf used here is not the same as the relative kinetic helicity,
ε̃f = 〈ω · u〉/(ωrmsurms). The two are related to each other via
the relation

ε̃f /εf = (kω/kf )−1, (3)

where kω ≈ ωrms/urms is inversely proportional to the Taylor
microscale. Here, the subscripts rms refer to root-mean-square
values. For small Reynolds numbers, kω provides a useful
estimate of the wave number kf of the energy-carrying eddies.

043104-11539-3755/2013/87(4)/043104(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.066406
http://dx.doi.org/10.1103/PhysRevE.85.066406
http://dx.doi.org/10.1103/PhysRevE.87.043104


SIMON CANDELARESI AND AXEL BRANDENBURG PHYSICAL REVIEW E 87, 043104 (2013)

In contrast, for large Reynolds numbers Re, we expect kω/kf

to be proportional to Re1/2, so ε̃f decreases correspondingly
while εf remains unchanged.

To understand the saturation of a helical dynamo, it is
important to understand the relation between the resulting
large-scale field and the associated small-scale field. Indeed,
the growth of the large-scale field is always accompanied
by a growth of small-scale magnetic field. Small-scale here
means the scale of the underlying turbulent motions, which
drive the dynamo. Conservation of total magnetic helicity
causes a build-up of magnetic helicity at large scales and of
opposite sign at small scales [4,5]. As the dynamo saturates,
the largest scales of the magnetic field become even larger,
which finally leads to a field of a scale that is similar to that of
the system itself. This can be understood as being the result of
an inverse cascade, which was first predicted based on closure
calculations [6].

If the domain is closed or periodic, the build-up of small-
scale magnetic helicity causes the α effect to diminish, which
marks the end of the exponential growth and could occur well
before final saturation is reached. The dynamo then is said
to be catastrophically quenched and, in a closed or periodic
system, the subsequent growth to the final state happens not
on a dynamical timescale, but on a resistive one. Quenching
becomes stronger as the magnetic Reynolds number increases,
which, for astrophysically relevant problems, means a total
loss of the LSD within the timescales of interest. In the case
of open boundaries, magnetic helicity fluxes can occur, which
can alleviate the quenching and allow for fast saturation of the
large-scale magnetic field [7–10].

In a recent publication [11], it was argued that for periodic
boundaries the critical value of εf for LSD action to occur
decreases with the scale separation ratio like εcrit

f ∝ (kf /k1)−3.
Their finding, however, is at variance with the predictions made
using Eq. (1), which would rather suggest a dependence of
εcrit
f ∝ (kf /k1)−1 with Ccrit

α = 1. This discrepancy could be a
consequence of the criterion used in Ref. [11] for determining
Ccrit

α . The authors looked at the growth rate of the magnetic
field after the end of the kinematic growth phase but only
at a small fraction of the resistive time. Therefore, their
results might well be contaminated by magnetic fields resulting
from the small-scale dynamo (SSD). Earlier simulations [12]
have demonstrated that for ReM � 100, the growth rate of
the helical LSD approaches the well-known scaling of the
nonhelical SSD with λ ∝ Re1/2, which corresponds to the
turnover rate of the smallest turbulent eddies [13,14].

Given that the LSD is best seen in the nonlinear regime [15],
we decided to determine Ccrit

α from a bifurcation diagram by
extrapolating to zero. In a bifurcation diagram, we plot the
energy of the mean- or large-scale field versus Cα . Simple
considerations using the magnetic helicity equation applied
to a homogeneous system in the steady state show that the
current helicity must vanish [15]. In a helically driven system,
this implies that the current helicity of the large-scale field
must then be equal to minus the current helicity of the small-
scale field. For a helical magnetic field, the normalized mean-

square magnetic field, 〈B
2〉/B2

eq, is approximately equal to
Cα − Ccrit

α . Here, Beq = (μ0ρ)1/2urms is the equipartition value
of the magnetic field, μ0 is the vacuum permeability, and ρ is

the mean density. Again, since Ccrit
α ≈ 1 and Cα ≈ εf kf /k1,

this suggests that the LSD is excited for εf > (kf /k1)−1 rather
than some higher power of kf /k1. This is a basic prediction that
has been obtained from nonlinear mean-field dynamo models
that incorporate magnetic helicity evolution [16] as well as
from direct numerical simulations in the presence of shear [17].
It is important to emphasize that mean-field dynamo theory has
been criticized on the grounds that no α effect may exist in the
highly nonlinear regime at large magnetic Reynolds numbers
[18]. This is, however, in conflict with results of numerical
simulations using the test-field method [19], showing that α

effect and turbulent diffusivity are both large and that only the
difference between both effects is resistively small. Another
possibility is that the usual helical dynamo of α2 type may
not be the fastest growing one [20]. This is related to the fact
that, within the framework of the Kazantsev model [21] with
helicity, there are new solutions with long-range correlations
[22,23], which could dominate the growth of a large-scale field
at early times. The purpose of the present paper is, therefore, to
reinvestigate the behavior of solutions in the nonlinear regime
over a broader parameter range in the light of recent conflicting
findings [11].

II. THE MODEL

A. Basic equations

Following earlier work, we solve the compressible hy-
dromagnetic equations using an isothermal equation of state.
Although compressibility is not crucial for the present purpose,
it does have the advantage of avoiding the nonlocality
associated with solving for the pressure, which requires global
communication. Thus, we solve the equations

∂

∂t
A = U × B − ημ0 J, (4)

D

Dt
U = −c2

s ∇ ln ρ + 1

ρ
J × B + Fvisc + f , (5)

D

Dt
ln ρ = −∇ · U, (6)

where A is the magnetic vector potential, U the velocity, B
the magnetic field, η the molecular magnetic diffusivity, μ0

the vacuum permeability, J the electric current density, cs the
isothermal sound speed, ρ the density, Fvisc the viscous force,
f the helical forcing term, and D/Dt = ∂/∂t + U · ∇ the
advective time derivative. The viscous force is given as Fvisc =
ρ−1∇ · 2νρS, where ν is the kinematic viscosity, and S is the
traceless rate of strain tensor with components Sij = 1

2 (ui,j +
uj,i) − 1

3δij∇ · U . Commas denote partial derivatives.
The energy supply for a helically driven dynamo is provided

by the forcing function f = f (x,t), which is a helical function
that is random in time. It is defined as

f (x,t) = Re{N f k(t) exp[ik(t) · x + iφ(t)]}, (7)

where x is the position vector. The wave vector k(t) and the
random phase −π < φ(t) � π change at every time step, so
f (x,t) is δ-correlated in time. For the time-integrated forcing
function to be independent of the length of the time step δt ,
the normalization factor N has to be proportional to δt−1/2. On
dimensional grounds it is chosen to be N = f0cs(|k|cs/δt)1/2,
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where f0 is a nondimensional forcing amplitude. We choose
f0 = 0.02, which results in a maximum Mach number of
about 0.3 and an rms value of about 0.085. At each timestep
we select randomly one of many possible wave vectors in a
certain range around a given forcing wave number. The average
wave number is referred to as kf . Transverse helical waves are
produced via [14]

f k = R · f (nohel)
k with Rij = δij − iσ εijkk̂k√

1 + σ 2
, (8)

where σ is a measure of the helicity of the forcing and
σ = 1 for positive maximum helicity of the forcing function.
Furthermore,

f (nohel)
k = (k × e) /

√
k2 − (k · e)2 (9)

is a nonhelical forcing function, where e is an arbitrary unit
vector not aligned with k; note that | f k|2 = 1 and

f k · (ik × f k)∗ = 2σk/(1 + σ 2), (10)

so the relative helicity of the forcing function in real space is
2σ/(1 + σ 2).

For comparison with earlier work, we shall also use in one
case an ABC-flow forcing function [24],

f (x) = f0√
3
2 (1 + σ 2)

⎛
⎝ sin X3 + σ cos X2

sin X1 + σ cos X3

sin X2 + σ cos X1

⎞
⎠ , (11)

where Xi = kf xi + θi and θi = θ0 cos ωit are time-dependent
phases that vary sinusoidally with frequencies ωi and ampli-
tude θ0. This forcing function is easy to implement and serves,
therefore, as a proxy of helical turbulence; see Refs. [11,25],
where the phases changed randomly. We have restricted
ourselves to the special case where the coefficients in front of
the trigonometric functions are unity, but those could be made
time-dependent too; see Ref. [26]. However, as we will see
below, ABC-flow-driven dynamos do not show some crucial
aspects of random plane wave-forced helical turbulence. Most
of the results presented below concern the forcing function
Eq. (7), and only one case with Eq. (11) will be considered at
the end.

Our model is governed by several nondimensional parame-
ters. In addition to the scale separation ratio kf /k1, introduced
above, there are the magnetic Reynolds and Prandtl numbers:

ReM = urms/(ηkf ), PrM = ν/η. (12)

These two numbers also define the fluid Reynolds number,
Re = urms/(νkf ) = ReM/PrM . The maximum values that can
be attained are limited by the numerical resolution and become
more restrictive at larger scale separation. The calculations
have been performed using the PENCIL CODE (see http://pencil-
code.googlecode.com) at resolutions of up to 5123 mesh points.

B. Mean-field interpretation

The induced small-scale motions u are helical and give rise
to the usual (kinetic) α effect [3]

αK ≈ − 〈ω · u〉
3urmskf

. (13)

In the nonlinear regime, following the early work of Pouquet,
Frisch, and Léorat [27], the relevant α effect for dynamo
action is believed to be the sum of the kinetic and a magnetic
α, i.e.,

α ≈ −〈ω · u〉 + 〈 j · b〉/〈ρ〉
3urmskf

. (14)

Simulations have confirmed the basic form of Eq. (14) with
equal contributions from 〈ω · u〉 and 〈 j · b〉/〈ρ〉, but one may
argue that the second term should only exist in the presence
of hydromagnetic background turbulence [28], and not if the
magnetic fluctuations are a consequence of tangling of a mean
field produced by dynamo action as in the simulations in
Ref. [15]. However, to explain the resistively slow saturation
in those simulations, the only successful explanation [16,29]
comes from considering the magnetic helicity equation, which
feeds back onto the α effect via Eq. (14). This is our main
argument in support of the applicability of this equation.
Another problem with Eq. (14) is the assumption of isotropy
[28], which has, however, been relaxed in subsequent work
[30]. Let us also mention that Eq. (14) is usually obtained using
the τ approximation. In its simplest form, it yields incorrect
results in the low conductivity limit, where the second-order
correlation approximation applies [2,3]. However, this is
just a consequence of making simplifying assumptions in
handling the diffusion operator, which can be avoided, too
[31]. At higher conductivity, numerical simulations have been
able to reproduce some important predictions from the τ

approximation [32].
Equation (14) is used to derive the expression for the

resistively slow saturation behavior [29]. We will not repro-
duce here the derivation, which can be found elsewhere [16].
The resulting large-scale fields can be partially helical, which
means one can write

〈J · B〉 = εmkm〈B2〉, (15)

with large-scale wave vector km and corresponding fractional
helicity εm, defined through Eq. (15). However, in the cases
considered below the domain is triply periodic, so the solutions
are Beltrami fields for which km ≈ k1 and εm ≈ 1 is an
excellent approximation, and only εf will take values less
unity. Nevertheless, in some expressions we retain the εm factor
for clarity. For example, the saturation value of the large-scale
magnetic field, Bsat, is given by [16]

B2
sat/B

2
eq ≈ (|Cα|/εm − 1) ι, (16)

where Cα = αK/(ηT k1) is the relevant dynamo number based
on the smallest wavenumber in the domain and ι = 1 +
3/ReM ≡ ηT /ηt is a correction factor resulting from the
fact that ηT is slightly bigger than ηt . The factor 3 in the
expression for ι results from our definition of ReM and the fact
that [33]

ηt ≈ urms/(3kf ) = ηReM/3. (17)

Equation (16) shows clearly the onset condition |Cα| > |εm| ≈
1. Using Eqs. (13) and (17), we find

Cα ≈ −〈ω · u〉
ιk1u2

rms

= −εf kf

ιk1
. (18)
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From Eq. (16) we can derive the critical value of the normalized
helicity εf as a function of the scale separation ratio. Setting
Cα to its critical value (|Cα| = εm) we obtain

εcrit
f ≈ ιεm

(
kf

k1

)−1

, (19)

which is at variance with the findings in Ref. [11].
Once the dynamo is excited and has reached a steady

state, not only α but also ηt will be suppressed. This can be
taken into account using a quenching factor g(B), so ηt (B) =
ηt0g(B) with g = (1 + g̃|B|/Beq)−1 [15,34,35]. Equation (16)
is then modified and reads B2

sat/B
2
eq = (|Cα| − Cα0)ι/εm,

with

Cα0 = [1 − (1 − g)/ι]εm. (20)

Note that Cα0 = ε−1
m in the unquenched case, i.e., for g = 1.

C. Simulation strategy

We recall that our forcing term f in Eq. (7) is a stochastic
forcing centered around the wave number kf . In contrast to
Ref. [11], this forcing is δ-correlated in time. The fractional
helicity of the helical forcing is a free parameter. The
simulation domain is a periodic cube with dimensions 2π .
Due to the cubic geometry of the domain, the large-scale
magnetic field can orient itself in three possible directions.
Therefore, we compute three possible planar averages (xy, xz,
and yz averages). From their resistive evolution we infer their
saturation values at the end of the resistive phase. The strongest
field gives then the relevant mean-field B.

Since B is helical and magnetic helicity can only change
on resistive timescales, the temporal evolution of the energy
of the mean magnetic field, M(t), is given by [15]

M(t) = M0 − M1e
−t/τ , (21)

where τ−1 = 2ηε2
mk2

1 is known, M0 = B2
sat is the square of

the desired saturation field strength, and M1 is an unknown
constant that can be positive or negative, depending on whether
the initial magnetic field of a given calculation was smaller
or larger than the final value. (Here, an initial field could
refer to the last snapshot of another calculation with similar
parameters, for example.) The functional behavior given by
Eq. (21) allows us to determine B2

sat as the time average of
M + τdM/dt , which should only fluctuate about a constant
value, i.e.,

B2
sat ≈ 1

t2 − t1

∫ t2

t1

[
〈B

2〉(t ′) + τ
d

dt ′
〈B

2〉
]

dt ′. (22)

This technique has the advantage that we do not need to wait
until the field reaches its final saturation field strength. Error
bars can be estimated by computing this average for each third
of the full time series and taking the largest departure from the
average over the full time series. An example is shown in Fig. 1,

where we see 〈B
2〉 still growing while 〈B

2〉 + τd〈B
2〉/dt is

nearly constant when 〈B
2〉 reaches a value less than half its

final one. This figure shows that the growth of 〈B
2〉 follows the

theoretical expectation Eq. (21) quite closely and that temporal

FIG. 1. (Color online) Example showing the evolution of the

normalized 〈B
2〉 (dashed) and that of 〈B

2〉 + τd〈B
2〉/dt (dotted),

compared with its average in the interval 1.2 � 2ηk2
1 t � 3.5 (hori-

zontal blue solid line), as well as averages over three subintervals
(horizontal red dashed lines). Here, B is evaluated as an xz average,
〈B〉xz. For comparison, we also show the other two averages, 〈B〉xy

(solid) and 〈B〉yz (dash-dotted), but their values are very small.

fluctuations about this value are small, as can be seen by the
fact that its time derivative fluctuates only little.

III. RESULTS

A. Dependence of kinetic helicity on σ

We recall that the relative helicity of the forcing function is
〈 f · ∇ × f 〉/[ f rms(∇ × f )rms] = 2σ/(1 + σ 2). This imposes
then a similar variation onto the relative kinetic helicity,
ε̃f = 〈ω · u〉/(ωrmsurms); see Fig. 2(a). However, as discussed

FIG. 2. (Color online) Dependence of relative kinetic helicity ε̃f

(a) and normalized kinetic helicity εf (b) on the helicity parameter σ

of the forcing function Eq. (8) together with the analytical expression
2σ/(1 + σ 2) (solid line).
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FIG. 3. (Color online) Dependence of kω/kf on Re. The open
and closed circles correspond to runs with PrM = 1 without and with
magnetic field, respectively, while squares correspond to runs with
PrM = 100 and Re = ReM/PrM is small. Triangles denote the results
for kf /k1 = 1.5 of Ref. [36] (BP12).

above, ε̃f is smaller than εf by a factor kω/kf , which in turn
depends on the Reynolds number (see below). It turns out
that εf matches almost exactly the values of 2σ/(1 + σ 2); see
Fig. 2(b).

The theoretically expected scaling kω/kf ∝ Re1/2 is a
well-known result for high Reynolds number turbulence [37]
and has recently been verified using simulations similar to
those presented here, but without magnetic field and a smaller
scale separation ratio of kf /k1 = 1.5 [36]. For our current
data we find that such a scaling is obeyed for PrM = 1 and
large values of Re, independently of the presence of magnetic
field or kinetic helicity, but this scaling is not obeyed when
PrM = 100 and Re is small; see Fig. 3.

B. Dependence on scale separation

Next, we perform simulations with different forcing wave
numbers kf and different values of εf at approximately
constant magnetic Reynolds number, ReM ≈ 6, and fixed
magnetic Prandtl number, PrM = 1. Near the end of the
resistive saturation phase we look at the energy of the strongest
mode at k = k1, using the method described in Sec. II C. We
choose this rather small value of Re because we want to access
relatively large scale separation ratios of up to kf /k1 = 80.
Given that the Reynolds number based on the scale of the
domain is limited by the number of mesh points (500, say),
it follows that for kf /k1 = 80 the Reynolds number defined
through Eq. (12) is 6. For comparison, a Reynolds number
based on the size of the domain, i.e., urmsL/η, would be larger
by a factor 2π , i.e., 3000.

As seen from Eq. (16), mean-field considerations predict a
linear increase of the saturation magnetic energy with Cα and
onset at Cα = 1. This behavior is reproduced in our simulation
(Fig. 4), where we compare the theoretical prediction with the
simulation results. For different values of kf /k1 and Cα we
extrapolate the critical value Ccrit

α ≈ 1.2 (Fig. 4), which gives
the critical values εcrit

f ≈ 1.2ι (kf /k1)−1 = 1.7 (kf /k1)−1 for
which the LSD is excited. For each scale separation value we

FIG. 4. (Color online) Steady state values of 〈B
2〉/B2

eq as a
function of Cα together with the theoretical prediction from Eq. (16)
(dashed line) and a linear fit (dotted line).

plot the dependence of 〈B
2〉/B2

eq on εf (Fig. 5) and make linear
fits. From these fits we can extrapolate the critical values εcrit

f ,
for which the LSD gets excited (Fig. 6), which gives again
εcrit
f ≈ 1.7 (kf /k1)−1.

It is noteworthy that the graph of 〈B
2〉/B2

eq versus Cα

deviates systematically (although only by a small amount)
from the theoretically expected value, (Cα − 1)ι. While the
slope is rather close to the expected one, the LSD onset is
slightly delayed and occurs at Cα ≈ 1.2 instead of 1. The
reason for this is not clear, although one might speculate that
it could be modeled by adopting modified effective values of
ι or εm in Eq. (20). Apart from such minor discrepancies with
respect to the simple theory, the agreement is quite remarkable.
Nevertheless, we must ask ourselves whether this agreement
persists for larger values of the magnetic Reynolds number.
This will be addressed in Sec. III C.

At this point we should note that there is also a theoretical
prediction for the energy in the magnetic fluctuations, namely
〈b2〉/B2

eq ≈ (Cα − Ccrit
α )/Cα . Nonetheless, the results shown

in Fig. 7 deviate from this relation and are better described by

FIG. 5. (Color online) Steady state values of 〈B
2〉/B2

eq as a
function of εf for various scale separation values kf /k1 together
with linear fits.
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FIG. 6. Critical value for the normalized kinetic helicity εf for
which LSD action occurs for different scale separations.

a modified formula:

〈b2〉/B2
eq ∝ 1 − (

Ccrit
α /Cα

)n
(with n ≈ 4). (23)

Again, the reason for this departure is currently unclear.

C. Dependence on ReM

To examine whether there is any unexpected dependence
of the onset and the energy of the mean magnetic field on
ReM and to approach the parameters used in Ref. [11], who
used values up to ReM = 1500, we now consider larger values
of the magnetic Reynolds number. This widens the inertial
range significantly and leads to the excitation of the SSD. We
consider first the case of a large magnetic Prandtl number
(PrM = 100) and turn then to the more usual case of PrM =
1. Our motivation behind the first case is that higher values
of ReM can more easily be reached at larger values of PrM .
This is because at large values of PrM , most of the injected
energy is dissipated viscously rather than resistively, leaving
less energy to be channeled down the magnetic cascade [38].

FIG. 7. (Color online) Steady-state values of 〈b2〉/B2
eq as a

function of Cα together with the fit formula from Eq. (23) with n = 4,
compared with n = 1 (dotted) and n = 2 (dashed). Different symbols
denote different values of kf /k1.

FIG. 8. (Color online) Steady-state values of 〈B
2〉/B2

eq as a
function of Cα for PrM = 100 and PrM = 1 for kf /k1 = 5 and
different values of ReM (different symbols), compared with the
theoretical prediction (dotted line).

This is similar to the case of small values of PrM , where larger
fluid Reynolds numbers can be reached because then most of
the energy is dissipated resistively [12]. Here, however, we
shall first be concerned with the former case of large values of
PrM and consider then the case of PrM = 1.

In Fig. 8 we show results both for PrM = 100 and 1. We
discuss first runs for PrM = 100 at different values of εf

and ReM being either 80, 200, or 600. Most importantly, it
turns out that the critical value for LSD onset is not much
changed. An extrapolation suggests now Ccrit

α ≈ 0.9 instead

of 1. Furthermore, the dependence of 〈B
2〉/B2

eq on Cα is the
same for all three values of ReM , and so Ccrit

α is independent of

ReM . However, the values of 〈B
2〉/B2

eq are now systematically
above the theoretically expected values. This discrepancy with
the theory can be easily explained by arguing that the relevant
value of Beq has been underestimated in the large PrM cases.
Looking at the power spectrum of the high PrM simulations in
Fig. 9(a), we see that the kinetic energy is indeed subdominant
and does not provide a good estimate of the magnetic energy
of the small-scale field 〈b2〉/2μ0. By contrast, for PrM = 1, the
magnetic and kinetic energy spectra are similar at all scales
except near k = k1; see Fig. 9(b). The slight superequipartition
for k > kf is also typical of a SSD [14].

A visualization of the magnetic field for PrM = 100 is
given in Fig. 10, where we show Bx on the periphery of the
computational domain. The magnetic field has now clearly
strong gradients locally, while still being otherwise dominated
by a large-scale component at k = k1. In this case, the
large-scale field shows variations only in the y direction and
is of the form

B = (sin k1y,0, cos k1y) Bsat. (24)

This field has negative magnetic helicity, so J · B = −k1 B
2
,

as expected for a forcing function with negative helicity.
We have argued that the reason for the larger values in the

graph of 〈B
2〉 versus Cα is related to Beq being underestimated

for large values of PrM . To confirm this, we now consider
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FIG. 9. (Color online) Comparison of kinetic and magnetic
energy spectra for PrM = 100 (upper panel) and PrM = 1 (lower
panel) for σ = 0.2 (solid lines) and 0.12 (dashed lines). Magnetic
energy spectra are shown as thick red lines, while kinetic energy
spectra are shown as thin blue lines.

calculations with PrM = 1, different values of εf and ReM

(from 168 to 745), and fixed scale separation ratio kf /k1 = 5.
We see in Fig. 8 that the values are now indeed smaller. An
extrapolation would suggest that Ccrit

α is now above 1, but this
may not be significant given the uncertainties associated with
being so close to the critical value of εf .

LSDs of the type of an α2 dynamo only become apparent
in the late saturation of the dynamo [15]. This is especially
true in the case of large values of ReM , when the mean field

FIG. 10. (Color online) Visualization of Bx on the periphery of
the domain for PrM = 100 after resistive saturation.

FIG. 11. (Color online) Evolution of total magnetic field (Brms,
upper black line), small-scale magnetic field (brms, blue in the middle),
and large-scale magnetic field (B rms, lower red line) for three values
of ReM over a time stretch of 160 turnover times.

develops its full strength while the rms value of the small-scale
field remains approximately unchanged as ReM increases; see
Fig. 11. Note also that the level of fluctuations of both small-
scale and large-scale magnetic fields remains approximately
similar for different values of ReM . This also shows that the
emergence of SSD action does not have any noticeable effect
on the LSD.

D. ABC-flow forcing

In this paper we have used the fact that the saturation field
strength is described by Eq. (16). While this is indeed well
obeyed for our randomly driven flows, this does not seem
to be the case for turbulence driven by ABC-flow forcing.
We demonstrate this by considering a case that is similar to
that shown in Fig. 1, where ReM ≈ 6 in the saturated state.
We thus use Eq. (11) with σ = θ0 = 1 and kf /k1 = 15. The
kinematic flow velocity reaches an equilibrium rms velocity of
U0 = f0/(νk2

f ). The magnetic Reynolds number based on this
velocity is U0/(ηkf ), which is chosen to be 13, so that during
saturation the resulting value of ReM is about 6, just as in

FIG. 12. (Color online) Similar to Fig. 1, but for time-dependent
ABC-flow driving. As in Fig. 1, we have here kf /k1 = 15 and
ReM ≈ 6.
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FIG. 13. (Color online) Dependence of the normalized 〈B
2〉 for

different planar averages: yz (black), xz (red, dotted), and xy (blue,
dashed), for σ = 0.1 (upper panel) and σ = 0.01 (lower panel).

Fig. 1. For the x, y, and z components we take different forcing
frequencies such that ωi/(k1U0) is 10, 11, and 9 for i = 1, 2,
and 3, respectively. These values correspond approximately to
the inverse correlation times used in Ref. [11]. The result is
shown in Fig. 12. It turns out that the magnetic field grows
initially as expected, based on Eq. (21), but then the final
saturation phase is cut short below B2

sat/B
2
eq ≈ 3 rather than the

value 12 found with random wave forcing. This is reminiscent
of inhomogeneous dynamos in which magnetic helicity fluxes
operate. In homogeneous systems, however, magnetic helicity
flux divergences have only been seen if there is also shear [39].
In any case, the present behavior is unexpected and suggests
that the effective value of Cα is reduced. Using the test-field
method [40,41], we have confirmed that the actual value of
Cα is not reduced. The dynamo is, therefore, excited, but the
value implied for the effective helicity is reduced.

Another possibility is that, especially for small values of σ ,
the ABC-flow has nongeneric dynamo properties that emulate
aspects of large-scale dynamos. An example is shown in
Fig. 13, where we plot the time evolution of all three planar
averages (yz, xz, and xy). Even for σ = 0.01, large-scale
magnetic fields are still excited, but the field orientation
changes periodically on a timescale of 1–2 diffusion times.
This is obviously a fascinating topic for further research, but
it is unrelated to our main question regarding the minimal
helicity of generic turbulent dynamos. It might indeed be an
example of so-called incoherent α effect dynamos [42] that
have recently attracted increased interest [43–45].

The main point of this section is to emphasize the limited
usefulness of ABC-flow dynamos. Another such example are
dynamos driven by the Galloway-Proctor flow, which also has
a number of peculiar features; see Ref. [46].

IV. CONCLUSIONS

In this paper we have studied the simplest possible LSD and
have investigated the dependence of its saturation amplitude
on the amount of kinetic helicity in the system. We recall that
the case of a periodic domain has already been investigated in
some detail [29,47] and that theoretical predictions in the case
with shear [16] have been verified numerically for fractional

helicities [17]. Yet the issue has now attracted new interest in
view of recent results, suggesting that, in the limit of large
scale separation, the amount of kinetic helicity needed to drive
the LSD might actually be much smaller than what earlier
calculations have suggested [11]. This was surprising given
the earlier confirmations of the theory. As explained above,
the reason for the conflicting earlier results may be the fact
that the LSD cannot be safely isolated in the linear regime,
because it will be dominated by the SSD or, in the case of
the ABC-flow dynamo, by some other kind of dynamo that
is not due to the α effect. Furthermore, as already alluded
to in the introduction, there can be solutions with long-range
correlations that could mimic those that are not due to the α

effect. Within the framework of the Kazantsev model [21],
the solutions to the resulting Schrödinger-type equation can
be described as bound states. The addition of kinetic helicity
leads to new solutions with long-range correlations as a result
of tunneling from the SSD solutions [20,22,23]. Indeed, it has
been clear for some time that large-scale magnetic fields of
the type of an α2 dynamo become only apparent in the late
saturation of the dynamo [15]. This is especially true for the
case of large values of ReM when the mean field develops
its full strength while the rms value of the small-scale field
due to SSD action remains approximately unchanged as ReM

increases; see Fig. 11.
While there will always remain some uncertainty regarding

the application to the much more extreme astrophysical
parameter regime, we can now rule out the possibility of
surprising effects within certain limits of ReM and Re below
740 and scale separation ratios below 80. In stars and galaxies,
the scale separation ratio is difficult to estimate, but it is
hardly above the largest value considered here. This ratio is
largest in the top layers of the solar convection zone where the
correlation length of the turbulence is short (1 Mm) compared
with the spatial extent of the system (100 Mm).

Of course, the magnetic Reynolds numbers in the Sun and
in galaxies are much larger than what will ever be possible to
simulate. Nevertheless, the results presented here show very
little dependence of the critical value of Cα on ReM . For PrM =
1, for example, we find Ccrit

α = 1.2 for ReM ≈ 6 and Ccrit
α =

1.5 for ReM ≈ 600. On the other hand, for larger values of
PrM , the value of Ccrit

α can drop below unity (Ccrit
α = 0.9 for

PrM = 100). While these changes of Ccrit
α are theoretically not

well understood, it seems clear that they are small and do
not provide support for an entirely different scaling law, as
anticipated in recent work [11].
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