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Equatorial magnetic helicity flux in simulations with different gauges
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We use direct numerical simulations of forced MHD turbulence with a forcing function that produces two different signs
of kinetic helicity in the upper and lower parts of the domain. We show that the mean flux of magnetic helicity from
the small-scale field between the two parts of the domain can be described by a Fickian diffusion law with a diffusion
coefficient that is approximately independent of the magnetic Reynolds number and about one third of the estimated
turbulent magnetic diffusivity. The data suggest that the turbulent diffusive magnetic helicity flux can only be expected to
alleviate catastrophic quenching at Reynolds numbers of more than several thousands. We further calculate the magnetic
helicity density and its flux in the domain for three different gauges. We consider the Weyl gauge, in which the electrostatic
potential vanishes, the pseudo-Lorenz gauge, where the speed of light is replaced by the sound speed, and the ‘resistive
gauge’ in which the Laplacian of the magnetic vector potential acts as a resistive term. We find that, in the statistically
steady state, the time-averaged magnetic helicity density and the magnetic helicity flux are the same in all three gauges.
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1 Introduction

The generation of magnetic fields on scales larger than the
eddy scale of the underlying turbulence in astrophysical
bodies has posed a major problem. Magnetic helicity is be-
lieved to play an important role in this process (Branden-
burg & Subramanian 2005a). The magnetic helicity den-
sity, defined by A · B, where B = ∇ × A is the magnetic
field and A is the corresponding magnetic vector poten-
tial, is important because at large scales it is produced in
many dynamos. This has been demonstrated for dynamos
based on the α effect (Shukurov et al. 2006; Brandenburg
et al. 2009), the shear-current effect (Brandenburg & Sub-
ramanian 2005b), and the incoherent α-shear effect (Bran-
denburg et al. 2008). The volume integral of the magnetic
helicity density over periodic domains (as well as domains
with perfect-conductor boundary conditions or infinite do-
mains where the magnetic field and the vector potential de-
cays fast enough at infinity) is a conserved quantity in ideal
MHD. This conservation is also believed to be recovered
in the limit of infinite magnetic Reynolds number in non-
ideal MHD (Berger 1984). This implies that for finite (but
large) magnetic Reynolds numbers magnetic helicity can
decay only through microscopic resistivity. This would in
turn control the saturation time and cycle periods of large-
scale helical magnetic field which would be too slow to
explain the observed variations of magnetic fields in astro-

� Corresponding author: dhruba.mitra@gmail.com

physical settings, such as for example the 11 year variation
of the large-scale fields during the solar cycle.

A possible way out of this deadlock is provided by
fluxes of magnetic helicity out of the domain (Blackman
& Field 2000; Kleeorin et al. 2000). In the case of the solar
dynamo, such a flux could be out of the domain, mediated
by coronal mass ejections, or it could be across the equator,
mediated by internal gradients within the domain. Several
possible candidates for magnetic helicity fluxes have been
proposed (Kleeorin & Rogachevskii 1999; Vishniac & Cho
2001; Subramanian & Brandenburg 2004).

In this paper we measure the diffusive flux across the
domain with two different signs of magnetic helicity. This
measurement, however, poses an additional difficulty due
to the fact that neither the flux nor the magnetic helic-
ity density remain invariant under the gauge transformation
A → A + ∇Λ, up to which the vector potential is defined.
This constitutes a gauge problem. This problem, however,
does not arise in homogeneous (or nearly homogeneous)
domains with periodic or perfect-conductor boundary con-
ditions, or in infinitely large domains where both the mag-
netic field and the vector potential decay fast enough at in-
finity. In these cases the volume integral of magnetic he-
licity is gauge-invariant, because surface terms vanish and
∇ · B = 0, so that

∫
B · ∇Λ dV = − ∫

Λ∇ · B dV = 0.
However, in practice we are often interested in finite or open
domains with more realistic boundary conditions. Also, if
we are to talk meaningfully about the exchange of magnetic
helicity between two parts of the domain we need to evalu-
ate changes in magnetic helicity densities locally even if the
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integral of the magnetic helicity density over the whole do-
main is gauge-invariant. An important question then is how
to calculate this quantity across arbitrary surfaces in numer-
ical simulations. Ideally one would like to have a gauge-
invariant description of magnetic helicity. A number of sug-
gestions have been put forward in the literature (Berger &
Field 1984; Subramanian & Brandenburg 2006). In practice,
however, calculating the gauge-invariant volume integral of
magnetic helicity poses an awkward complication and may
not be the quantity relevant for dynamo quenching (Sub-
ramanian & Brandenburg 2006). In this paper, to partially
address this question, we take an alternative view and try
to compare and contrast the magnetic helicity and its flux
across the domain in three different gauges that are often
used in numerical simulations.

2 Model and background

The setup in this paper is inspired by the recent work of Mi-
tra et al. (2009), who considered a wedge-shaped domain
encompassing parts of both the southern and northern hemi-
spheres. Direct numerical simulations (DNS) of the com-
pressible MHD equations with an external force which in-
jected negative (positive) helicity in the northern (southern)
hemisphere shows a dynamo with polarity reversals, oscilla-
tions and equatorward migration of magnetic activity. It was
further shown, using mean-field models, that such a dynamo
is well described by an α2 dynamo, where α has positive
(negative) sign in the northern (southern) hemisphere. How-
ever, the mean-field dynamo showed catastrophic quench-
ing, i.e., the ratio of magnetic energy to the equipartition
magnetic energy decreases as R−1

m , where Rm is the mag-
netic Reynolds number. Such catastrophic quenching could
potentially be alleviated by a mean flux of small-scale mag-
netic helicity across the equator (Brandenburg et al. 2009).
Diffusive flux of this kind has previously been employed in
mean-field models on empirical grounds (Covas et al. 1998;
Kleeorin et al. 2000). Using a one-dimensional mean-field
model of an α2 dynamo with positive α in the north and
negative in the south, it was possible to show that for large
enough values ofRm catastrophic quenching is indeed alle-
viated (Brandenburg et al. 2009). However, three questions
still remained:

1. Can such a diffusive flux result from DNS?
2. Is it strong enough to alleviate catastrophic quenching?
3. When is it independent of the gauge chosen?

In this paper we provide partial answers to these questions.
We proceed by simplifying our problem further, both

conceptually and numerically, by considering simulations
performed in a rectangular Cartesian box with dimensions
Lx×Ly×Lz . The box is divided into two equal cubes along
the z direction, with sides Lx = Ly = Lz/2. We shall refer
to the xy plane at z = 0 as the ‘equator’ and the regions with
positive (negative) z as ‘north’ and ‘south’ respectively. We
shall choose the helicity of the external force such that it has

negative (positive) helicity in the northern (southern) part
of the domain. All the sides of the simulation domain are
chosen to have periodic boundary conditions. The slowest
resistive decay rate of the mean magnetic field is ηk2

1 , where
η is the microscopic magnetic diffusivity and k1 = π/Lz is
the lowest wavenumber of the domain.

We employ two different random forcing functions: one
where the helicity of the forcing function varies sinusoidally
with z (Model A) and one where it varies linearly with
z (Model B). This also leads to a corresponding variation
of the kinetic and small-scale current helicities in the do-
main. Model A minimizes the possibility of boundary ef-
fects, while Model B employs the same profile as that used
in an earlier mean-field model (Brandenburg et al. 2009).
The typical wavenumber of the forcing function is chosen
to be kf = 20k1 in Model A and kf = 16k1 in Model B. An
important control parameter of our simulations is the mag-
netic Reynolds number, Rm = urms/ηkf , which is varied
between 2 and 68, although we also present a result with a
larger value of Rm. This last simulation may not have run
long enough and will therefore not be analyzed in detailed.

We perform DNS of the equations of compressible
MHD for an isothermal gas with constant sound speed cs,

DtU = −c2s∇ ln ρ+
1
ρ
J × B + Fvisc + f , (1)

Dt ln ρ = −∇ · U , (2)

∂tA = U × B − ημ0J − ∇Ψ, (3)

where Fvisc = (μ/ρ)(∇2U + 1
3∇∇ · U) is the viscous

force when the dynamic viscosity μ is constant (Model A),
and Fvisc = ν(∇2U + 1

3∇∇ · U + 2S ln ρ) is the viscous
force when the kinematic viscosity ν is constant (Model B),
U is the velocity, J = ∇×B/μ0 is the current density, μ0

is the vacuum permeability (in the following we measure
the magnetic field in Alfvén units by setting μ0 = 1 every-
where), ρ is the density, Ψ is the electrostatic potential, and
Dt ≡ ∂t +U ·∇ is the advective derivative. Here, f(x, t) is
an external random white-in-time helical function of space
and time. The simulations were performed with the PENCIL

CODE1, which uses sixth-order explicit finite differences in
space and third order accurate time stepping method. We
use a numerical resolution of 128× 128× 256 meshpoints.

These simulations in a Cartesian box capture the essen-
tial aspects of the simulations of Mitra et al. (2009) in spher-
ical wedge-shaped domains. In particular, in this case we
also observe the generation of large-scale magnetic fields
which show oscillations on dynamical time scales, reversals
of polarity and equatorward migration, as can be seen from
the sequence of snapshots in Fig. 1 for a run withRm = 68.
Here we express time in units of the expected turbulent dif-
fusion time, T = (ηt0k2

1)
−1, where ηt0 = urms/3kf is used

as the reference value (Sur et al. 2008).
Below we shall employ this setup to study the magnetic

helicity and its flux. We shall discuss the issue of gauge-
dependence in Sect. 5.

1 http://www.nordita.org/software/pencil-code/
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Fig. 1 (online colour at: www.an-journal.org) Visualization of the By component of the magnetic field on the periphery of the domain
at different times showing the migration of magnetic patterns from the top and bottom boundaries toward the equator. Yellow (light)
shades denote positive values and blue (dark) shades denote negative values. Time is measured in turbulent diffusion times, T =
(ηt0k

2
1)

−1, where ηt0 = urms/3kf is used as reference.

3 Magnetic helicity fluxes

Let us first summarize the role played by magnetic helicity
and its fluxes in large-scale helical dynamos. In the spirit of
mean-field theory, we define large-scale (or mean) quanti-
ties, denoted by an overbar, as a horizontal average taken
over the x and y directions. In addition, we denote a vol-
ume average by angular brackets, 〈·〉. The magnetic helicity
density is denoted by

hM ≡ A · B. (4)

In general the evolution equation of hM can be written down
using the MHD equations, which yields

∂th
M = −2E · B − ∇ · FH, (5)

where

FH = E × A + ΨB (6)

is the magnetic helicity flux and E is the electric field,
which is given by

E = −U × B + ηJ . (7)

Given that our system is statistically homogeneous in the
horizontal directions, we consider the evolution equation for
the horizontally averaged magnetic helicity density,

∂th
M

= −2ηJ · B − ∇ · FH
, (8)

where the contribution from the full electromotive force,
U×B, has dropped out after taking the dot product with B.
However, the mean electromotive force from the fluctuating
fields, E = u × b, enters the evolution of the mean fields, so
this contribution does not vanish if we consider separately

the contributions to h
M

that result from mean and fluctuat-
ing fields, i.e.

∂th
M

m = 2E · B − 2ηJ · B − ∇ · FH

m , (9)

∂th
M

f = −2E · B − 2ηj · b − ∇ · FH

f , (10)

where

FH

m = E × A + Ψ B, (11)

FH

f = e × a + ψb, (12)

and Ψ = Ψ + ψ.
In mean-field dynamo theory one solves the evolution

equation for B, so FH

m is known explicitly from the ac-

tual mean fields. However, the evolution equation for h
M

f

is not automatically obeyed in the usual mean-field treat-
ment. This is the reason why in the dynamical quenching
formalism this equation is added as an additional constraint

equation. The terms h
M

f and j · b ≈ k2
f h

M

f are coupled to
the mean-field equations through an additional contribution

to the α effect with a term proportional to k2
f h

M

f . However,

the coupling of the flux term FH

f is less clear, because there
are several possibilities and their relative importance is not
well established.

In this paper we are primarily interested in FH

f across
the equator. We assume that this flux can be written in terms
of the gradient of the magnetic helicity density via a Fickian
diffusion law, i.e.,

FH

f = −κf∇h
M

f , (13)

where κf is an effective diffusion coefficient for the mag-
netic helicity density.

There are several points to note regarding Eq. (13).
Firstly, both the magnetic helicity and its flux are gauge-
dependent. Hence this expression should in principle de-
pend on the gauge we choose. On the other hand, catas-
trophic quenching is a physically observable phenomenon
that should not depend on the particular gauge chosen. Sec-
ondly, we recall that Eq. (13) is purely a conjecture at this
stage, and it is the aim of this paper to test this conjecture.
Thirdly, Eq. (13) is not the only form of flux of magnetic he-
licity possible. Two other obvious candidates are the advec-
tive flux and the Vishniac-Cho flux (Vishniac & Cho 2001).
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Table 1 Dependence of B
2
, normalized by B2

eq, the slopes of
the three terms on the RHS of Eq. (10), normalized by ηt0B

2
eq, as

well as the value of κf/ηt0.

Run Rm B
2

2E · B 2ηj · b ∇ · FH
f κf/ηt0

B1 2 1.1 9.42 −9.38 −0.04 0.41
B2 5 2.2 11.18 −11.14 −0.04 0.34
B3 15 2.0 4.54 −4.52 −0.02 0.27
B4 33 1.7 2.28 −2.27 −0.01 0.31
B5 68 0.8 1.15 −1.12 −0.03 0.34

However, none of them can be of importance to the prob-
lem at hand, because we have neither a large-scale velocity
(thus ruling out advective flux) nor a large-scale shear (thus
ruling out Vishniac-Cho flux).

4 Diffusive flux and Rm dependence

Let us postpone the discussion of the complications arising
from the choice of gauge until Sect. 5 and use the resistive
gauge for the results reported in this section, i.e. we set

Ψ = η∇ · A. (14)

We then calculate FH

f and h
M

f as functions of z from our
simulations, time-average both of them and use Eq. (13) to

calculate κf from a least-square fit of FH

f versus −∇h
M

f

within the range −1.3 ≤ k1z ≤ 1.3. The values of κf as a
function of Rm is given in the last column of Table 1.

In order to determine the relative importance of equato-
rial magnetic helicity fluxes, we now consider individually
the three terms on the RHS of Eq. (10). Within the range
−1.3 ≤ k1z ≤ 1.3, all three terms vary roughly linearly
with z. We therefore determine the slope of this dependence.
In Table 1 we compare these three terms at k1z = −1, eval-
uated in units of ηt0k1B

2
eq, as well as the value of κf/ηt0.

In Fig. 2 we show the z dependence of these three terms for
Run B5, where Rm = 68. The values of κf as a function of
Rm is given in the last column of Table 1. The z dependence

of FH

f and h
M

f is shown in the last panel of Fig. 2. Note that
the two profiles agree quite well.

We point out that, near z = 0, all simulations show ei-
ther a local reduction in the gradients of the terms on the
RHS of Eq. (10) or even a local reversal of the gradient.
This is likely to be associated with a local reduction in dy-
namo activity near z = 0, where kinetic helicity is zero. The
non-uniformity of the turbulent magnetic field also leads to
transport effects (Brandenburg & Subramanian 2005a) that
may modify the gradient. However, we shall not pursue this
question further here.

Looking at Table 1, we see that the terms 2E · B and
2ηj · b balance each other nearly perfectly, and that only a
small residual is then balanced by the diffusive flux diver-

gence, ∇ · FH

f . For the values of Rm considered here, the

Fig. 2 z dependence of the terms on the RHS of Eq. (10) in the
first two panels and in Eq. (13) for Run B5.

terms 2E · B and 2ηj · b scale with Rm, while the depen-

dence of ∇ · FH

f on Rm is comparatively weak. If catas-
trophic quenching is to be alleviated by the magnetic he-
licity flux, one would expect that at large values of Rm the

terms 2E · B and ∇ · FH

f should balance. At the moment
our values of Rm are still too small by about a factor of 30–
60 (assuming that the same scaling with Rm persists). This
result is compatible with that of earlier mean field models
(Brandenburg et al. 2009). Consequently, we see that the
energy of the mean magnetic field decreases with increas-
ing Rm from 33 to 68; see Fig. 3. For larger values of Rm

the situation is still unclear.

In Table 1, we also give the approximate values of
κf/ηt0. Note that this ratio is always around 0.3 and inde-
pendent of Rm. This is the first time that an estimate for the
diffusion coefficient of the diffusive flux has been obtained.
There exists no theoretical prediction for the value of κf

other than the naive expectation that such a term should be
expected and that its value should be of the order of ηt0.
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Fig. 3 Rm dependence of the normalized magnetic energy of
the mean field, 〈B2〉/B2

eq, and the fluctuating field, 〈b2〉/B2
eq,

in the upper panel together with the normalized helicities of the
small-scale magnetic field, a · b kf/B2

eq, the small-scale current
density, j · b/kfB

2
eq, and the small-scale velocity, ω · u/kfu

2
rms,

at k1z = −1 (i.e. in the south) in the lower panel. (All three helici-
ties are negative in the north and positive in the south.) The shaded
areas indicate that the solutions are different in nature, and that the
simulations may not have run for long enough.

This now allows us to state more precisely the point where
the turbulent diffusive helicity flux becomes comparable
with the resistive term, i.e. we assume κf∇2a · b to become
comparable with 2ηj · b. Using the relation j · b ≈ k2

f a · b
(Blackman & Brandenburg 2002), which is confirmed by
the current simulations within a factor of about 2 (see the
second panel of Fig. 3), we find that
κf/2η > (kf/k1)2, (15)
where we have assumed that the Laplacian of a · b can be
replaced by a k2

1 factor. Using our empirical finding, κf ≈
ηt0/3, together with the definition ηt0/η ≈ urms/3ηkf =
Rm/3, we arrive at the condition
Rm > 18(kf/k1)2 ≈ 4600 (for κf to be important), (16)
where we have inserted the value kf/k1 = 16 for the present
simulations. Similarly, large values of Rm for alleviating
catastrophic quenching by turbulent diffusive helicity fluxes
were also found using mean-field modelling (Brandenburg
et al. 2009). Unfortunately, the computing resources are still
not sufficient to verify this in the immediate future.

5 Gauge-dependence of helicity flux

Let us now consider the question of gauge-dependence
of the helicity flux. Equation (10) is obviously gauge-

dependent. However, if, in the statistically steady state, h
M

f

becomes independent of time, we can average this equation
and obtain

∂FH

f

∂z
= −2E · B − 2ηj · b, (17)

where FH

f refers to the z component of FH

f . On the RHS of
this equation the two terms are gauge-independent. There-

fore ∇ · FH

f must also be gauge-independent. The same

applies also to FH

m and FH
; see Eq. (8). We have con-

firmed that, in the steady state, h
M

f is statistically steady
and does not show a long-term trend; cf. Fig. 4 for the three

gauges. We note that the fluctuations of h
M

f are typically
much larger for the Weyl gauge than for the other two.

We now verify the expected gauge-independence ex-
plicitly for three different gauges: the Weyl gauge,

Ψ = 0, (18)

the Lorenz gauge (or pseudo-Lorenz gauge)2, defined by

∂tΨ = −c2Ψ∇ · A, (19)

and the resistive gauge, defined by (14) above. We calcu-
late the normalized magnetic helicity for both the mean and
fluctuating parts and the respective fluxes for all the three
gauges. These simulations are done for Model A with low
Rm (Rm ≈ 1.9).

We find the transport coefficient κf in the way described

in the previous section. A snapshot of the mean flux FH

f is
plotted in the top panel of Fig. 5. The flux is different in all
the three gauges. However, when averaged over the horizon-
tal directions as well as time the fluxes in the three different
gauges agree with one another as shown in the bottom panel
of Fig. 5. We find the transport coefficient κf as described
in the previous section and obtain the same value in all the
three gauges.

6 Conclusion

In this paper we use a setup in which the two parts of the
domain have different signs of kinetic and magnetic helici-
ties. Using DNS we show that the flux of magnetic helicity
due to small-scale fields can be described by Fickian diffu-
sion down the gradient of this quantity. The corresponding
diffusion coefficient is approximately independent of Rm.
However, in the range of Rm values considered here, the
flux is not big enough to alleviate catastrophic quenching.
The critical value of Rm for the flux to become important
is proportional to the square of the scale separation ratio.
In the present case, where this ratio is 16, the critical value
of Rm is estimated to be 4600. We have also calculated the
flux and the diffusion coefficient in the three gauges dis-
cussed above and have found the fluxes to be independent

2 In fact, this is not the true Lorenz gauge because we use velocity of
sound (Brandenburg & Käpylä 2007) instead of the velocity of light which
appears in the original Lorenz gauge
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Fig. 4 Plot of h
M
f as a function of time in the statistically sta-

tionary state for k1z = −1 (south, top panel) and k1z = 1 (north,
bottom panel) for the three different gauges, Weyl gauge (open
circle), Lorenz gauge (line) and resistive gauge (broken line).

of the choice of these gauges. This is explained by the fact
that in the steady state the divergence of magnetic helicity
flux is balanced by terms that are gauge-independent.

Several immediate improvements on this study spring
to mind. One is to compare our results with the gauge-
independent magnetic helicity of Berger & Field (1984) and
the corresponding magnetic helicity flux. The second is to
extend the present study to higher values of Rm to under-
stand the asymptotic behavior of the flux. Finally, it may be
useful to compare the results for different profiles of kinetic
helicity to see whether or not our results depend on such
details.
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Fig. 5 Comparison of the flux FH
f (z, t) at a randomly chosen

instant (upper panel) and its time average FH
f (z) for the three dif-

ferent gauges. Lorenz gauge (◦), Weyl gauge (�) and the resistive
gauge (·). The instantaneous flux is plotted in the top panel and the
time-averaged flux is plotted in the bottom panel.
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