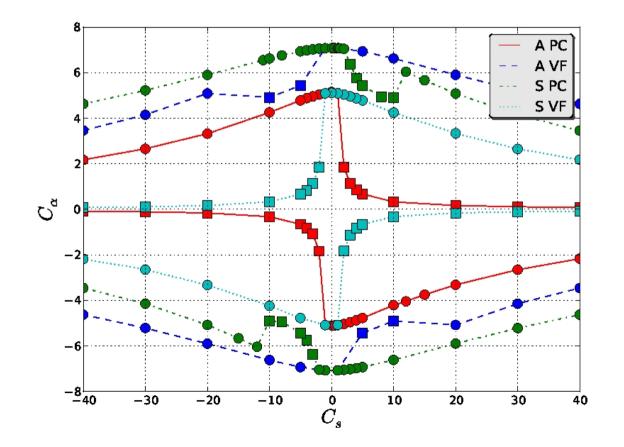


Magnetic helicity fluxes in dynamically quenched dynamos

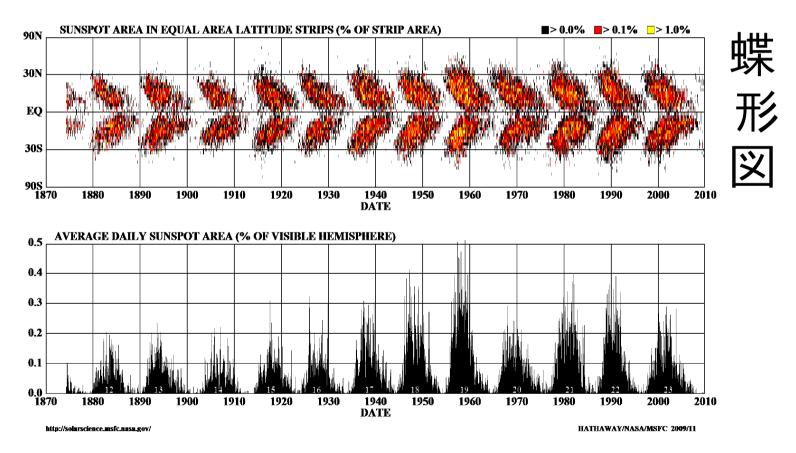
Simon Candelaresi



Solar Magnetic Field

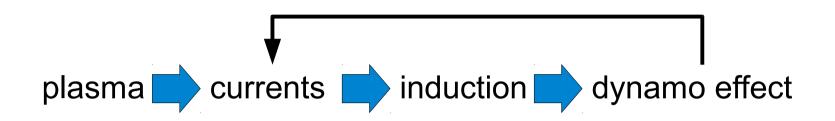
11 year cycle

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS



dynamo working

Dynamo Mechanism



Equations of magnetohydrodynamics (MHD):

Induction equation: $\frac{\partial I}{\partial I}$

Momentum equation: $\frac{1}{2}$

Continuity equation:

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{U} \times \boldsymbol{B} - \eta \boldsymbol{J})$$
$$\frac{\mathrm{D}\boldsymbol{U}}{\mathrm{D}t} = -c_{\mathrm{S}}^{2}\boldsymbol{\nabla}\ln\rho + \boldsymbol{J} \times \boldsymbol{B}/\rho + \boldsymbol{F}_{\mathrm{visc}}$$
$$\frac{\mathrm{D}\ln\rho}{\mathrm{D}t} = -\boldsymbol{\nabla} \cdot \boldsymbol{U}$$

 $D/Dt = \partial/\partial t + \boldsymbol{U} \cdot \boldsymbol{\nabla}$

Mean-Field Formalism

Mean-field decomposition: $B = \overline{B} + b$

Reynolds rules:
$$\overline{B_1 + B_2} = \overline{B}_1 + \overline{B}_2, \quad \overline{\overline{B}} = \overline{B}, \quad \overline{b} = 0$$

 $\overline{\partial_{\mu} B} = \partial_{\mu} \overline{B}, \quad \mu = 0, 1, 2, 3$

Mean-field induction equations:

$$\partial_t \overline{B} = \eta \nabla^2 \overline{B} + \nabla \times (\overline{U} \times \overline{B} + \overline{\mathcal{E}})$$
$$\partial_t b = \nabla \times (\overline{U} \times b + G) + \nabla \times (u \times \overline{B}) + \eta \nabla^2 b$$

Electromotive force (emf): $\overline{\boldsymbol{\mathcal{E}}} = \overline{\boldsymbol{u} imes \boldsymbol{b}}$ $G = \boldsymbol{u} imes \boldsymbol{b} - \overline{\boldsymbol{u} imes \boldsymbol{b}}$

Mofatt, H. K., 1978, Krause and Raedler, 1980

Electromotive Force

The EMF is assumed to be linear and homogeneous in \overline{B} . $\mathcal{E}_i(x,t) = \mathcal{E}_i^{(0)}(x,t)$ $+ \int \int_{\alpha} K_{ij}(x,x',t,t') \overline{B}_j(x-x',t-t') \, \mathrm{d}^3x' \, \mathrm{d}t'$

Taylor expansion:

$$\overline{B}_j(x',t) = \overline{B}_j(x,t) + (x'_k - x_k)\frac{\partial B_j(x,t)}{\partial x_k} + \dots$$

Assume local and instantaneous dependence of $\overline{\mathcal{E}}$ on \overline{B} .

$$\overline{\mathcal{E}}_i = \alpha_{ij}\overline{B}_j + b_{ijk}\frac{\partial B_j}{\partial x_k} + \dots$$

 $\overline{\boldsymbol{\mathcal{E}}} = \alpha \overline{\boldsymbol{B}} - \eta_{\mathrm{t}} \nabla \times \overline{\boldsymbol{B}}$

For a turbulent system without preferred direction, i.e. U = 0:

$$\partial_t \overline{\boldsymbol{B}} = \alpha \boldsymbol{\nabla} \times \overline{\boldsymbol{B}} + \eta_{\mathrm{T}} \boldsymbol{\nabla}^2 \overline{\boldsymbol{B}}$$

Alpha-Effect

 α effect: $\alpha = \alpha_{\rm K} + \alpha_{\rm M}$ $\alpha_{\rm K} = -\tau \overline{\boldsymbol{\omega} \cdot \boldsymbol{u}}/3$ $\alpha_{\rm M} = \tau \overline{\boldsymbol{j} \cdot \boldsymbol{b}} / (3\overline{\rho}) = \tau k^2 \overline{\boldsymbol{a} \cdot \boldsymbol{b}} / (3\overline{\rho}) = \overline{h}_{\rm m}$

helically driven dynamo $\overline{h}_{\mathrm{K,f}} = \overline{\boldsymbol{\omega} \cdot \boldsymbol{u}}$

Sun: $Re_M = 10^9$

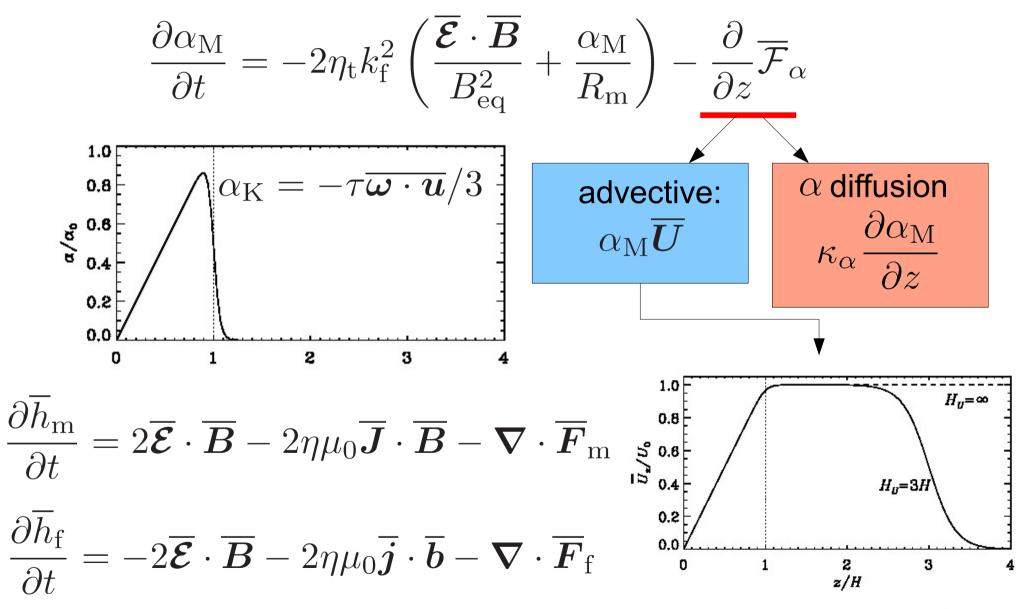
production of magnetic helicity $\overline{h}_{\mathrm{M,f}} = \overline{{m a} \cdot {m b}}$

total magnetic helicity conservation $\overline{h}_{\mathrm{M,m}} = \overline{A} \cdot \overline{B}$

UL $\overline{m{a}\cdotm{b}}$ works against dynamo: $E_{
m M}\propto 1/{
m Re_{
m M}}$ ${
m Re_{
m M}}=1$

galaxies:
$$Re_M = 10^{18}$$

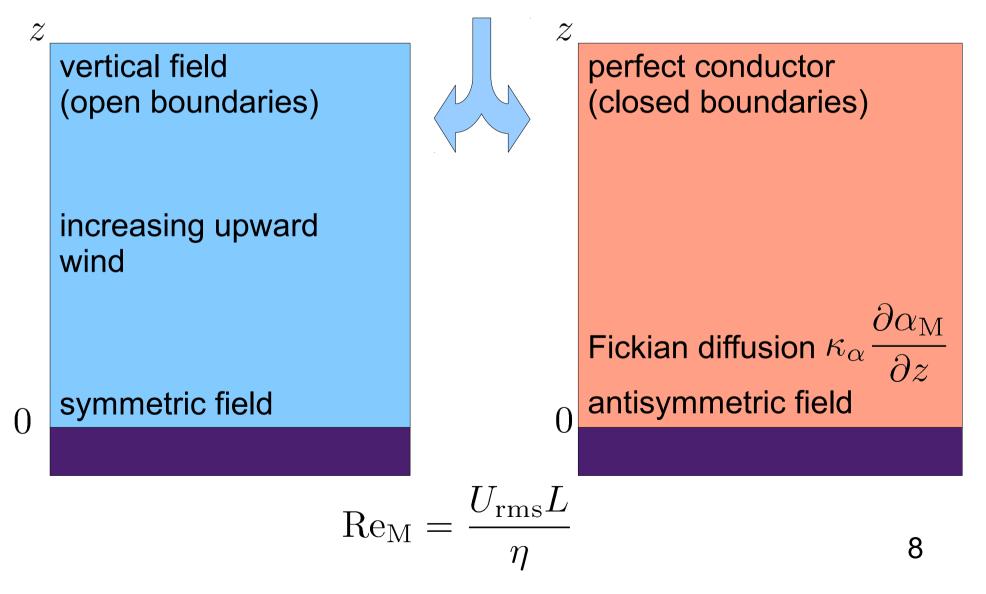
Magnetic Helicity Fluxes



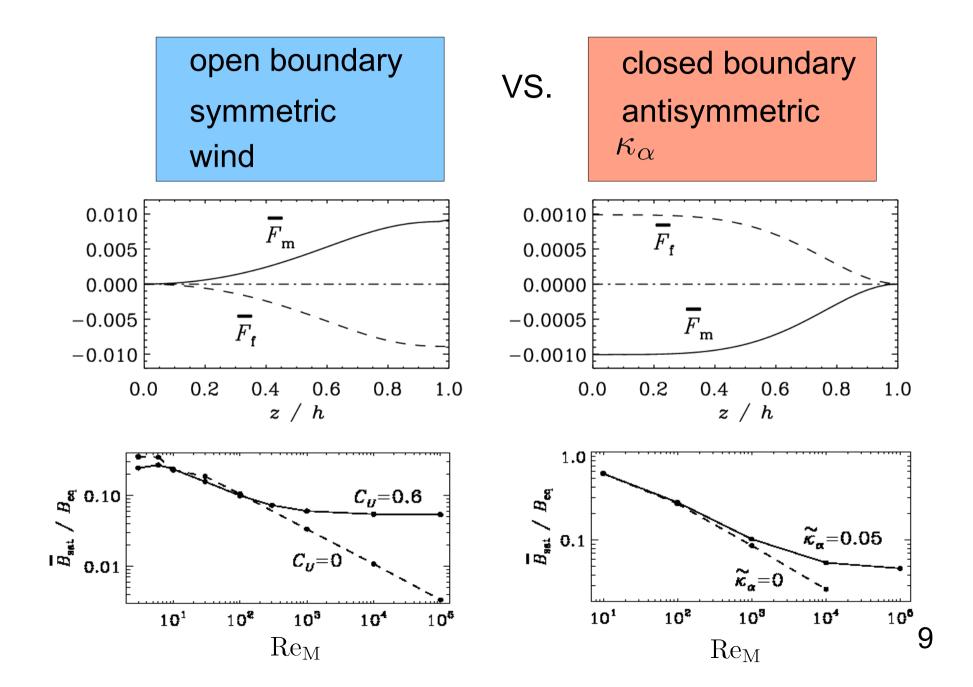
7

Magnetic helicity fluxes

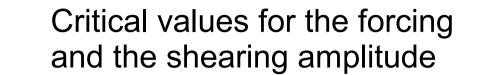
Solve equations for one hemisphere. Impose (anti)symmetric field at the equator.



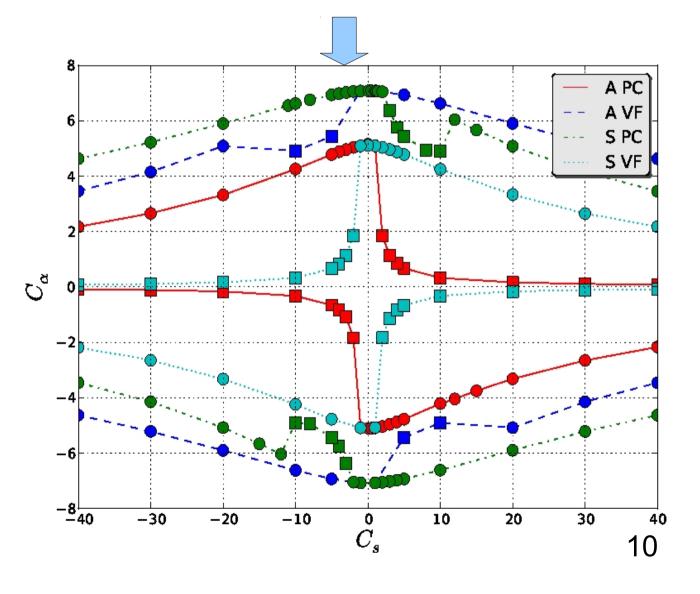
Magnetic helicity fluxes



Adding shear

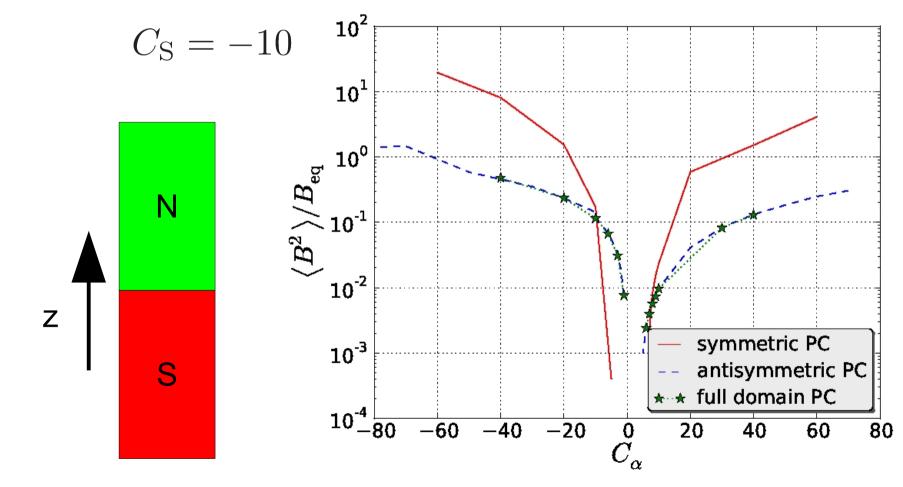


Shearing velocity field: $\overline{\mathbf{U}} = \begin{pmatrix} 0\\Sz\\0 \end{pmatrix}$



Full domain

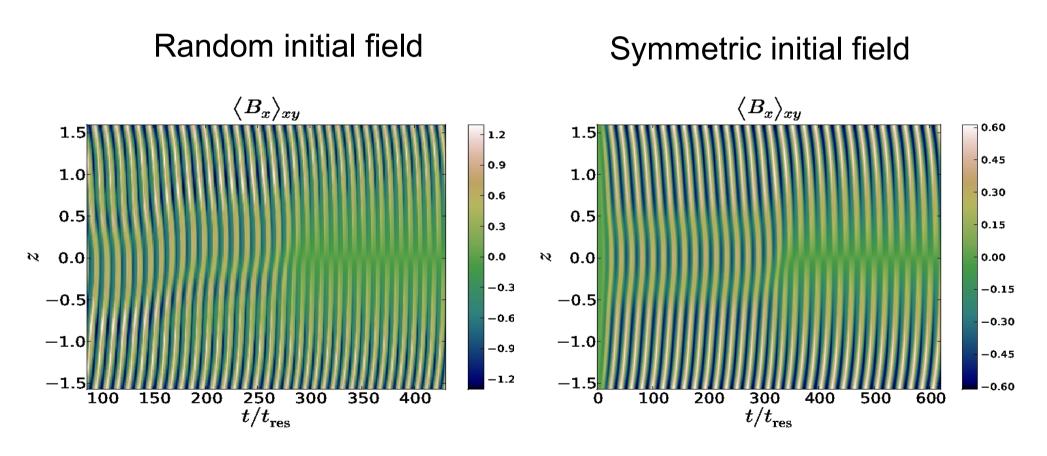
Imposed parity in the hemispheric model is artificial. Include both hemispheres.



Preferred antisymmetric mode? 11

Parity change

Look at the parity of the magnetic field \overline{B}_y

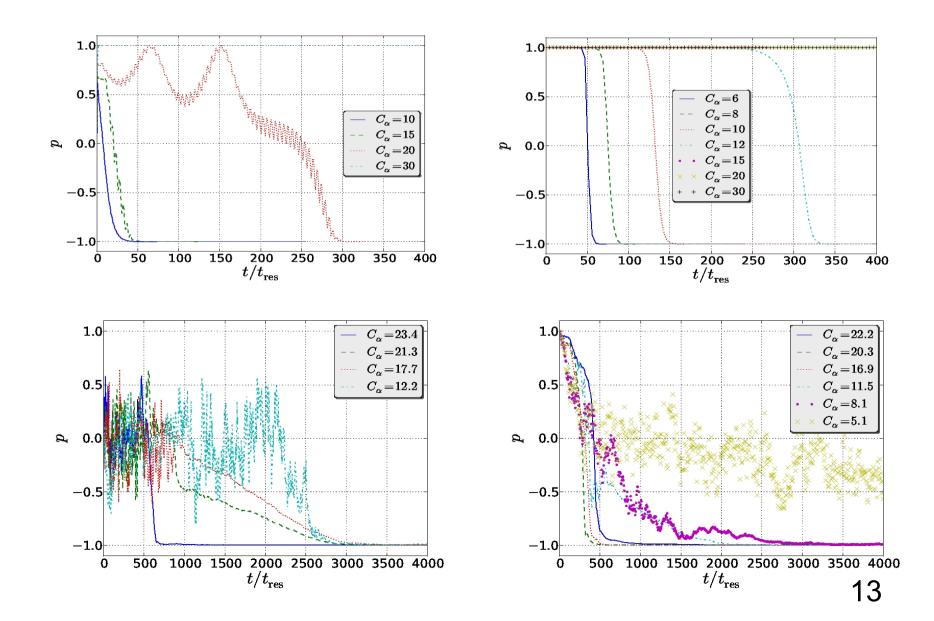


The antisymmetric solution seems to be the preferred one.

Parity change

Random initial field

Symmetric initial field



MF

DNS

Conclusions

- Advective magnetic helicity fluxes can alleviate catastrophic quenching.
- Diffusive magnetic helicity fluxes can alleviate catastrophic quenching.
- Symmetric mode is unstable.
- The antisymmetric mode seems to be the preferred one.
- Check the growth rate of the modes.

References

Mofatt, H. K., 1978

Moatt, H. K., editor. Magnetic field generation in electrically conducting fluids

Krause and Raedler, 1980

Krause, F. and Raedler, K.. Mean-field magnetohydrodynamics and dynamo theory.

Brandenburg et al. 2009

Axel Brandenburg, Simon Candelaresi and Piyali Chatterjee. Small-scale magnetic helicity losses from a mean-field dynamo. Mon. Not. Roy. Astron. Soc., 398:1414-1422, September 2009.

Candelaresi et al. 201?

Simon Candelaresi and Axel Brandenburg, Bifurcation behavior of dynamically quenched dynamos.

www.nordita.org/~iomsn

Appendix

Viscous force:
$$\boldsymbol{F}_{\text{visc}} = \rho^{-1} \boldsymbol{\nabla} \cdot 2\nu \rho \boldsymbol{S}$$

Strain tensor: $S_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i}) - \frac{1}{3}\delta_{ij} \boldsymbol{\nabla} \cdot \boldsymbol{U}$
Sound speed: $c_{\text{S}} = \sqrt{\gamma \frac{p}{\rho}}$