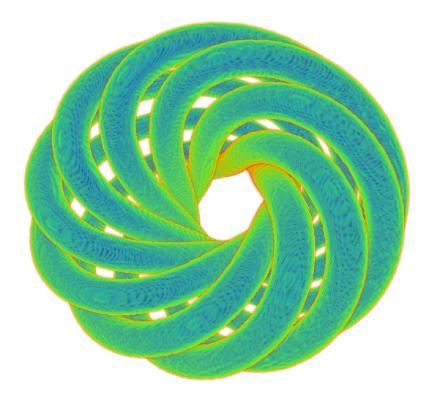
Topological constraints in magnetic field relaxation Stockholm

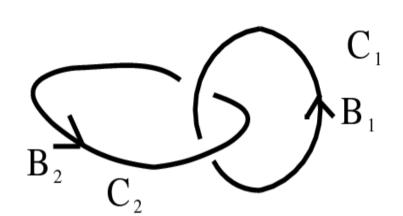
Simon Candelaresi

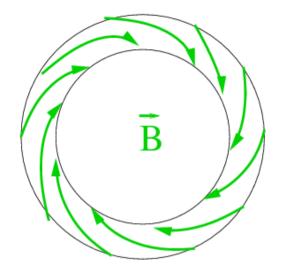


Outline

- Observations of topologically non-trivial magnetic fields (twist).
- Measure of topology.
- Magnetic helicity conservation, realizability condition.
- Equilibrium states: Woltjer and Taylor
- actual linking vs. magnetic helicity
- Fixed point index.
- Measures for the magnetic reconnection rate.

Topologies of Magnetic Fields



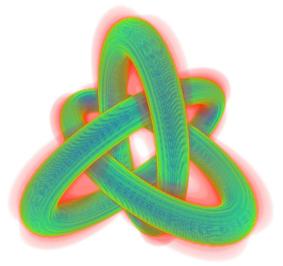


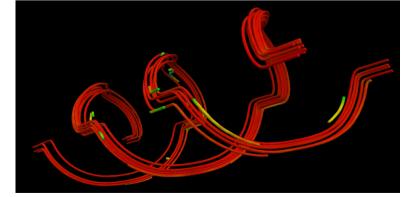


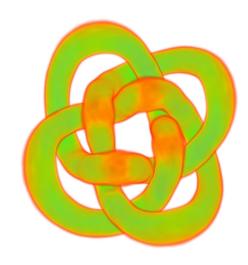
Hopf link

twisted field

trefoil knot





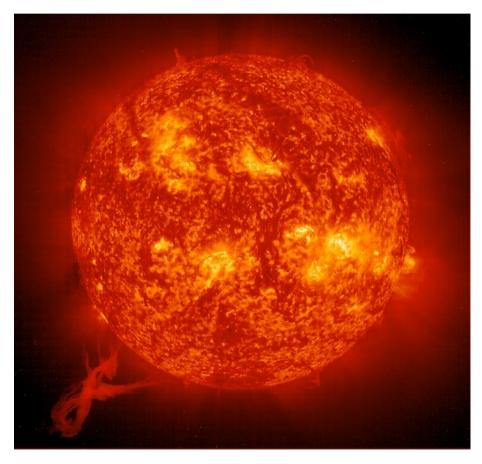


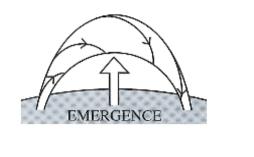
Borromean rings

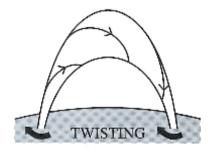
magnetic braid

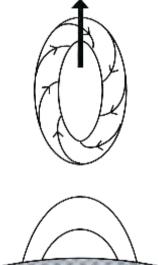
IUCAA knot 3

Twisted Magnetic Fields





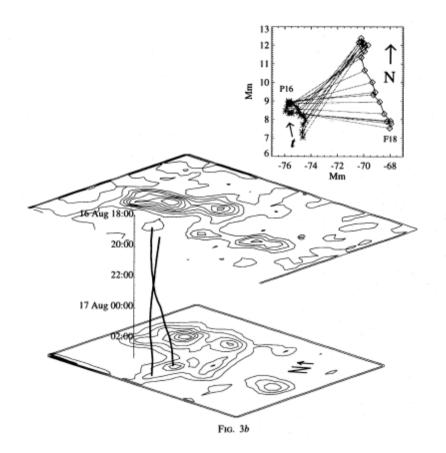




ERUPTION

Twisted fields are more likely to erupt (Canfield et al. 1999).

Twisted Field in the Sun



Force-free extrapolation of the photospheric magnetic field from 1999, August 21. *(Gibson et al. 2002)*

Magnetic bipoles' movement on the Sun's surface. (Leka et al. 1996)

Force free condition: $\nabla \times B = \alpha B$ $J \times B = 0$

Magnetic Helicity

Measure for the topology:

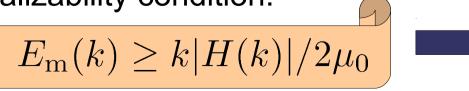
$$H_{\rm M} = \int_{V} \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V = 2n\phi_{1}\phi_{2}$$
$$\boldsymbol{\nabla} \times \boldsymbol{A} = \boldsymbol{B} \quad \phi_{i} = \int_{S_{i}} \boldsymbol{B} \cdot \mathrm{d}\boldsymbol{S}$$

$$B_{2} \xrightarrow{C_{2}} C_{2}$$

 $n = \operatorname{number} \operatorname{of} \operatorname{mutual} \operatorname{linking}$

Conservation of magnetic helicity: $\lim_{\eta \to 0} \frac{\partial}{\partial t} \langle \boldsymbol{A} \cdot \boldsymbol{B} \rangle = 0 \qquad \eta = \text{magnetic resistivity}$

Realizability condition:



Magnetic energy is bound from below by magnetic helicity.

Equilibrium States

Ideal MHD: $\eta = 0$ Induction equation: $\frac{\partial B}{\partial t} = \nabla \times (U \times B)$

Task: Find the state with minimal energy.**Constraint**: magnetic helicity conservation

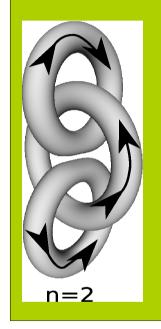
constraintequilibriumWoltjer (1958):
$$\frac{\partial}{\partial t} \int_{V} \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V = 0$$
 $\boldsymbol{\nabla} \times \boldsymbol{B} = \alpha \boldsymbol{B}$ Taylor (1974): $\frac{\partial}{\partial t} \int_{\tilde{V}} \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V = 0$ $\boldsymbol{\nabla} \times \boldsymbol{B} = \alpha(a, b) \boldsymbol{B}$ constant along field line

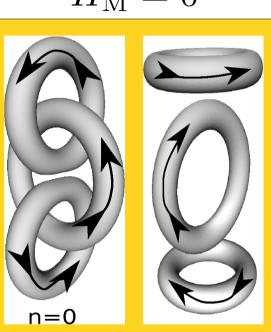
V total volume V volume along magnetic field line

Interlocked Flux Rings actual linking vs. magnetic helicity

 $H_{\rm M} \neq 0$

$$H_{\rm M}=0$$



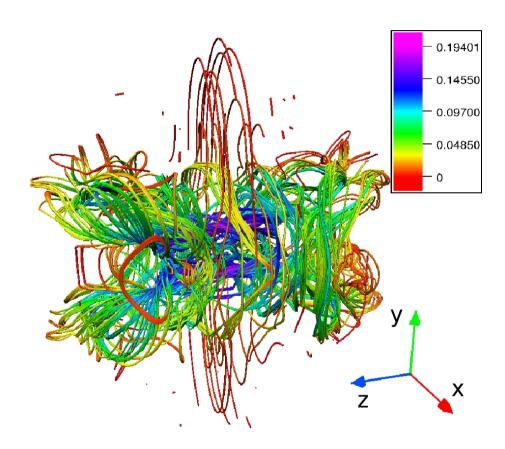


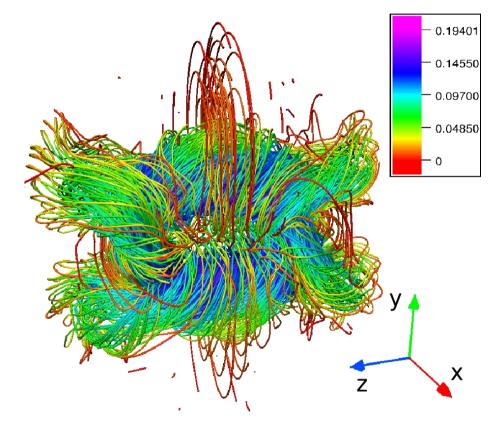
- initial condition: flux tubes
- isothermal compressible gas
- viscous medium
- periodic boundaries

$$\frac{\partial A}{\partial t} = \boldsymbol{U} \times \boldsymbol{B} + \eta \nabla^2 \boldsymbol{A} \qquad \frac{\mathrm{D} \ln \rho}{\mathrm{D} t} = -\boldsymbol{\nabla} \cdot \boldsymbol{U}$$
$$\frac{\mathrm{D} \boldsymbol{U}}{\mathrm{D} t} = -c_{\mathrm{S}}^2 \boldsymbol{\nabla} \ln \rho + \boldsymbol{J} \times \boldsymbol{B} / \rho + \boldsymbol{F}_{\mathrm{visc}}$$

Interlocked Flux Rings

 $\tau = 4$

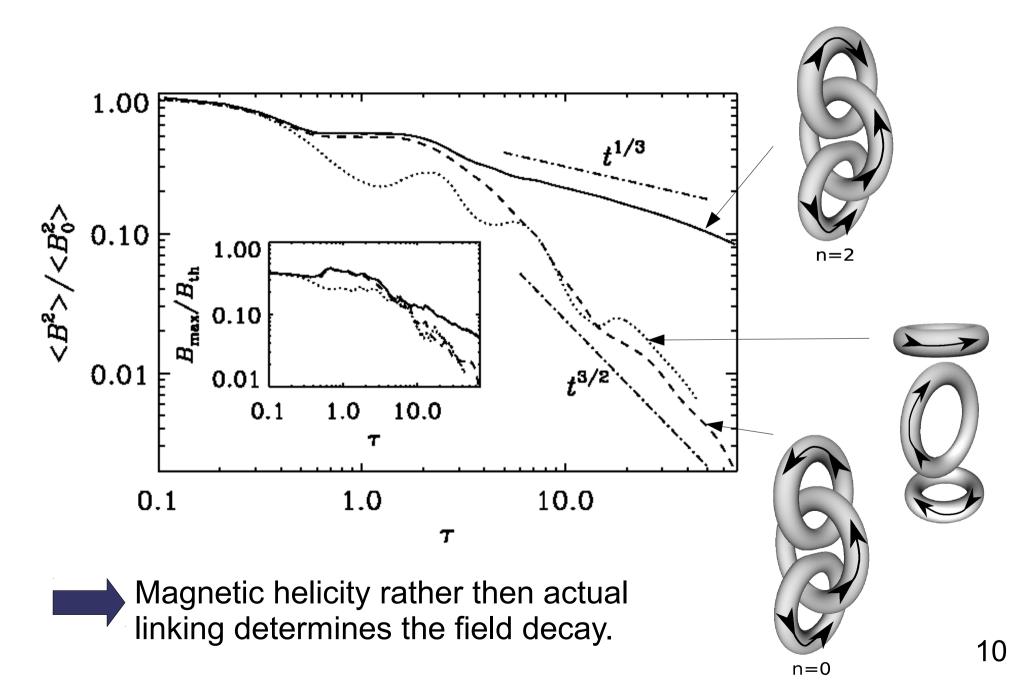




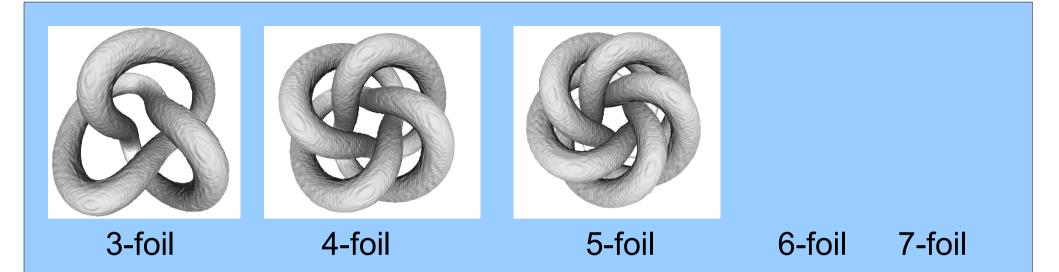
 $H_{\rm M}=0$

 $H_{\rm M} \neq 0$

Interlocked Flux Rings



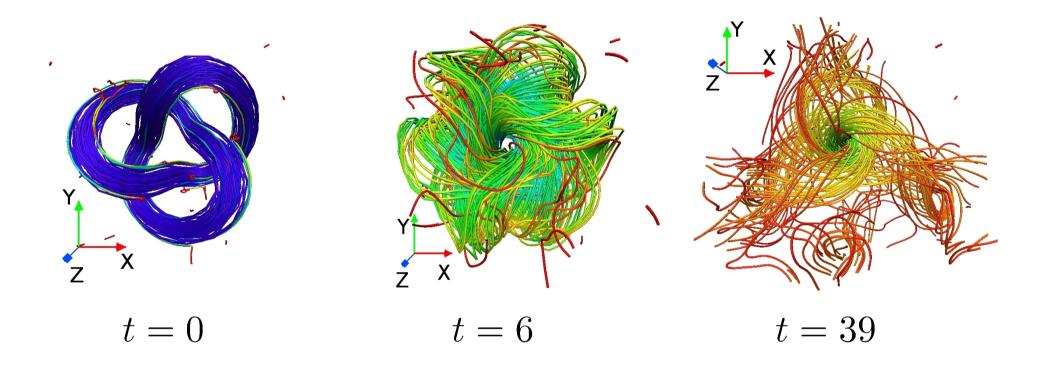
N-foil Knots



cinquefoil knot

* from Wikipedia, author: Jim.belk

N-foil Knots

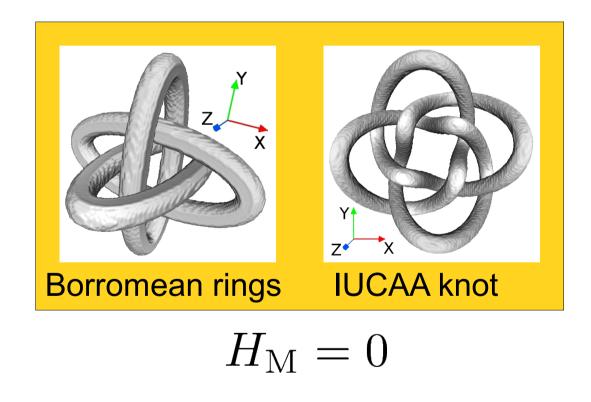


Magnetic helicity is approximately conserved.

Self-linking is transformed into twisting after reconnection.

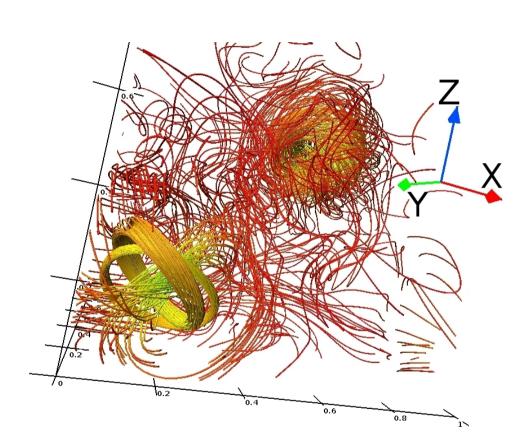
IUCAA Knot and Borromean Rings

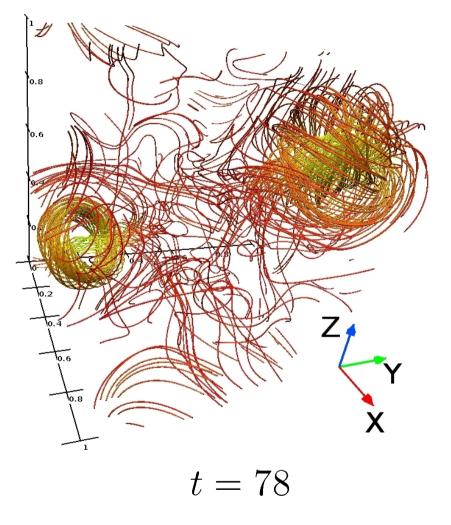
- Is magnetic helicity sufficient?
- Higher order invariants?



IUCAA = The Inter-University Centre for Astronomy and Astrophysics, Pune, India

Reconnection Characteristics

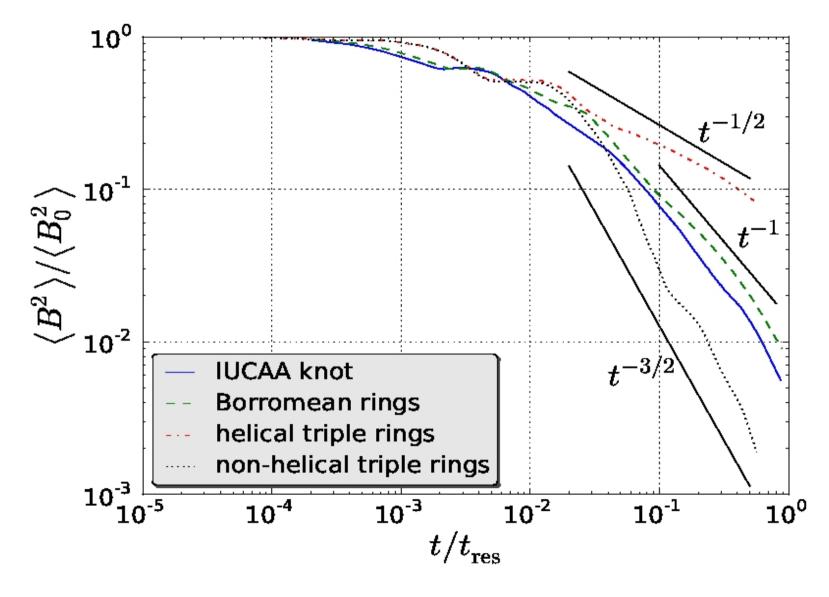




t = 70

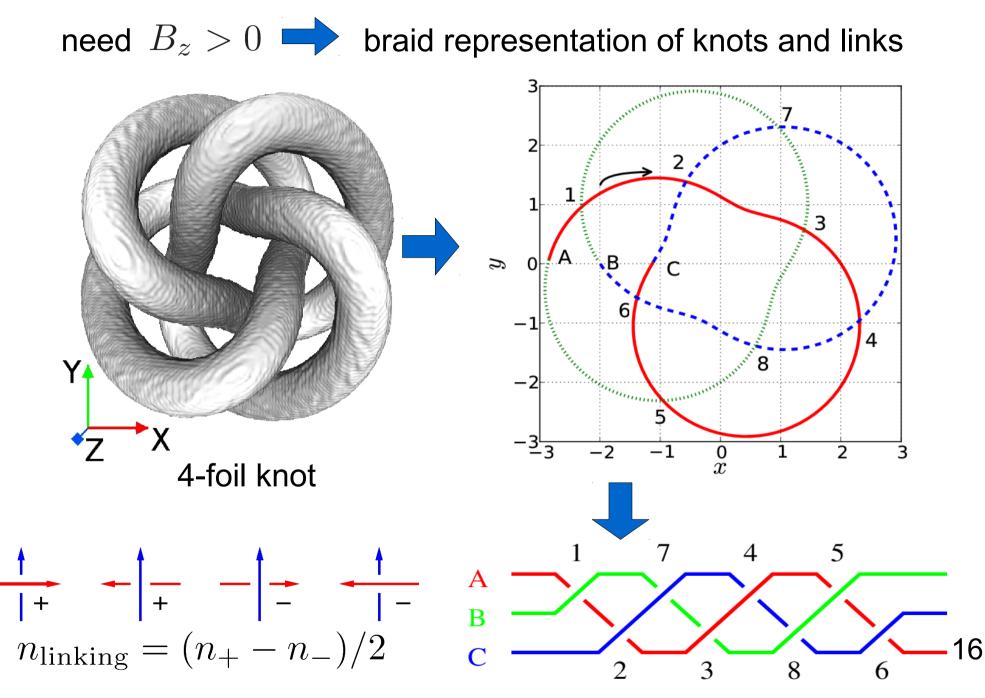
2 twisted rings

Magnetic Energy Decay



Higher order invariants?

Braid Representation

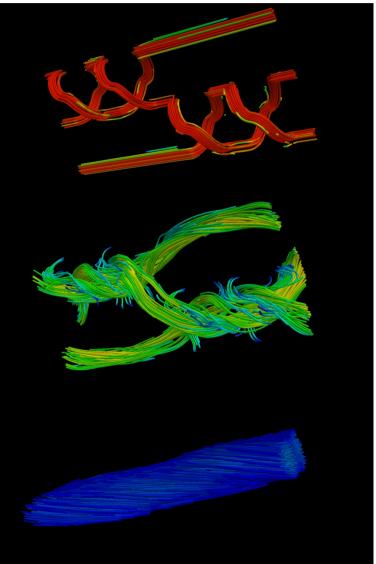


Magnetic Braid Configurations

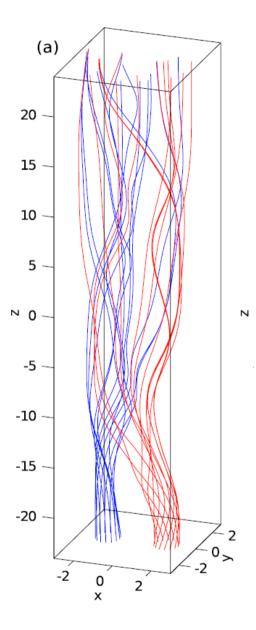
AAA (trefoil knot)



AABB (Borromean rings)

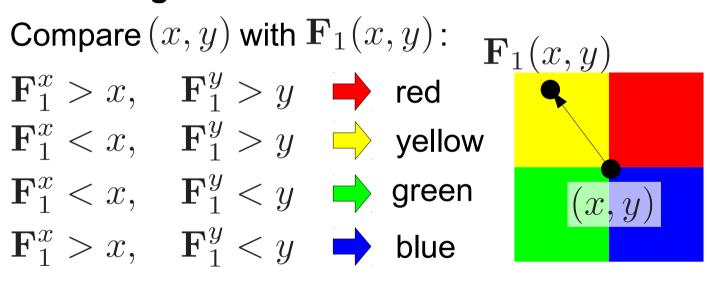


Fixed Point Index



Trace magnetic field lines from z_0 to z. mapping: $(x, y) \rightarrow \mathbf{F}_z(x, y)$

Color coding:

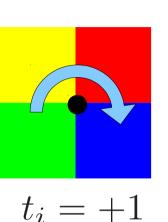


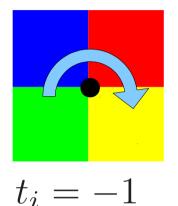
Yeates et al. 2011a

Fixed Point Index

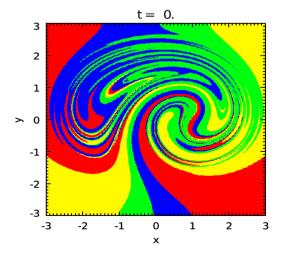
fixed points: $\mathbf{F}_1(x, y) = (x, y)$

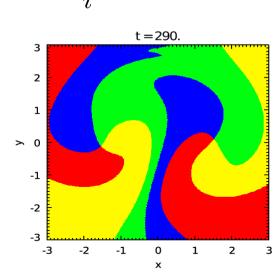
Sign t_i of fixed point i :





Fixed point index:
$$T = \sum_{i} t_i$$
 conserved for $\lim \eta \to 0$





Taylor state is not reached $\rightarrow T$ is additional constraint

Magnetic Reconnection Rate

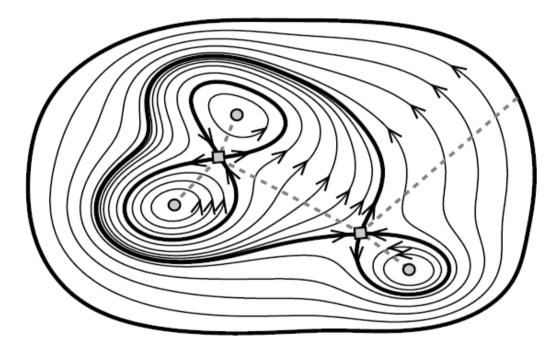
Classic: look for local maxima of
$$\int oldsymbol{E} \cdot oldsymbol{B}$$

Partition fluxes 2D: (Yeates, Hornig 2011b)

 $\boldsymbol{B} = \boldsymbol{\nabla} \times (A\boldsymbol{e}_z)$

Reconnection rate = magnetic flux through boundaries (spearatrices):

$$\Delta \phi = \sum_{i} \left| \frac{\mathrm{d}A(\boldsymbol{h}_{i})}{\mathrm{d}t} \right|$$



2D Magnetic field. Thick lines: separatrices. (Yeates, Hornig 2011b)

Magnetic Reconnection Rate

Partition reconnection rate 3D: $F_1(x_2, y_2)$ Yeates, Hornig 2011b $\mathbf{F}_1(x_1, y_1)$ Generalized flux function (curly A): Φ_{loop} z=1 $\mathcal{A}(x,y) = \int \mathbf{A} \cdot \mathbf{B} / B_z \, \mathrm{d}z$ (x_2, y_2) $-\overline{L}$ z=0 (x_1, y_1) $\phi = \int_{\widehat{}} \nabla \times \mathbf{A} \cdot \, \mathrm{d}\mathbf{s} = \int_{\widehat{}} \mathbf{A} \cdot \, \mathrm{d}\mathbf{l}$ Fixed points: $\mathbf{F}_1(x_i, y_i) = \begin{pmatrix} x_i \\ y_i \end{pmatrix}$ $\frac{\partial \mathcal{A}}{\partial t} + \boldsymbol{U} \cdot \boldsymbol{\nabla} \mathcal{A} = 0$ **Reconnection rate:** invariant in ideal MHD $\Delta \phi = \sum \left| \frac{\mathrm{d} \mathcal{A}(\boldsymbol{h}_i)}{\mathrm{d} t} \right|$

21

Summary

- Braided magnetic fields are observed in the universe.
- Braiding increases stability through the realizability condition.
- Turbulent magnetic field decay is restricted by magnetic helicity.
- Knots and links can be represented as braids.
- Fixed point index as additional constraint in relaxation.
- 'Curly A' as measure for the reconnection rate.

References

Canfield et al. 1999

Canfield, R. C., Hudson, H. S., and McKenzie, D. E. Sigmoidal morphology and eruptive solar activity. *Geophys. Res. Lett.*, 26:627, 1999

Leka et al., 1996

Leka, K. D., Caneld, R. C., McClymont, A. N., and van Driel-Gesztelyi, L., Evidence for Current-carrying Emerging Flux. *Astrophysical Journal*, 462:547.

Gibson et al., 2002

Gibson, S. E., Fletcher, L., Zanna, G. D., et al., The structure and evolution of a sigmoidal active region. *The Astrophysical Journal*, 574:1021

Woltjer 1958

Woltjer, L. A Theorem on Force-Free Magnetic Fields. *Proceedings of the National Academy of Sciences of the United States of America*, 44:489, 1958

References

Taylor 1974

Taylor, J. B. Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields. *Physical Review Letters*, 33:1139, 1974

Pouquet et al., 1976

Pouquet, A., Frisch, U., and Leorat, J., Strong MHD helical turbulence and the nonlinear dynamo effect. *Journal of Fluid Mechanics*, 77:321, 1976.

Leorat et al., 1975

Leorat, J., Frisch, U., and Pouquet, A. Helical magnetohydrodynamic turbulence and the nonlinear dynamo problem. *In V. Canuto, editor, Role of Magnetic Fields in Physics and Astrophysics, volume 257 of New York Academy Sciences Annals*, pages 173-176, 1975

Ruzmaikin and Akhmetiev 1994

A. Ruzmaikin and P. Akhmetiev.

Topological invariants of magnetic fields, and the effect of reconnections.

Phys. Plasmas, vol. 1, pp. 331–336, 1994.

References

Del Sordo et al. 2010

Fabio Del Sordo, Simon Candelaresi, and Axel Brandenburg. Magnetic-field decay of three interlocked flux rings with zero linking number. *Phys. Rev. E*, 81:036401, Mar 2010.

Candelaresi and Brandenburg 2011

Simon Candelaresi, and Axel Brandenburg. Decay of helical and non-helical magnetic knots. *Phys. Rev. E*, 84:016406, 2011

Yeates et al. 2011a

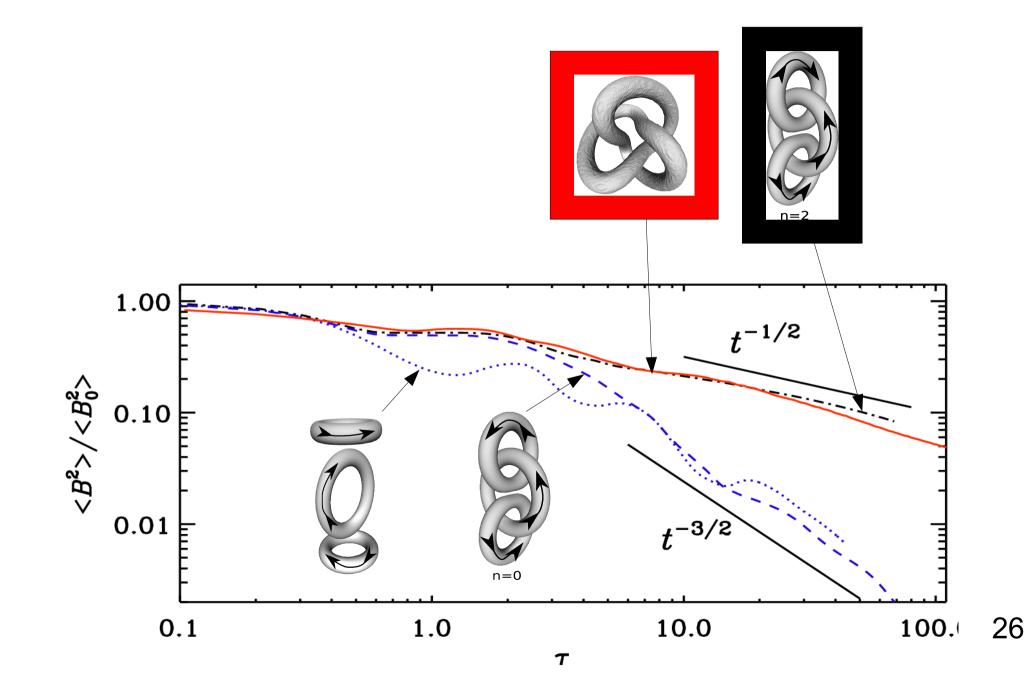
Yeates, A. R., Hornig, G. and Wilmot-Smith, A. L. Topological Constraints on Magnetic Relaxation. *Phys. Rev. Lett.* 105, 085002, 2010

Yeates, Hornig 2011b

Yeates, A. R., and Hornig, G., A generalized flux function for three-dimensional magnetic reconnection. *Physics of Plasmas*, 18:102118, 2011

www.nordita.org/~iomsn

Magnetic energy decay

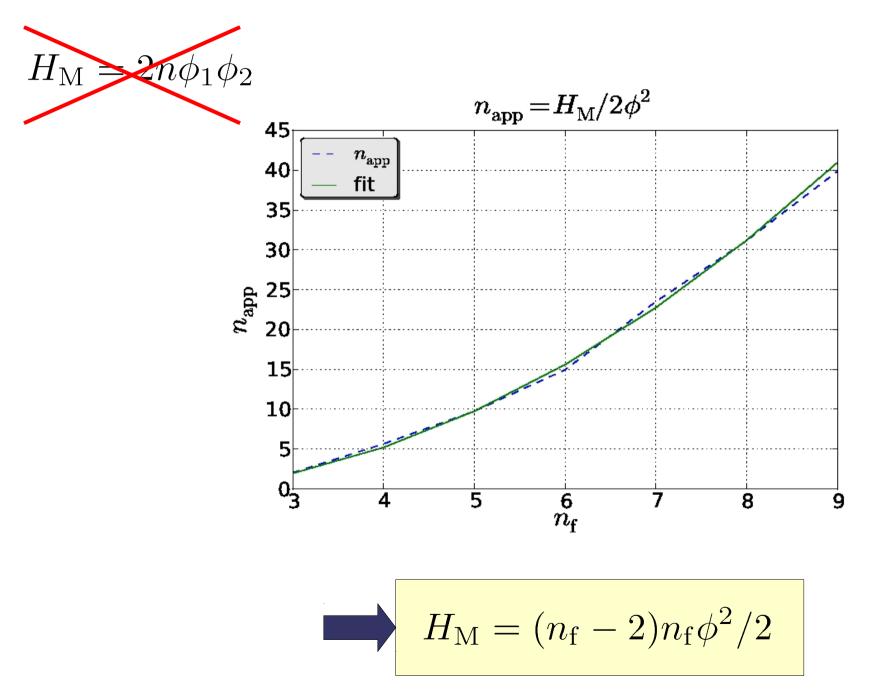


Simulations

- 256^3 mesh point
- Isothermal compressible gas
- Viscous medium
- Periodic boundaries

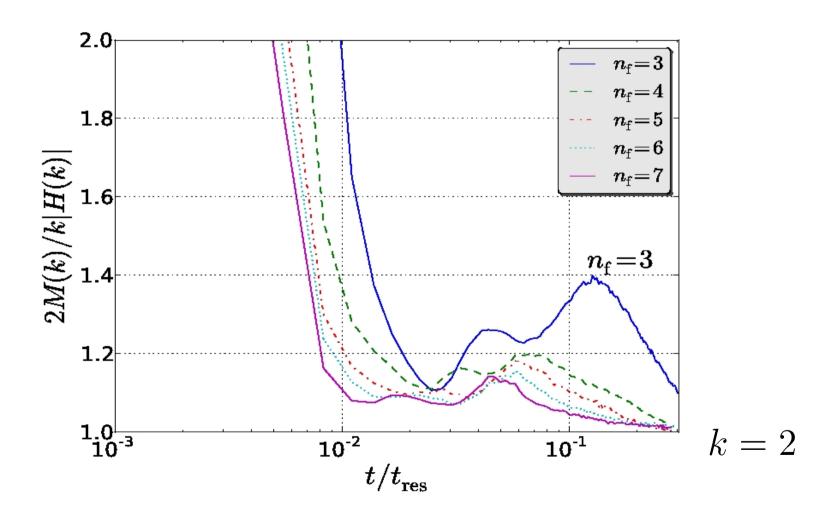
$$\frac{\partial \mathbf{A}}{\partial t} = \mathbf{U} \times \mathbf{B} + \eta \nabla^2 \mathbf{A}$$
$$\frac{\mathrm{D}\mathbf{U}}{\mathrm{D}t} = -c_{\mathrm{S}}^2 \nabla \ln \rho + \mathbf{J} \times \mathbf{B}/\rho + \mathbf{F}_{\mathrm{visc}}$$
$$\frac{\mathrm{D}\ln \rho}{\mathrm{D}t} = -\nabla \cdot \mathbf{U}$$

N-foil Knots



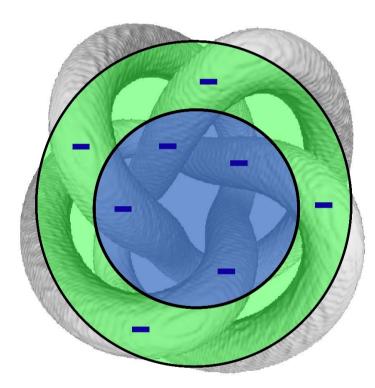
N-foil Knots

2M(k)/(|H(k)|k)



Realizability condition more important for high $n_{\rm f}$.

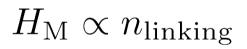
Linking Number

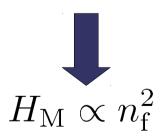


Sign of the crossings for the 4-foil knot

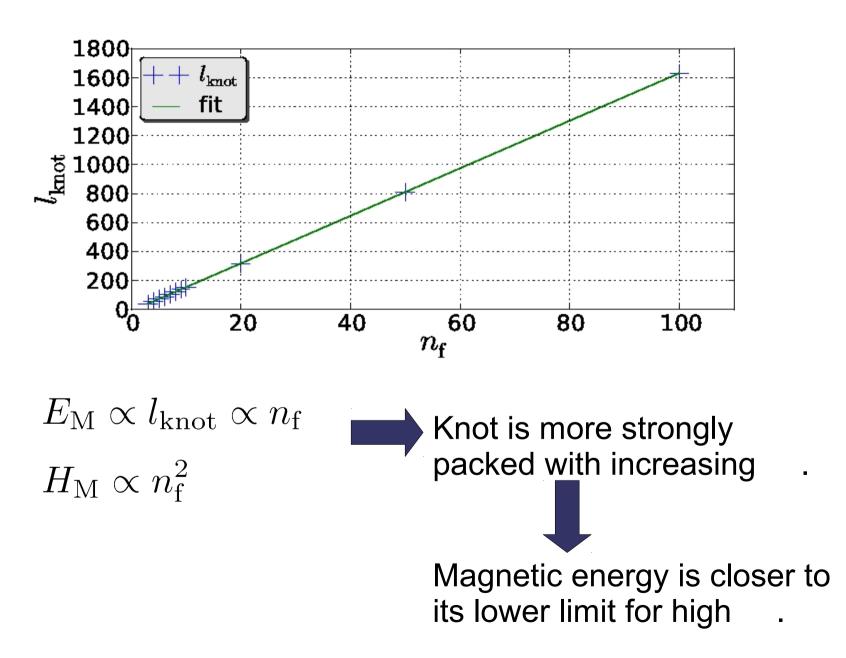
 $n_{\rm linking} = (n_+ - n_-)/2$

Number of crossings increases like $n_{\rm f}^2$

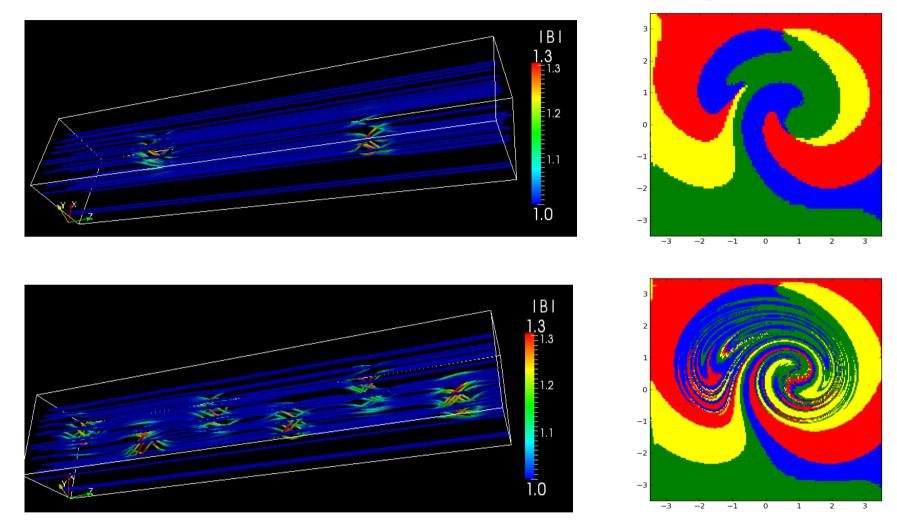




Helicity vs. Energy



Field Line Tracing



Generalized flux function:

$$\mathcal{A}(x,y) = \int_{z=0}^{z=1} \mathbf{A} \cdot d\mathbf{l}$$

Reconnection rate:

$$\sum_{i} \frac{\mathrm{d}\mathcal{A}(\mathbf{x}_i)}{\mathrm{d}t}$$