Magnetic field topology and electric current formation in plasma.

Simon Candelaresi

simon.candelaresi@gmail.com

Magnetic Fields in Nature

Earth:
$0.1-1 G$
(NASA)

Pfrommer (2010)

Confining Plasma

ITER

Team TONUS (2014)

Large Helical Device, Toki (Japan)

Field's Environment in the Corona

Magnetically dominated:
magnetic pressure >> thermal pressure

$$
\begin{aligned}
& B^{2} /\left(2 \mu_{0}\right) \gg n k_{\mathrm{B}} T \\
& \beta=2 \mu_{0} \frac{n k_{\mathrm{B}} T}{B^{2}} \ll 1 \quad \text { Solar corona: } \beta \approx 0.01
\end{aligned}
$$

Frozen-in magnetic flux:
magnetic resistivity small: $t_{\text {dissipation }} \gg t_{\text {dynamical }}$

\square
Magnetic field is frozen-in to the fluid.

Batchelor (1950)

Topologies of Magnetic Fields

Hopf link

Borromean rings

twisted field

magnetic braid

trefoil knot

IUCAA knot

Magnetic Field Topology

Measure for the topology:

$$
\begin{aligned}
& H_{\mathrm{M}}=\int_{V} \boldsymbol{A} \cdot \boldsymbol{B} \mathrm{~d} V=2 n \phi_{1} \phi_{2} \\
& \nabla \times \boldsymbol{A}=\boldsymbol{B} \quad \phi_{i}=\int_{S_{i}} \boldsymbol{B} \cdot \mathrm{~d} \boldsymbol{S}
\end{aligned}
$$

$n=$ number of mutual linking

Moffatt (1969)

Conservation of magnetic helicity:

$$
\lim _{\eta \rightarrow 0} \frac{\partial}{\partial t}\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle=0 \quad \eta=\text { magnetic resistivity }
$$

Realizability condition:

$$
E_{\mathrm{m}}(k) \geq k|H(k)| / 2 \mu_{0}
$$

Magnetic energy is bound from below by magnetic helicity.

Interlocked Flux Rings

 actual linking vs. magnetic helicity

- initial condition: flux tubes
- isothermal compressible gas
- viscous medium
- periodic boundaries
(Del Sordo et al. 2010)

$$
\begin{aligned}
& \frac{\partial \boldsymbol{A}}{\partial t}=\boldsymbol{U} \times \boldsymbol{B}+\eta \nabla^{2} \boldsymbol{A} \quad \frac{\mathrm{D} \ln \rho}{\mathrm{D} t}=-\nabla \cdot \boldsymbol{U} \\
& \frac{\mathrm{D} \boldsymbol{U}}{\mathrm{D} t}=-c_{\mathrm{S}}^{2} \boldsymbol{\nabla} \ln \rho+\boldsymbol{J} \times \boldsymbol{B} / \rho+\boldsymbol{F}_{\mathrm{visc}}
\end{aligned}
$$

Interlocked Flux Rings

Stability Criteria

Ideal MHD: $\eta=0$

Induction equation: $\frac{\partial \boldsymbol{B}}{\partial t}=\boldsymbol{\nabla} \times(\boldsymbol{U} \times \boldsymbol{B})$
constraint
Woltjer (1958): $\frac{\partial}{\partial t} \int_{V} \boldsymbol{A} \cdot \boldsymbol{B} \mathrm{~d} V=0$
Taylor (1974): $\frac{\partial}{\partial t} \int_{\tilde{V}} \boldsymbol{A} \cdot \boldsymbol{B} \mathrm{~d} V=0$

Taylor Relaxation

Field line magnetic helicity conservation
final state is non-linear force-free: $\quad \nabla \times \mathbf{B}=\lambda(a, b) \mathbf{B}$
Taylor (1974)
Does the system always reach this state?

Not necessarily. Additional topological degree must be conserved.

Force-Free Magnetic Fields

Solar corona: low plasma beta and magnetic resistivity
Force-free magnetic fields
Minimum energy state
$(\nabla \times \mathbf{B}) \times \mathbf{B}=0 \Leftrightarrow \nabla \times \mathbf{B}=\alpha \mathbf{B}$
Parker: Equilibrium with the same topology exists only if the twist varies uniformly along the field lines. Strongly braided fields \rightarrow topological dissipation.
(Parker 1972)

Braided fields from foot point motion complex enough. (Parker 1983)
Solutions possible with filamentary current structures (sheets).
(Mikic 1989, Low 2010)

Methods

Ideal (non-resistive) evolution Frozen in magnetic field
use Lagrangian method
(Batchelor, 1950)

Preserves topology and divergence-freeness.

Magneto-frictional term: $\mathbf{u}=\mathbf{J} \times \mathbf{B} \quad \mathbf{J}=\nabla \times \mathbf{B}$

$$
\neg \frac{\mathrm{d} E_{\mathrm{M}}}{\mathrm{~d} t}<0 \quad \text { (Craig and Sneyd 1986) }
$$

Fluid with pressure: $\mathbf{u}=\mathbf{J} \times \mathbf{B}-\beta \nabla \rho$
Fluid with inertia: $\quad \mathrm{d} \mathbf{u} / \mathrm{d} t=(\mathbf{J} \times \mathbf{B}-\nu \mathbf{u}-\beta \nabla \rho) / \rho$
For $\mathbf{J}=\nabla \times \mathbf{B}$ use mimetic numerical operators.
(Hyman, Shashkov 1997)
Own GPU code GLEMuR: (https://github.com/SimonCan/glemur)

Distorted Magnetic Fields

(Longbottom 1998)

Magnetic Nulls

Singular current sheets observed at magnetic nulls $(B=0)$

(Syrovatskiĭ 1971; Pontin \& Craig 2005; FuentesFernández \& Parnell 2012, 2013; Craig \& Pontin 2014)

$$
\mathbf{u}=\mathbf{J} \times \mathbf{B}
$$

AR singular current sheets at magnetic nulls Pas Pressure cannot balance singularity.

Magnetic Carpet

(Richard 2015)
Questions: How do disturbances travel into the domain? Reconnection at null point?
Propagation in presence of nulls?

E3 Experiments

full resistive MHD simulations with the PencilCode initially homogeneous field, E3 type of boundary driving

Braid propagates into domain.

E3 Experiments

field line mapping

field line connectivity with foot point motions

Magnetic Skeleton

Conclusions

- Topology preserving relaxation of magnetic fields.
- Current concentrations not singular.
- Current increases strongly with field complexity.
- Singular currents at magnetic nulls.
- Braiding through photospheric foot point motion.
- Null point disruption through boundary motions.

Simply Twisted Fields

Magnetic streamlines:

(Candelaresi et al. 2014)

