Magnetic field topology and electric current formation in plasma.

Simon Candelaresi

simon.candelaresi@gmail.com

UNIVERSITY

DUNDEE

Magnetic Fields in Nature

Galaxies: 10e-6 G

Pfrommer (2010)

Earth: 0.1-1G

(NASA)

Sun: 2-2,000G $\beta = 0.01$ Rm = 10^6 - 10^12

Continuum 2014-10-23 *(NASA)*

Coronal Loops (NASA)

Confining Plasma

Team TONUS (2014)

Large Helical Device, Toki (Japan)

Field's Environment in the Corona

Magnetically dominated:

magnetic pressure >> thermal pressure

 $B^2/(2\mu_0) \gg nk_{\rm B}T$ $eta = 2\mu_0 rac{nk_{\rm B}T}{B^2} \ll 1$ Solar corona: eta pprox 0.01

Frozen-in magnetic flux:

magnetic resistivity small: $t_{dissipation} \gg t_{dynamical}$

Topologies of Magnetic Fields

Hopf link

twisted field

trefoil knot

Borromean rings

magnetic braid

IUCAA knot

Magnetic Field Topology

Measure for the topology:

$$H_{\rm M} = \int_{V} \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V = 2n\phi_{1}\phi_{2}$$
$$\boldsymbol{\nabla} \times \boldsymbol{A} = \boldsymbol{B} \quad \phi_{i} = \int_{S_{i}} \boldsymbol{B} \cdot \mathrm{d}\boldsymbol{S}$$

 $n = \operatorname{number} \operatorname{of} \operatorname{mutual} \operatorname{linking}$

Moffatt (1969)

Conservation of magnetic helicity: $\lim_{\eta \to 0} \frac{\partial}{\partial t} \langle \boldsymbol{A} \cdot \boldsymbol{B} \rangle = 0 \qquad \eta = \text{magnetic resistivity}$

Arnold (1974)

Realizability condition:

 $E_{\rm m}(k) \ge k|H(k)|/2\mu_0$

Magnetic energy is bound from below by magnetic helicity.

Interlocked Flux Rings actual linking vs. magnetic helicity

$$H_{\rm M} \neq 0 \qquad H_{\rm M} = 0$$

initial condition: flux tubes
isothermal compressible gas
viscous medium
periodic boundaries

$$dA = U \times B + \eta \nabla^2 A \qquad \frac{D \ln \rho}{Dt} = -\nabla \cdot U$$

$$\frac{DU}{Dt} = -c_{\rm S}^2 \nabla \ln \rho + J \times B/\rho + F_{\rm visc}$$

Interlocked Flux Rings

Stability CriteriaIdeal MHD:
$$\eta = 0$$
Induction equation: $\frac{\partial B}{\partial t} = \nabla \times (U \times B)$ constraintconstraintWoltjer (1958): $\frac{\partial}{\partial t} \int_{V} A \cdot B \, dV = 0$ $\nabla \times B = \alpha B$ Taylor (1974): $\frac{\partial}{\partial t} \int_{\tilde{V}} A \cdot B \, dV = 0$ $\nabla \times B = \alpha(a, b) B$ constant along field line

V total volume $~~~\tilde{V}$ volume along magnetic field line

Taylor Relaxation

Field line magnetic helicity conservation

final state is non-linear force-free:

$$\lambda \times \mathbf{B} = \lambda(a, b)\mathbf{B}$$

Taylor (1974)

Does the system always reach this state?

Not necessarily. Additional topological degree must be conserved.

 ∇

Force-Free Magnetic Fields

Solar corona: low plasma beta and magnetic resistivity

Minimum energy state

 $(\nabla \times \mathbf{B}) \times \mathbf{B} = 0 \iff \nabla \times \mathbf{B} = \alpha \mathbf{B}$

Parker: Equilibrium with the same topology exists only if the twist varies uniformly along the field lines. Strongly braided fields \rightarrow topological dissipation. (Parker 1972)

Braided fields from foot point motion complex enough. (Parker 1983)

Solutions possible with filamentary current structures (sheets). *(Mikic 1989, Low 2010)*

NASA

Methods

Ideal (non-resistive) evolution Frozen in magnetic field (Batchelor, 1950)

Preserves topology and divergence-freeness.

Magneto-frictional term: $\mathbf{u} = \mathbf{J} \times \mathbf{B}$ $\mathbf{J} = \nabla \times \mathbf{B}$

$$rightarrow rac{\mathrm{d}E_{\mathrm{M}}}{\mathrm{d}t} < 0$$
 (Craig and Sneyd 1986)

Fluid with pressure: $\mathbf{u} = \mathbf{J} \times \mathbf{B} - \beta \nabla \rho$

Fluid with inertia: $d\mathbf{u}/dt = (\mathbf{J} \times \mathbf{B} - \nu \mathbf{u} - \beta \nabla \rho)/\rho$

For $\mathbf{J} =
abla imes \mathbf{B}$ use mimetic numerical operators. (Hyman, Shashkov 1997)

Own GPU code GLEMuR: (https://github.com/SimonCan/glemur) (Candelaresi et al. 2014) 12

Distorted Magnetic Fields

y

Magnetic Nulls

Singular current sheets observed at magnetic nulls (B = 0)

Y Z

3.37

(Syrovatskiĭ 1971; Pontin & Craig 2005; Fuentes-Fernández & Parnell 2012, 2013; Craig & Pontin 2014)

 $\mathbf{u} = \mathbf{J} \times \mathbf{B}$

singular current sheets at magnetic nulls

Pressure cannot balance singularity.

Magnetic Carpet

full resistive MHD simulations with the PencilCode initially homogeneous field, E3 type of boundary driving

E3 Experiments

field line connectivity with foot point motions

Magnetic Skeleton

Conclusions

- Topology preserving relaxation of magnetic fields.
- Current concentrations not singular.
- Current increases strongly with field complexity.
- Singular currents at magnetic nulls.
- Braiding through photospheric foot point motion.
- Null point disruption through boundary motions.

Simply Twisted Fields

Magnetic streamlines:

(Candelaresi et al. 2014)