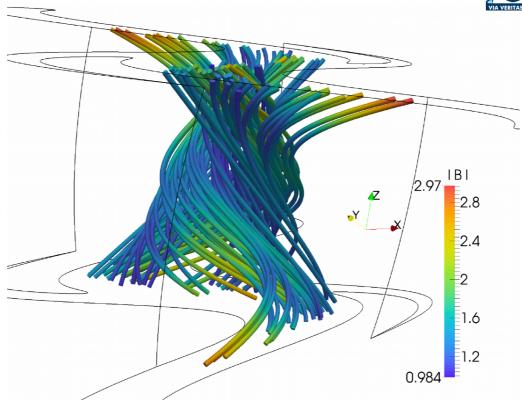
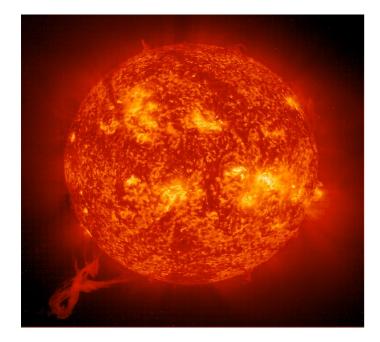
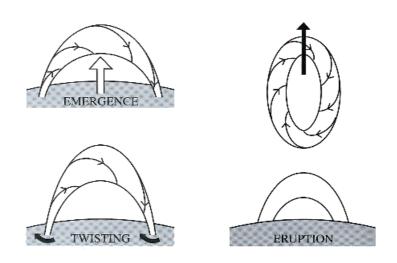
Stabilising Effect of Magnetic Field Line Topology in Plasmas

Simon Candelaresi

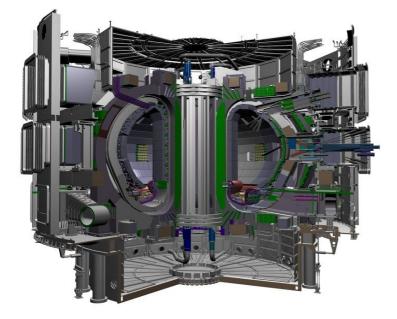


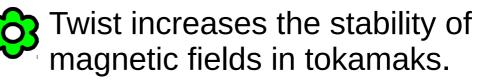
Twisted Magnetic Fields



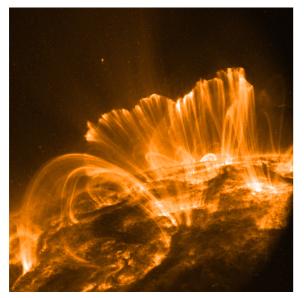


Twisted fields are more likely to erupt (Canfield et al. 1999).

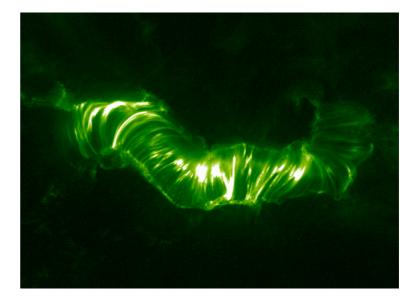




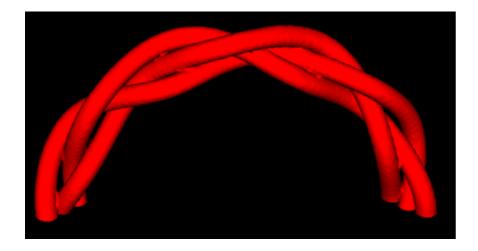
Solar Magnetic Field



(Trace)



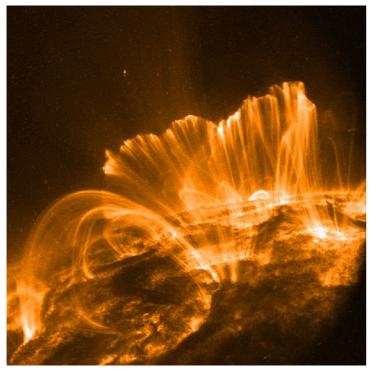
(Trace)

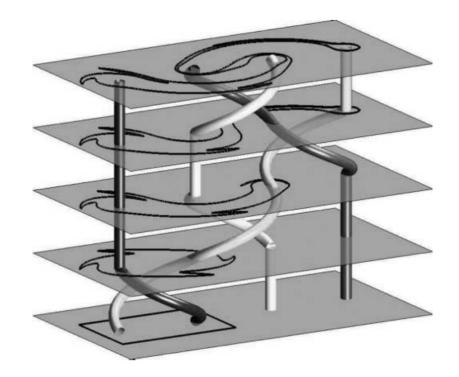


Twisted flux tubes may rise to the corona. (Prior and MacTaggart 2016).

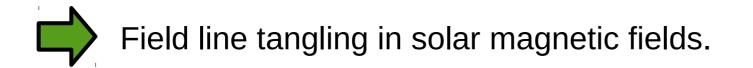
Coronal Magnetic Fields

NASA





(Thiffeault et al. 2006)



Study the tangling of solar magnetic field lines.

Magnetic Helicity

Measure for the topology:

$$H_{\rm M} = \int_{V} \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V = 2n\phi_{1}\phi_{2}$$
$$\boldsymbol{\nabla} \times \boldsymbol{A} = \boldsymbol{B} \quad \phi_{i} = \int_{S_{i}} \boldsymbol{B} \cdot \mathrm{d}\boldsymbol{S}$$

$$C_1$$

 $n = \mathrm{number} \ \mathrm{of} \ \mathrm{mutual} \ \mathrm{linking}$

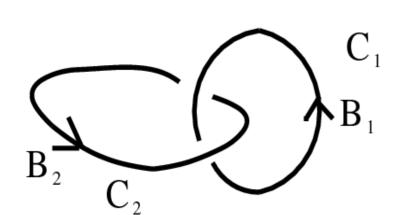
 $E_{\rm m}(k) \ge k|H(k)|/2\mu_0$

Conservation of magnetic helicity: $\lim_{\eta \to 0} \frac{\partial}{\partial t} \langle \boldsymbol{A} \cdot \boldsymbol{B} \rangle = 0 \qquad \eta = \text{magnetic resistivity}$

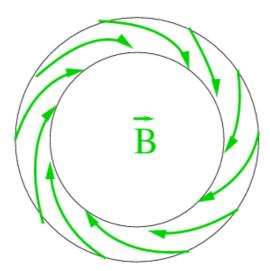
Realizability condition:

Magnetic energy is bound from below by magnetic helicity.

Topologies of Magnetic Fields



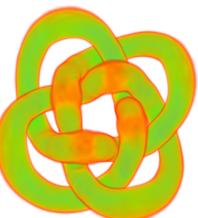
Hopf link



twisted field

magnetic braid

trefoil knot



IUCAA knot

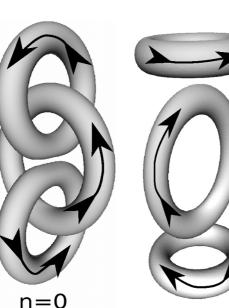
Borromean rings

Interlocked Flux Rings actual linking vs. magnetic helicity

 $H_{\rm M} \neq 0$

$$H_{\rm M}=0$$





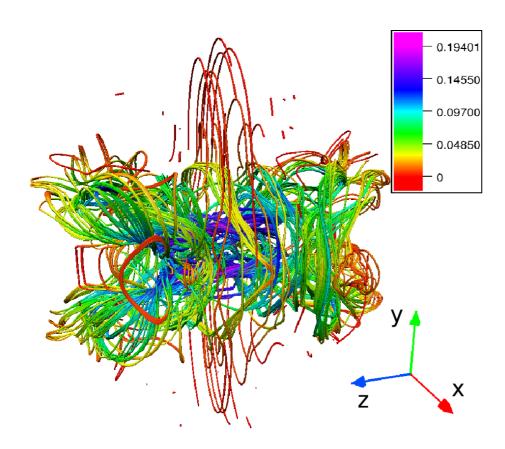
- initial condition: flux tubes
- isothermal compressible gas
- viscous medium
- periodic boundaries

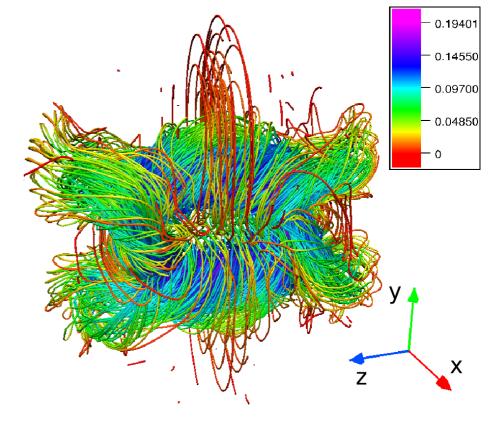
(Del Sordo et al. 2010)

$$\frac{\partial \boldsymbol{A}}{\partial t} = \boldsymbol{U} \times \boldsymbol{B} + \eta \nabla^2 \boldsymbol{A} \qquad \frac{\mathrm{D} \ln \rho}{\mathrm{D} t} = -\boldsymbol{\nabla} \cdot \boldsymbol{U}$$
$$\frac{\mathrm{D} \boldsymbol{U}}{\mathrm{D} t} = -c_{\mathrm{S}}^2 \boldsymbol{\nabla} \ln \rho + \boldsymbol{J} \times \boldsymbol{B} / \rho + \boldsymbol{F}_{\mathrm{visc}}$$

Interlocked Flux Rings

 $\tau = 4$

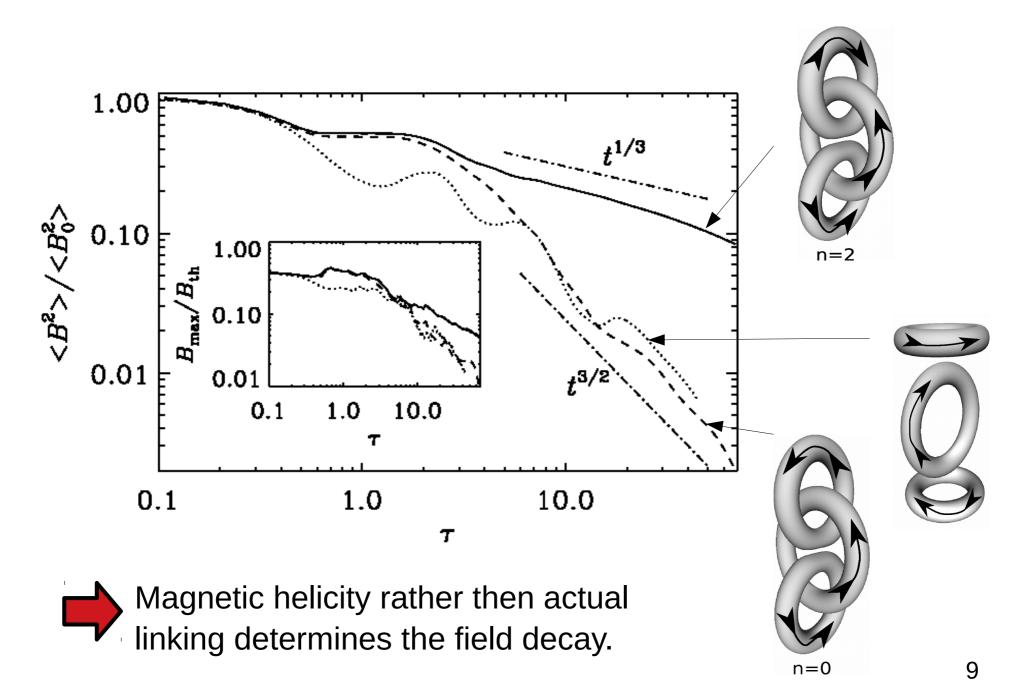




 $H_{\rm M}=0$

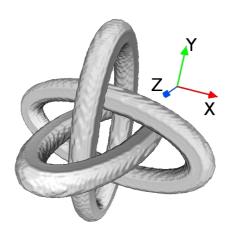
 $H_{\rm M} \neq 0$

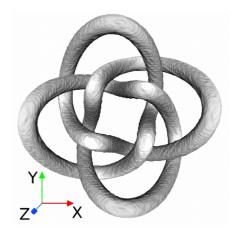
Interlocked Flux Rings



IUCAA Knot and Borromean Rings

- Is magnetic helicity sufficient?
- Higher order invariants?





Borromean rings

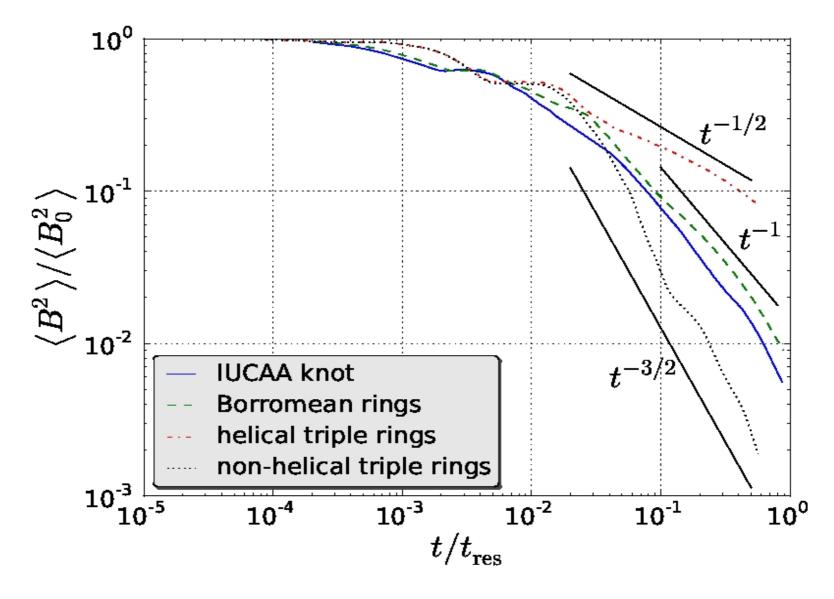
IUCAA knot

(Candelaresi and Brandenburg 2011)

IUCAA = The Inter-University Centre for Astronomy and Astrophysics, Pune, India

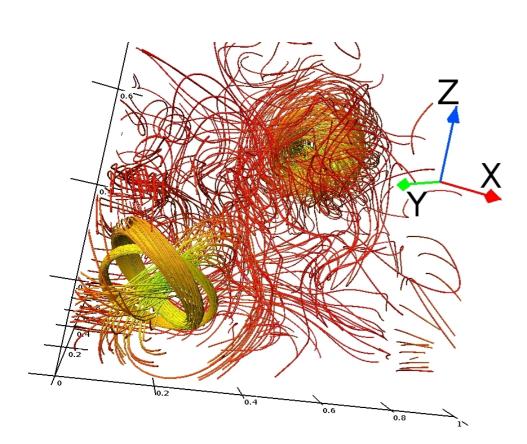
 $H_{\rm M} = 0$

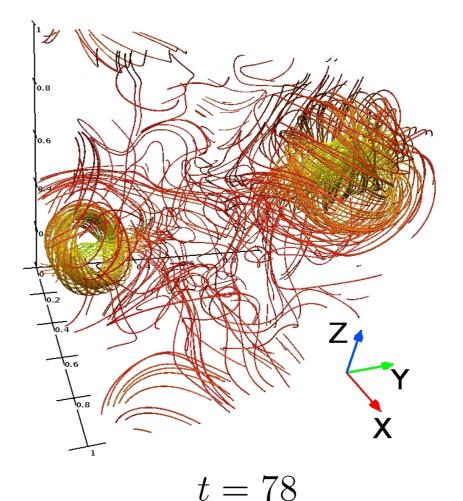
Magnetic Energy Decay



Higher order invariants?

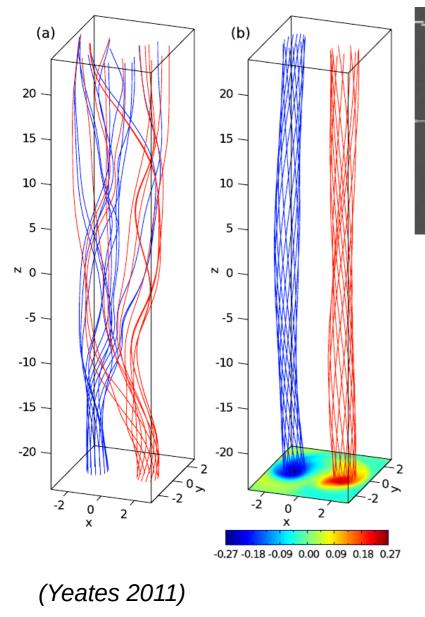
Reconnection characteristics

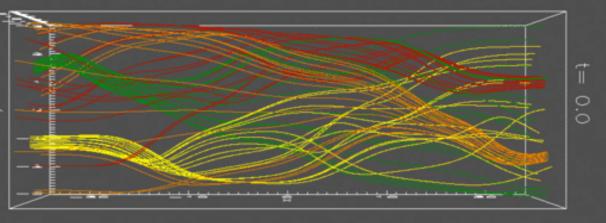




t = 70

Magnetic Braid





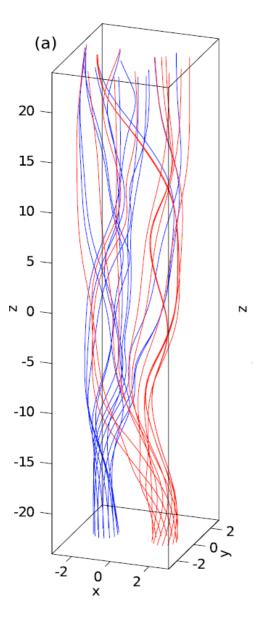
(Wilmot-Smith 2010)

Periodic braid topologically equivalent to Borromean rings.

> Separation into two twisted field regions.

Conserved invariants like fixed point index and field line helicity.

Fixed Point Index



Trace magnetic field lines from z_0 to z. mapping: $(x, y) \rightarrow \mathbf{F}_z(x, y)$ fixed points: $\mathbf{F}_1(x, y) = (x, y)$ **Color coding:** Compare (x, y) with $\mathbf{F}_1(x, y)$: $\mathbf{F}_1(x, y)$ $\mathbf{F}_1^x > x, \quad \mathbf{F}_1^y > y \quad \Longrightarrow \quad \text{red}$ $\mathbf{F}_1^x < x, \quad \mathbf{F}_1^y > y \quad \overleftrightarrow$ yellow $\mathbf{F}_1^x < x, \quad \mathbf{F}_1^y < y \quad \Longrightarrow \quad \text{green}$ (x, y) $\mathbf{F}_1^x > x, \quad \mathbf{F}_1^y < y \quad \Longrightarrow \quad \text{blue}$

(Yeates et al. 2011)

Stability criteria

constraintequilibriumWoltjer (1958):
$$\frac{\partial}{\partial t} \int_{V} \mathbf{A} \cdot \mathbf{B} \, \mathrm{d}V = 0$$
 $\boldsymbol{\nabla} \times \mathbf{B} = \alpha \mathbf{B}$ Taylor (1974): $\frac{\partial}{\partial t} \int_{\tilde{V}} \mathbf{A} \cdot \mathbf{B} \, \mathrm{d}V = 0$ $\boldsymbol{\nabla} \times \mathbf{B} = \underset{\checkmark}{\alpha(a, b)} \mathbf{B}$ constant along field line

V = total volume \tilde{V} = volume along magnetic field line

Taylor state not reached due to fixed point conservation.

(Yeates et al. 2011)

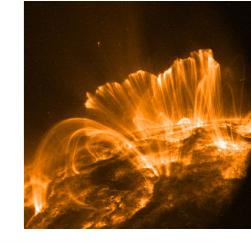
Force-Free Magnetic Fields

Solar corona: low plasma beta and magnetic resistivity

Force-free magnetic fields

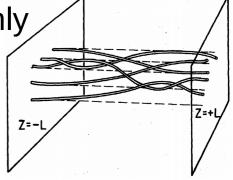
Minimum energy state

 $(\nabla \times \mathbf{B}) \times \mathbf{B} = 0 \iff \nabla \times \mathbf{B} = \alpha \mathbf{B}$



NASA

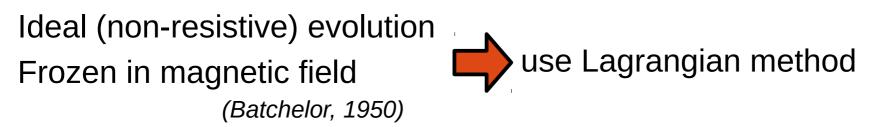
Parker: Equilibrium with the same topology exists only if the twist varies uniformly along the field lines. Strongly braided fields -> topological dissipation. (Parker 1972)



Braided fields from foot point motion complex enough. (Parker 1983)

Solutions possible with filamentary current structures (sheets). (Mikic 1989, Low 2010)

Methods



Preserves topology and divergence-freeness.

Magneto-frictional term: $\mathbf{u} = \gamma \mathbf{J} \times \mathbf{B}$ $\mathbf{J} = \nabla \times \mathbf{B}$

$$rightarrow rac{\mathrm{d} E_{\mathrm{M}}}{\mathrm{d} t} < 0$$
 (Craig and Sneyd 1986)

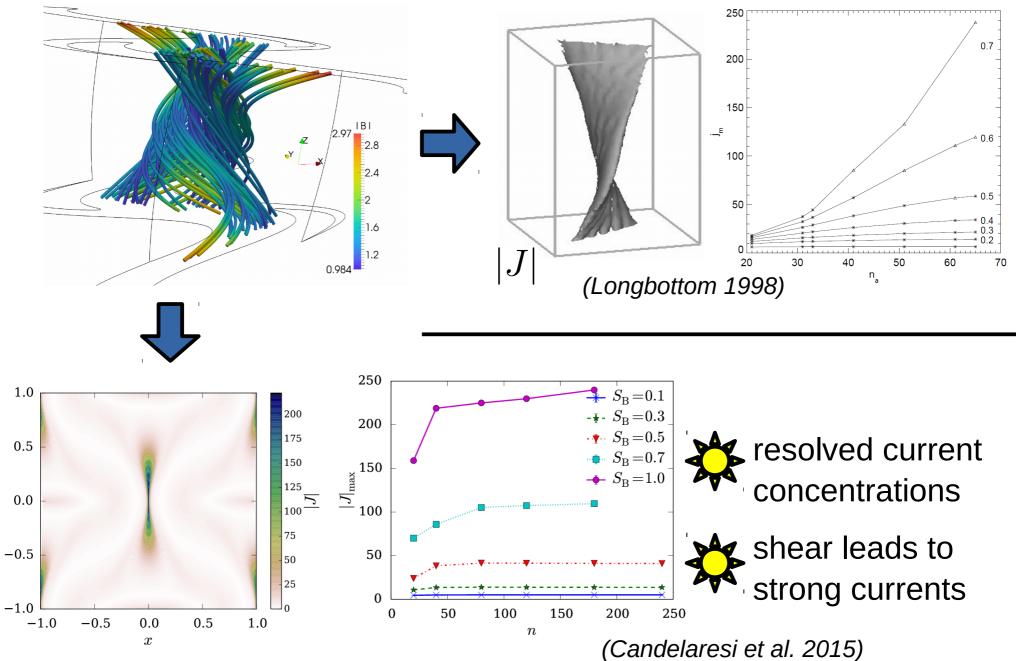
Fluid with pressure: $\mathbf{u} = \mathbf{J} \times \mathbf{B} - \beta \nabla \rho$

Fluid with inertia: $d\mathbf{u}/dt = (\mathbf{J} \times \mathbf{B} - \nu \mathbf{u} - \beta \nabla \rho)/\rho$

For $\mathbf{J} = \nabla \times \mathbf{B}$ use mimetic numerical operators. *(Hyman, Shashkov 1997)*

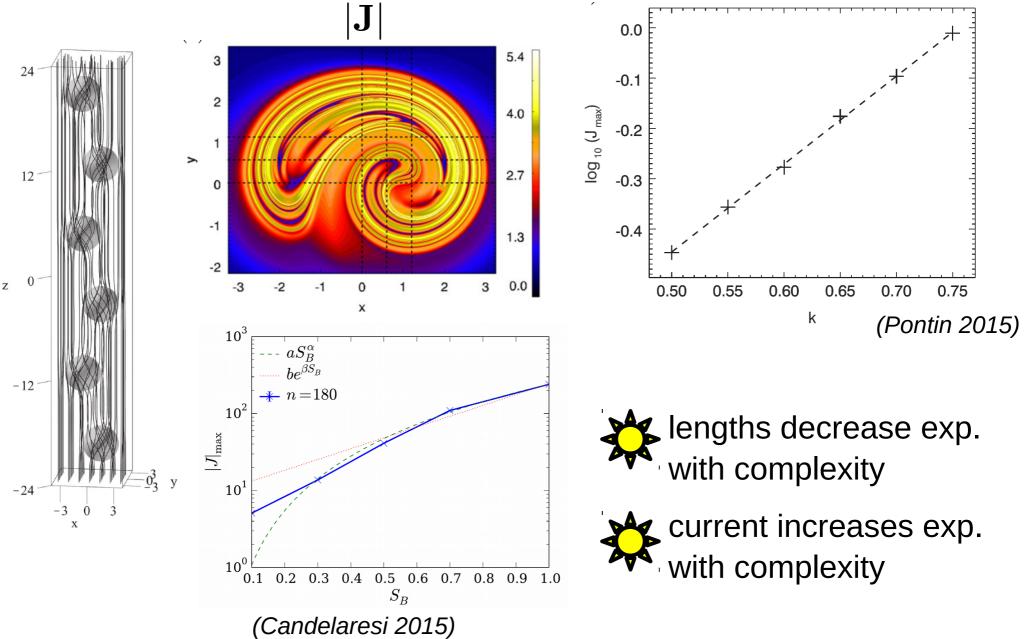
Own GPU code GLEMuR: (https://github.com/SimonCan/glemur). (Candelaresi et al. 2014)

Distorted Magnetic Fields

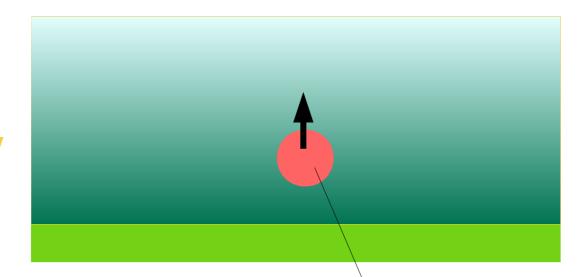


y

Exponential Increase in Current



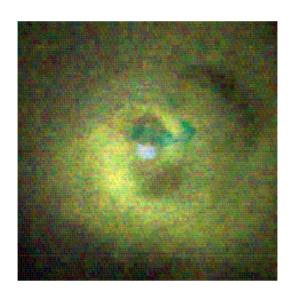
Intergalactic Bubbles



stratified medium

galactic disc

hot, under-dense bubble $pprox 30 \mathrm{kpc}$



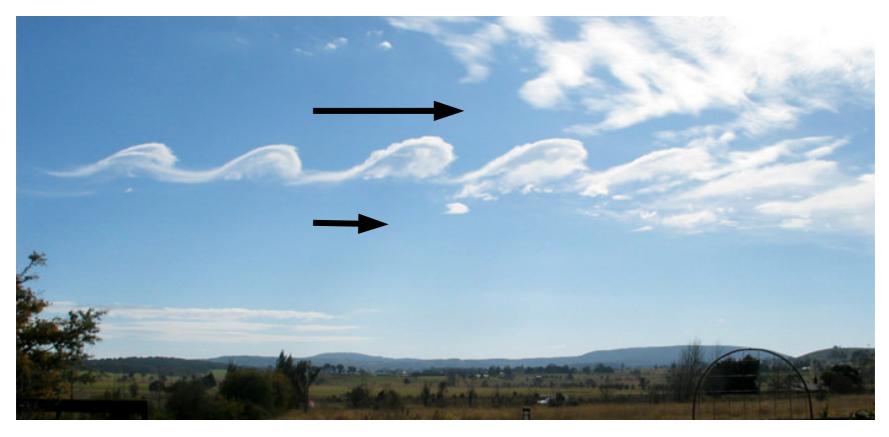
 \mathbf{F}_{g}

(Fabian et al. 2000)

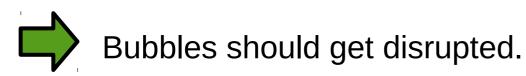
Bubbles rise buoyantly through density difference.

Bubbles' age is several tens of millions of years.

Kelvin-Helmholtz Instability



(GRAHAMUK/Wikimedia Commons)



What is the reason for their stability?

Numerical Experiments

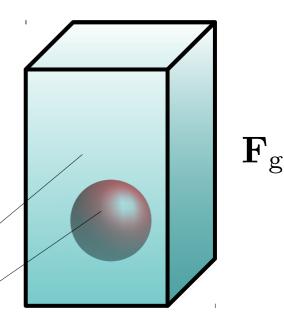
Full resistive magnetohydrodynamics simulations with the PencilCode.

 $\frac{\partial \mathbf{A}}{\partial t} = \mathbf{U} \times \mathbf{B} + \eta \nabla^2 \mathbf{A}$

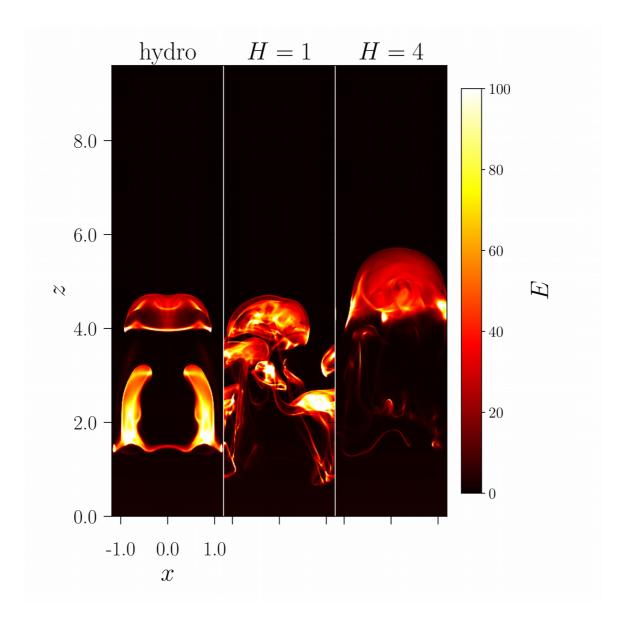
$$\frac{\mathrm{D}\mathbf{U}}{\mathrm{D}t} = -c_{\mathrm{S}}^{2}\nabla\left(\frac{\ln T}{\gamma}\ln\rho\right) + \mathbf{J}\times\mathbf{B}/\rho - \mathbf{g} + \mathbf{F}_{\mathrm{visc}}$$

$$\frac{\partial \ln T}{\partial t} = -\mathbf{U} \cdot \nabla \ln T - (\gamma - 1)\nabla \cdot \mathbf{U} + \frac{1}{\rho c_V T} \left(\nabla \cdot (K\nabla T) + \eta \mathbf{J}^2 + 2\rho\nu \mathbf{S} \otimes \mathbf{S} + \zeta \rho (\nabla \cdot \mathbf{U})^2\right)$$

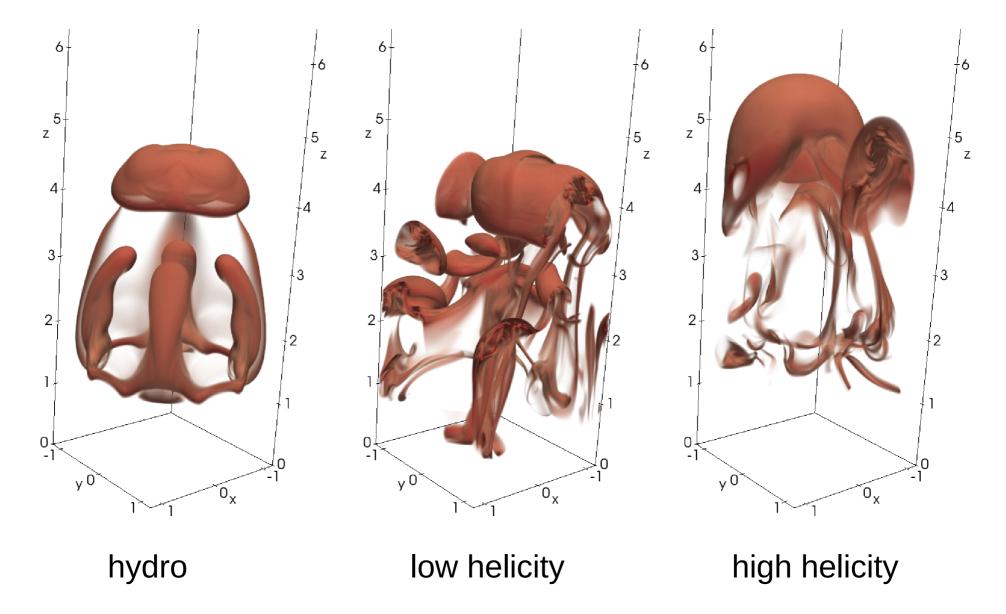
 $\frac{D \ln \rho}{Dt} = -\nabla \cdot \mathbf{U} \qquad \begin{array}{c} \text{stratified medium} \\ \text{hot, under-dense bubble} \end{array}$



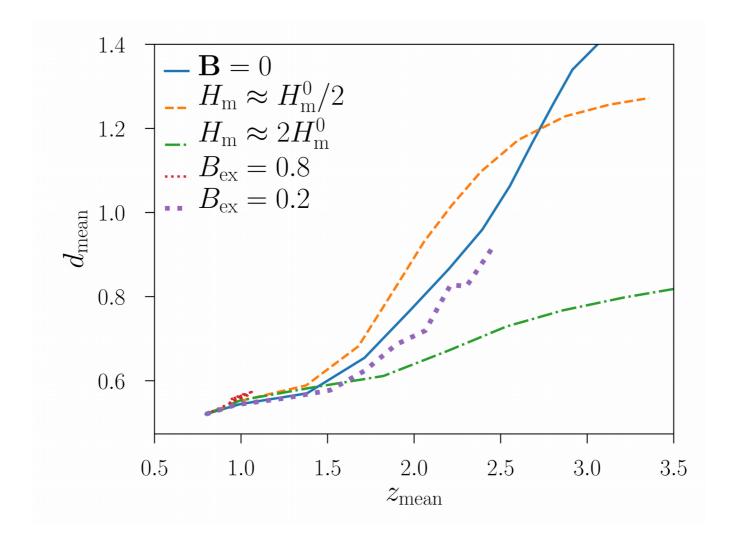
Thermal Emission



Temperature Iso-Surfaces



Bubble Coherence

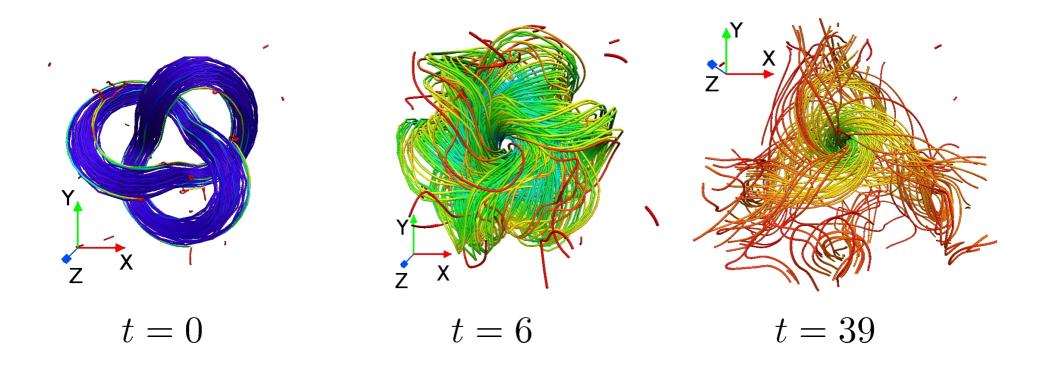


Helical magnetic fields can stabilize the bubbles.

Conclusions

- Magnetic helicity as constraint on plasma dynamics.
- Further topological constraint: fixed point index, field line helicity, quadratic helicities.
- Topology preserving relaxation of magnetic fields.
- Current increases strongly with field complexity.
- Ideal relaxation of knots and braids.

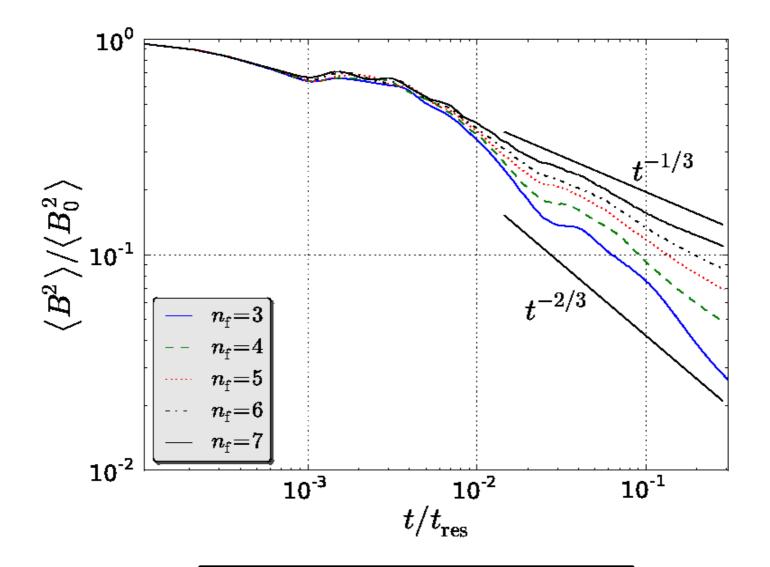
N-foil knots



ightarrow Magnetic helicity is approximately conserved.

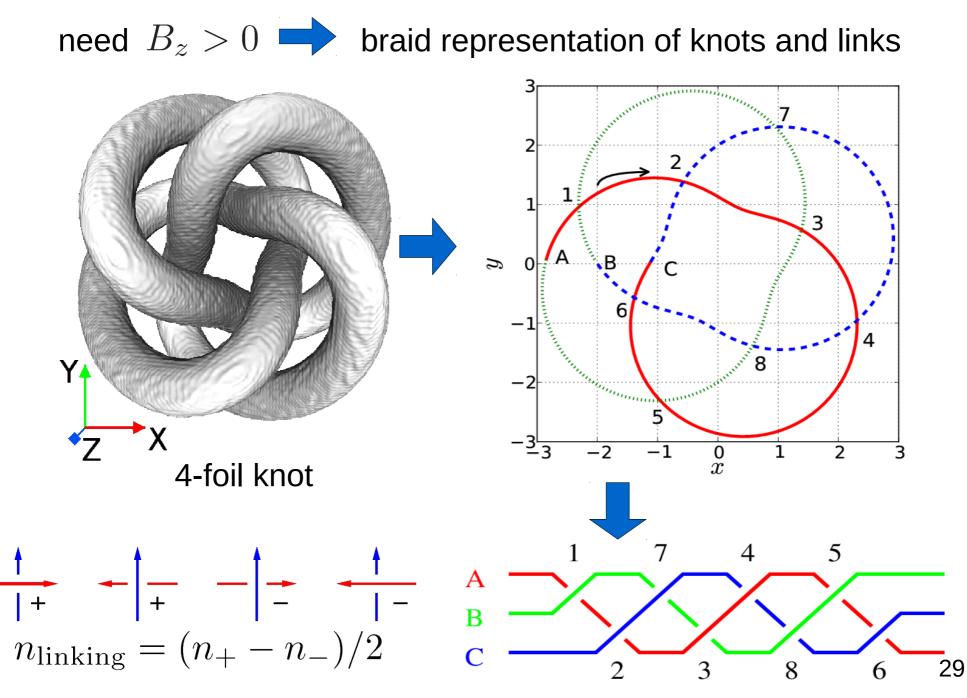
> Self-linking is transformed into twisting after reconnection.

N-foil knots



Slower decay for higher $n_{\rm f}$.

Braid Representation



Magnetic Braid Configurations

AAA (trefoil knot)

AABB (Borromean rings)

Field Line Tracing



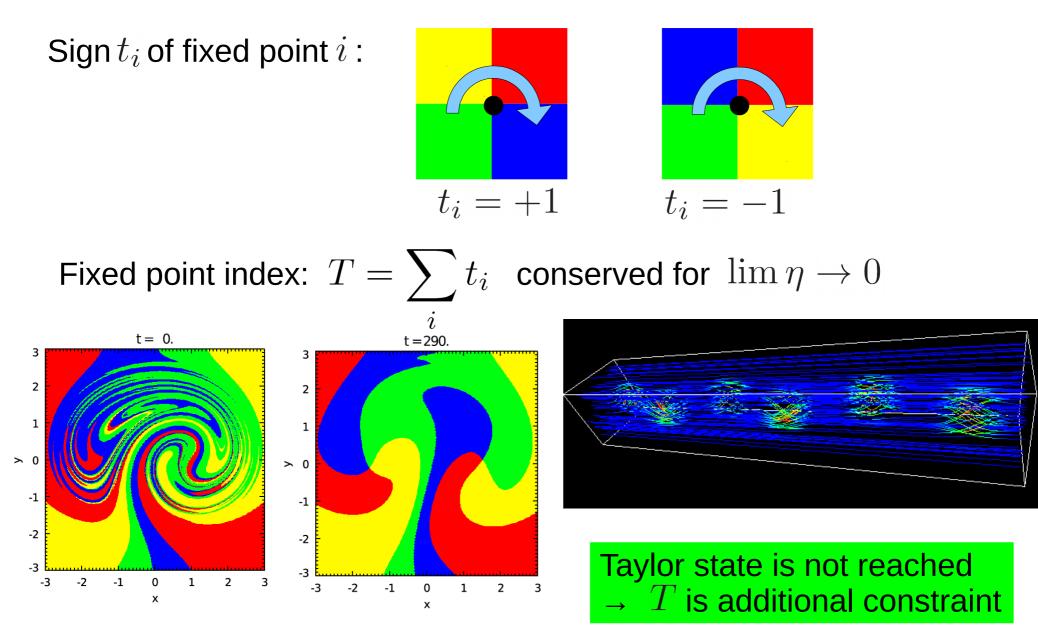
Generalized flux function:

$$\mathcal{A}(x,y) = \int_{z=0}^{z=1} \mathbf{A} \cdot d\mathbf{l}$$

Reconnection rate:

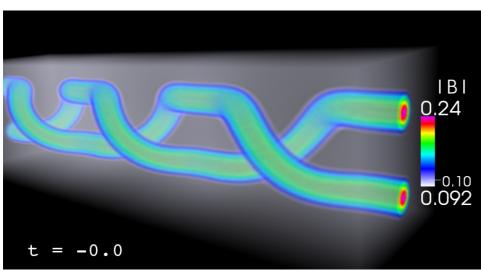
$$\sum_{i} \frac{\mathrm{d}\mathcal{A}(\mathbf{x}_{i})}{\mathrm{d}t}$$

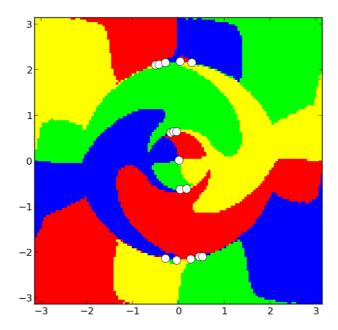
Fixed Point Index



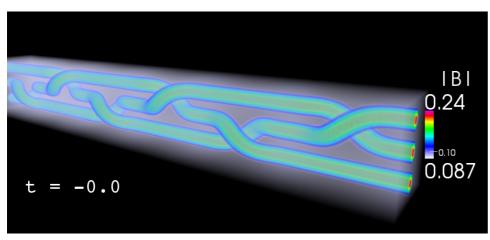
Knots as Braids

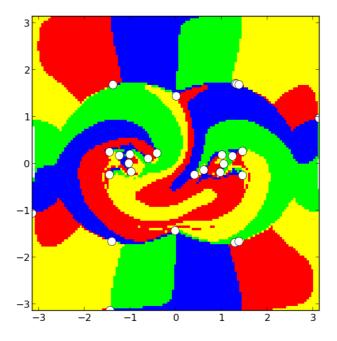
AAA, trefoil knot





AbAbAb, Borromean rings





Field's Environment

Magnetically dominated:

magnetic pressure >> thermal pressure

 $B^{2}/(2\mu_{0}) \gg nk_{\rm B}T$ $\beta = 2\mu_{0} \frac{nk_{\rm B}T}{B^{2}} \ll 1 \qquad \text{Solar corona:} \quad \beta \approx 0.01$

Frozen-in magnetic flux:

magnetic resistivity small: $t_{dissipation} \gg t_{dynamical}$ Magnetic field is *frozen-in* to the fluid. Fluid Motions Batchelor (1950) Batchelor (1950)

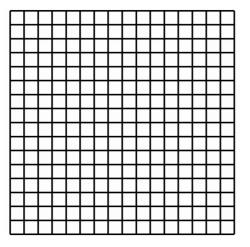
Ideal Field Relaxation Ideal induction eq.: $\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{u} \times \mathbf{B}) = \mathbf{0}$ Frozen in magnetic field. (Batchelor, 1950)

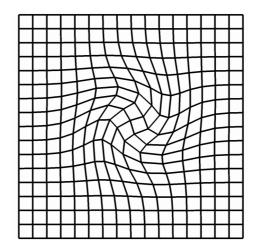
But: Numerical diffusion in finite difference Eulerian codes. (*Rembiasz, 2017*)

Solution: Lagrangian description of moving fluid particles:

 $\mathbf{x}(\mathbf{X},0) = \mathbf{X}$

$$\mathbf{x}(\mathbf{X},t)$$





Ideal Field Relaxation

Field evolution:
$$B_i(\mathbf{X}, t) = \frac{1}{\Delta} \sum_{j=1}^3 \frac{\partial x_i}{\partial X_j} B_j(\mathbf{X}, 0)$$

$$\Delta = \det\left(\frac{\partial x_i}{\partial X_j}\right)$$

Preserves topology and divergence-freeness.

Grid evolution:
$$\frac{\partial \mathbf{x}(\mathbf{X}, t)}{\partial t} = \mathbf{u}(\mathbf{x}(\mathbf{X}, t), t)$$

Magneto-frictional term: $\mathbf{u} = \gamma \mathbf{J} \times \mathbf{B}$ $\mathbf{J} = \nabla \times \mathbf{B}$

$$rightarrow rac{\mathrm{d}E_{\mathrm{M}}}{\mathrm{d}t} < 0$$
 (Craig and Sneyd 1986)

Numerical Curl Operator

Compute $\mathbf{J} = \nabla \times \mathbf{B}$ on a distorted grid:

$$\begin{split} \frac{\partial B_i}{\partial x_j} &= X_{\alpha,j} (x_{i,\alpha\beta} B^0_\beta \Delta^{-1} + x_{i,\beta} B^0_{\beta,\alpha} \Delta^{-1} - x_{i,\beta} B^0_\beta \Delta^{-2} \Delta_{,\alpha}) \\ B^0_i &= B_i(0) \end{split}$$
 (Craig and Sneyd 1986)

Multiplication of several terms leads to high numerical errors.

Current not divergence free: $abla \cdot \mathbf{J}
eq 0$

Only reaching a certain force-freeness. (Pontin et al. 2009)

Mimetic Numerical Operators

$$I = \int_{U} \mathbf{J} \cdot \mathbf{n} \, \mathrm{d}S = \oint_{C} \mathbf{B} \cdot \mathrm{d}\mathbf{r}$$

Discretized:
$$I \approx \mathbf{J}(\mathbf{X}_{ijk}) \cdot \mathbf{n}A = \sum_{r=1}^{4} \mathbf{B}_{r} \cdot \mathrm{d}\mathbf{x}_{r}$$

$$\mathbf{J}(\mathbf{X}_{U}) \approx \mathbf{J}(\mathbf{X}_{ijk}), \quad \mathbf{X}_{U} \in U$$

3 planes will give 3 l.i. normal vectors:
$$I^{p} = \mathbf{J}(\mathbf{X}_{ijk}) \cdot \mathbf{n}^{p} = \sum_{r=1}^{4} \mathbf{B}_{r}^{p} \cdot \mathrm{d}\mathbf{x}_{r}/A^{p}$$

Inversion yields \mathbf{J} with $\nabla \cdot \mathbf{J} = 0$. (Hyman, Shashkov 1997)

38