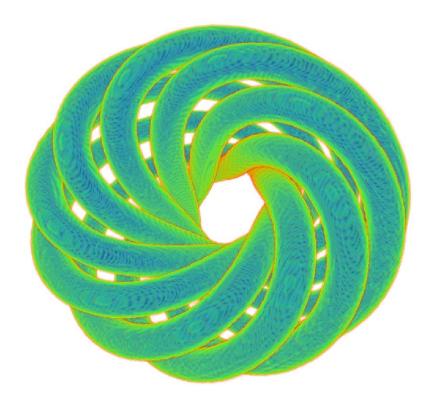
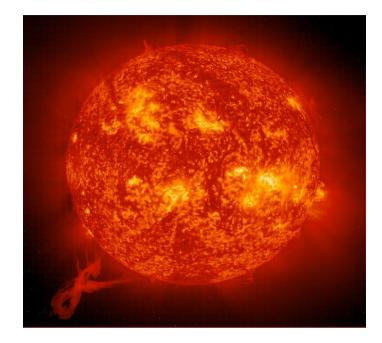


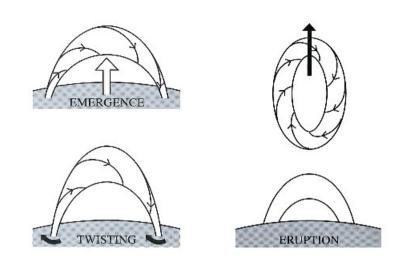
Topological aspects in magnetic field dynamics

Simon Candelaresi

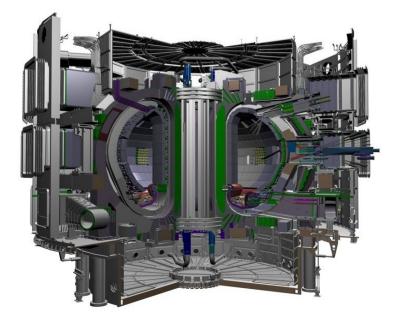


Twisted magnetic fields





Twisted fields are more likely to erupt (Canfield et al. 1999).



Twist increases the stability of magnetic fields in tokamaks.

Magnetic helicity

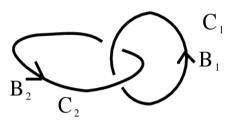
$$H_{\rm M} = \int_{V} \mathbf{A} \cdot \mathbf{B} \, \mathrm{d}V = 2n\phi_1\phi_2$$
$$\phi_i = \int_{S_i} \mathbf{B} \cdot \mathrm{d}\mathbf{S}$$

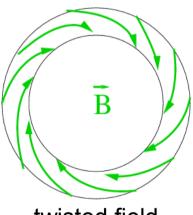
Realizability condition: $E_{\rm m}(k) \ge k |H(k)|/2\mu_0$

Magnetic energy is bound from below by magnetic helicity.

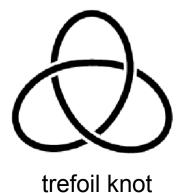
magnetic helicity conservation

$$\frac{\mathrm{Re}_{\mathrm{M}} \to \infty}{\mathrm{d}H_{\mathrm{M}}} = 0$$





twisted field

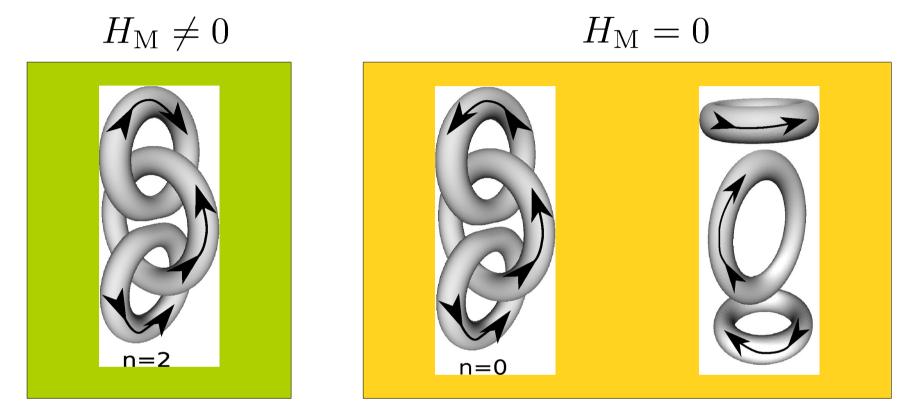


Stability criteriaIdeal MHD:
$$\mu = 0$$
Induction equation: $\frac{\partial \mathbf{B}}{\partial t} = \mathbf{\nabla} \times (\mathbf{U} \times \mathbf{B})$ constraintequilibriumWoltjer (1958): $\frac{\partial}{\partial t} \int_{V} \mathbf{A} \cdot \mathbf{B} \, dV = 0$ $\mathbf{\nabla} \times \mathbf{B} = \alpha \mathbf{B}$ Taylor (1974): $\frac{\partial}{\partial t} \int_{\tilde{V}} \mathbf{A} \cdot \mathbf{B} \, dV = 0$ $\mathbf{\nabla} \times \mathbf{B} = \alpha(a, b) \mathbf{B}$
constant along field line

Creation of magnetic field and magnetic helicity

Mean-field decomposition: $\mathbf{B} = \overline{\mathbf{B}} + \mathbf{b}$ $\partial_t \overline{\mathbf{B}} = \eta \nabla^2 \overline{\mathbf{B}} + \nabla \times (\overline{\mathbf{U}} \times \overline{\mathbf{B}} + \overline{\boldsymbol{\mathcal{E}}})$ Induction equation: Electromotive force: $\overline{\boldsymbol{\mathcal{E}}} = \overline{\mathbf{u} \times \mathbf{b}} = \alpha \overline{\mathbf{B}} - \eta_{t} \nabla \times \mathbf{B}$ α effect: $\alpha = \alpha_{\rm K} + \alpha_{\rm M} = -\tau \overline{\boldsymbol{\omega} \cdot \mathbf{u}} / 3 + \mathbf{j} \cdot \mathbf{b} / (3\overline{\rho})$ $H_{B}(k)$ Inverse cascade: t=200 10³, t=80 (0^2) Large- and small-scale t=20 magnetic helicity of opposite 10 sign is created. 10⁻¹ 10⁻² Leorat et al., 1975 5 0016 0.16 1.6 16

Interlocked flux rings

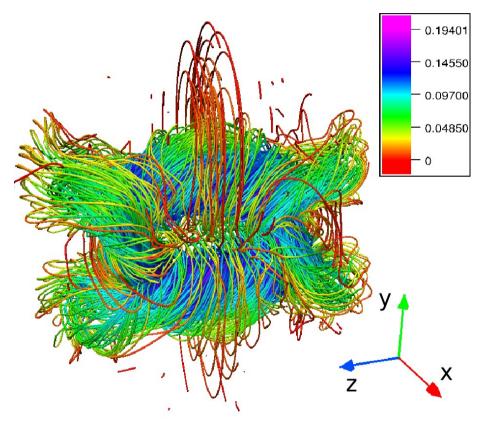


- Isothermal compressible gas
- Viscous medium
- Periodic boundaries

Interlocked flux rings

0.19401 - 0.14550 0.09700 - 0.04850 0 Х

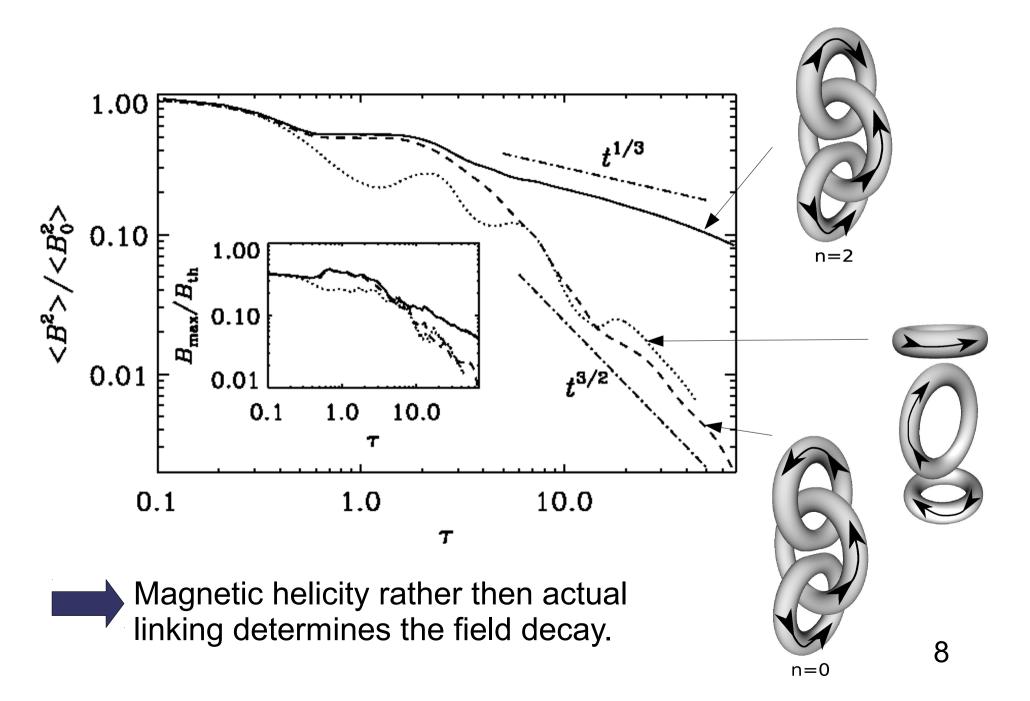
 $\tau = 4$

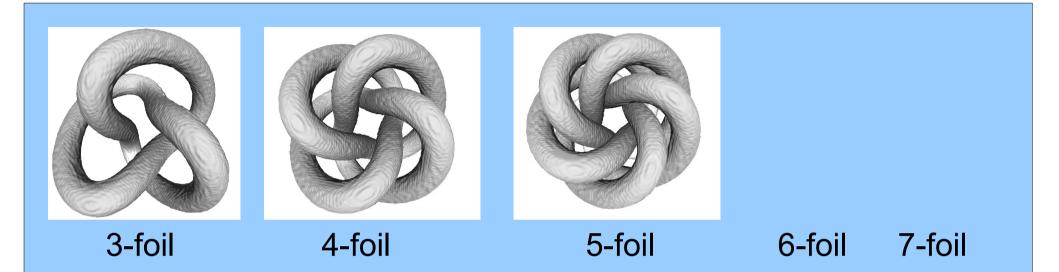


 $H_{\rm M}=0$

 $H_{\rm M} \neq 0$

Interlocked flux rings



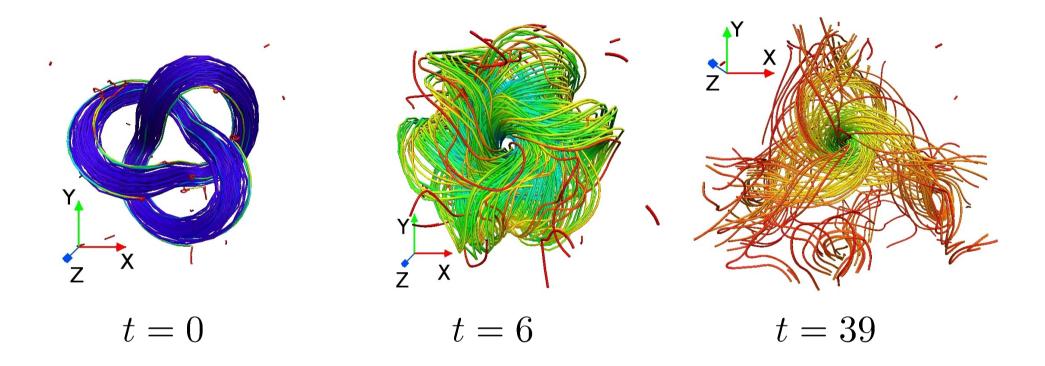


$$\overbrace{\neq}^{\star} \neq \overbrace{\qquad}^{t} x(s) = \left(\begin{array}{c} (C + \sin sn_{\rm f}) \sin[s(n_{\rm f} - 1)] \\ (C + \sin sn_{\rm f}) \cos[s(n_{\rm f} - 1)] \\ D \cos sn_{\rm f} \end{array} \right)$$

cinquefoil knot

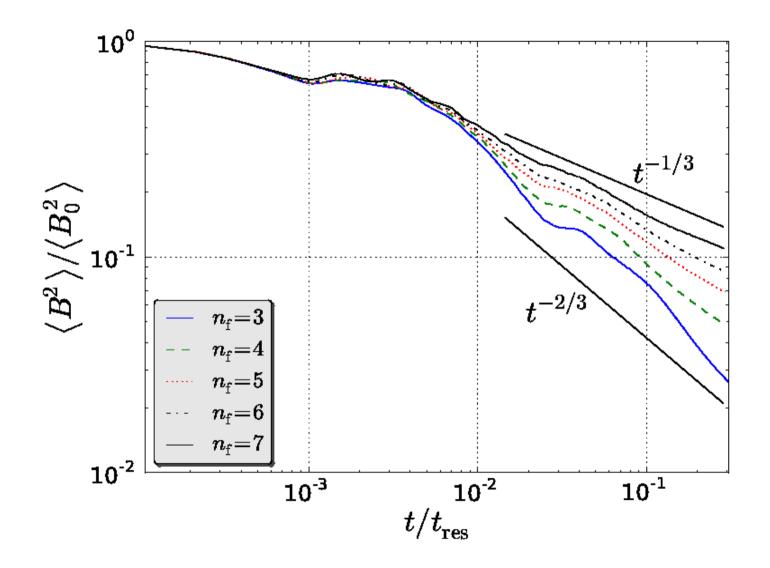
* from Wikipedia, author: Jim.belk

9

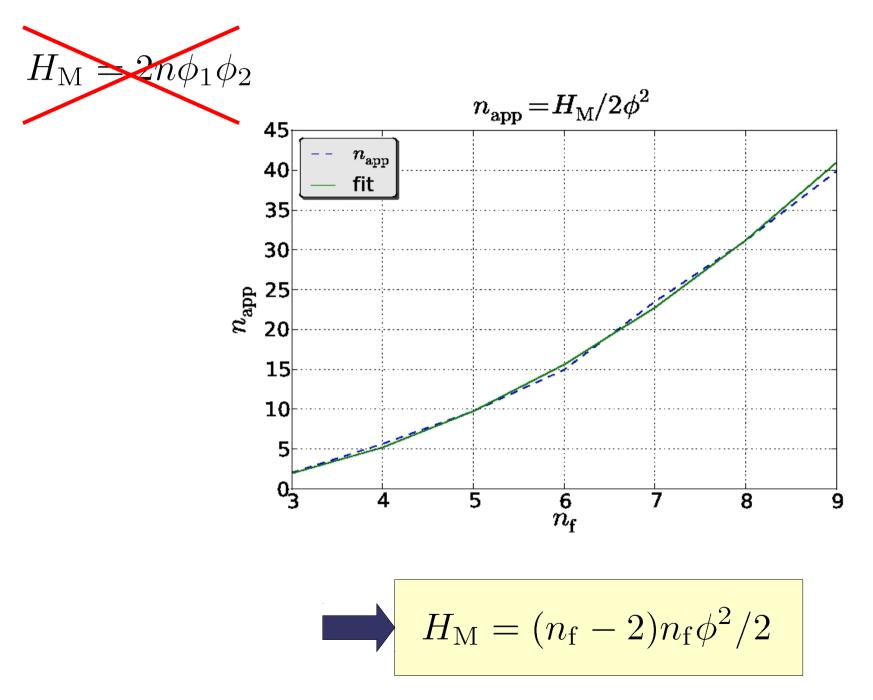


Magnetic helicity is approximately conserved.

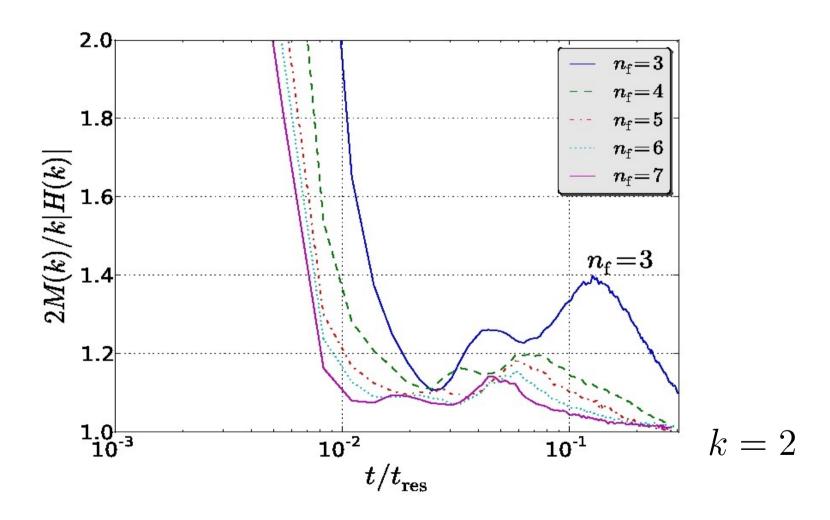
Self-linking is transformed into twisting after reconnection.



Slower decay for higher $n_{\rm f}$.

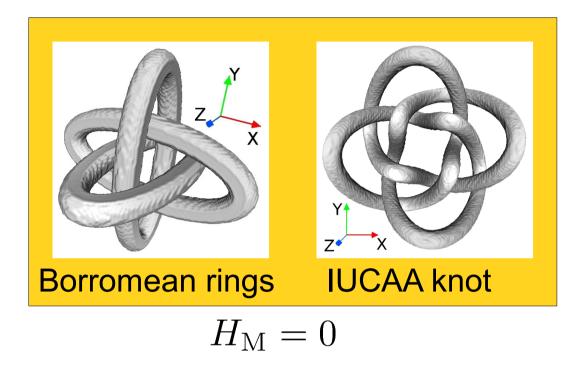


2M(k)/(|H(k)|k)



Realizability condition more important for high $n_{\rm f}$.

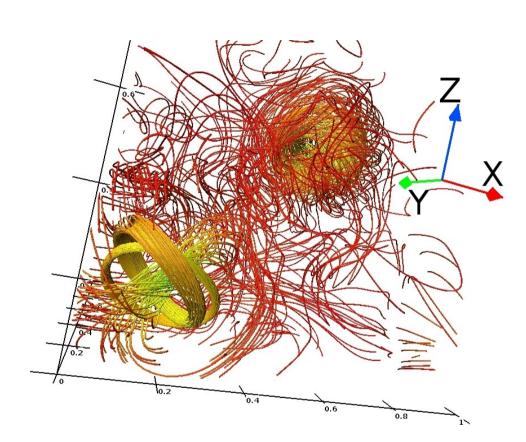
IUCAA knot and Borromean rings



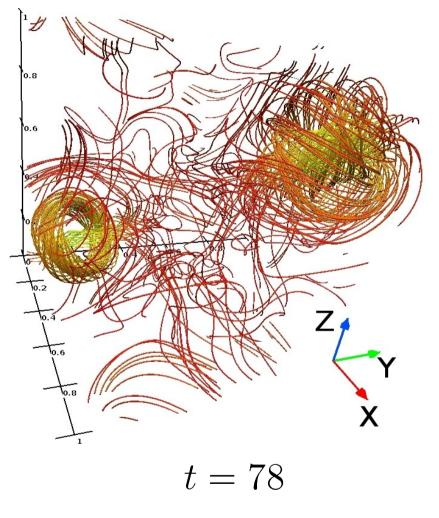
- Is magnetic helicity sufficient?
- Higher order invariants?

IUCAA = The Inter-University Centre for Astronomy and Astrophysics, Pune, India 14

Reconnection characteristics



t = 70

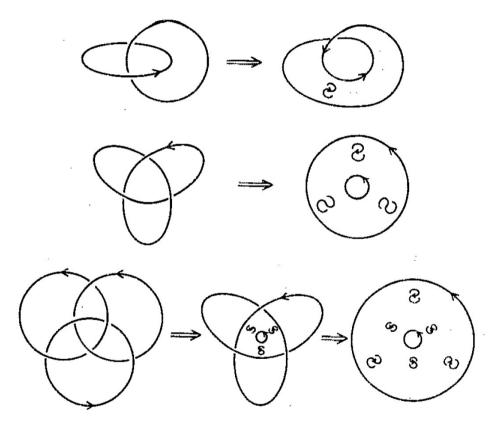


2 twisted rings

3 rings Twisted ring + interlocked rings

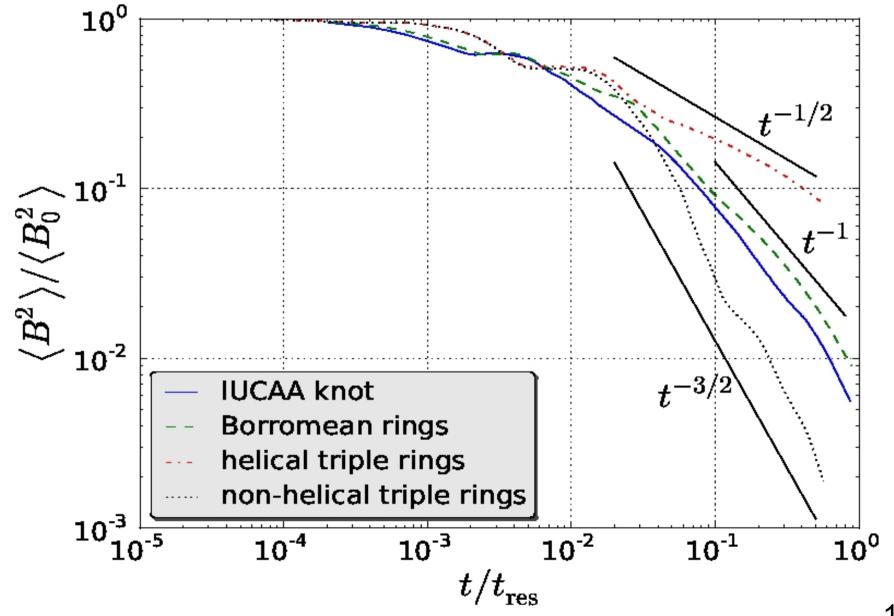
Reconnection characteristics

Conversion of linking into twisting

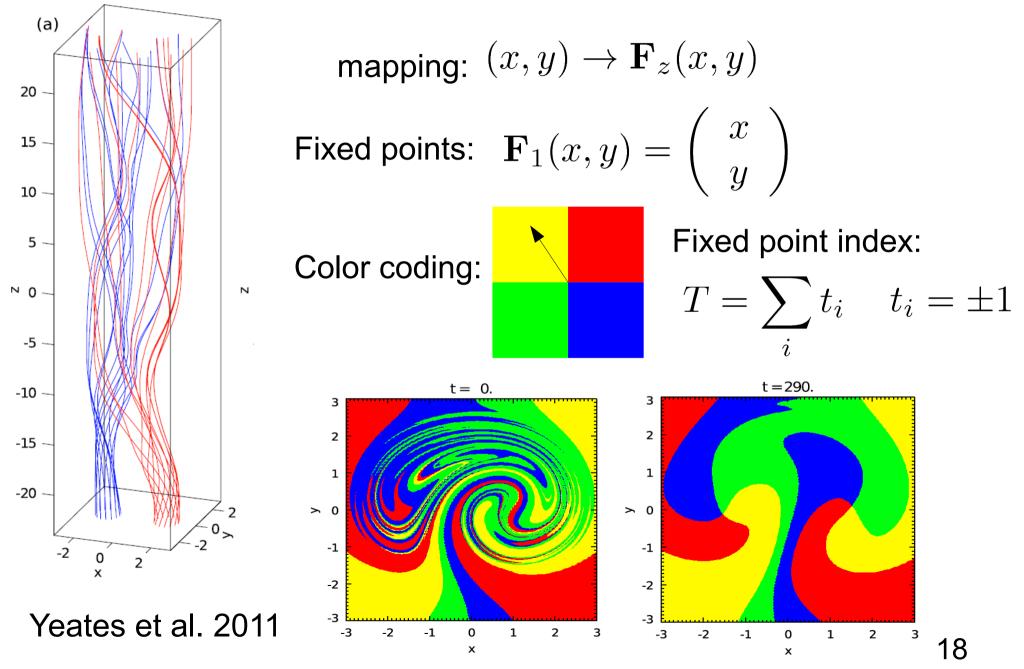


Ruzmaikin and Akhmetiev (1994)

Magnetic energy decay



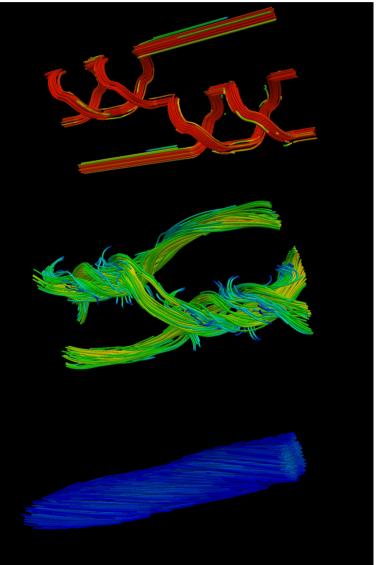
Fixed point index



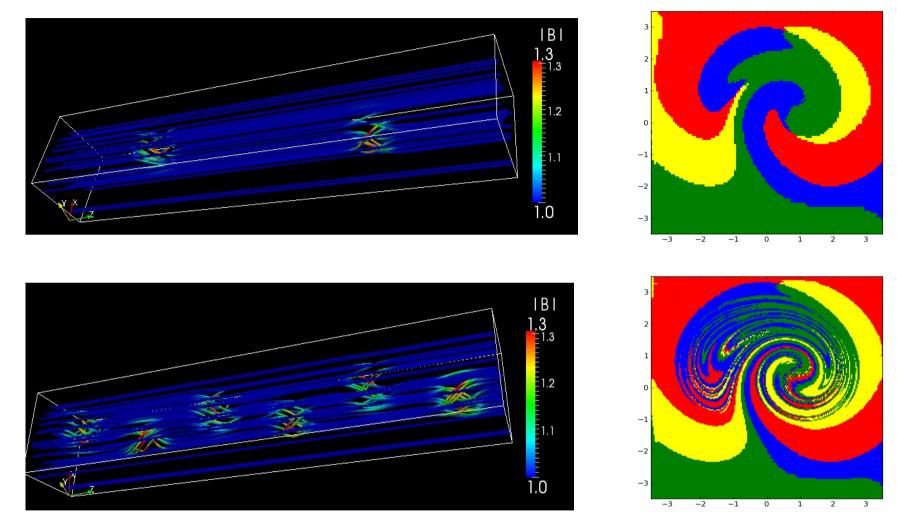
Magnetic braid configurations

AAA (trefoil knot)

AABB (Borromean rings)



Field line tracing



Generalized flux function:

$$\mathcal{A}(x,y) = \int_{z=0}^{z=1} \mathbf{A} \cdot d\mathbf{l}$$

Reconnection rate:

$$\sum_{i} \frac{\mathrm{d}\mathcal{A}(\mathbf{x}_i)}{\mathrm{d}t}$$

Conclusions

- Topology can constrain field decay.
- Stronger packing for high $n_{\rm f}$ leads to different decay slopes.
- Higher order invariants?
- Isolated helical structures inhibit energy decay.
- Reconsider realizability condition.
- Apply fixed point method to knots (braids).
- Monitor the reconnection rate.

References

Canfield et al. 1999

Canfield, R. C., Hudson, H. S., and McKenzie, D. E. Sigmoidal morphology and eruptive solar activity. *Geophys. Res. Lett.*, 26(6):627-630, 1999

Woltjer 1958

Woltjer, L. A Theorem on Force-Free Magnetic Fields. *Proceedings of the National Academy of Sciences of the United States of America*, 44(6):489-491, 1958

Taylor 1974

Taylor, J. B. Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields. *Physical Review Letters*, 33:1139-1141, 1974

Leorat et al., 1975

Leorat, J., Frisch, U., and Pouquet, A. Helical magnetohydrodynamic turbulence and the nonlinear dynamo problem. *In V. Canuto, editor, Role of Magnetic Fields in Physics and Astrophysics, volume 257 of New York Academy Sciences Annals*, pages 173-176, 1975 22

References

Candelaresi and Brandenburg 2011

Simon Candelaresi, and Axel Brandenburg. Decay of helical and non-helical magnetic knots. *Phys. Rev. E*, 84, 016406, 2011

Del Sordo et al. 2010

Fabio Del Sordo, Simon Candelaresi, and Axel Brandenburg. Magnetic-field decay of three interlocked flux rings with zero linking number. *Phys. Rev. E*, 81:036401, Mar 2010.

Ruzmaikin and Akhmetiev 1994

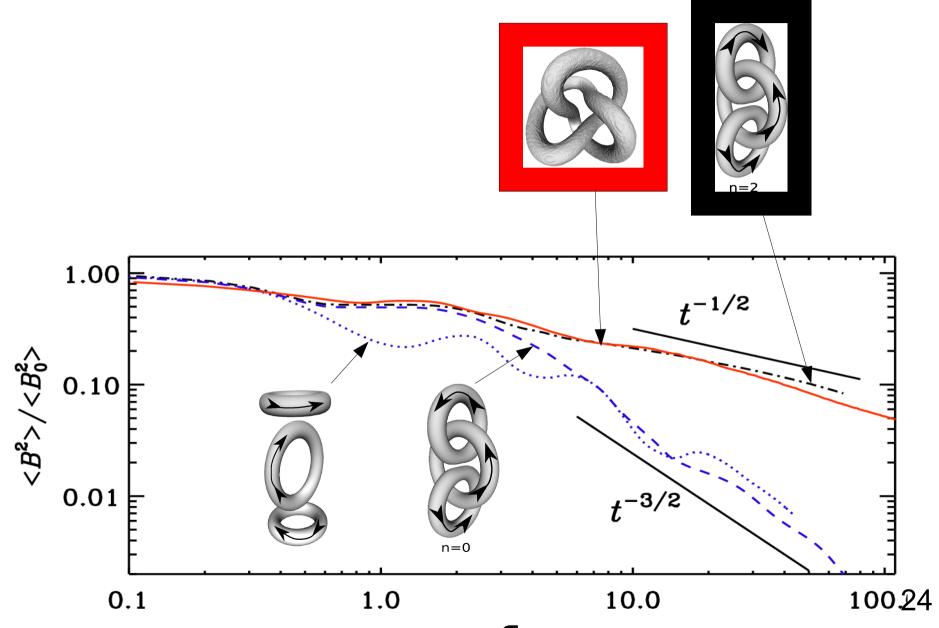
A. Ruzmaikin and P. Akhmetiev. Topological invariants of magnetic fields, and the effect of reconnections. *Phys. Plasmas*, vol. 1, pp. 331–336, 1994.

Yeates et al. 2011

Yeates, A. R., Hornig, G. and Wilmot-Smith, A. L. Topological Constraints on Magnetic Relaxation. *Phys. Rev. Lett.* 105, 085002, 2010

www.nordita.org/~iomsn

Magnetic energy decay

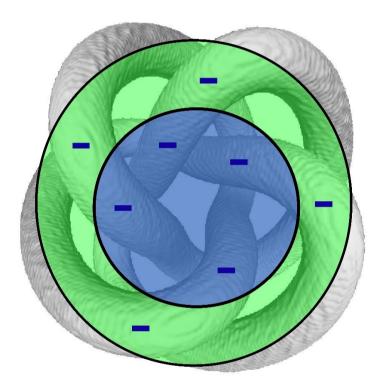


Simulations

- $\bullet 256^3$ mesh point
- Isothermal compressible gas
- Viscous medium
- Periodic boundaries

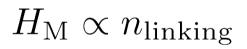
$$\frac{\partial \mathbf{A}}{\partial t} = \mathbf{U} \times \mathbf{B} + \eta \nabla^2 \mathbf{A}$$
$$\frac{D\mathbf{U}}{Dt} = -c_{\mathrm{S}}^2 \nabla \ln \rho + \mathbf{J} \times \mathbf{B} / \rho + \mathbf{F}_{\mathrm{visc}}$$
$$\frac{D \ln \rho}{Dt} = -\nabla \cdot \mathbf{U}$$

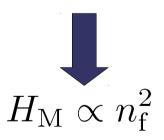
Linking number



Sign of the crossings for the 4-foil knot

Number of crossings increases like $n_{\rm f}^2$





Helicity vs. energy

