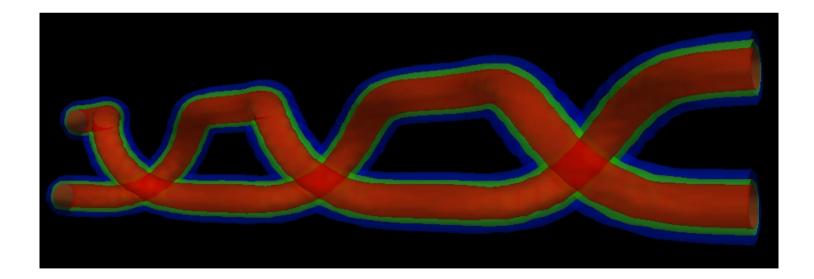
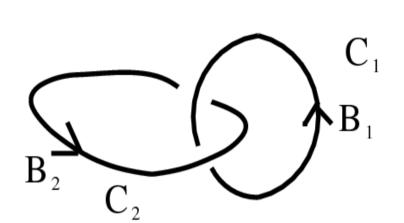
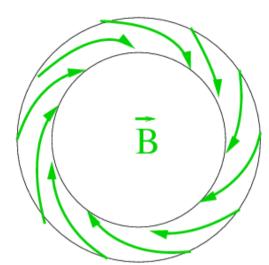
Topological constraints in magnetic field relaxation Stockholm University



Topologies of Magnetic Fields



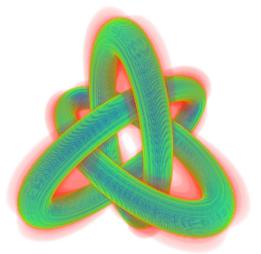
Hopf link

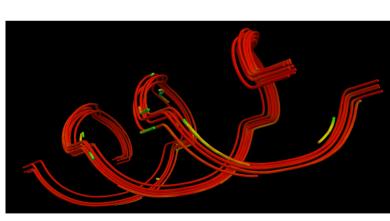


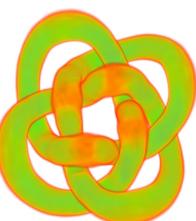
twisted field



trefoil knot







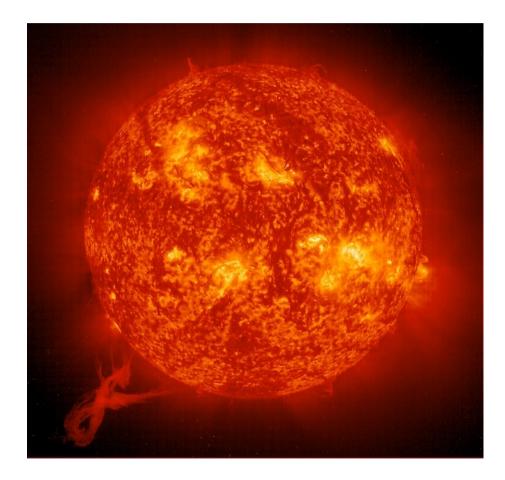
Borromean rings

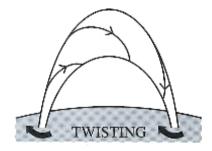
magnetic braid

IUCAA knot

See **IIan Roth's** poster for more knots and knot theory.

Twisted Magnetic Fields





Twisted fields are more likely to erupt (*Canfield et al. 1999*).

Tuesday's talk by Zhang Mei

Magnetic Helicity

Measure for the topology:

$$H_{\rm M} = \int_{V} \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V = 2n\phi_{1}\phi_{2}$$
$$\boldsymbol{\nabla} \times \boldsymbol{A} = \boldsymbol{B} \quad \phi_{i} = \int_{S_{i}} \boldsymbol{B} \cdot \mathrm{d}\boldsymbol{S}$$

$$C_1$$

 $n = \operatorname{number} \operatorname{of} \operatorname{mutual} \operatorname{linking}$

Conservation of magnetic helicity: $\lim_{\eta \to 0} \frac{\partial}{\partial t} \langle \boldsymbol{A} \cdot \boldsymbol{B} \rangle = 0 \qquad \eta = \text{magnetic resistivity}$

Realizability condition:

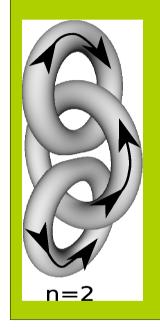
 $E_{\rm m}(k) \ge k |H(k)|/2\mu_0$

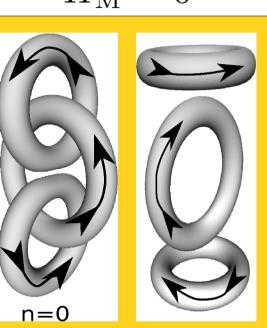
Magnetic energy is bound from below by magnetic helicity.

Interlocked Flux Rings actual linking vs. magnetic helicity

 $H_{\rm M} \neq 0$

$$H_{\rm M}=0$$





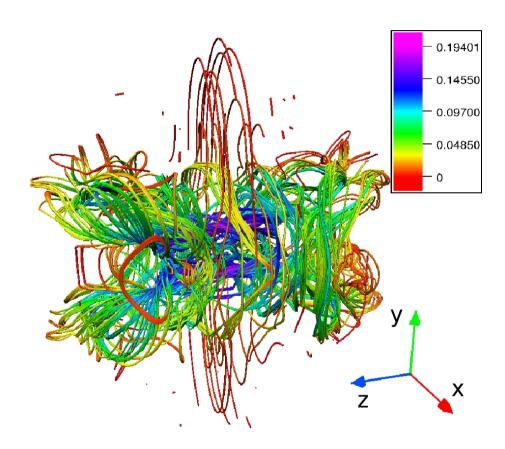
- initial condition: flux tubes
- isothermal compressible gas
- viscous medium
- periodic boundaries

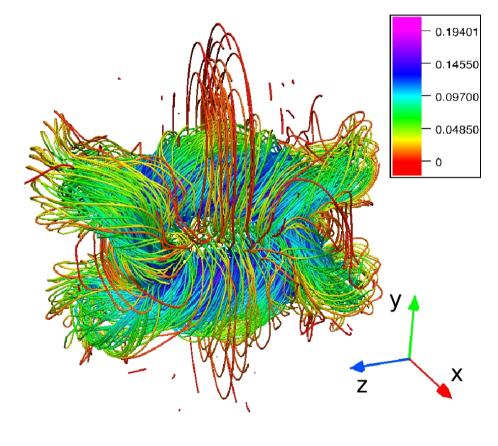
(Del Sordo et al. 2010)

$$\frac{\partial \boldsymbol{A}}{\partial t} = \boldsymbol{U} \times \boldsymbol{B} + \eta \nabla^2 \boldsymbol{A} \qquad \frac{\mathrm{D} \ln \rho}{\mathrm{D} t} = -\boldsymbol{\nabla} \cdot \boldsymbol{U}$$
$$\frac{\mathrm{D} \boldsymbol{U}}{\mathrm{D} t} = -c_{\mathrm{S}}^2 \boldsymbol{\nabla} \ln \rho + \boldsymbol{J} \times \boldsymbol{B} / \rho + \boldsymbol{F}_{\mathrm{visc}}$$

Interlocked Flux Rings

 $\tau = 4$

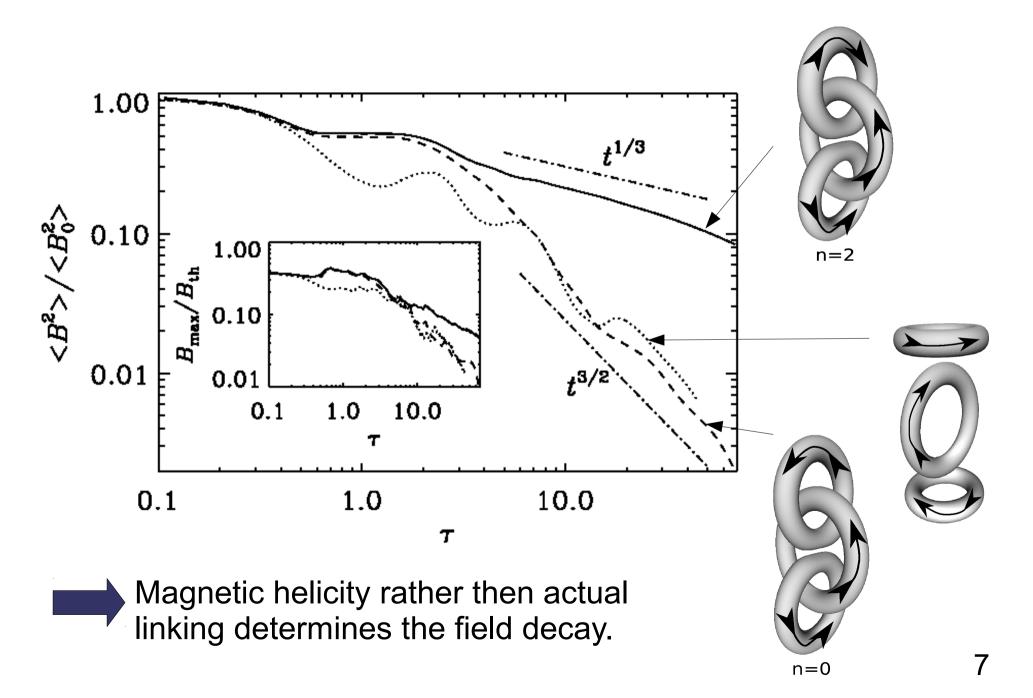




 $H_{\rm M}=0$

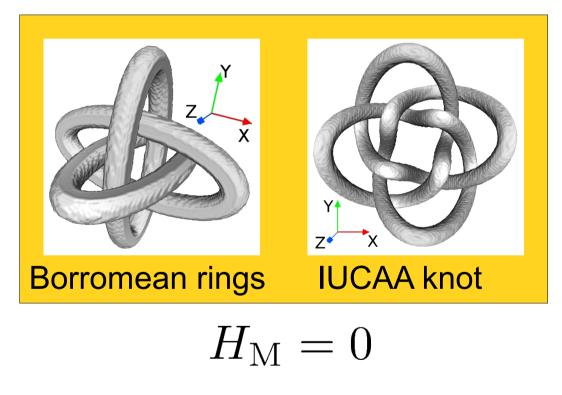
 $H_{\rm M} \neq 0$

Interlocked Flux Rings

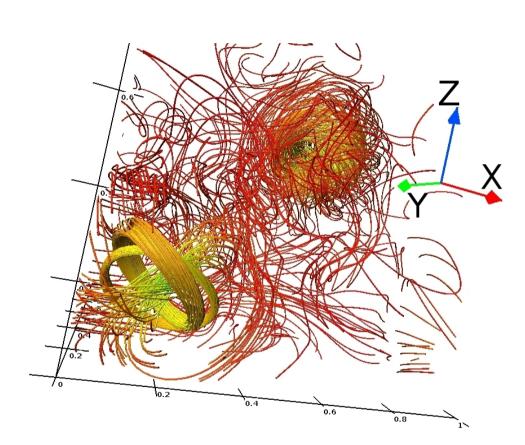


IUCAA Knot and Borromean Rings

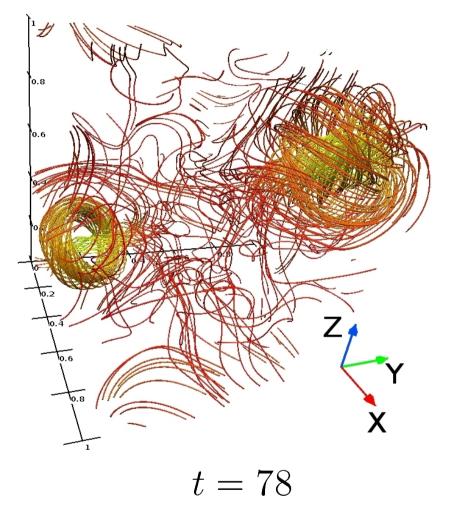
- Is magnetic helicity sufficient?
- Higher order invariants?

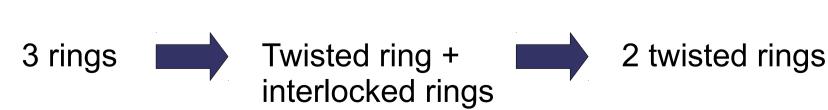


Reconnection Characteristics

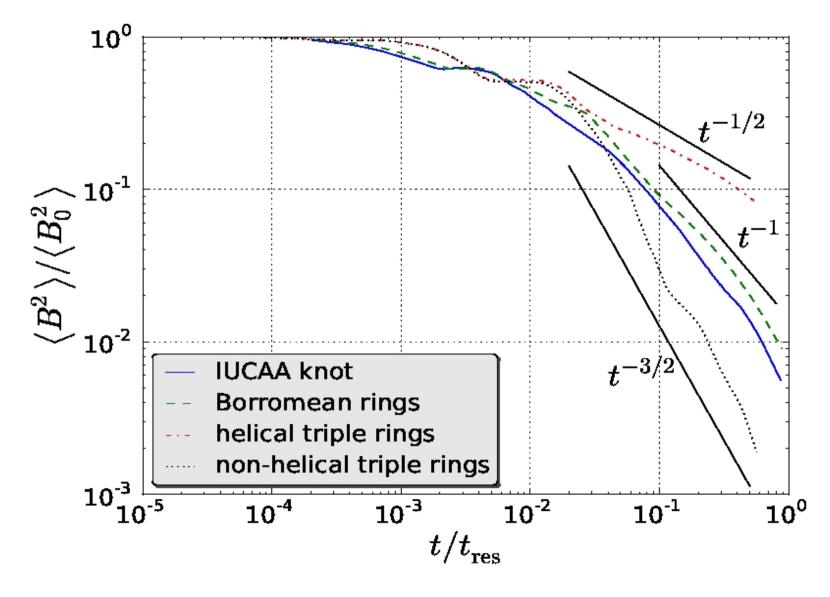


t = 70



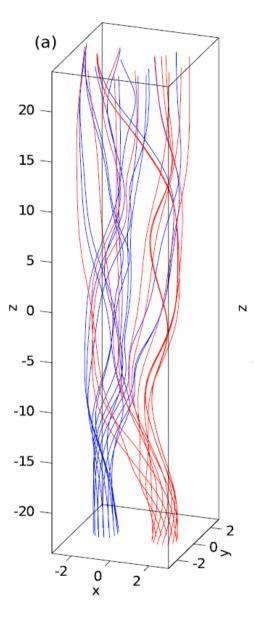


Magnetic Energy Decay



Higher order invariants?

Fixed Point Index



Trace magnetic field lines from z_0 to z. mapping: $(x, y) \rightarrow \mathbf{F}_z(x, y)$ fixed points: $\mathbf{F}_1(x, y) = (x, y)$ **Color coding:** Compare (x, y) with $\mathbf{F}_1(x, y)$: $\mathbf{F}_1^x > x$, $\mathbf{F}_1^y > y$ \rightarrow red $\mathbf{F}_1^x < x$, $\mathbf{F}_1^y > y$ \rightarrow red $\mathbf{F}_1^x < x$, $\mathbf{F}_1^y > y$ \rightarrow yellow

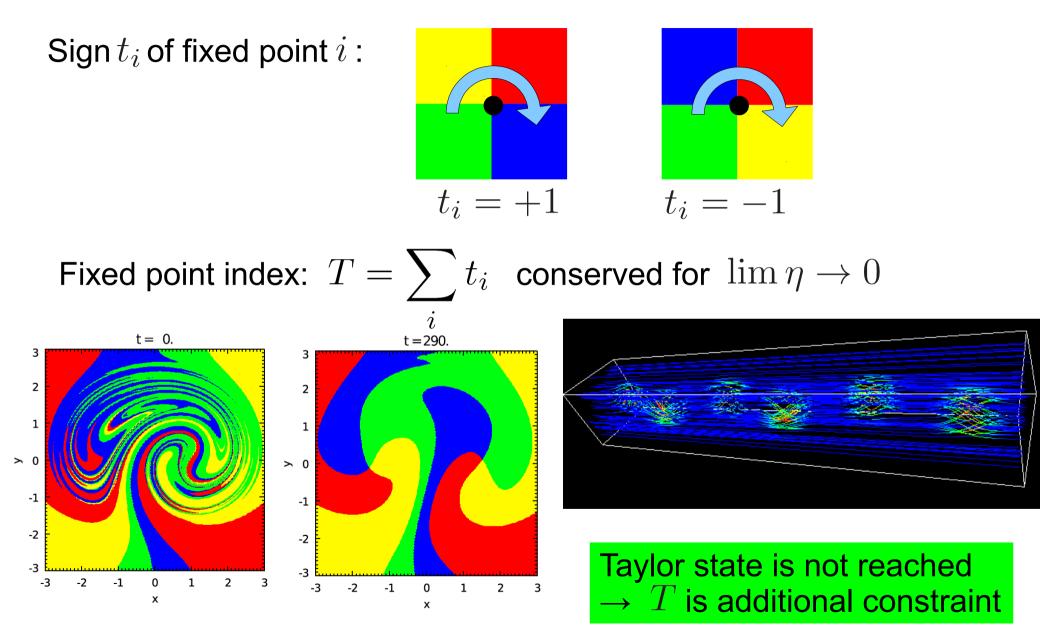
 $\mathbf{F}_1^x < x, \quad \mathbf{F}_1^y < y \quad \Longrightarrow \quad \text{green}$

 $\mathbf{F}_1^x > x, \quad \mathbf{F}_1^y < y \quad \Longrightarrow \quad \mathsf{blue}$

(Yeates et al. 2011)

(x, y)

Fixed Point Index



Summary and Outlook

- Braiding increases stability through the realizability condition.
- Turbulent magnetic field decay is restricted by magnetic helicity.
- Fixed point index as additional constraint in relaxation.
- Use fixed point index for knots and links (Yeates A.).

References

Canfield et al. 1999

Canfield, R. C., Hudson, H. S., and McKenzie, D. E. Sigmoidal morphology and eruptive solar activity. *Geophys. Res. Lett.*, 26:627, 1999

Del Sordo et al. 2010

Fabio Del Sordo, Simon Candelaresi, and Axel Brandenburg. Magnetic-field decay of three interlocked flux rings with zero linking number. *Phys. Rev. E*, 81:036401, Mar 2010.

Candelaresi and Brandenburg 2011

Simon Candelaresi, and Axel Brandenburg. Decay of helical and non-helical magnetic knots. *Phys. Rev. E*, 84:016406, 2011

Yeates et al. 2011

Yeates, A. R., Hornig, G. and Wilmot-Smith, A. L. Topological Constraints on Magnetic Relaxation. *Phys. Rev. Lett.* 105, 085002, 2010

www.nordita.org/~iomsn

Equilibrium States

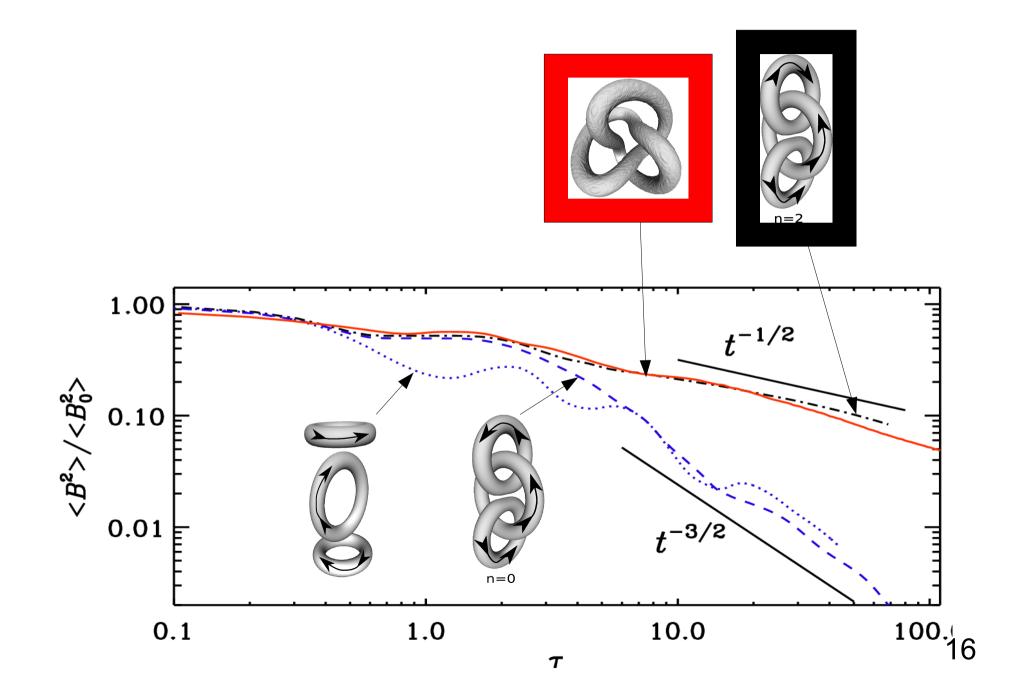
Ideal MHD: $\eta = 0$ Induction equation: $\frac{\partial B}{\partial t} = \nabla \times (U \times B)$

Task: Find the state with minimal energy.**Constraint**: magnetic helicity conservation

constraintequilibriumWoltjer (1958):
$$\frac{\partial}{\partial t} \int_{V} \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V = 0$$
 $\boldsymbol{\nabla} \times \boldsymbol{B} = \alpha \boldsymbol{B}$ Taylor (1974): $\frac{\partial}{\partial t} \int_{\tilde{V}} \boldsymbol{A} \cdot \boldsymbol{B} \, \mathrm{d}V = 0$ $\boldsymbol{\nabla} \times \boldsymbol{B} = \alpha(a, b) \boldsymbol{B}$ Constant along field line

V total volume $\quad \tilde{V}$ volume along magnetic field line

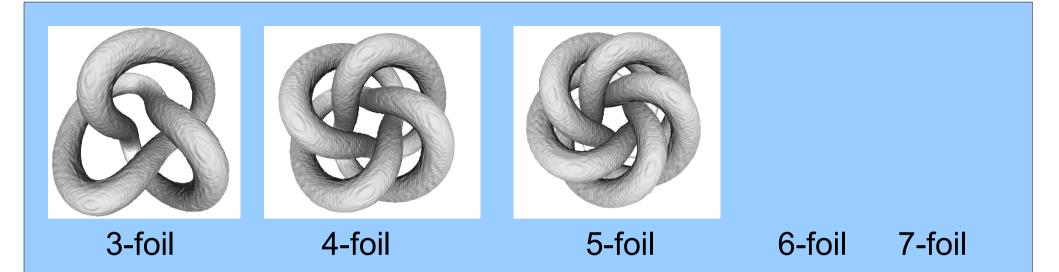
Magnetic energy decay



Simulations

- 256^3 mesh point
- Isothermal compressible gas
- Viscous medium
- Periodic boundaries

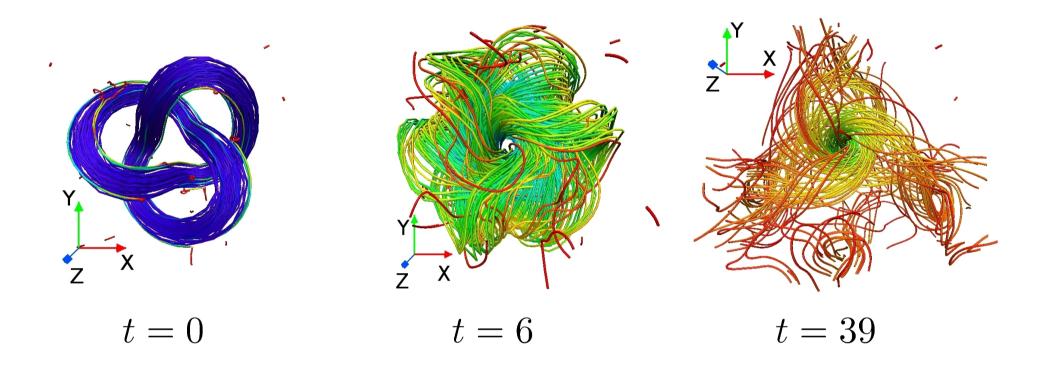
$$\frac{\partial \mathbf{A}}{\partial t} = \mathbf{U} \times \mathbf{B} + \eta \nabla^2 \mathbf{A}$$
$$\frac{\mathbf{D}\mathbf{U}}{\mathbf{D}t} = -c_{\mathrm{S}}^2 \nabla \ln \rho + \mathbf{J} \times \mathbf{B}/\rho + \mathbf{F}_{\mathrm{visc}}$$
$$\frac{\mathrm{D}\ln \rho}{\mathrm{D}t} = -\nabla \cdot \mathbf{U}$$



$$\overbrace{\neq}^{\star} \neq \overbrace{\qquad}^{t} x(s) = \left(\begin{array}{c} (C + \sin sn_{\rm f}) \sin[s(n_{\rm f} - 1)] \\ (C + \sin sn_{\rm f}) \cos[s(n_{\rm f} - 1)] \\ D \cos sn_{\rm f} \end{array} \right)$$

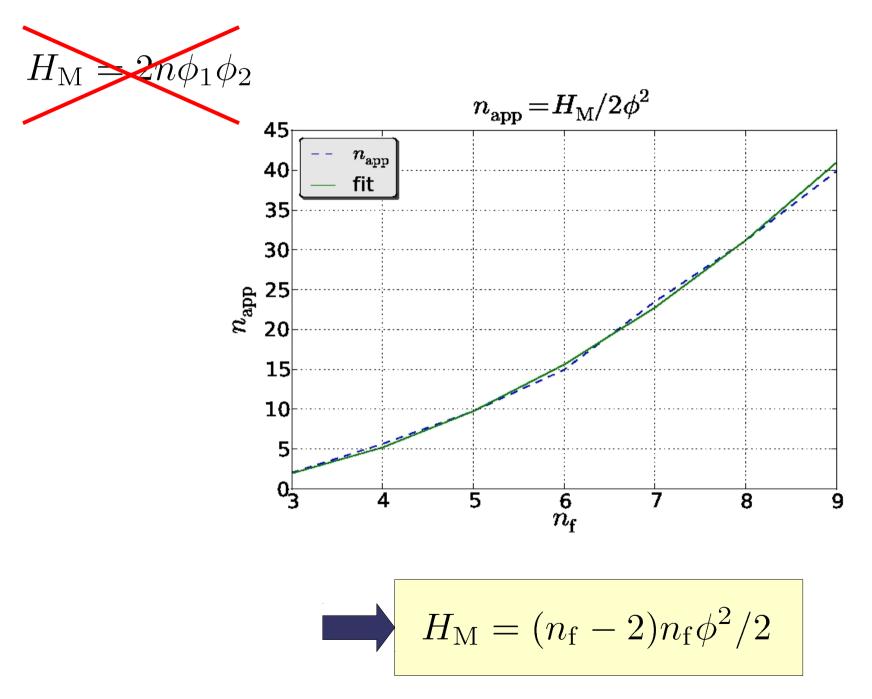
cinquefoil knot

* from Wikipedia, author: Jim.belk

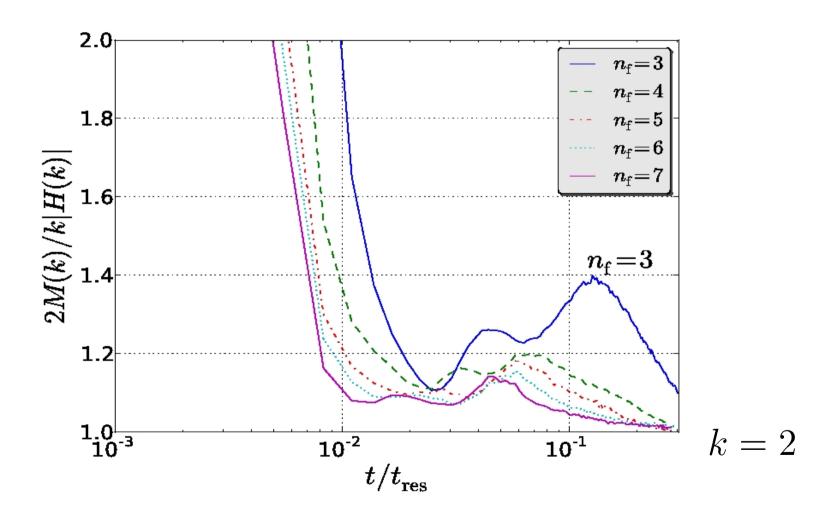


Magnetic helicity is approximately conserved.

Self-linking is transformed into twisting after reconnection.

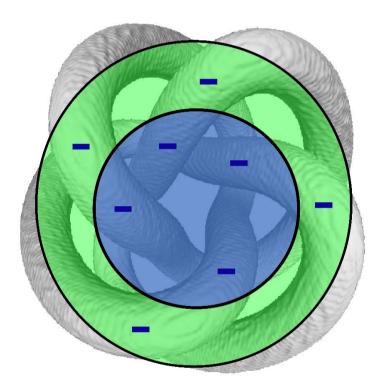


2M(k)/(|H(k)|k)



Realizability condition more important for high $n_{\rm f}$.

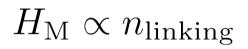
Linking Number

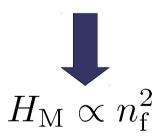


Sign of the crossings for the 4-foil knot

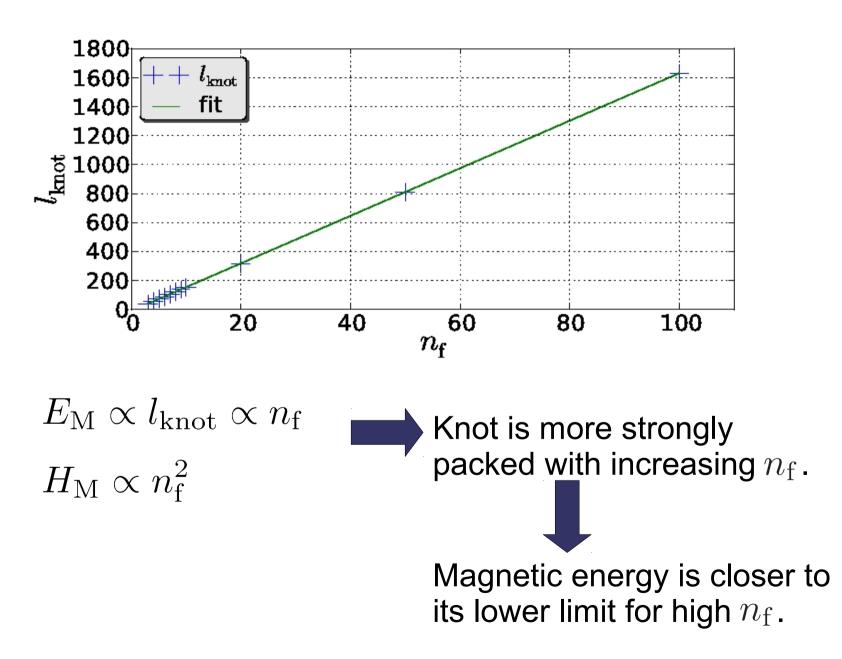
 $n_{\rm linking} = (n_+ - n_-)/2$

Number of crossings increases like $n_{\rm f}^2$

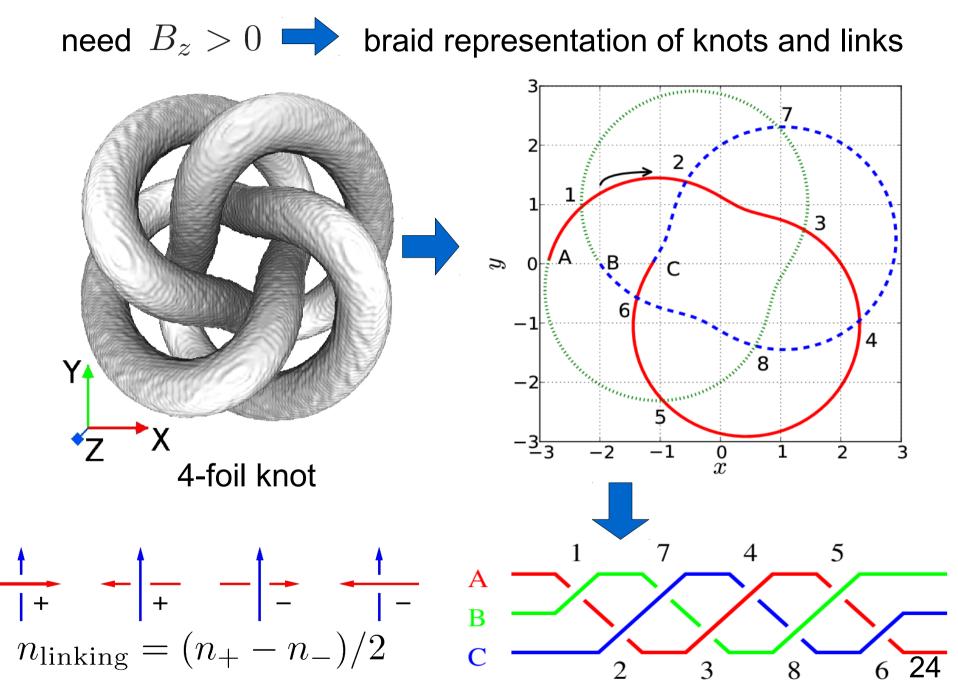




Helicity vs. Energy



Braid Representation

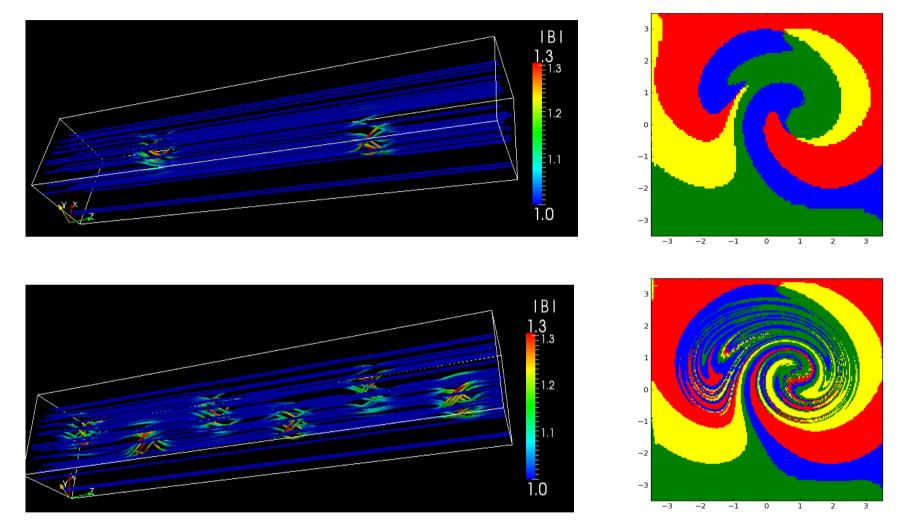


Magnetic Braid Configurations

AAA (trefoil knot)

AABB (Borromean rings)

Field Line Tracing



Generalized flux function:

$$\mathcal{A}(x,y) = \int_{z=0}^{z=1} \mathbf{A} \cdot d\mathbf{l}$$

Reconnection rate:

$$\sum_{i} \frac{\mathrm{d}\mathcal{A}(\mathbf{x}_i)}{\mathrm{d}t}$$

Magnetic Reconnection Rate

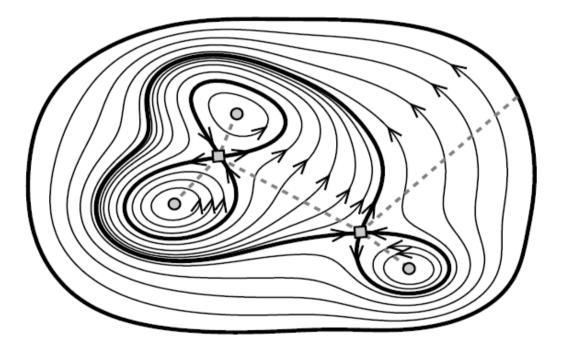
Classic: look for local maxima of
$$\int oldsymbol{E} \cdot oldsymbol{B}$$

Partition fluxes 2D: (Yeates, Hornig 2011b)

 $\boldsymbol{B} = \boldsymbol{\nabla} \times (A\boldsymbol{e}_z)$

Reconnection rate = magnetic flux through boundaries (spearatrices):

$$\Delta \phi = \sum_{i} \left| \frac{\mathrm{d}A(\boldsymbol{h}_{i})}{\mathrm{d}t} \right|$$



2D Magnetic field. Thick lines: separatrices. (Yeates, Hornig 2011b)

Magnetic Reconnection Rate

Partition reconnection rate 3D: $F_1(x_2, y_2)$ Yeates, Hornig 2011b $\mathbf{F}_1(x_1, y_1)$ Generalized flux function (curly A): Φ_{loop} z=1 $\mathcal{A}(x,y) = \int \mathbf{A} \cdot \mathbf{B} / B_z \, \mathrm{d}z$ (x_2, y_2) --7L $z \equiv 0$ (x_1, y_1) $\phi = \int_{\widehat{}} \nabla \times \mathbf{A} \cdot \, \mathrm{d}\mathbf{s} = \int_{\widehat{}} \mathbf{A} \cdot \, \mathrm{d}\mathbf{l}$ Fixed points: $\mathbf{F}_1(x_i, y_i) = \begin{pmatrix} x_i \\ y_i \end{pmatrix}$ $\frac{\partial \mathcal{A}}{\partial t} + \boldsymbol{U} \cdot \boldsymbol{\nabla} \mathcal{A} = 0$ **Reconnection rate:** invariant in ideal MHD $\Delta \phi = \sum \left| \frac{\mathrm{d} \mathcal{A}(\boldsymbol{h}_i)}{\mathrm{d} t} \right|$

28